CINXE.COM
Search results for: neural fingerprint
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neural fingerprint</title> <meta name="description" content="Search results for: neural fingerprint"> <meta name="keywords" content="neural fingerprint"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neural fingerprint" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neural fingerprint"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1883</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neural fingerprint</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1883</span> The Linguistic Fingerprint in Western and Arab Judicial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asem%20Bani%20Amer">Asem Bani Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study handles the linguistic fingerprint in judicial applications described in a law technicality that is recent and developing. It can be adopted to discover criminals by identifying their way of speaking and their special linguistic expressions. This is achieved by understanding the expression "linguistic fingerprint," its concept, and its extended domain, then revealing some of the linguistic fingerprint tools in Western judicial applications and deducing a technical imagination for a linguistic fingerprint in the Arabic language, which is needy for such judicial applications regarding this field, through dictionaries, language rhythm, and language structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linguistic%20fingerprint" title="linguistic fingerprint">linguistic fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=judicial" title=" judicial"> judicial</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=dictionary" title=" dictionary"> dictionary</a>, <a href="https://publications.waset.org/abstracts/search?q=picture" title=" picture"> picture</a>, <a href="https://publications.waset.org/abstracts/search?q=rhythm" title=" rhythm"> rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/162132/the-linguistic-fingerprint-in-western-and-arab-judicial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1882</span> Scar Removal Stretegy for Fingerprint Using Diffusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20U.%20Khan">Mohammad A. U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20M.%20Khan"> Tariq M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinan%20Kong"> Yinan Kong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20image%20enhancement" title="fingerprint image enhancement">fingerprint image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=removing%20noise" title=" removing noise"> removing noise</a>, <a href="https://publications.waset.org/abstracts/search?q=coherence" title=" coherence"> coherence</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20diffusion" title=" enhanced diffusion"> enhanced diffusion</a> </p> <a href="https://publications.waset.org/abstracts/19427/scar-removal-stretegy-for-fingerprint-using-diffusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1881</span> Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Carrillo-Medina">José Luis Carrillo-Medina</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Latorre"> Roberto Latorre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20signature" title="neural signature">neural signature</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint" title=" neural fingerprint"> neural fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20based%20on%20signal%20identification" title=" processing based on signal identification"> processing based on signal identification</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20neural%20network" title=" self-organizing neural network"> self-organizing neural network</a> </p> <a href="https://publications.waset.org/abstracts/20408/influence-of-the-refractory-period-on-neural-networks-based-on-the-recognition-of-neural-signatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1880</span> Biimodal Biometrics System Using Fusion of Iris and Fingerprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Attallah%20Bilal">Attallah Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendel%20Fatiha"> Hendel Fatiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the bimodal biometrics system for identity verification iris and fingerprint, at matching score level architecture using weighted sum of score technique. The features are extracted from the pre processed images of iris and fingerprint. These features of a query image are compared with those of a database image to obtain matching scores. The individual scores generated after matching are passed to the fusion module. This module consists of three major steps i.e., normalization, generation of similarity score and fusion of weighted scores. The final score is then used to declare the person as genuine or an impostor. The system is tested on CASIA database and gives an overall accuracy of 91.04% with FAR of 2.58% and FRR of 8.34%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iris" title="iris">iris</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20rule" title=" sum rule"> sum rule</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion" title=" fusion"> fusion</a> </p> <a href="https://publications.waset.org/abstracts/18556/biimodal-biometrics-system-using-fusion-of-iris-and-fingerprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1879</span> Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20S.%20Bandara">D. M. S. Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunqi%20Lei"> Yunqi Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Luo"> Ye Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arnold%20cat%20map" title="arnold cat map">arnold cat map</a>, <a href="https://publications.waset.org/abstracts/search?q=biometric%20encryption" title=" biometric encryption"> biometric encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20cipher" title=" block cipher"> block cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20encryption" title=" fingerprint encryption"> fingerprint encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=Koblitz%E2%80%99s%20%20encoding" title=" Koblitz’s encoding"> Koblitz’s encoding</a> </p> <a href="https://publications.waset.org/abstracts/96251/fingerprint-image-encryption-using-a-2d-chaotic-map-and-elliptic-curve-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1878</span> Development of Zinc Oxide Coated Carbon Nanoparticles from Pineapples Leaves Using SOL Gel Method for Optimal Adsorption of Copper ion and Reuse in Latent Fingerprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bienvenu%20Gael%20Fouda%20Mbanga">Bienvenu Gael Fouda Mbanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Zikhona%20Tywabi-Ngeva"> Zikhona Tywabi-Ngeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriveshini%20Pillay"> Kriveshini Pillay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work highlighted a new method for preparing Nitrogen carbon nanoparticles fused on zinc oxide nanoparticle nanocomposite (N-CNPs/ZnONPsNC) to remove copper ions (Cu²+) from wastewater by sol-gel method and applying the metal-loaded adsorbent in latent fingerprint application. The N-CNPs/ZnONPsNC showed to be an effective sorbent for optimum Cu²+ sorption at pH 8 and 0.05 g dose. The Langmuir isotherm was found to best fit the process, with a maximum adsorption capacity of 285.71 mg/g, which was higher than most values found in other research for Cu²+ removal. Adsorption was spontaneous and endothermic at 25oC. In addition, the Cu²+-N-CNPs/ZnONPsNC was found to be sensitive and selective for latent fingerprint (LFP) recognition on a range of porous surfaces. As a result, in forensic research, it is an effective distinguishing chemical for latent fingerprint detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent%20fingerprint" title="latent fingerprint">latent fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20ions" title=" copper ions"> copper ions</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20loaded%20adsorption" title=" metal loaded adsorption"> metal loaded adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a> </p> <a href="https://publications.waset.org/abstracts/166109/development-of-zinc-oxide-coated-carbon-nanoparticles-from-pineapples-leaves-using-sol-gel-method-for-optimal-adsorption-of-copper-ion-and-reuse-in-latent-fingerprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1877</span> Biometric Identification with Latitude and Longitude Fingerprint Verification for Attendance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fezan%20Afzal">Muhammad Fezan Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan"> Imran Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Imtiaz"> Salma Imtiaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for human verification and identification requires from centuries for authentication. Since it is being used in big institutes like financial, government and crime departments, a continued struggle is important to make this system more efficient to prevent security breaches. Therefore, multiple devices are used to authenticate the biometric for each individual. A large number of devices are required to cover a large number of users. As the number of devices increases, cost will automatically increase. Furthermore, it is time-consuming for biometrics due to the devices being insufficient and are not available at every door. In this paper, we propose the framework and algorithm where the mobile of each individual can also perform the biometric authentication of attendance and security. Every mobile has a biometric authentication system that is used in different mobile applications for security purposes. Therefore, each individual can use the biometric system mobile without moving from one place to another. Moreover, by using the biometrics mobile, the cost of biometric systems can be removed that are mostly deployed in different organizations for the attendance of students, employees and for other security purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title="fingerprint">fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20authentication" title=" fingerprint authentication"> fingerprint authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20verification" title=" mobile verification"> mobile verification</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20biometric%20verification" title=" mobile biometric verification"> mobile biometric verification</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20fingerprint%20sensor" title=" mobile fingerprint sensor"> mobile fingerprint sensor</a> </p> <a href="https://publications.waset.org/abstracts/171752/biometric-identification-with-latitude-and-longitude-fingerprint-verification-for-attendance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1876</span> Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehjune%20Heo">Yehjune Heo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-spoofing" title="anti-spoofing">anti-spoofing</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20recognition" title=" fingerprint recognition"> fingerprint recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=GAN" title=" GAN"> GAN</a> </p> <a href="https://publications.waset.org/abstracts/131965/generative-adversarial-network-based-fingerprint-anti-spoofing-limitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1875</span> Neural Rendering Applied to Confocal Microscopy Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Li">Daniel Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20rendering" title="neural rendering">neural rendering</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20neural%20representations" title=" implicit neural representations"> implicit neural representations</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscopy" title=" confocal microscopy"> confocal microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image%20processing" title=" medical image processing"> medical image processing</a> </p> <a href="https://publications.waset.org/abstracts/153909/neural-rendering-applied-to-confocal-microscopy-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1874</span> Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raida%20Zouari">Raida Zouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Iness%20Ahriz"> Iness Ahriz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Zayani"> Rafik Zayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dziri"> Ali Dziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20indoor%20localization" title="mobile indoor localization">mobile indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20neural%20network%20%28MLNN%29" title=" multi-layer neural network (MLNN)"> multi-layer neural network (MLNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20impulse%20response%20%28CIR%29" title=" channel impulse response (CIR)"> channel impulse response (CIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Gram-Shmidt%20orthogonalization" title=" Gram-Shmidt orthogonalization"> Gram-Shmidt orthogonalization</a> </p> <a href="https://publications.waset.org/abstracts/40068/room-level-indoor-localization-using-relevant-channel-impulse-response-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1873</span> Artificial Neural Network Speed Controller for Excited DC Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elabed%20Saud">Elabed Saud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network%20%28ANNs%29" title="Artificial Neural Network (ANNs)">Artificial Neural Network (ANNs)</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20DC%20motor" title=" excited DC motor"> excited DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=convenional%20controller" title=" convenional controller"> convenional controller</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20Controller" title=" speed Controller"> speed Controller</a> </p> <a href="https://publications.waset.org/abstracts/21941/artificial-neural-network-speed-controller-for-excited-dc-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">726</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1872</span> Solving the Quadratic Programming Problem Using a Recurrent Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Behroozpoor">A. A. Behroozpoor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mazarei"> M. M. Mazarei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=REFERENCES%20%20%0D%0A%5B1%5D%09Xia" title="REFERENCES [1] Xia">REFERENCES [1] Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Y" title=" Y"> Y</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20new%20neural%20network%20for%20solving%20linear%20and%20quadratic%20programming%20problems.%20IEEE%20Transactions%20on%20Neural%20Networks" title=" A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks"> A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=7%286%29" title=" 7(6)"> 7(6)</a>, <a href="https://publications.waset.org/abstracts/search?q=1996" title=" 1996"> 1996</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.1544%E2%80%931548.%0D%0A%5B2%5D%09Xia" title=" pp.1544–1548. [2] Xia"> pp.1544–1548. [2] Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Y." title=" Y."> Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=%26%20Wang" title=" & Wang"> & Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J" title=" J"> J</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20recurrent%20neural%20network%20for%20solving%20nonlinear%20convex%20programs%20subject%20to%20linear%20constraints.%20IEEE%20Transactions%20on%20Neural%20Networks" title=" A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks"> A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=16%282%29" title="16(2)">16(2)</a>, <a href="https://publications.waset.org/abstracts/search?q=2005" title=" 2005"> 2005</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.%20379%E2%80%93386.%0D%0A%5B3%5D%09Xia" title=" pp. 379–386. [3] Xia"> pp. 379–386. [3] Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Y." title=" Y."> Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=H" title=" H"> H</a>, <a href="https://publications.waset.org/abstracts/search?q=Leung" title=" Leung"> Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=%26%20J" title=" & J"> & J</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang" title=" Wang"> Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20projection%20neural%20network%20and%20its%20application%20to%20constrained%20optimization%20problems.%20IEEE%20Transactions%20Circuits%20and%20Systems-I" title=" A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I"> A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I</a>, <a href="https://publications.waset.org/abstracts/search?q=49%284%29" title=" 49(4)"> 49(4)</a>, <a href="https://publications.waset.org/abstracts/search?q=2002" title=" 2002"> 2002</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.447%E2%80%93458.B.%20%0D%0A%5B4%5D%09Q.%20Liu" title=" pp.447–458.B. [4] Q. Liu"> pp.447–458.B. [4] Q. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Guo" title=" Z. Guo"> Z. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wang" title=" J. Wang"> J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20one-layer%20recurrent%20neural%20network%20for%20constrained%20seudoconvex%20optimization%20and%20its%20application%20for%20dynamic%20portfolio%20optimization.%20Neural%20Networks" title=" A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks"> A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=26" title=" 26"> 26</a>, <a href="https://publications.waset.org/abstracts/search?q=2012" title=" 2012"> 2012</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.%2099-109." title=" pp. 99-109. "> pp. 99-109. </a> </p> <a href="https://publications.waset.org/abstracts/19435/solving-the-quadratic-programming-problem-using-a-recurrent-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">643</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1871</span> Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bienvenu%20Gael%20Fouda%20Mbanga">Bienvenu Gael Fouda Mbanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cd2%2B-CNPs%2FCeONRs%20nanocomposite" title="Cd2+-CNPs/CeONRs nanocomposite">Cd2+-CNPs/CeONRs nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20adsorption" title=" cadmium adsorption"> cadmium adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20for%20latent%20fingerprint%20detection" title=" reusable for latent fingerprint detection"> reusable for latent fingerprint detection</a> </p> <a href="https://publications.waset.org/abstracts/123637/synthesis-and-characterization-of-cnps-coated-carbon-nanorods-for-cd2-ion-adsorption-from-industrial-waste-water-and-reusable-for-latent-fingerprint-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1870</span> Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Mohsenifar">Najmeh Mohsenifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Narjes%20Mohsenifar"> Narjes Mohsenifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Kargar"> Abbas Kargar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title="electrocardiogram">electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20artificial%20neural%20network" title=" RBF artificial neural network"> RBF artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=predict" title=" predict"> predict</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/33466/selecting-the-best-rbf-neural-network-using-pso-algorithm-for-ecg-signal-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1869</span> Fingerprint on Ballistic after Shooting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narong%20Kulnides">Narong Kulnides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research involved fingerprints on ballistics after shooting. Two objectives of research were as follows; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that: (1) Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times. (2) After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic" title="ballistic">ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=shooting" title=" shooting"> shooting</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20times" title=" detection times"> detection times</a> </p> <a href="https://publications.waset.org/abstracts/10363/fingerprint-on-ballistic-after-shooting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1868</span> Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20De%20Almeida%20Pereira">Diego De Almeida Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Borchenko"> Diana Borchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20psychology" title="environmental psychology">environmental psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20and%20social%20well-being" title=" human and social well-being"> human and social well-being</a> </p> <a href="https://publications.waset.org/abstracts/147521/artificial-neural-networks-in-environmental-psychology-application-in-architectural-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1867</span> Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pugazhenthi">D. Pugazhenthi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sree%20Vidya"> B. Sree Vidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20fish%20swarm%20algorithm%20%28AFSA%29" title="artificial fish swarm algorithm (AFSA)">artificial fish swarm algorithm (AFSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=biometric%20authentication" title=" biometric authentication"> biometric authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=decryption" title=" decryption"> decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion" title=" fusion"> fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20neural%20network%20%28FNN%29" title=" fuzzy neural network (FNN)"> fuzzy neural network (FNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=iris" title=" iris"> iris</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-modal" title=" multi-modal"> multi-modal</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine%20classification" title=" support vector machine classification"> support vector machine classification</a> </p> <a href="https://publications.waset.org/abstracts/35625/multimodal-biometric-cryptography-based-authentication-in-cloud-environment-to-enhance-information-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1866</span> Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Rahimi%20Khoygani">Mohammad Reza Rahimi Khoygani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghasemi"> Reza Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=pendulum%20dynamical%20system" title=" pendulum dynamical system"> pendulum dynamical system</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neural%20controller" title=" adaptive neural controller"> adaptive neural controller</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamical" title=" nonlinear dynamical"> nonlinear dynamical</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF" title=" RBF"> RBF</a>, <a href="https://publications.waset.org/abstracts/search?q=driven%20pendulum" title=" driven pendulum"> driven pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20control" title=" position control "> position control </a> </p> <a href="https://publications.waset.org/abstracts/13649/neural-adaptive-controller-for-a-class-of-nonlinear-pendulum-dynamical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1865</span> Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Jung">H. Y. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Wang"> Jing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Park"> J. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Shen"> Hao Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=passivity%20analysis" title=" passivity analysis"> passivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20delays" title=" time-varying delays"> time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality" title=" linear matrix inequality"> linear matrix inequality</a> </p> <a href="https://publications.waset.org/abstracts/3026/delay-dependent-passivity-analysis-for-neural-networks-with-time-varying-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1864</span> Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Rostami%20Jaz">Hamid Rostami Jaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Ameri%20Siahooei"> Kamran Ameri Siahooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20index" title="exchange index">exchange index</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptron%20neural%20network" title=" perceptron neural network"> perceptron neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Tehran%20stock%20exchange" title=" Tehran stock exchange"> Tehran stock exchange</a> </p> <a href="https://publications.waset.org/abstracts/51503/assessing-artificial-neural-network-models-on-forecasting-the-return-of-stock-market-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1863</span> Improving Security Features of Traditional Automated Teller Machines-Based Banking Services via Fingerprint Biometrics Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20I.%20Otuonye">Anthony I. Otuonye</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliet%20N.%20Odii"> Juliet N. Odii</a>, <a href="https://publications.waset.org/abstracts/search?q=Perpetual%20N.%20Ibe"> Perpetual N. Ibe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The obvious challenges faced by most commercial bank customers while using the services of ATMs (Automated Teller Machines) across developing countries have triggered the need for an improved system with better security features. Current ATM systems are password-based, and research has proved the vulnerabilities of these systems to heinous attacks and manipulations. We have discovered by research that the security of current ATM-assisted banking services in most developing countries of the world is easily broken and maneuvered by fraudsters, majorly because it is quite difficult for these systems to identify an impostor with privileged access as against the authentic bank account owner. Again, PIN (Personal Identification Number) code passwords are easily guessed, just to mention a few of such obvious limitations of traditional ATM operations. In this research work also, we have developed a system of fingerprint biometrics with PIN code Authentication that seeks to improve the security features of traditional ATM installations as well as other Banking Services. The aim is to ensure better security at all ATM installations and raise the confidence of bank customers. It is hoped that our system will overcome most of the challenges of the current password-based ATM operation if properly applied. The researchers made use of the OOADM (Object-Oriented Analysis and Design Methodology), a software development methodology that assures proper system design using modern design diagrams. Implementation and coding were carried out using Visual Studio 2010 together with other software tools. Results obtained show a working system that provides two levels of security at the client’s side using a fingerprint biometric scheme combined with the existing 4-digit PIN code to guarantee the confidence of bank customers across developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20biometrics" title="fingerprint biometrics">fingerprint biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=banking%20operations" title=" banking operations"> banking operations</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a>, <a href="https://publications.waset.org/abstracts/search?q=ATMs" title=" ATMs"> ATMs</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN%20code" title=" PIN code"> PIN code</a> </p> <a href="https://publications.waset.org/abstracts/185689/improving-security-features-of-traditional-automated-teller-machines-based-banking-services-via-fingerprint-biometrics-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1862</span> Design of Neural Predictor for Vibration Analysis of Drilling Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B0kbal%20Eski">İkbal Eski </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analyses" title=" vibration analyses"> vibration analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20machine" title=" drilling machine"> drilling machine</a>, <a href="https://publications.waset.org/abstracts/search?q=robust" title=" robust"> robust</a> </p> <a href="https://publications.waset.org/abstracts/30313/design-of-neural-predictor-for-vibration-analysis-of-drilling-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1861</span> HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Seboletswe">P. S. Seboletswe</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mkhize"> Z. Mkhize</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Katata-Seru"> L. M. Katata-Seru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Protorhus longifolia </em>is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of <em>Protorhus longifolia</em> methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the R<sub>f</sub> = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in <em>Protorhus longifolia</em> leaves and also identify other biomarkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20profiling" title=" fingerprint profiling"> fingerprint profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Protorhus%20longifolia" title=" Protorhus longifolia"> Protorhus longifolia</a> </p> <a href="https://publications.waset.org/abstracts/116612/hptlc-fingerprint-profiling-of-protorhus-longifolia-methanolic-leaf-extract-and-qualitative-analysis-of-common-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1860</span> Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ogala">Emmanuel Ogala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title="performance evaluation">performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-pin" title=" auto-pin"> auto-pin</a>, <a href="https://publications.waset.org/abstracts/search?q=password-based" title=" password-based"> password-based</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20systems" title=" security systems"> security systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20%20computing%20environment" title=" cloud computing environment"> cloud computing environment</a> </p> <a href="https://publications.waset.org/abstracts/106693/performance-evaluation-of-fingerprint-auto-pin-and-password-based-security-systems-in-cloud-computing-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1859</span> Using Gene Expression Programming in Learning Process of Rough Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaa%20Rashed%20Abdallah">Sanaa Rashed Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20F.%20Hassan"> Yasser F. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title="rough sets">rough sets</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20programming" title=" gene expression programming"> gene expression programming</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20neural%20networks" title=" rough neural networks"> rough neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/41805/using-gene-expression-programming-in-learning-process-of-rough-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arbnor%20Pajaziti">Arbnor Pajaziti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Cana"> Hasan Cana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title="robotic arm">robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/7408/robotic-arm-control-with-neural-networks-using-genetic-algorithm-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehjune%20Heo">Yehjune Heo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-spoofing" title="anti-spoofing">anti-spoofing</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20recognition" title=" fingerprint recognition"> fingerprint recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20function" title=" loss function"> loss function</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizer" title=" optimizer"> optimizer</a> </p> <a href="https://publications.waset.org/abstracts/131489/loss-function-optimization-for-cnn-based-fingerprint-anti-spoofing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Laptinskiy">K. A. Laptinskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Burikov"> S. A. Burikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Vervald"> A. M. Vervald</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Dolenko"> S. A. Dolenko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Dolenko"> T. A. Dolenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/14494/using-artificial-neural-networks-for-optical-imaging-of-fluorescent-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">710</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> Age and Sex Identification among Egyptian Population Using Fingerprint Ridge Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazih%20Ramadan">Nazih Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Mohy-Eldine"> Manal Mohy-Eldine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Hanoon"> Amani Hanoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Shehab"> Alaa Shehab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: The study of fingerprints is widely used in providing a clue regarding identity. Age and gender identification from fingerprints is an important step in forensic anthropology in order to minimize the list of suspects search. The aim of this study was to determine finger ridge density and patterns among Egyptians, and to estimate age and gender using ridge densities. Materials and Methods: This study was conducted on 177 randomly-selected healthy Egyptian subjects (90 males and 87 females). They were divided into three age groups; Group (a): from 6-< 12 years, group (b) from 12-< 18 years and group (c) ≥ 18 years. Bilateral digital prints, from every subject, were obtained by the inking procedure. Ridge count per 25 mm² was determined together with assessment of ridge pattern type. Statistical analysis was done with references to different age and sex groups. Results: There was a statistical significant difference in ridge density between the different age groups; where younger ages had significantly higher ridge density than older ages. Females proved to have significantly higher ridge density than males. Also, there was a statistically significant negative correlation between age and ridge density. Ulnar loops were the most frequent pattern among Egyptians then whorls then arches then radial loops. Finally, different regression models were constructed to estimate age and gender from fingerprints ridge density. Conclusion: fingerprint ridge density can be used to identify both age and sex of subjects. Further studies are recommended on different populations, larger samples or using different methods of fingerprint recording and finger ridge counting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20identification" title=" sex identification"> sex identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20population" title=" Egyptian population"> Egyptian population</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprints" title=" fingerprints"> fingerprints</a>, <a href="https://publications.waset.org/abstracts/search?q=ridge%20density" title=" ridge density"> ridge density</a> </p> <a href="https://publications.waset.org/abstracts/48687/age-and-sex-identification-among-egyptian-population-using-fingerprint-ridge-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Study of the Use of Artificial Neural Networks in Islamic Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaoutar%20Abbahaddou">Kaoutar Abbahaddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Salah%20Chiadmi"> Mohammed Salah Chiadmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20finance" title="Islamic finance">Islamic finance</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20price%20prediction" title=" stock price prediction"> stock price prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/142047/study-of-the-use-of-artificial-neural-networks-in-islamic-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>