CINXE.COM

Search results for: amyloid proteins

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amyloid proteins</title> <meta name="description" content="Search results for: amyloid proteins"> <meta name="keywords" content="amyloid proteins"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amyloid proteins" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amyloid proteins"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1090</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amyloid proteins</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Investigations of Protein Aggregation Using Sequence and Structure Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Michael%20Gromiha">M. Michael Gromiha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mary%20Thangakani"> A. Mary Thangakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Velmurugan"> D. Velmurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20proteins" title=" thermophilic proteins"> thermophilic proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20residues" title=" amino acid residues"> amino acid residues</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title=" machine learning techniques"> machine learning techniques</a> </p> <a href="https://publications.waset.org/abstracts/20424/investigations-of-protein-aggregation-using-sequence-and-structure-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Acute Phase Proteins as Biomarkers of Urinary Tract Infection (UTI) in Dairy Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20El-Deeb">Wael El-Deeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to investigate the diagnostic importance of acute phase proteins in urinary tract infection (UTI) in cattle. We describe the clinical, bacteriological and biochemical findings in 99 lactating cows. Blood and urine samples from diseased (n=84) and control healthy cows (n=15) were submitted to laboratory investigations. The urine analysis revealed hematuria and pyuria in UTI group. The isolated bacteria were E.coli (43/84) Corynebacterium spp, (31/84), Proteus spp. (6/84) and Streptococcus spp (4/84). The concentrations of Haptoglobin (Hp), serum amyloid A (SAA), α1-Acid glycoprotein (AGP), fibrinogen (Fb), total protein, albumen, and globulin were higher in cows with UTI when compared to healthy ones. Fifty-one of 84 cows with UTI were successfully treated. The levels of Hp, SAA, AGP, total protein, and globulin were associated with the odds of treatment failure. Conclusively, acute phase proteins could be used as diagnostic and prognostic biomarkers in cows with UTI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cows" title="cows">cows</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary" title=" urinary"> urinary</a>, <a href="https://publications.waset.org/abstracts/search?q=infections" title=" infections"> infections</a>, <a href="https://publications.waset.org/abstracts/search?q=haptoglobin" title=" haptoglobin"> haptoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20Amyloid%20A" title=" serum Amyloid A"> serum Amyloid A</a> </p> <a href="https://publications.waset.org/abstracts/17849/acute-phase-proteins-as-biomarkers-of-urinary-tract-infection-uti-in-dairy-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">724</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> Amyloid Deposition in Granuloma of Tuberculosis Patients: A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Ghosh">Shreya Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Akansha%20Garg"> Akansha Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Chayanika%20Kala"> Chayanika Kala</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar%20Thakur"> Ashwani Kumar Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Granuloma formation is one of the characteristic features of tuberculosis. Besides, chronic inflammation underlying tuberculosis is often indicated by an increase in the concentration of serum amyloid A (SAA) protein. The connection between tuberculosis and SAA-driven secondary amyloidosis is well documented. However, SAA-derived amyloid deposition start sites are not well understood in tuberculosis and other chronic inflammatory conditions. It was hypothesized that granuloma could be a potential site for an amyloid deposition because both SAA protein and proteases that cleave SAA into aggregation-prone fragments are reported to be present in the granuloma. Here the authors have shown the presence of SAA-derived amyloid deposits in the granuloma of tuberculosis patients. Methodology: Over a period of two years, tuberculosis patients were screened, and biopsies were collected from the affected organs of the patients. The gold standard, Congo red dye staining, was used to identify amyloid deposits in the tissue sections of tuberculosis patients containing granulomatous structure. Results: 11 out of 150 FFPE biopsy specimens of tuberculosis patients showed eosinophilic hyaline-rich deposits surrounding granuloma. Upon Congo red staining, these deposits exhibited characteristic apple-green birefringence under polarized light, confirming amyloid deposits. Further, upon immunohistochemical staining with anti-SAA, the amyloid enriched areas showed positive immunoreactivity. Conclusion: In this pilot study, we have shown that granuloma can be a potential site for serum amyloid A-derived amyloid formation in tuberculosis patients. Moreover, the presence of amyloid gave significant cues that granuloma might be a probable amyloid deposition start in tuberculosis patients. This study will set a stage to expand the clinical and fundamental research in the understanding of amyloid formation in granuloma underlying tuberculosis and chronic inflammatory conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloid" title="amyloid">amyloid</a>, <a href="https://publications.waset.org/abstracts/search?q=granuloma" title=" granuloma"> granuloma</a>, <a href="https://publications.waset.org/abstracts/search?q=periphery" title=" periphery"> periphery</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20amyloid%20A" title=" serum amyloid A"> serum amyloid A</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/136557/amyloid-deposition-in-granuloma-of-tuberculosis-patients-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ava%20Faridi">Ava Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouya%20Faridi"> Pouya Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20Kakinen"> Aleksandr Kakinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Javed"> Ibrahim Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20P.%20Davis"> Thomas P. Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pu%20Chun%20Ke"> Pu Chun Ke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title="graphene quantum dots">graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=IAPP" title=" IAPP"> IAPP</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoribbons" title=" silica nanoribbons"> silica nanoribbons</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20expression" title=" protein expression"> protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/107515/mitigating-the-aggregation-of-human-islet-amyloid-polypeptide-with-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Molecular Basis for Amyloid Inhibition by L-Dopa: Implication towards Systemic Amyloidosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20H.%20Khan">Rizwan H. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Nusrat"> Saima Nusrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the fact that amyloid associated neurodegenerative diseases and non-neuropathic systemic amyloidosis have allured the research endeavors, as no curative drugs have been proclaimed up till now except for symptomatic cure. Therapeutic compounds which can diminish or disaggregate such toxic oligomers and fibrillar species have been examined and more are on its way. In the present study, we had reported an extensive biophysical, microscopic and computational study, revealing that L-3, 4-dihydroxyphenylalanine (L-Dopa) possess undeniable potency to inhibit heat induced human lysozyme (HL) amyloid fibrillation and also retain the fibril disaggregating potential. L-Dopa interferes in the amyloid fibrillogenesis process by interacting hydrophobically and also by forming hydrogen bonds with the amino acid residues found in amyloid fibril forming prone region of HL as elucidated by molecular docking results. L-Dopa also disaggregates the mature amyloid fibrils into some unorganised species. Thus, L-Dopa and related compounds can work as a promising inhibitor for the therapeutic advancement prospective against systemic amyloidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloids" title="amyloids">amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=disaggregation" title=" disaggregation"> disaggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20lysozyme" title=" human lysozyme"> human lysozyme</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/67120/molecular-basis-for-amyloid-inhibition-by-l-dopa-implication-towards-systemic-amyloidosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Brain Atrophy in Alzheimer&#039;s Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tansa%20Nisan%20Gunerhan">Tansa Nisan Gunerhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer" title="Alzheimer">Alzheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid-beta" title=" amyloid-beta"> amyloid-beta</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20atrophy" title=" brain atrophy"> brain atrophy</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron" title=" neuron"> neuron</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/161073/brain-atrophy-in-alzheimers-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Jomehpour">Dalia Jomehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Sheikhlary"> Sara Sheikhlary</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Heydari"> Esmaeil Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossien%20Majles%20Ara"> Mohammad Hossien Majles Ara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic%20acid%20coated%20iron%20oxide%20nanoparticles" title=" fulvic acid coated iron oxide nanoparticles"> fulvic acid coated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic%20acid" title=" fulvic acid"> fulvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20inhibitor" title=" amyloid inhibitor"> amyloid inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a> </p> <a href="https://publications.waset.org/abstracts/152105/inhibitory-impacts-of-fulvic-acid-coated-iron-oxide-nano-particles-on-the-amyloid-fibril-aggregations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1083</span> Role of GM1 in the Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and Model Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Giordani">Cristiano Giordani</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Diociaiuti"> Marco Diociaiuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Bombelli"> Cecilia Bombelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Zanetti-Polzi"> Laura Zanetti-Polzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcello%20Belfiore"> Marcello Belfiore</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20Fioravanti"> Raoul Fioravanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianfranco%20Macchia"> Gianfranco Macchia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated induced functional effects by evaluating Ca2+-influx in liposomes and cell viability in HT22-DIFF neurons. Only solutions rich in unstructured Prefibrillar-Oligomers (PFOs) were able, in the presence of Monosialoganglioside-GM1 (GM1), to induce Ca2+-influx and were also neurotoxic, suggesting a correlation between the two phenomena. Thus, in the presence of GM1, we investigated the protein conformation and liposome modification due to the interaction. Circular Dichroism showed that GM1 fostered the formation of β-structures and Energy Filtered-Transmission Electron Microscopy that PFOs formed “amyloid-channels” as reported for Aβ. We speculate that electrostatic forces occurring between the positive PFOs and negative GM1 drive the initial binding, while the hydrophobic profile of the flexible PFO is responsible for the subsequent pore formation. Conversely, the rigid β-structured mature/fibers (MFs) and proto-fibers (PFs) were unable to induce membrane damage and Ca2+- influx. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins" title="amyloid proteins">amyloid proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid-rafts" title=" lipid-rafts"> lipid-rafts</a>, <a href="https://publications.waset.org/abstracts/search?q=GM1" title=" GM1"> GM1</a> </p> <a href="https://publications.waset.org/abstracts/118119/role-of-gm1-in-the-interaction-between-amyloid-prefibrillar-oligomers-of-salmon-calcitonin-and-model-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1082</span> Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Agrawal">Nikhil Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20A.%20Skelton"> Adam A. Skelton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid-β fibrils (Aβ fibrils). To disrupt the remodeling of Aβ fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of Aβ fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3µs, in explicit solvent. Several previously undiscovered candidate molecule-Aβ fibrils binding modes are unraveled; one of which shows the direct conformational change of the Aβ fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of Aβ fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer%E2%80%99s%20disease" title="alzheimer’s disease">alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid" title=" amyloid"> amyloid</a>, <a href="https://publications.waset.org/abstracts/search?q=MD%20simulations" title=" MD simulations"> MD simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=misfolded%20protein" title=" misfolded protein"> misfolded protein</a> </p> <a href="https://publications.waset.org/abstracts/52879/amyloid-v-fibrils-remodeling-by-an-organic-molecule-insight-from-all-atomic-molecular-dynamics-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1081</span> Potential of Polyphenols from Tamarix Gallica towards Common Pathological Features of Diabetes and Alzheimer’s Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ben%20Hmidene">Asma Ben Hmidene</a>, <a href="https://publications.waset.org/abstracts/search?q=Mizuho%20Hanaki"> Mizuho Hanaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuma%20Murakami"> Kazuma Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Irie"> Kazuhiro Irie</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroko%20Isoda"> Hiroko Isoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideyuki%20Shigemori"> Hideyuki Shigemori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system, respectively. It is now widely recognized that T2DM and AD share many pathophysiological features including glucose metabolism, increased oxidative stress and amyloid aggregation. Amyloid beta (Aβ) is the components of the amyloid deposits in the AD brain and while the component of the amyloidogenic peptide deposit in the pancreatic islets of Langerhans is identified as human islet amyloid polypeptide (hIAPP). These two proteins are originated from the amyloid precursor protein and have a high sequence similarity. Although the amino acid sequences of amyloidogenic proteins are diverse, they all adopt a similar structure in aggregates called cross-beta-spine. Add at that, extensive studies in the past years have found that like Aβ1-42, IAPP forms early intermediate assemblies as spherical oligomers, implicating that these oligomers possess a common folding pattern or conformation. These similarities can be used in the search for effective pharmacotherapy for DM, since potent therapeutic agents such as antioxidants with a catechol moiety, proved to inhibit Aβ aggregation, may play a key role in the inhibit the aggregation of hIAPP treatment of patients with DM. Tamarix gallica is one of the halophyte species having a powerful antioxidant system. Although it was traditionally used for the treatment of various liver metabolic disorders, there is no report about the use of this plant for the treatment or prevention of T2DM and AD. Therefore, the aim of this work is to investigate their protective effect towards T2DM and AD by isolation and identification of α-glucosidase inhibitors, with antioxidant potential, that play an important role in the glucose metabolism in diabetic patient, as well as, the polymerization of hIAPP and Aβ aggregation inhibitors. Structure-activity relationship study was conducted for both assays. And as for α-glucosidase inhibitors, their mechanism of action and their synergistic potential when applied with a very low concentration of acarbose were also suggesting that they can be used not only as α-glucosidase inhibitors but also be combined with established α-glucosidase inhibitors to reduce their adverse effect. The antioxidant potential of the purified substances was evaluated by DPPH and SOD assays. Th-T assay using 42-mer amyloid β-protein (Aβ42) for AD and hIAPP which is a 37-residue peptide secreted by the pancreatic β –cells for T2DM and Transmission electronic microscopy (TEM) were conducted to evaluate the amyloid aggragation of the actives substances. For α-glucosidase, p-NPG and glucose oxidase assays were performed for determining the inhibition potential and structure-activity relationship study. The Enzyme kinetic protocol was used to study the mechanism of action. From this research, it was concluded that polyphenols playing a role in the glucose metabolism and oxidative stress can also inhibit the amyloid aggregation, and that substances with a catechol and glucuronide moieties inhibiting amyloid-β aggregation, might be used to inhibit the aggregation of hIAPP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase%20inhibitors" title="α-glucosidase inhibitors">α-glucosidase inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20aggregation%20inhibition" title=" amyloid aggregation inhibition"> amyloid aggregation inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20of%20action" title=" mechanism of action"> mechanism of action</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20activity%20relationship" title=" structure activity relationship"> structure activity relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20potential" title=" synergistic potential"> synergistic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=tamarix%20gallica" title=" tamarix gallica"> tamarix gallica</a> </p> <a href="https://publications.waset.org/abstracts/56581/potential-of-polyphenols-from-tamarix-gallica-towards-common-pathological-features-of-diabetes-and-alzheimers-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1080</span> DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Hussein">Rasha M. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Hashem"> Reem M. Hashem</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20A.%20Rashed"> Laila A. Rashed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%CE%B2" title="Aβ">Aβ</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone" title=" chaperone"> chaperone</a>, <a href="https://publications.waset.org/abstracts/search?q=DNAJB6" title=" DNAJB6"> DNAJB6</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/35650/dnajb6-chaperone-prevents-the-aggregation-of-intracellular-but-not-extracellular-av-peptides-associated-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1079</span> The Effect of Dendrobium nobile Lindl. Alkaloids on the Blood Glucose and Amyloid Precursor Protein Metabolic Pathways in Db/Db Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Huang">Juan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanqu%20Huang"> Nanqu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingshan%20Shi"> Jingshan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Qiu"> Yu Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: There are pathophysiological connections between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), and research on drugs with hypoglycemic and beta-amyloid (Aβ)-clearing effects have great therapeutic potential for AD. Dendrobium nobile Lindl. Alkaloids (DNLA) as one of the active compounds of Dendrobium nobile Lindl. In this study, we attempted to verify the hypoglycemic effect and investigate the effects of DNLA on the amyloid precursor protein (APP) metabolic pathway of the hippocampus in db/db mice. Methods: 4-weeks-old male C57BL/KsJ mice were the control group. And the same age and sexuality db/db mice were: model, DNLA-L (20 mg/kg), DNLA-M (40 mg/kg), and DNLA-H (80 mg/kg). After, mice were treated with different concentrations of DNLA for 17 weeks. The fasting blood glucose (FBG) was detected by glucose oxidase assay every week from the 4th to last week. The protein expression of β-amyloid 1-42 (Aβ1-42), β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and APP were examined by Western blotting. Results: The concentration of FBG and the protein expression of Aβ1-42, BACE1, and APP were increased in the hippocampus of the model group. Moreover, DNLA not only significantly decreased the concentration of FBG but also reduced the protein expressions of Aβ1-42, BACE1 and APP in the hippocampus of db/db mice in a dose-dependent manner. Conclusions: DNLA can decrease the protein expressions of Aβ1-42 in the hippocampus of db/db mice, and the mechanism may be involved in the APP metabolic pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-site%20amyloid%20precursor%20protein-cleaving%20enzyme%201" title=" β-site amyloid precursor protein-cleaving enzyme 1"> β-site amyloid precursor protein-cleaving enzyme 1</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20Chinese%20medicines" title=" traditional Chinese medicines"> traditional Chinese medicines</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-amyloid" title=" beta-amyloid"> beta-amyloid</a> </p> <a href="https://publications.waset.org/abstracts/152548/the-effect-of-dendrobium-nobile-lindl-alkaloids-on-the-blood-glucose-and-amyloid-precursor-protein-metabolic-pathways-in-dbdb-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1078</span> Acute Phase Proteins, Proinflammatory Cytokines and Oxidative Stress Biomarkers in Sheep with Pneumonic Pasteurellosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20M.%20El-Deeb">Wael M. El-Deeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess the pathophysiological importance of lipid profile, acute phase proteins, proinflammatory cytokines and oxidative stress markers in sheep with pneumonic pasteurellosis. Blood samples were collected from 36 Pasteurellamultocida-infected sheep, together with 20 healthy controls. Samples for bacteriological examination (nasal swabs, bronchoalveolar lavage) were collected from all animals and subjected to bacteriological examinations. Moreover, heart blood and lung samples were collected from the dead pneumonic sheep and subjected also to bacteriological examinations. A lipid profile was determined, along with a blood picture and other biochemical parameters. The acute phase proteins (fibrinogen, haptoglobin, serum amyloid A), the proinflammatory cytokine tumour necrosis factor-alpha, interleukins (IL-1α, IL-1β, IL-6), interferon-gamma and the oxidative stress markers malondialdehyde, super oxide dismutase, glutathione and catalase were also measured. The examined biochemical parameters were increased in the pneumonic sheep, except for cholesterol and high-density lipoprotein cholesterol (HDL-c), which were significantly lower than control group. Acute phase proteins and cytokines were significantly higher in the pneumonic sheep when compared to the healthy sheep. There was a significant increase in the levels of malondialdehyde; however, a significant decrease in the levels of super oxide dismutase, glutathione and catalase was observed. The present study shed the light on the possible pathphysiological role of lipid profile, acute phase proteins (APPs), proinflammatory cytokines and oxidative stress markers in pneumonic pasteurelosis in sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20phase%20proteins" title="acute phase proteins">acute phase proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=pasteurella" title=" pasteurella"> pasteurella</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukins" title=" interleukins"> interleukins</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress "> stress </a> </p> <a href="https://publications.waset.org/abstracts/40005/acute-phase-proteins-proinflammatory-cytokines-and-oxidative-stress-biomarkers-in-sheep-with-pneumonic-pasteurellosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1077</span> Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateen%20A%20Khan">Mateen A Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Taj%20Mohammad"> Taj Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Imtaiyaz%20Hassan"> Md. Imtaiyaz Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=Protein-RNA%20interaction%20analysis" title=" Protein-RNA interaction analysis"> Protein-RNA interaction analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking%20simulations" title=" molecular docking simulations"> molecular docking simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=conformational%20dynamics" title=" conformational dynamics"> conformational dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20stability" title=" binding stability"> binding stability</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20kinetics" title=" binding kinetics"> binding kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20synthesis." title=" protein synthesis."> protein synthesis.</a> </p> <a href="https://publications.waset.org/abstracts/186190/targeting-app-ire-mrna-to-combat-amyloid-v-protein-expression-in-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1076</span> Towards the Inhibition Mechanism of Lysozyme Fibrillation by Hydrogen Sulfide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indra%20Gonzalez%20Ojeda">Indra Gonzalez Ojeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Quinones"> Tatiana Quinones</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Rosario"> Manuel Rosario</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Lednev"> Igor Lednev</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Lopez%20Garriga"> Juan Lopez Garriga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloid fibrils are stable aggregates of misfolded protein associated with many neurodegenerative disorders. It has been shown that hydrogen sulfide (H2S), inhibits the fibrillation of lysozyme through the formation of trisulfide (S-S-S) bonds. However, the overall mechanism remains elusive. Here, the concentration dependence of H2S effect was investigated using Atomic force microscopy (AFM), non-resonance Raman spectroscopy, Deep-UV Raman spectroscopy and circular dichroism (CD). It was found that small spherical aggregates with trisulfide bonds and a unique secondary structure were formed instead of amyloid fibrils when adding concentrations of 25 mM and 50 mM of H2S. This could indicate that H2S might serve as a protecting agent for the protein. However, further characterization of these aggregates and their trisulfide bonds is needed to fully unravel the function H2S has on protein fibrillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloid%20fibrils" title="amyloid fibrils">amyloid fibrils</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulfide" title=" hydrogen sulfide"> hydrogen sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20folding" title=" protein folding"> protein folding</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/86031/towards-the-inhibition-mechanism-of-lysozyme-fibrillation-by-hydrogen-sulfide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1075</span> Mapping Protein Selectivity Landscapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niv%20Papo">Niv Papo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a distinct and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein–protein interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=directed%20evolution" title=" directed evolution"> directed evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20engineering" title=" protein engineering"> protein engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=protease%20inhibition." title=" protease inhibition."> protease inhibition.</a> </p> <a href="https://publications.waset.org/abstracts/191315/mapping-protein-selectivity-landscapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1074</span> Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elad%20Arad">Elad Arad</a>, <a href="https://publications.waset.org/abstracts/search?q=Raz%20Jelinek"> Raz Jelinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Rapaport"> Hanna Rapaport</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20treatment" title=" photothermal treatment"> photothermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol" title=" catechol"> catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo-red" title=" Congo-red"> Congo-red</a> </p> <a href="https://publications.waset.org/abstracts/109975/functionalized-titanium-dioxide-nanoparticles-for-targeting-and-disrupting-amyloid-fibrils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1073</span> IgA/λ Plasma Cell Myeloma with λ Light Chain Amyloidosis: A Case Report </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Pei%20Huang">Kai Pei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Chung%20Hung"> Ting Chung Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ching%20Wu"> Li Ching Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidosis refers to a variety of conditions wherein amyloid proteins are abnormally deposited in organ or tissues and cause harm. Among the several forms of amyloidosis, the principal types of that in inpatient medical services are the AL amyloidosis (primary) and AA amyloidois (secondary). AL Amyloidois is due to deposition of protein derived from overproduction of immunoglobulin light chain in plasma cell myeloma. Furthermore, it is a systemic disorder that can present with a variety of symptoms, including heavy proteinemia and edema, heptosplenomegaly, otherwise unexplained heart failure. We reported a 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria (UPCR:1679.8), leukocytosis (WBC:16.2 x 10^3/uL), results of serum urea nitrogen (39mg/dL), creatinine (0.76 mg/dL), IgG (748 mg/dL.), IgA (635 mg/dL), IgM (63 mg/dL), kappa light chain(18.8 mg/dL), lambda light chain (110.0 mg/dL) and kappa/lambda ratio (0.17). Renal biopsy found amyloid fibrils in glomerular mesangial area, and Congo red stain highlights amyloid deposition in glomeruli. Additional lab studies included serum protein electrophoresis, which shows a major monoclonal peak in β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. We treated sample with beta-mercaptoethanol which reducing the polymerized immunoglobulin to clarify two IgA/λ are secreted from the same plasma cell clone in bone marrow. Later examination confirmed it existed plasma cell infiltration in bone marrow, and the immunohistochemical staining showed monotypic for λ light chain and are positive for IgA. All findings mentioned above reveal it is a case of plasma cell myeloma with λ Light Chain Amyloidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title="amyloidosis">amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoglobulin%20light%20chain" title=" immunoglobulin light chain"> immunoglobulin light chain</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20cell%20myeloma" title=" plasma cell myeloma"> plasma cell myeloma</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20protein%20electrophoresis" title=" serum protein electrophoresis"> serum protein electrophoresis</a> </p> <a href="https://publications.waset.org/abstracts/53574/igal-plasma-cell-myeloma-with-l-light-chain-amyloidosis-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1072</span> Epiphytic Growth on Filamentous Bacteria Found in Activated Sludge: A Morphological Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thobela%20Conco">Thobela Conco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Kumari"> Sheena Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Thor%20Stenstrom"> Thor Stenstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Rosetti"> Simona Rosetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Valter%20Tandoi"> Valter Tandoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Bux"> Faizal Bux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filamentous bacteria are well documented as causative agents of bulking and foaming in the biological wastewater treatment process. These filamentous bacteria are however closely associated with other non-filamentous organism forming a micro-niche. Among these specific epiphytic bacteria attach to filaments in the consortium of organisms that make up the floc. Neither the eco-physiological role of the epiphytes nor the nature of the interaction between the epiphytic bacteria and the filament hosts they colonize is well understood and in need of in-depth investigations. The focus of this presentation is on the interaction between the epiphytic bacteria and the filament host. Samples from the activated sludge treatment have been repeatedly collected from several wastewater treatment plants in KwaZulu Natal. Extensive investigations have been performed with SEM and TEM electron microscopy, Polarized Light Microscopy with Congo red staining, and Thioflavin T staining to document the interaction. SEM was used to document the morphology of both the filament host and their epiphytes counterparts with the focus on the interface/point of contact between the two, while the main focus of the TEM investigations with the higher magnification aimed to document the ultra-structure features of two organisms relating to the interaction. The interaction of the perpendicular attachment partly seems to be governed by the physiological status of the filaments. The attachment further seems to trigger a response in the filaments with distinct internal visible structures at the attachment sites. It is postulated that these structures most likely are amyloid fibrils. Amyloid fibrils may play an overarching role in different types of attachments and has earlier been noted to play a significant role in biofilm formation in activated sludge. They also play a medical role in degenerative diseases such as Alzheimer’s and Diabetes. Further studies aims to define the eco-physiological role of amyloid fibrils in filamentous bacteria, based on their observed presence at interaction sites in this study. This will also relate to additional findings where selectivity within the species of epiphytes attaching to the selected filaments has been noted. The practical implications of the research findings is still to be determined, but the ecophysiological interaction between two closely associated species or groups may have significant impact in the future understanding of wastewater treatment processes and broaden existing knowledge on population dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins" title=" amyloid proteins"> amyloid proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=epiphytic%20bacteria" title=" epiphytic bacteria"> epiphytic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=filamentous%20bacteria" title=" filamentous bacteria"> filamentous bacteria</a> </p> <a href="https://publications.waset.org/abstracts/35469/epiphytic-growth-on-filamentous-bacteria-found-in-activated-sludge-a-morphological-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1071</span> A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Passero">Marina Passero</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianhua%20Zhai"> Tianhua Zhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuyi%20%28Jacky%29%20Huang"> Zuyi (Jacky) Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand-protein%20docking" title=" ligand-protein docking"> ligand-protein docking</a>, <a href="https://publications.waset.org/abstracts/search?q=gene-network%20analysis" title=" gene-network analysis"> gene-network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol%20regulation" title=" cholesterol regulation"> cholesterol regulation</a> </p> <a href="https://publications.waset.org/abstracts/162391/a-computational-investigation-of-potential-drugs-for-cholesterol-regulation-to-treat-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Gallbladder Amyloidosis Causing Gangrenous Cholecystitis: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Leung">Christopher Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Becerril-Martinez"> Guillermo Becerril-Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidosis is a rare systemic disease where abnormal proteins invade various organs and impede their function. Occasionally, they can manifest in a solidary organ such as the heart, lung, and nervous systems; rarely do they manifest in the gallbladder. Diagnosis often requires biopsy of the affected area and histopathology shows deposition of abnormally folded globular proteins called amyloid proteins. This case presents a 69-year-old male with a 3-month history of RUQ pain, diarrhea and non-specific symptoms of tiredness, etc. On imaging, both his US and CT abdomen showed gallbladder wall thickening and pericholecystic fluid, which may represent acute cholecystitis with hypodense lesions around the gallbladder, possibly representing liver abscesses. Given his symptoms of abdominal pain and imaging findings, this gentleman eventually had a laparoscopic cholecystectomy showing a gangrenous gallbladder with a mass on the liver bed. On histopathology, it showed amorphous hyaline eosinophilic material, which Congo-stained confirmed amyloidosis. Amyloidosis explained his non-specific symptoms, he avoided further biopsy, and he was commenced immediately on Lenalidomide. Involvement of the gallbladder is extremely rare, with less than 30 cases around the world. Half of the cases are reported as primary amyloidosis. This case adds to the current literature regarding primary gallbladder amyloidosis. Importantly, this case highlights how laparoscopic cholecystectomy can help with the diagnosis of gallbladder amyloidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title="amyloidosis">amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cholecystitis" title=" cholecystitis"> cholecystitis</a>, <a href="https://publications.waset.org/abstracts/search?q=gangrenous%20cholecystitis" title=" gangrenous cholecystitis"> gangrenous cholecystitis</a>, <a href="https://publications.waset.org/abstracts/search?q=gallbladder" title=" gallbladder"> gallbladder</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic%20amyloidosis" title=" systemic amyloidosis"> systemic amyloidosis</a> </p> <a href="https://publications.waset.org/abstracts/140554/gallbladder-amyloidosis-causing-gangrenous-cholecystitis-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1069</span> Computational Screening of Secretory Proteins with Brain-Specific Expression in Glioblastoma Multiforme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumera">Sumera</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanila%20Amber"> Sanila Amber</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Javed%20Mirza"> Fatima Javed Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Ali"> Amjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadia%20Zahid"> Saadia Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiforme (GBM) is a widely spread and fatal primary brain tumor with an increased risk of relapse in spite of aggressive treatment. The current procedures for GBM diagnosis include invasive procedures i.e. resection or biopsy, to acquire tumor mass. Implementation of negligibly invasive tests as a potential diagnostic technique and biofluid-based monitoring of GBM stresses on discovering biomarkers in CSF and blood. Therefore, we performed a comprehensive in silico analysis to identify potential circulating biomarkers for GBM. Initially, six gene and protein databases were utilized to mine brain-specific proteins. The resulting proteins were filtered using a channel of five tools to predict the secretory proteins. Subsequently, the expression profile of the secreted proteins was verified in the brain and blood using two databases. Additional verification of the resulting proteins was done using Plasma Proteome Database (PPD) to confirm their presence in blood. The final set of proteins was searched in literature for their relationship with GBM, keeping a special emphasis on secretome proteome. 2145 proteins were firstly mined as brain-specific, out of which 69 proteins were identified as secretory in nature. Verification of expression profile in brain and blood eliminated 58 proteins from the 69 proteins, providing a final list of 11 proteins. Further verification of these 11 proteins further eliminated 2 proteins, giving a final set of nine secretory proteins i.e. OPCML, NPTX1, LGI1, CNTN2, LY6H, SLIT1, CREG2, GDF1 and SERPINI1. Out of these 9 proteins, 7 were found to be linked to GBM, whereas 2 proteins are not investigated in GBM so far. We propose that these secretory proteins can serve as potential circulating biomarker signatures of GBM and will facilitate the development of minimally invasive diagnostic methods and novel therapeutic interventions for GBM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title="glioblastoma multiforme">glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=secretory%20proteins" title=" secretory proteins"> secretory proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20secretome" title=" brain secretome"> brain secretome</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/144723/computational-screening-of-secretory-proteins-with-brain-specific-expression-in-glioblastoma-multiforme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1068</span> Computing the Similarity and the Diversity in the Species Based on Cronobacter Genome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Al%20Daoud">E. Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of computing the similarity and the diversity in the species is to trace the process of evolution and to find the relationship between the species and discover the unique, the special, the common and the universal proteins. The proteins of the whole genome of 40 species are compared with the cronobacter genome which is used as reference genome. More than 3 billion pairwise alignments are performed using blastp. Several findings are introduced in this study, for example, we found 172 proteins in cronobacter genome which have insignificant hits in other species, 116 significant proteins in the all tested species with very high score value and 129 common proteins in the plants but have insignificant hits in mammals, birds, fishes, and insects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome" title="genome">genome</a>, <a href="https://publications.waset.org/abstracts/search?q=species" title=" species"> species</a>, <a href="https://publications.waset.org/abstracts/search?q=blastp" title=" blastp"> blastp</a>, <a href="https://publications.waset.org/abstracts/search?q=conserved%20genes" title=" conserved genes"> conserved genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Cronobacter" title=" Cronobacter"> Cronobacter</a> </p> <a href="https://publications.waset.org/abstracts/82396/computing-the-similarity-and-the-diversity-in-the-species-based-on-cronobacter-genome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Singh">Ravinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=C%20Rajesh"> C Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Badhan"> Saroj Badhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Mishra"> Shailendra Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Singh%20Kataria"> Ranjit Singh Kataria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bubalus%20bubalis" title="Bubalus bubalis">Bubalus bubalis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20modelling" title=" comparative modelling"> comparative modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20protein" title=" heat shock protein"> heat shock protein</a> </p> <a href="https://publications.waset.org/abstracts/64431/insights-of-interaction-studies-between-hsp-60-hsp-70-proteins-and-hsf-1-in-bubalus-bubalis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> The Interaction between Blood-Brain Barrier and the Cerebral Lymphatics Proposes Therapeutic Method for Alzheimer’S Disease </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Klimova">M. Klimova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Semyachkina-Glushkovskaya"> O. Semyachkina-Glushkovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kurts"> J. Kurts</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Zinchenko"> E. Zinchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Navolokin"> N. Navolokin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shirokov"> A. Shirokov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dubrovsky"> A. Dubrovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdurashitov"> A. Abdurashitov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Terskov"> A. Terskov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mamedova"> A. Mamedova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Agranovich"> I. Agranovich</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Antonova"> T. Antonova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Blokhina"> I. Blokhina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The direction for research of Alzheimer's disease is to find an effective non-invasive and non-pharmacological way of treatment. Here we tested our hypothesis that the opening of the blood-brain barrier (BBB) induces activation of lymphatic drainage and clearing functions that can be used as a method for non-invasive stimulation of clearance of beta-amyloid and therapy of Alzheimer’s disease (AD). To test our hypothesis, in this study on healthy male mice we analyzed the interaction between BBB opening by repeated loud music (100-10000 Hz, 100 dB, duration 2 h: 60 sec – sound; 60 sec - pause) and functional changes in the meningeal lymphatic vessels (MLVs). We demonstrate clearance of dextran 70 kDa (i.v. injection), fluorescent beta-amyloid (intrahippocampal injection) and gold nanorods (intracortical injection) via MLV that significantly increased after the opening of BBB. Our studies also demonstrate that the BBB opening was associated with the improvement of neurocognitive status in mice with AD. Thus, we uncover therapeutic effects of BBB opening by loud music, such as non-invasive stimulation of lymphatic clearance of beta-amyloid in mice with AD, accompanied by improvement of their neurocognitive status. Our data are consistent with other results suggesting the therapeutic effect of BBB opening by focused ultrasound without drugs for patients with AD. This research was supported by a grant from RSF 18-75-10033 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-amyloid" title=" beta-amyloid"> beta-amyloid</a>, <a href="https://publications.waset.org/abstracts/search?q=blood-brain%20barrier" title=" blood-brain barrier"> blood-brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=meningeal%20lymphatic%20vessels" title=" meningeal lymphatic vessels"> meningeal lymphatic vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20loud%20music" title=" repeated loud music"> repeated loud music</a> </p> <a href="https://publications.waset.org/abstracts/122385/the-interaction-between-blood-brain-barrier-and-the-cerebral-lymphatics-proposes-therapeutic-method-for-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Use RP-HPLC To Investigate Factors Influencing Sorghum Protein Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Khaladi">Khaled Khaladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafika%20Bibi"> Rafika Bibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20Mokrane"> Hind Mokrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Boubekeur%20Nadjemi"> Boubekeur Nadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop grown in the semi-arid tropics of Africa and Asia due to its drought tolerance. Sorghum grain has protein content varying from 6 to 18%, with an average of 11%, Sorghum proteins can be broadly classified into prolamin and non-prolamin proteins. Kafirins, the major storage proteins, are classified as prolamins, and as such, they contain high levels of proline and glutamine and are soluble in non-polar solvents such as aqueous alcohols. Kafirins account for 77 to 82% of the protein in the endosperm, whereas non-prolamin proteins (namely, albumins, globulins, and glutelins) make up about 30% of the proteins. To optimize the extraction of sorghum proteins, several variables were examined: detergent type and concentration, reducing agent type and concentration, and buffer pH and concentration. Samples were quantified and characterized by RP-HPLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorghum" title="sorghum">sorghum</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20extraction" title=" protein extraction"> protein extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=detergent" title=" detergent"> detergent</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20science" title=" food science "> food science </a> </p> <a href="https://publications.waset.org/abstracts/2669/use-rp-hplc-to-investigate-factors-influencing-sorghum-protein-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> Functional Characterization of Transcriptional Regulator WhiB Proteins of Mycobacterium Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Kumari">Sonam Kumari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, possesses a remarkable feature of entering into and emerging from a persistent state. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes.Mtb has seven such proteins (WhiB1 to WhiB7).WhiB proteins are transcriptional regulators; their conserved C-terminal HTH motif is involved in DNA binding. They regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical Analysis of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title="tuberculosis">tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=WhiB%20proteins" title=" WhiB proteins"> WhiB proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title=" mycobacterium tuberculosis"> mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acid%20binding" title=" nucleic acid binding"> nucleic acid binding</a> </p> <a href="https://publications.waset.org/abstracts/157126/functional-characterization-of-transcriptional-regulator-whib-proteins-of-mycobacterium-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> Effects from Maillard Reactions on the Alleginicity of Peanuts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Radhi">Khadija Radhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food allergy is a serious public health problem, especially in developed countries. As one of the most significant allergies, peanut allergy was investigated in this research. Peanut was mixed with treacle under different heating conditions. The results of glycation analyses revealed that proteins from peanuts interacted with the carbohydrates. Further studies also indicated that Millard reactions were determined by different heating treatment. It is noted that denatured peanut proteins accelerated the first stage of Millard reactions but prevented the third one. From the ELISA results, it was found that Millard reactions between proteins with sugars had no effects on the allergenicity of peanuts. Besides, there was no significant difference in allergenicity between digested and non-digested peanut proteins. However, pre-boiled peanut with denatured proteins displayed lower allergenicity after mixing with sugars. Such results indicated that denaturation is the key factor to reduce the allergenicity of the peanut proteins and it seemed that the second-staged Maillard products had less allergenicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergenicity" title="allergenicity">allergenicity</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20treatment" title=" heating treatment"> heating treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a>, <a href="https://publications.waset.org/abstracts/search?q=Maillard%20reaction" title=" Maillard reaction"> Maillard reaction</a> </p> <a href="https://publications.waset.org/abstracts/18275/effects-from-maillard-reactions-on-the-alleginicity-of-peanuts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Human C-Cbl and Cbl-b Proteins Are More Highly Expressed in the Thymus Compared to the Testis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazo%20Kone">Mazo Kone</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Salah"> Rachida Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Harir%20Noria"> Harir Noria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and objectives: c-Cbl and Cbl-b are two members of the Cbl family proteins, with a crucial role of downregulation of tyrosine kinase receptors. They act as E3 ubiquitin ligases and are multivalent adaptor proteins, making them important in maintaining homeostasis in the body. This study investigated the expression level in thymus and testis in normal conditions. Methods: The expression level was assessed by immunochemistry of tissue microarrays of normal thymus and testis biopsies. Results: Cbl-b and c-Cbl proteins were found to be highly expressed in normal testis and thymus, indicated as yellowish brown granules in the cytomembrane and cytoplasm compared to controls. The c-Cbl appears to be more highly expressed than the Cbl-b in the thymus, while c-Cbl appears slightly stronger than Cbl-b in the testis. The thymus was found with a higher grade compared to the testis. Conclusion: In this work we concluded, that in normal condition, thymus tissue expresses more Cbl family proteins(c-Cbl and Cbl-b) than the testis tissue in humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Human%20C-Cbl%20proteins" title="Human C-Cbl proteins">Human C-Cbl proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=Human%20Cbl-b%20protein" title=" Human Cbl-b protein"> Human Cbl-b protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Testis" title=" Testis"> Testis</a>, <a href="https://publications.waset.org/abstracts/search?q=Thymus" title=" Thymus"> Thymus</a> </p> <a href="https://publications.waset.org/abstracts/72064/human-c-cbl-and-cbl-b-proteins-are-more-highly-expressed-in-the-thymus-compared-to-the-testis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perumalsamy%20Muthiah">Perumalsamy Muthiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Murugesan%20Thanapalan"> Murugesan Thanapalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20two-phase%20system" title="aqueous two-phase system">aqueous two-phase system</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagram" title=" phase diagram"> phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese%20whey" title=" cheese whey"> cheese whey</a> </p> <a href="https://publications.waset.org/abstracts/71016/recovery-of-value-added-whey-proteins-from-dairy-effluent-using-aqueous-two-phase-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amyloid%20proteins&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10