CINXE.COM

1 + 2 + 3 + 4 + ⋯ - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>1 + 2 + 3 + 4 + ⋯ - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ea271211-03fd-4e26-b5a0-0ea7e4e53152","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"1_+_2_+_3_+_4_+_⋯","wgTitle":"1 + 2 + 3 + 4 + ⋯","wgCurRevisionId":1258954880,"wgRevisionId":1258954880,"wgArticleId":9723822,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","All articles lacking reliable references","Articles lacking reliable references from May 2021","Articles with short description","Short description matches Wikidata","Articles containing Latin-language text","Divergent series","Arithmetic series"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"1_+_2_+_3_+_4_+_⋯","wgRelevantArticleId":9723822,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2605420","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/23/Sum1234Summary.svg/1200px-Sum1234Summary.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/23/Sum1234Summary.svg/800px-Sum1234Summary.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/23/Sum1234Summary.svg/640px-Sum1234Summary.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="1 + 2 + 3 + 4 + ⋯ - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-1_2_3_4_⋯ rootpage-1_2_3_4_⋯ skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Partial_sums" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Partial_sums"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Partial sums</span> </div> </a> <ul id="toc-Partial_sums-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Summability" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Summability"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Summability</span> </div> </a> <button aria-controls="toc-Summability-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Summability subsection</span> </button> <ul id="toc-Summability-sublist" class="vector-toc-list"> <li id="toc-Heuristics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Heuristics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Heuristics</span> </div> </a> <ul id="toc-Heuristics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zeta_function_regularization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zeta_function_regularization"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Zeta function regularization</span> </div> </a> <ul id="toc-Zeta_function_regularization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cutoff_regularization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cutoff_regularization"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Cutoff regularization</span> </div> </a> <ul id="toc-Cutoff_regularization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ramanujan_summation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ramanujan_summation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Ramanujan summation</span> </div> </a> <ul id="toc-Ramanujan_summation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Failure_of_stable_linear_summation_methods" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Failure_of_stable_linear_summation_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Failure of stable linear summation methods</span> </div> </a> <ul id="toc-Failure_of_stable_linear_summation_methods-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Physics</span> </div> </a> <ul id="toc-Physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_popular_media" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_popular_media"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>In popular media</span> </div> </a> <ul id="toc-In_popular_media-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">1 + 2 + 3 + 4 + ⋯</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 27 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-27" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">27 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7_%C2%B7_%C2%B7" title="1 + 2 + 3 + 4 + · · · – Azerbaijani" lang="az" hreflang="az" data-title="1 + 2 + 3 + 4 + · · ·" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7_%C2%B7_%C2%B7" title="1 + 2 + 3 + 4 + · · · – Bosnian" lang="bs" hreflang="bs" data-title="1 + 2 + 3 + 4 + · · ·" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D0%BB%C4%83_%D1%85%D0%B8%D1%81%D0%B5%D0%BF%D1%81%D0%B5%D0%BD_%D1%80%D0%B5%D1%87%C4%95" title="Натураллă хисепсен речĕ – Chuvash" lang="cv" hreflang="cv" data-title="Натураллă хисепсен речĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Summe_aller_nat%C3%BCrlichen_Zahlen" title="Summe aller natürlichen Zahlen – German" lang="de" hreflang="de" data-title="Summe aller natürlichen Zahlen" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Spanish" lang="es" hreflang="es" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/..._%2B_%DB%B4_%2B_%DB%B3_%2B_%DB%B2_%2B_%DB%B1" title="... + ۴ + ۳ + ۲ + ۱ – Persian" lang="fa" hreflang="fa" data-title="... + ۴ + ۳ + ۲ + ۱" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – French" lang="fr" hreflang="fr" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A5%A7_%2B_%E0%A5%A8_%2B_%E0%A5%A9_%2B_%E0%A5%AA_%2B_%C2%B7_%C2%B7_%C2%B7" title="१ + २ + ३ + ४ + · · · – Hindi" lang="hi" hreflang="hi" data-title="१ + २ + ३ + ४ + · · ·" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Indonesian" lang="id" hreflang="id" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7_%C2%B7_%C2%B7" title="1 + 2 + 3 + 4 + · · · – Italian" lang="it" hreflang="it" data-title="1 + 2 + 3 + 4 + · · ·" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%95%D7%A8_%D7%94%D7%9E%D7%A1%D7%A4%D7%A8%D7%99%D7%9D_%D7%94%D7%98%D7%91%D7%A2%D7%99%D7%99%D7%9D" title="טור המספרים הטבעיים – Hebrew" lang="he" hreflang="he" data-title="טור המספרים הטבעיים" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB_%D2%9B%D0%B0%D1%82%D0%B0%D1%80" title="Натурал қатар – Kazakh" lang="kk" hreflang="kk" data-title="Натурал қатар" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/1%2B2%2B3%2B4%2B%E2%80%A6" title="1+2+3+4+… – Japanese" lang="ja" hreflang="ja" data-title="1+2+3+4+…" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Uzbek" lang="uz" hreflang="uz" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pcd mw-list-item"><a href="https://pcd.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Picard" lang="pcd" hreflang="pcd" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Picard" data-language-local-name="Picard" class="interlanguage-link-target"><span>Picard</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szereg_1_%2B_2_%2B_3_%2B_4_%2B_%E2%80%A6" title="Szereg 1 + 2 + 3 + 4 + … – Polish" lang="pl" hreflang="pl" data-title="Szereg 1 + 2 + 3 + 4 + …" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Portuguese" lang="pt" hreflang="pt" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%80%A6" title="1 + 2 + 3 + 4 + … – Romanian" lang="ro" hreflang="ro" data-title="1 + 2 + 3 + 4 + …" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D1%8F%D0%B4_%D0%B8%D0%B7_%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Ряд из натуральных чисел – Russian" lang="ru" hreflang="ru" data-title="Ряд из натуральных чисел" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7%C2%B7%C2%B7" title="1 + 2 + 3 + 4 + ··· – Slovenian" lang="sl" hreflang="sl" data-title="1 + 2 + 3 + 4 + ···" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Serbian" lang="sr" hreflang="sr" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Thai" lang="th" hreflang="th" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%C2%B7_%C2%B7_%C2%B7" title="1 + 2 + 3 + 4 + · · · – Turkish" lang="tr" hreflang="tr" data-title="1 + 2 + 3 + 4 + · · ·" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Ukrainian" lang="uk" hreflang="uk" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="1 + 2 + 3 + 4 + ⋯ – Vietnamese" lang="vi" hreflang="vi" data-title="1 + 2 + 3 + 4 + ⋯" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E4%B8%80%E5%8F%88%E4%BA%8C%E5%8F%88%E4%B8%89%E5%8F%88%E5%9B%9B%E5%8F%88%E2%80%A6" title="一又二又三又四又… – Literary Chinese" lang="lzh" hreflang="lzh" data-title="一又二又三又四又…" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%80%A6" title="1 + 2 + 3 + 4 + … – Chinese" lang="zh" hreflang="zh" data-title="1 + 2 + 3 + 4 + …" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2605420#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;oldid=1258954880" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;id=1258954880&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F1_%252B_2_%252B_3_%252B_4_%252B_%25E2%258B%25AF"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F1_%252B_2_%252B_3_%252B_4_%252B_%25E2%258B%25AF"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2605420" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Divergent series</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sum1234Summary.svg" class="mw-file-description"><img alt="A graph depicting the series with layered boxes and a parabola that dips just below the y-axis" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Sum1234Summary.svg/300px-Sum1234Summary.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Sum1234Summary.svg/450px-Sum1234Summary.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Sum1234Summary.svg/600px-Sum1234Summary.svg.png 2x" data-file-width="600" data-file-height="600" /></a><figcaption>The first four partial sums of the series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span>. The <a href="/wiki/Parabola" title="Parabola">parabola</a> is their smoothed <a href="/wiki/Asymptote" title="Asymptote">asymptote</a>; its <a href="/wiki/Y-intercept" title="Y-intercept"><i>y</i>-intercept</a> is −1/12.<sup id="cite_ref-Tao_1-0" class="reference"><a href="#cite_note-Tao-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </figcaption></figure> <p>The infinite series whose terms are the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> <b><span class="nowrap">1 + 2 + 3 + 4 + ⋯</span></b> is a <a href="/wiki/Divergent_series" title="Divergent series">divergent series</a>. The <i>n</i>th partial sum of the series is the <a href="/wiki/Triangular_number" title="Triangular number">triangular number</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99476e25466549387c585cb4de44e90f6cbe4cf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.136ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}},}"></span></dd></dl> <p>which increases without bound as <i>n</i> goes to <a href="/wiki/Infinity" title="Infinity">infinity</a>. Because the <a href="/wiki/Sequence" title="Sequence">sequence</a> of partial sums fails to <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">converge to a finite limit</a>, the <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> does not have a sum. </p><p>Although the series seems at first sight not to have any meaningful value at all, it can be manipulated to yield a number of different mathematical results. For example, many <a href="/wiki/Summation_method" class="mw-redirect" title="Summation method">summation methods</a> are used in mathematics to assign numerical values even to a divergent series. In particular, the methods of <a href="/wiki/Zeta_function_regularization" title="Zeta function regularization">zeta function regularization</a> and <a href="/wiki/Ramanujan_summation" title="Ramanujan summation">Ramanujan summation</a> assign the series a value of <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>, which is expressed by a famous formula:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+2+3+4+\cdots =-{\frac {1}{12}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+2+3+4+\cdots =-{\frac {1}{12}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1c2edf39416d13e4b29dd0aca3a6270af232499" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.449ex; height:5.176ex;" alt="{\displaystyle 1+2+3+4+\cdots =-{\frac {1}{12}},}"></span></dd></dl> <p>where the left-hand side has to be interpreted as being the value obtained by using one of the aforementioned summation methods and not as the sum of an <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a> in its usual meaning. These methods have applications in other fields such as <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, and <a href="/wiki/String_theory" title="String theory">string theory</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a monograph on <a href="/wiki/Moonshine_theory" class="mw-redirect" title="Moonshine theory">moonshine theory</a>, <a href="/wiki/University_of_Alberta" title="University of Alberta">University of Alberta</a> mathematician Terry Gannon calls this equation "one of the most remarkable formulae in science".<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Partial_sums">Partial sums</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=1" title="Edit section: Partial sums"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:First_six_triangular_numbers.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/First_six_triangular_numbers.svg/220px-First_six_triangular_numbers.svg.png" decoding="async" width="220" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/First_six_triangular_numbers.svg/330px-First_six_triangular_numbers.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/First_six_triangular_numbers.svg/440px-First_six_triangular_numbers.svg.png 2x" data-file-width="374" data-file-height="314" /></a><figcaption>The first six triangular numbers</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Triangular_number" title="Triangular number">Triangular number</a></div> <p>The partial sums of the series <span class="nowrap">1 + 2 + 3 + 4 + 5 + 6 + ⋯</span> are <span class="nowrap">1, 3, 6, 10, 15</span>, etc. The <i>n</i>th partial sum is given by a simple formula: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/956e6e212a3c2b7a352b988640a7e67a0dea5727" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.136ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}}.}"></span></dd></dl> <p>This equation was known to the <a href="/wiki/Pythagoreans" class="mw-redirect" title="Pythagoreans">Pythagoreans</a> as early as the sixth century BCE.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Numbers of this form are called <a href="/wiki/Triangular_number" title="Triangular number">triangular numbers</a>, because they can be arranged as an equilateral triangle. </p><p>The infinite sequence of triangular numbers diverges to +∞, so by definition, the infinite series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> also diverges to +∞. The divergence is a simple consequence of the form of the series: the terms do not approach zero, so the series diverges by the <a href="/wiki/Term_test" class="mw-redirect" title="Term test">term test</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Summability">Summability</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=2" title="Edit section: Summability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Among the classical divergent series, <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> is relatively difficult to manipulate into a finite value. Many <a href="/wiki/Summation_method" class="mw-redirect" title="Summation method">summation methods</a> are used to assign numerical values to divergent series, some more powerful than others. For example, <a href="/wiki/Ces%C3%A0ro_summation" title="Cesàro summation">Cesàro summation</a> is a well-known method that sums <a href="/wiki/Grandi%27s_series" title="Grandi&#39;s series">Grandi's series</a>, the mildly divergent series <span class="nowrap">1 − 1 + 1 − 1 + ⋯</span>, to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>. <a href="/wiki/Abel_summation" class="mw-redirect" title="Abel summation">Abel summation</a> is a more powerful method that not only sums Grandi's series to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>, but also sums the trickier series <span class="nowrap"><a href="/wiki/1_%E2%88%92_2_%2B_3_%E2%88%92_4_%2B_%E2%8B%AF" title="1 − 2 + 3 − 4 + ⋯">1 − 2 + 3 − 4 + ⋯</a></span> to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span>. </p><p>Unlike the above series, <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> is not Cesàro summable nor Abel summable. Those methods work on oscillating divergent series, but they cannot produce a finite answer for a series that diverges to +∞.<sup id="cite_ref-FOOTNOTEHardy194910_6-0" class="reference"><a href="#cite_note-FOOTNOTEHardy194910-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Most of the more elementary definitions of the sum of a divergent series are stable and linear, and any method that is both stable and linear cannot sum <span class="nowrap">1 + 2 + 3 + ⋯</span> to a finite value <style data-mw-deduplicate="TemplateStyles:r1033199720">.mw-parser-output div.crossreference{padding-left:0}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><span role="note" class="hatnote navigation-not-searchable crossreference">(see <i><a href="#Heuristics">§&#160;Heuristics</a></i> below)</span>. More advanced methods are required, such as <a href="/wiki/Zeta_function_regularization" title="Zeta function regularization">zeta function regularization</a> or <a href="/wiki/Ramanujan_summation" title="Ramanujan summation">Ramanujan summation</a>. It is also possible to argue for the value of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span> using some rough heuristics related to these methods. </p> <div class="mw-heading mw-heading3"><h3 id="Heuristics">Heuristics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=3" title="Edit section: Heuristics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ramanujan_Notebook_1_Chapter_8_on_1234_series.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Ramanujan_Notebook_1_Chapter_8_on_1234_series.jpg/400px-Ramanujan_Notebook_1_Chapter_8_on_1234_series.jpg" decoding="async" width="400" height="107" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/4/49/Ramanujan_Notebook_1_Chapter_8_on_1234_series.jpg 1.5x" data-file-width="450" data-file-height="120" /></a><figcaption>Passage from <a href="/wiki/Srinivasa_Ramanujan" title="Srinivasa Ramanujan">Ramanujan</a>'s first notebook describing the "constant" of the series</figcaption></figure> <p><a href="/wiki/Srinivasa_Ramanujan" title="Srinivasa Ramanujan">Srinivasa Ramanujan</a> presented two derivations of "<span class="nowrap">1 + 2 + 3 + 4 + ⋯ = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span></span>" in chapter 8 of his first notebook.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> The simpler, less rigorous derivation proceeds in two steps, as follows. </p><p>The first key insight is that the series of positive numbers <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> closely resembles the <a href="/wiki/Alternating_series" title="Alternating series">alternating series</a> <span class="nowrap"><a href="/wiki/1_%E2%88%92_2_%2B_3_%E2%88%92_4_%2B_%E2%8B%AF" title="1 − 2 + 3 − 4 + ⋯">1 − 2 + 3 − 4 + ⋯</a></span>. The latter series is also divergent, but it is much easier to work with; there are several classical methods that assign it a value, which have been explored since the 18th century.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>In order to transform the series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> into <span class="nowrap">1 − 2 + 3 − 4 + ⋯</span>, one can subtract 4 from the second term, 8 from the fourth term, 12 from the sixth term, and so on. The total amount to be subtracted is <span class="nowrap">4 + 8 + 12 + 16 + ⋯</span>, which is 4 times the original series. These relationships can be expressed using algebra. Whatever the "sum" of the series might be, call it <span class="nowrap"><i>c</i> = 1 + 2 + 3 + 4 + ⋯.</span> Then multiply this equation by 4 and subtract the second equation from the first: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{7}c={}&amp;&amp;1+2&amp;&amp;{}+3+4&amp;&amp;{}+5+6+\cdots \\4c={}&amp;&amp;4&amp;&amp;{}+8&amp;&amp;{}+12+\cdots \\c-4c={}&amp;&amp;1-2&amp;&amp;{}+3-4&amp;&amp;{}+5-6+\cdots \end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd /> <mtd> <mn>1</mn> <mo>+</mo> <mn>2</mn> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>5</mn> <mo>+</mo> <mn>6</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd /> <mtd> <mn>4</mn> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>8</mn> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>12</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd /> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>5</mn> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{7}c={}&amp;&amp;1+2&amp;&amp;{}+3+4&amp;&amp;{}+5+6+\cdots \\4c={}&amp;&amp;4&amp;&amp;{}+8&amp;&amp;{}+12+\cdots \\c-4c={}&amp;&amp;1-2&amp;&amp;{}+3-4&amp;&amp;{}+5-6+\cdots \end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08e5affe1303c16802fd88806fc793bdb09524a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:36.607ex; height:8.843ex;" alt="{\displaystyle {\begin{alignedat}{7}c={}&amp;&amp;1+2&amp;&amp;{}+3+4&amp;&amp;{}+5+6+\cdots \\4c={}&amp;&amp;4&amp;&amp;{}+8&amp;&amp;{}+12+\cdots \\c-4c={}&amp;&amp;1-2&amp;&amp;{}+3-4&amp;&amp;{}+5-6+\cdots \end{alignedat}}}"></span></dd></dl> <p>The second key insight is that the alternating series <span class="nowrap">1 − 2 + 3 − 4 + ⋯</span> is the formal <a href="/wiki/Power_series" title="Power series">power series</a> expansion (for <i>x</i> at point 0) of the function <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">(1 + <i>x</i>)<sup>2</sup></span></span>&#8288;</span> which is <span class="nowrap">1 − 2x + 3x^2 − 4x^3 + ⋯</span> evaluated with <i>x</i> defined as 1. Accordingly, Ramanujan writes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -3c=1-2+3-4+\cdots ={\frac {1}{(1+1)^{2}}}={\frac {1}{4}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -3c=1-2+3-4+\cdots ={\frac {1}{(1+1)^{2}}}={\frac {1}{4}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/febbbe1006527c5029d346860a464df2462af285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.518ex; height:6.009ex;" alt="{\displaystyle -3c=1-2+3-4+\cdots ={\frac {1}{(1+1)^{2}}}={\frac {1}{4}}.}"></span></dd></dl> <p>Dividing both sides by −3, one gets <i>c</i>&#160;=&#160;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>. </p><p>Generally speaking, it is incorrect to manipulate infinite series as if they were finite sums. For example, if zeroes are inserted into arbitrary positions of a divergent series, it is possible to arrive at results that are not self-consistent, let alone consistent with other methods. In particular, the step <span class="nowrap">4<i>c</i> = 0 + 4 + 0 + 8 + ⋯</span> is not justified by the <a href="/wiki/Additive_identity" title="Additive identity">additive identity</a> law alone. For an extreme example, appending a single zero to the front of the series can lead to a different result.<sup id="cite_ref-Tao_1-1" class="reference"><a href="#cite_note-Tao-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>One way to remedy this situation, and to constrain the places where zeroes may be inserted, is to keep track of each term in the series by attaching a dependence on some function.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> In the series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span>, each term <i>n</i> is just a number. If the term <i>n</i> is promoted to a function <i>n</i><sup><i>−s</i></sup>, where <i>s</i> is a complex variable, then one can ensure that only like terms are added. The resulting series may be manipulated in a more rigorous fashion, and the variable <i>s</i> can be set to −1 later. The implementation of this strategy is called <a href="/wiki/Zeta_function_regularization" title="Zeta function regularization">zeta function regularization</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Zeta_function_regularization">Zeta function regularization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=4" title="Edit section: Zeta function regularization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Zeta_plot.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Zeta_plot.gif/310px-Zeta_plot.gif" decoding="async" width="310" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Zeta_plot.gif/465px-Zeta_plot.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Zeta_plot.gif/620px-Zeta_plot.gif 2x" data-file-width="818" data-file-height="528" /></a><figcaption>Plot of <i>ζ</i>(<i>s</i>). For <span class="nowrap"><i>s</i> &gt; 1</span>, the series converges and <span class="nowrap"><i>ζ</i>(<i>s</i>) &gt; 1</span>. Analytic continuation around the pole at <span class="nowrap"><i>s</i> = 1</span> leads to a region of negative values, including <span class="nowrap"><i>ζ</i>(−1) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span></span>.</figcaption></figure> <p>In <a href="/wiki/Zeta_function_regularization" title="Zeta function regularization">zeta function regularization</a>, the series <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{n=1}^{\infty }n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{n=1}^{\infty }n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f1f1df68f6fa171643c75e2b2fcd756eb3f547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.555ex; height:3.176ex;" alt="{\textstyle \sum _{n=1}^{\infty }n}"></span> is replaced by the series <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{n=1}^{\infty }n^{-s}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{n=1}^{\infty }n^{-s}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38748e061a71cb7b07f7b0bbe073964ba8d3884a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.483ex; height:3.176ex;" alt="{\textstyle \sum _{n=1}^{\infty }n^{-s}.}"></span> The latter series is an example of a <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a>. When the real part of <i>s</i> is greater than 1, the Dirichlet series converges, and its sum is the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> <i>ζ</i>(<i>s</i>). On the other hand, the Dirichlet series diverges when the real part of <i>s</i> is less than or equal to 1, so, in particular, the series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> that results from setting <span class="nowrap"><i>s</i> = −1</span> does not converge. The benefit of introducing the Riemann zeta function is that it can be defined for other values of <i>s</i> by <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a>. One can then define the zeta-regularized sum of <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> to be <i>ζ</i>(−1). </p><p>From this point, there are a few ways to prove that <span class="nowrap"><i>ζ</i>(−1) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>.</span> One method, along the lines of Euler's reasoning,<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> uses the relationship between the Riemann zeta function and the <a href="/wiki/Dirichlet_eta_function" title="Dirichlet eta function">Dirichlet eta function</a> <i>η</i>(<i>s</i>). The eta function is defined by an alternating Dirichlet series, so this method parallels the earlier heuristics. Where both Dirichlet series converge, one has the identities: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{7}\zeta (s)&amp;{}={}&amp;1^{-s}+2^{-s}&amp;&amp;{}+3^{-s}+4^{-s}&amp;&amp;{}+5^{-s}+6^{-s}+\cdots &amp;\\2\times 2^{-s}\zeta (s)&amp;{}={}&amp;2\times 2^{-s}&amp;&amp;{}+2\times 4^{-s}&amp;&amp;{}+2\times 6^{-s}+\cdots &amp;\\\left(1-2^{1-s}\right)\zeta (s)&amp;{}={}&amp;1^{-s}-2^{-s}&amp;&amp;{}+3^{-s}-4^{-s}&amp;&amp;{}+5^{-s}-6^{-s}+\cdots &amp;=\eta (s).\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <msup> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd /> </mtr> <mtr> <mtd> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd /> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{7}\zeta (s)&amp;{}={}&amp;1^{-s}+2^{-s}&amp;&amp;{}+3^{-s}+4^{-s}&amp;&amp;{}+5^{-s}+6^{-s}+\cdots &amp;\\2\times 2^{-s}\zeta (s)&amp;{}={}&amp;2\times 2^{-s}&amp;&amp;{}+2\times 4^{-s}&amp;&amp;{}+2\times 6^{-s}+\cdots &amp;\\\left(1-2^{1-s}\right)\zeta (s)&amp;{}={}&amp;1^{-s}-2^{-s}&amp;&amp;{}+3^{-s}-4^{-s}&amp;&amp;{}+5^{-s}-6^{-s}+\cdots &amp;=\eta (s).\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a20c0748bee27ad253ac8c15d160ab9238a7cc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:66.877ex; height:9.843ex;" alt="{\displaystyle {\begin{alignedat}{7}\zeta (s)&amp;{}={}&amp;1^{-s}+2^{-s}&amp;&amp;{}+3^{-s}+4^{-s}&amp;&amp;{}+5^{-s}+6^{-s}+\cdots &amp;\\2\times 2^{-s}\zeta (s)&amp;{}={}&amp;2\times 2^{-s}&amp;&amp;{}+2\times 4^{-s}&amp;&amp;{}+2\times 6^{-s}+\cdots &amp;\\\left(1-2^{1-s}\right)\zeta (s)&amp;{}={}&amp;1^{-s}-2^{-s}&amp;&amp;{}+3^{-s}-4^{-s}&amp;&amp;{}+5^{-s}-6^{-s}+\cdots &amp;=\eta (s).\end{alignedat}}}"></span></dd></dl> <p>The identity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-2^{1-s})\zeta (s)=\eta (s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-2^{1-s})\zeta (s)=\eta (s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4eb911624d01c0d5edf51dd1a844c82d6c98084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.241ex; height:3.176ex;" alt="{\displaystyle (1-2^{1-s})\zeta (s)=\eta (s)}"></span> continues to hold when both functions are extended by analytic continuation to include values of <i>s</i> for which the above series diverge. Substituting <span class="nowrap"><i>s</i> = −1</span>, one gets <span class="nowrap">−3<i>ζ</i>(−1) = <i>η</i>(−1)</span>. Now, computing <i>η</i>(−1) is an easier task, as the eta function is equal to the Abel sum of its defining series,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> which is a <a href="/wiki/One-sided_limit" title="One-sided limit">one-sided limit</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -3\zeta (-1)=\eta (-1)=\lim _{x\to 1^{-}}\left(1-2x+3x^{2}-4x^{3}+\cdots \right)=\lim _{x\to 1^{-}}{\frac {1}{(1+x)^{2}}}={\frac {1}{4}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>3</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -3\zeta (-1)=\eta (-1)=\lim _{x\to 1^{-}}\left(1-2x+3x^{2}-4x^{3}+\cdots \right)=\lim _{x\to 1^{-}}{\frac {1}{(1+x)^{2}}}={\frac {1}{4}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f194f6afbd248171818712f5403b210825cfd46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:75.818ex; height:6.009ex;" alt="{\displaystyle -3\zeta (-1)=\eta (-1)=\lim _{x\to 1^{-}}\left(1-2x+3x^{2}-4x^{3}+\cdots \right)=\lim _{x\to 1^{-}}{\frac {1}{(1+x)^{2}}}={\frac {1}{4}}.}"></span></dd></dl> <p>Dividing both sides by −3, one gets <span class="nowrap"><i>ζ</i>(−1) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>.</span> </p> <div class="mw-heading mw-heading3"><h3 id="Cutoff_regularization">Cutoff regularization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=5" title="Edit section: Cutoff regularization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:408px;max-width:408px"><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Sum1234Plain.svg" class="mw-file-description"><img alt="A graph depicting the series with layered boxes" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Sum1234Plain.svg/200px-Sum1234Plain.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Sum1234Plain.svg/300px-Sum1234Plain.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Sum1234Plain.svg/400px-Sum1234Plain.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></div><div class="thumbcaption">The series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span></div></div><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Sum1234Smoothed.svg" class="mw-file-description"><img alt="A graph depicting the smoothed series with layered curving stripes" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Sum1234Smoothed.svg/200px-Sum1234Smoothed.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Sum1234Smoothed.svg/300px-Sum1234Smoothed.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Sum1234Smoothed.svg/400px-Sum1234Smoothed.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></div><div class="thumbcaption">After smoothing</div></div></div></div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sum1234Asymptote.svg" class="mw-file-description"><img alt="A graph showing a parabola that dips just below the y-axis" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Sum1234Asymptote.svg/220px-Sum1234Asymptote.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Sum1234Asymptote.svg/330px-Sum1234Asymptote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Sum1234Asymptote.svg/440px-Sum1234Asymptote.svg.png 2x" data-file-width="600" data-file-height="600" /></a><figcaption>Asymptotic behavior of the smoothing. The <i>y</i>-intercept of the parabola is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>.<sup id="cite_ref-Tao_1-2" class="reference"><a href="#cite_note-Tao-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </figcaption></figure> <p>The method of regularization using a <a href="/wiki/Cutoff_function" class="mw-redirect" title="Cutoff function">cutoff function</a> can "smooth" the series to arrive at <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>. Smoothing is a conceptual bridge between zeta function regularization, with its reliance on <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, and Ramanujan summation, with its shortcut to the <a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a>. Instead, the method operates directly on conservative transformations of the series, using methods from <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a>. </p><p>The idea is to replace the ill-behaved discrete series <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{n=0}^{N}n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>n</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{n=0}^{N}n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29ebfbf633842ad6ba0a19574c5861095129bd67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.555ex; height:3.509ex;" alt="{\displaystyle \textstyle \sum _{n=0}^{N}n}"></span> with a smoothed version </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }nf\left({\frac {n}{N}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mi>f</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>N</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }nf\left({\frac {n}{N}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/162774159c5c23c4861327eb48ce5f15525cd193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.512ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }nf\left({\frac {n}{N}}\right),}"></span></dd></dl> <p>where <i>f</i> is a cutoff function with appropriate properties. The cutoff function must be normalized to <span class="nowrap"><i>f</i>(0) = 1</span>; this is a different normalization from the one used in differential equations. The cutoff function should have enough bounded derivatives to smooth out the wrinkles in the series, and it should decay to 0 faster than the series grows. For convenience, one may require that <i>f</i> is <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth</a>, <a href="/wiki/Bounded_function" title="Bounded function">bounded</a>, and <a href="/wiki/Compactly_supported" class="mw-redirect" title="Compactly supported">compactly supported</a>. One can then prove that this smoothed sum is <a href="/wiki/Asymptotic" class="mw-redirect" title="Asymptotic">asymptotic</a> to <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span> + <i>CN</i><sup>2</sup></span>, where <i>C</i> is a constant that depends on <i>f</i>. The constant term of the asymptotic expansion does not depend on <i>f</i>: it is necessarily the same value given by analytic continuation,&#160;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>.<sup id="cite_ref-Tao_1-3" class="reference"><a href="#cite_note-Tao-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ramanujan_summation">Ramanujan summation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=6" title="Edit section: Ramanujan summation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Ramanujan_summation" title="Ramanujan summation">Ramanujan sum</a> of <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> is also&#160;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>. Ramanujan wrote in his second letter to <a href="/wiki/G._H._Hardy" title="G. H. Hardy">G. H. Hardy</a>, dated 27 February 1913: </p> <dl><dd>"Dear Sir, I am very much gratified on perusing your letter of the 8th February 1913. I was expecting a reply from you similar to the one which a Mathematics Professor at London wrote asking me to study carefully <a href="/wiki/Thomas_John_I%27Anson_Bromwich" title="Thomas John I&#39;Anson Bromwich">Bromwich</a>'s <i>Infinite Series</i> and not fall into the pitfalls of divergent series. ... I told him that the sum of an infinite number of terms of the series: <span class="nowrap">1 + 2 + 3 + 4 + ⋯ = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span></span> under my theory. If I tell you this you will at once point out to me the lunatic asylum as my goal. I dilate on this simply to convince you that you will not be able to follow my methods of proof if I indicate the lines on which I proceed in a single letter. ..."<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Ramanujan summation is a method to isolate the constant term in the <a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a> for the partial sums of a series. For a function <i>f</i>, the classical Ramanujan sum of the series <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6577fdc4735fd8c269a5350ca8f08b41a92bebd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.329ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)}"></span> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=-{\frac {1}{2}}f(0)-\sum _{k=1}^{\infty }{\frac {B_{2k}}{(2k)!}}f^{(2k-1)}(0),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=-{\frac {1}{2}}f(0)-\sum _{k=1}^{\infty }{\frac {B_{2k}}{(2k)!}}f^{(2k-1)}(0),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b4d5bcd4404319b06ccf0315e6947c05ba5dd1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.64ex; height:6.843ex;" alt="{\displaystyle c=-{\frac {1}{2}}f(0)-\sum _{k=1}^{\infty }{\frac {B_{2k}}{(2k)!}}f^{(2k-1)}(0),}"></span></dd></dl> <p>where <i>f</i><sup>(2<i>k</i>−1)</sup> is the (2<i>k</i>&#160;−&#160;1)th derivative of <i>f</i> and <i>B</i><sub>2<i>k</i></sub> is the (2<i>k</i>)th <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli number</a>: <span class="nowrap"><i>B</i><sub>2</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>&#8288;</span></span>, <span class="nowrap"><i>B</i><sub>4</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>&#8288;</span></span>, and so on. Setting <span class="nowrap"><i>f</i>(<i>x</i>) = <i>x</i></span>, the first derivative of <i>f</i> is 1, and every other term vanishes, so<sup id="cite_ref-Berndt_1985_13,134_15-0" class="reference"><a href="#cite_note-Berndt_1985_13,134-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=-{\frac {1}{6}}\times {\frac {1}{2!}}=-{\frac {1}{12}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=-{\frac {1}{6}}\times {\frac {1}{2!}}=-{\frac {1}{12}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9ca43136f0173869e29d219b8d455884d8805f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.112ex; height:5.343ex;" alt="{\displaystyle c=-{\frac {1}{6}}\times {\frac {1}{2!}}=-{\frac {1}{12}}.}"></span></dd></dl> <p>To avoid inconsistencies, the modern theory of Ramanujan summation requires that <i>f</i> is "regular" in the sense that the higher-order derivatives of <i>f</i> decay quickly enough for the remainder terms in the Euler–Maclaurin formula to tend to 0. Ramanujan tacitly assumed this property.<sup id="cite_ref-Berndt_1985_13,134_15-1" class="reference"><a href="#cite_note-Berndt_1985_13,134-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> The regularity requirement prevents the use of Ramanujan summation upon spaced-out series like <span class="nowrap">0 + 2 + 0 + 4 + ⋯</span>, because no regular function takes those values. Instead, such a series must be interpreted by zeta function regularization. For this reason, Hardy recommends "great caution" when applying the Ramanujan sums of known series to find the sums of related series.<sup id="cite_ref-FOOTNOTEHardy1949346_16-0" class="reference"><a href="#cite_note-FOOTNOTEHardy1949346-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Failure_of_stable_linear_summation_methods">Failure of stable linear summation methods</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=7" title="Edit section: Failure of stable linear summation methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/1_%2B_1_%2B_1_%2B_1_%2B_%E2%8B%AF" title="1 + 1 + 1 + 1 + ⋯">1 + 1 + 1 + 1 + ⋯</a></div> <p>A summation method that is <a href="/wiki/Divergent_series#Properties_of_summation_methods" title="Divergent series">linear and stable</a> cannot sum the series <span class="texhtml">1 + 2 + 3 + ⋯</span> to any finite value. (Stable means that adding a term at the beginning of the series increases the sum by the value of the added term.) This can be seen as follows. If </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+2+3+\cdots =x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+2+3+\cdots =x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a70cdf51bfb444d2656ddf3cb568ff2d68037017" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.807ex; height:2.509ex;" alt="{\displaystyle 1+2+3+\cdots =x,}"></span></dd></dl> <p>then adding 0 to both sides gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+2+3+\cdots =0+x=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mn>0</mn> <mo>+</mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+2+3+\cdots =0+x=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4318027185f56073d8ef61e656b3c4039c21796" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:31.594ex; height:2.343ex;" alt="{\displaystyle 0+1+2+3+\cdots =0+x=x}"></span></dd></dl> <p>by stability. By linearity, one may subtract the second equation from the first (subtracting each component of the second line from the first line in columns) to give </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+1+1+\cdots =x-x=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+1+1+\cdots =x-x=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aabd193260dd8bd5f0f1a15132f39c3adcdede0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:28.238ex; height:2.343ex;" alt="{\displaystyle 1+1+1+\cdots =x-x=0.}"></span></dd></dl> <p>Adding 0 to both sides again gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+1+1+\cdots =0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+1+1+\cdots =0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93094ba09d21865ab71814a8df5fa2b79baac39b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.642ex; height:2.509ex;" alt="{\displaystyle 0+1+1+1+\cdots =0,}"></span></dd></dl> <p>and subtracting the last two series gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+0+0+0+\cdots =0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>0</mn> <mo>+</mo> <mn>0</mn> <mo>+</mo> <mn>0</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+0+0+0+\cdots =0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47b2a3680339fb1f184f38435661ca52110cf2f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.642ex; height:2.509ex;" alt="{\displaystyle 1+0+0+0+\cdots =0,}"></span></dd></dl> <p>contradicting stability. </p><p>Therefore, every method that gives a finite value to the sum <span class="nowrap">1 + 2 + 3 + ⋯</span> is not stable or not linear.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Physics">Physics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=8" title="Edit section: Physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">bosonic string theory</a>, the attempt is to compute the possible energy levels of a string, in particular, the lowest energy level. Speaking informally, each harmonic of the string can be viewed as a collection of <span class="nowrap"><i>D</i> − 2</span> independent <a href="/wiki/Quantum_harmonic_oscillator" title="Quantum harmonic oscillator">quantum harmonic oscillators</a>, one for each <a href="/wiki/Transverse_wave" title="Transverse wave">transverse direction</a>, where <i>D</i> is the dimension of spacetime. If the fundamental oscillation frequency is <i>ω</i>, then the energy in an oscillator contributing to the <i>n</i>th harmonic is <i>nħω</i>/2. So using the divergent series, the sum over all harmonics is <span class="nowrap">−<i>ħω</i>(<i>D</i> − 2)/24</span>. Ultimately it is this fact, combined with the <a href="/wiki/Goddard%E2%80%93Thorn_theorem" title="Goddard–Thorn theorem">Goddard–Thorn theorem</a>, which leads to bosonic string theory failing to be consistent in dimensions other than 26.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>The regularization of <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> is also involved in computing the <a href="/wiki/Casimir_force#Derivation_of_Casimir_effect_assuming_zeta-regularization" class="mw-redirect" title="Casimir force">Casimir force</a> for a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> in one dimension.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> An exponential cutoff function suffices to smooth the series, representing the fact that arbitrarily high-energy modes are not blocked by the conducting plates. The spatial symmetry of the problem is responsible for canceling the quadratic term of the expansion. All that is left is the constant term −1/12, and the negative sign of this result reflects the fact that the Casimir force is attractive.<sup id="cite_ref-FOOTNOTEZee2003pp._65–67_20-0" class="reference"><a href="#cite_note-FOOTNOTEZee2003pp._65–67-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>A similar calculation is involved in three dimensions, using the <a href="/wiki/Real_analytic_Eisenstein_series#Epstein_zeta_function" title="Real analytic Eisenstein series">Epstein zeta-function</a> in place of the Riemann zeta function.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=9" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is unclear whether Leonhard Euler summed the series to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span>. According to <a href="/wiki/Morris_Kline" title="Morris Kline">Morris Kline</a>, Euler's early work on divergent series relied on function expansions, from which he concluded <span class="nowrap">1 + 2 + 3 + 4 + ⋯ = ∞</span>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> According to Raymond Ayoub, the fact that the divergent zeta series is not Abel-summable prevented Euler from using the zeta function as freely as the eta function, and he "could not have attached a meaning" to the series.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Other authors have credited Euler with the sum, suggesting that Euler would have extended the relationship between the zeta and eta functions to negative integers.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> In the primary literature, the series <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> is mentioned in Euler's 1760 publication <span title="Latin-language text"><i lang="la">De seriebus divergentibus</i></span> alongside the divergent geometric series <span class="nowrap"><a href="/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E2%8B%AF" title="1 + 2 + 4 + 8 + ⋯">1 + 2 + 4 + 8 + ⋯</a></span>. Euler hints that series of this type have finite, negative sums, and he explains what this means for geometric series, but he does not return to discuss <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span>. In the same publication, Euler writes that the sum of <span class="nowrap"><a href="/wiki/1_%2B_1_%2B_1_%2B_1_%2B_%E2%8B%AF" title="1 + 1 + 1 + 1 + ⋯">1 + 1 + 1 + 1 + ⋯</a></span> is infinite.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_popular_media">In popular media</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=10" title="Edit section: In popular media"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/David_Leavitt" title="David Leavitt">David Leavitt</a>'s 2007 novel <i><a href="/wiki/The_Indian_Clerk" title="The Indian Clerk">The Indian Clerk</a></i> includes a scene where Hardy and <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood</a> discuss the meaning of this series. They conclude that Ramanujan has rediscovered <i>ζ</i>(−1), and they take the "lunatic asylum" line in his second letter as a sign that Ramanujan is toying with them.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Simon_McBurney" title="Simon McBurney">Simon McBurney</a>'s 2007 play <i><a href="/wiki/A_Disappearing_Number" title="A Disappearing Number">A Disappearing Number</a></i> focuses on the series in the opening scene. The main character, Ruth, walks into a lecture hall and introduces the idea of a divergent series before proclaiming, "I'm going to show you something really thrilling", namely <span class="nowrap">1 + 2 + 3 + 4 + ⋯ = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span></span>. As Ruth launches into a derivation of the functional equation of the zeta function, another actor addresses the audience, admitting that they are actors: "But the mathematics is real. It's terrifying, but it's real."<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>In January 2014, <a href="/wiki/Numberphile" title="Numberphile">Numberphile</a> produced a <a href="/wiki/YouTube" title="YouTube">YouTube</a> video on the series, which gathered over 1.5&#160;million views in its first month.<sup id="cite_ref-NYT-20140203_31-0" class="reference"><a href="#cite_note-NYT-20140203-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> The 8-minute video is narrated by Tony Padilla, a physicist at the <a href="/wiki/University_of_Nottingham" title="University of Nottingham">University of Nottingham</a>. Padilla begins with <span class="nowrap">1 − 1 + 1 − 1 + ⋯</span> and <span class="nowrap">1 − 2 + 3 − 4 + ⋯</span> and relates the latter to <span class="nowrap">1 + 2 + 3 + 4 + ⋯</span> using a term-by-term subtraction similar to Ramanujan's argument.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Numberphile also released a 21-minute version of the video featuring Nottingham physicist <a href="/wiki/Edmund_Copeland" title="Edmund Copeland">Ed Copeland</a>, who describes in more detail how <span class="nowrap">1 − 2 + 3 − 4 + ⋯ = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span></span> as an Abel sum, and <span class="nowrap">1 + 2 + 3 + 4 + ⋯ = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span></span> as <i>ζ</i>(−1).<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> After receiving complaints about the lack of rigour in the first video, Padilla also wrote an explanation on his webpage relating the manipulations in the video to identities between the analytic continuations of the relevant Dirichlet series.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i> coverage of the Numberphile video, mathematician <a href="/wiki/Edward_Frenkel" title="Edward Frenkel">Edward Frenkel</a> commented: "This calculation is one of the best-kept secrets in math. No one on the outside knows about it."<sup id="cite_ref-NYT-20140203_31-1" class="reference"><a href="#cite_note-NYT-20140203-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Coverage of this topic in <a href="/wiki/Smithsonian_(magazine)" title="Smithsonian (magazine)"><i>Smithsonian</i> magazine</a> describes the Numberphile video as misleading and notes that the interpretation of the sum as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;−<span class="sr-only">+</span><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span>&#8288;</span> relies on a specialized meaning for the <i>equals</i> sign, from the techniques of <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a>, in which <i>equals</i> means <i>is associated with</i>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> The Numberphile video was critiqued on similar grounds by German mathematician <a href="/wiki/Burkard_Polster" title="Burkard Polster">Burkard Polster</a> on his <i>Mathologer</i> YouTube channel in 2018, his video receiving 2.7 million views by 2023.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Tao-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tao_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tao_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Tao_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Tao_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFTao2010" class="citation cs2"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (April 10, 2010), <a rel="nofollow" class="external text" href="http://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/"><i>The Euler–Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation</i></a><span class="reference-accessdate">, retrieved <span class="nowrap">January 30,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Euler%E2%80%93Maclaurin+formula%2C+Bernoulli+numbers%2C+the+zeta+function%2C+and+real-variable+analytic+continuation&amp;rft.date=2010-04-10&amp;rft.aulast=Tao&amp;rft.aufirst=Terence&amp;rft_id=http%3A%2F%2Fterrytao.wordpress.com%2F2010%2F04%2F10%2Fthe-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLepowsky1999" class="citation book cs1">Lepowsky, J. (1999). "Vertex operator algebras and the zeta function". In Naihuan Jing and Kailash C. Misra (ed.). <i>Recent Developments in Quantum Affine Algebras and Related Topics</i>. Contemporary Mathematics. Vol.&#160;248. pp.&#160;327–340. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9909178">math/9909178</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999math......9178L">1999math......9178L</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Vertex+operator+algebras+and+the+zeta+function&amp;rft.btitle=Recent+Developments+in+Quantum+Affine+Algebras+and+Related+Topics&amp;rft.series=Contemporary+Mathematics&amp;rft.pages=327-340&amp;rft.date=1999&amp;rft_id=info%3Aarxiv%2Fmath%2F9909178&amp;rft_id=info%3Abibcode%2F1999math......9178L&amp;rft.aulast=Lepowsky&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTong2012" class="citation arxiv cs1">Tong, David (February 23, 2012). "String Theory". pp.&#160;28–48. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0908.0333">0908.0333</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-th">hep-th</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=String+Theory&amp;rft.pages=28-48&amp;rft.date=2012-02-23&amp;rft_id=info%3Aarxiv%2F0908.0333&amp;rft.aulast=Tong&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGannon2010" class="citation cs2">Gannon, Terry (April 2010), <i>Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics</i>, Cambridge University Press, p.&#160;140, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521141888" title="Special:BookSources/978-0521141888"><bdi>978-0521141888</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Moonshine+Beyond+the+Monster%3A+The+Bridge+Connecting+Algebra%2C+Modular+Forms+and+Physics&amp;rft.pages=140&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010-04&amp;rft.isbn=978-0521141888&amp;rft.aulast=Gannon&amp;rft.aufirst=Terry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPengelley2002" class="citation book cs1">Pengelley, David J. (2002). "The bridge between the continuous and the discrete via original sources". In Otto Bekken; et&#160;al. (eds.). <i>Study the Masters: The Abel-Fauvel Conference</i>. National Center for Mathematics Education, University of Gothenburg, Sweden. p.&#160;3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-9185143009" title="Special:BookSources/978-9185143009"><bdi>978-9185143009</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+bridge+between+the+continuous+and+the+discrete+via+original+sources&amp;rft.btitle=Study+the+Masters%3A+The+Abel-Fauvel+Conference&amp;rft.pages=3&amp;rft.pub=National+Center+for+Mathematics+Education%2C+University+of+Gothenburg%2C+Sweden&amp;rft.date=2002&amp;rft.isbn=978-9185143009&amp;rft.aulast=Pengelley&amp;rft.aufirst=David+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-FOOTNOTEHardy194910-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHardy194910_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardy1949">Hardy 1949</a>, p.&#160;10.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://www.imsc.res.in/~rao/ramanujan/NoteBooks/NoteBook1/chapterVIII/page3.htm"><i>Ramanujan's Notebooks</i></a><span class="reference-accessdate">, retrieved <span class="nowrap">January 26,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ramanujan%27s+Notebooks&amp;rft_id=http%3A%2F%2Fwww.imsc.res.in%2F~rao%2Framanujan%2FNoteBooks%2FNoteBook1%2FchapterVIII%2Fpage3.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbdi1992" class="citation cs2">Abdi, Wazir Hasan (1992), <i>Toils and triumphs of Srinivasa Ramanujan, the man and the mathematician</i>, National, p.&#160;41</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Toils+and+triumphs+of+Srinivasa+Ramanujan%2C+the+man+and+the+mathematician&amp;rft.pages=41&amp;rft.pub=National&amp;rft.date=1992&amp;rft.aulast=Abdi&amp;rft.aufirst=Wazir+Hasan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerndt1985" class="citation cs2">Berndt, Bruce C. (1985), <i>Ramanujan's Notebooks: Part 1</i>, Springer-Verlag, pp.&#160;135–136</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ramanujan%27s+Notebooks%3A+Part+1&amp;rft.pages=135-136&amp;rft.pub=Springer-Verlag&amp;rft.date=1985&amp;rft.aulast=Berndt&amp;rft.aufirst=Bruce+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler2006" class="citation web cs1">Euler, Leonhard (2006). <a rel="nofollow" class="external text" href="http://www.math.dartmouth.edu/~euler/pages/E352.html">"Translation with notes of Euler's paper: Remarks on a beautiful relation between direct as well as reciprocal power series"</a>. Translated by Willis, Lucas; Osler, Thomas J. The Euler Archive<span class="reference-accessdate">. Retrieved <span class="nowrap">2007-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Translation+with+notes+of+Euler%27s+paper%3A+Remarks+on+a+beautiful+relation+between+direct+as+well+as+reciprocal+power+series&amp;rft.pub=The+Euler+Archive&amp;rft.date=2006&amp;rft.aulast=Euler&amp;rft.aufirst=Leonhard&amp;rft_id=http%3A%2F%2Fwww.math.dartmouth.edu%2F~euler%2Fpages%2FE352.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span> Originally published as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler1768" class="citation journal cs1 cs1-prop-foreign-lang-source">Euler, Leonhard (1768). "Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques". <i>Mémoires de l'Académie des Sciences de Berlin</i> (in French). <b>17</b>: 83–106.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=M%C3%A9moires+de+l%27Acad%C3%A9mie+des+Sciences+de+Berlin&amp;rft.atitle=Remarques+sur+un+beau+rapport+entre+les+s%C3%A9ries+des+puissances+tant+directes+que+r%C3%A9ciproques&amp;rft.volume=17&amp;rft.pages=83-106&amp;rft.date=1768&amp;rft.aulast=Euler&amp;rft.aufirst=Leonhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Promoting numbers to functions is identified as one of two broad classes of summation methods, including Abel and Borel summation, by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnopp1990" class="citation book cs1"><a href="/wiki/Konrad_Knopp" title="Konrad Knopp">Knopp, Konrad</a> (1990) [1922]. <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/theoryapplicatio00knop_448"><i>Theory and Application of Infinite Series</i></a></span>. Dover. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/theoryapplicatio00knop_448/page/n487">475</a>–476. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-66165-2" title="Special:BookSources/0-486-66165-2"><bdi>0-486-66165-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+and+Application+of+Infinite+Series&amp;rft.pages=475-476&amp;rft.pub=Dover&amp;rft.date=1990&amp;rft.isbn=0-486-66165-2&amp;rft.aulast=Knopp&amp;rft.aufirst=Konrad&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryapplicatio00knop_448&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStopple2003" class="citation cs2">Stopple, Jeffrey (2003), <i>A Primer of Analytic Number Theory: From Pythagoras to Riemann</i>, p.&#160;202, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-81309-3" title="Special:BookSources/0-521-81309-3"><bdi>0-521-81309-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Primer+of+Analytic+Number+Theory%3A+From+Pythagoras+to+Riemann&amp;rft.pages=202&amp;rft.date=2003&amp;rft.isbn=0-521-81309-3&amp;rft.aulast=Stopple&amp;rft.aufirst=Jeffrey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnopp1990" class="citation book cs1"><a href="/wiki/Konrad_Knopp" title="Konrad Knopp">Knopp, Konrad</a> (1990) [1922]. <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/theoryapplicatio00knop_448"><i>Theory and Application of Infinite Series</i></a></span>. Dover. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/theoryapplicatio00knop_448/page/n502">490</a>–492. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-66165-2" title="Special:BookSources/0-486-66165-2"><bdi>0-486-66165-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+and+Application+of+Infinite+Series&amp;rft.pages=490-492&amp;rft.pub=Dover&amp;rft.date=1990&amp;rft.isbn=0-486-66165-2&amp;rft.aulast=Knopp&amp;rft.aufirst=Konrad&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryapplicatio00knop_448&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAiyangar1995" class="citation book cs1">Aiyangar, Srinivasa Ramanujan (7 September 1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Of5G0r6DQiEC&amp;pg=PA53"><i>Ramanujan: Letters and Commentary</i></a>. p.&#160;53. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780821891254" title="Special:BookSources/9780821891254"><bdi>9780821891254</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ramanujan%3A+Letters+and+Commentary&amp;rft.pages=53&amp;rft.date=1995-09-07&amp;rft.isbn=9780821891254&amp;rft.aulast=Aiyangar&amp;rft.aufirst=Srinivasa+Ramanujan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOf5G0r6DQiEC%26pg%3DPA53&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-Berndt_1985_13,134-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Berndt_1985_13,134_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Berndt_1985_13,134_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerndt1985" class="citation cs2">Berndt, Bruce C. (1985), <i>Ramanujan's Notebooks: Part 1</i>, Springer-Verlag, pp.&#160;13, 134</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ramanujan%27s+Notebooks%3A+Part+1&amp;rft.pages=13%2C+134&amp;rft.pub=Springer-Verlag&amp;rft.date=1985&amp;rft.aulast=Berndt&amp;rft.aufirst=Bruce+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-FOOTNOTEHardy1949346-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHardy1949346_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardy1949">Hardy 1949</a>, p.&#160;346.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNatielloSolari2015" class="citation cs2">Natiello, Mario A.; Solari, Hernan Gustavo (July 2015), "On the removal of infinities from divergent series", <i><a href="/wiki/Philosophy_of_Mathematics_Education_Journal" title="Philosophy of Mathematics Education Journal">Philosophy of Mathematics Education Journal</a></i>, <b>29</b>: 1–11, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/11336%2F46148">11336/46148</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophy+of+Mathematics+Education+Journal&amp;rft.atitle=On+the+removal+of+infinities+from+divergent+series&amp;rft.volume=29&amp;rft.pages=1-11&amp;rft.date=2015-07&amp;rft_id=info%3Ahdl%2F11336%2F46148&amp;rft.aulast=Natiello&amp;rft.aufirst=Mario+A.&amp;rft.au=Solari%2C+Hernan+Gustavo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbiellini1987" class="citation cs2">Barbiellini, Bernardo (1987), "The Casimir effect in conformal field theories", <i>Physics Letters B</i>, <b>190</b> (1–2): 137–139, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1987PhLB..190..137B">1987PhLB..190..137B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-2693%2887%2990854-9">10.1016/0370-2693(87)90854-9</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+B&amp;rft.atitle=The+Casimir+effect+in+conformal+field+theories&amp;rft.volume=190&amp;rft.issue=1%E2%80%932&amp;rft.pages=137-139&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1016%2F0370-2693%2887%2990854-9&amp;rft_id=info%3Abibcode%2F1987PhLB..190..137B&amp;rft.aulast=Barbiellini&amp;rft.aufirst=Bernardo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">See <a href="https://en.wikiversity.org/wiki/Quantum_mechanics/Casimir_effect_in_one_dimension" class="extiw" title="v:Quantum mechanics/Casimir effect in one dimension">v:Quantum mechanics/Casimir effect in one dimension</a>.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources"><span title="The material near this tag may rely on an unreliable source. (May 2021)">unreliable source?</span></a></i>&#93;</sup></span> </li> <li id="cite_note-FOOTNOTEZee2003pp._65–67-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEZee2003pp._65–67_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFZee2003">Zee 2003</a>, pp. 65–67.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeidler2007" class="citation cs2">Zeidler, Eberhard (2007), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XYtnGl9enNgC&amp;pg=PA305">"Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists"</a>, <i>Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists</i>, Springer: 305–306, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006qftb.book.....Z">2006qftb.book.....Z</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783540347644" title="Special:BookSources/9783540347644"><bdi>9783540347644</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Field+Theory+I%3A+Basics+in+Mathematics+and+Physics.+A+Bridge+Between+Mathematicians+and+Physicists&amp;rft.atitle=Quantum+Field+Theory+I%3A+Basics+in+Mathematics+and+Physics%3A+A+Bridge+between+Mathematicians+and+Physicists&amp;rft.pages=305-306&amp;rft.date=2007&amp;rft_id=info%3Abibcode%2F2006qftb.book.....Z&amp;rft.isbn=9783540347644&amp;rft.aulast=Zeidler&amp;rft.aufirst=Eberhard&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXYtnGl9enNgC%26pg%3DPA305&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline1983" class="citation cs2"><a href="/wiki/Morris_Kline" title="Morris Kline">Kline, Morris</a> (November 1983), "Euler and Infinite Series", <i>Mathematics Magazine</i>, <b>56</b> (5): 307–314, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.639.6923">10.1.1.639.6923</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2690371">10.2307/2690371</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2690371">2690371</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Euler+and+Infinite+Series&amp;rft.volume=56&amp;rft.issue=5&amp;rft.pages=307-314&amp;rft.date=1983-11&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.639.6923%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2690371%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2690371&amp;rft.aulast=Kline&amp;rft.aufirst=Morris&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAyoub1974" class="citation cs2">Ayoub, Raymond (December 1974), <a rel="nofollow" class="external text" href="http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/RaymondAyoub.pdf">"Euler and the Zeta Function"</a> <span class="cs1-format">(PDF)</span>, <i>The American Mathematical Monthly</i>, <b>81</b> (10): 1067–1086, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2319041">10.2307/2319041</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2319041">2319041</a><span class="reference-accessdate">, retrieved <span class="nowrap">February 14,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Euler+and+the+Zeta+Function&amp;rft.volume=81&amp;rft.issue=10&amp;rft.pages=1067-1086&amp;rft.date=1974-12&amp;rft_id=info%3Adoi%2F10.2307%2F2319041&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2319041%23id-name%3DJSTOR&amp;rft.aulast=Ayoub&amp;rft.aufirst=Raymond&amp;rft_id=http%3A%2F%2Fwww.maa.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2Fupload_library%2F22%2FFord%2FRaymondAyoub.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLefort" class="citation cs2 cs1-prop-foreign-lang-source">Lefort, Jean, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140222164751/http://irem.u-strasbg.fr/php/articles/31_Lefort_divergent.pdf">"Les séries divergentes chez Euler"</a> <span class="cs1-format">(PDF)</span>, <i>L'Ouvert</i> (in French) (31), IREM de Strasbourg: 15–25, archived from <a rel="nofollow" class="external text" href="http://irem.u-strasbg.fr/php/articles/31_Lefort_divergent.pdf">the original</a> <span class="cs1-format">(PDF)</span> on February 22, 2014<span class="reference-accessdate">, retrieved <span class="nowrap">February 14,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=L%27Ouvert&amp;rft.atitle=Les+s%C3%A9ries+divergentes+chez+Euler&amp;rft.issue=31&amp;rft.pages=15-25&amp;rft.aulast=Lefort&amp;rft.aufirst=Jean&amp;rft_id=http%3A%2F%2Firem.u-strasbg.fr%2Fphp%2Farticles%2F31_Lefort_divergent.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanekoKurokawaWakayama2003" class="citation cs2">Kaneko, Masanobu; Kurokawa, Nobushige; Wakayama, Masato (2003), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140202114604/http://catalog.lib.kyushu-u.ac.jp/opac/repository/100000/handle/2324/11683/57_175.pdf">"A variation of Euler's approach to values of the Riemann zeta function"</a> <span class="cs1-format">(PDF)</span>, <i>Kyushu Journal of Mathematics</i>, <b>57</b> (1): 175–192, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0206171">math/0206171</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2206%2Fkyushujm.57.175">10.2206/kyushujm.57.175</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54514141">54514141</a>, archived from <a rel="nofollow" class="external text" href="http://catalog.lib.kyushu-u.ac.jp/opac/repository/100000/handle/2324/11683/57_175.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-02-02<span class="reference-accessdate">, retrieved <span class="nowrap">January 31,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Kyushu+Journal+of+Mathematics&amp;rft.atitle=A+variation+of+Euler%27s+approach+to+values+of+the+Riemann+zeta+function&amp;rft.volume=57&amp;rft.issue=1&amp;rft.pages=175-192&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath%2F0206171&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54514141%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.2206%2Fkyushujm.57.175&amp;rft.aulast=Kaneko&amp;rft.aufirst=Masanobu&amp;rft.au=Kurokawa%2C+Nobushige&amp;rft.au=Wakayama%2C+Masato&amp;rft_id=http%3A%2F%2Fcatalog.lib.kyushu-u.ac.jp%2Fopac%2Frepository%2F100000%2Fhandle%2F2324%2F11683%2F57_175.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSondow1994" class="citation cs2">Sondow, Jonathan (February 1994), <a rel="nofollow" class="external text" href="https://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/">"Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series"</a>, <i>Proceedings of the American Mathematical Society</i>, <b>120</b> (4): 421–424, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1994-1172954-7">10.1090/S0002-9939-1994-1172954-7</a></span><span class="reference-accessdate">, retrieved <span class="nowrap">February 14,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=Analytic+continuation+of+Riemann%27s+zeta+function+and+values+at+negative+integers+via+Euler%27s+transformation+of+series&amp;rft.volume=120&amp;rft.issue=4&amp;rft.pages=421-424&amp;rft.date=1994-02&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1994-1172954-7&amp;rft.aulast=Sondow&amp;rft.aufirst=Jonathan&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fproc%2F1994-120-02%2FS0002-9939-1994-1172954-7%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbeauLeah1976" class="citation cs2">Barbeau, E. J.; Leah, P. J. (May 1976), "Euler's 1760 paper on divergent series", <i>Historia Mathematica</i>, <b>3</b> (2): 141–160, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2876%2990030-6">10.1016/0315-0860(76)90030-6</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Euler%27s+1760+paper+on+divergent+series&amp;rft.volume=3&amp;rft.issue=2&amp;rft.pages=141-160&amp;rft.date=1976-05&amp;rft_id=info%3Adoi%2F10.1016%2F0315-0860%2876%2990030-6&amp;rft.aulast=Barbeau&amp;rft.aufirst=E.+J.&amp;rft.au=Leah%2C+P.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeavitt2007" class="citation cs2"><a href="/wiki/David_Leavitt" title="David Leavitt">Leavitt, David</a> (2007), <i>The Indian Clerk</i>, Bloomsbury, pp.&#160;61–62</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Indian+Clerk&amp;rft.pages=61-62&amp;rft.pub=Bloomsbury&amp;rft.date=2007&amp;rft.aulast=Leavitt&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFComplicite2012" class="citation cs2">Complicite (April 2012), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CiIgrdmGlUIC"><i>A Disappearing Number</i></a>, Oberon, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781849432993" title="Special:BookSources/9781849432993"><bdi>9781849432993</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Disappearing+Number&amp;rft.pub=Oberon&amp;rft.date=2012-04&amp;rft.isbn=9781849432993&amp;rft.au=Complicite&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCiIgrdmGlUIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas2008" class="citation cs2">Thomas, Rachel (December 1, 2008), <a rel="nofollow" class="external text" href="http://plus.maths.org/content/disappearing-number">"A disappearing number"</a>, <i>Plus</i><span class="reference-accessdate">, retrieved <span class="nowrap">February 5,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plus&amp;rft.atitle=A+disappearing+number&amp;rft.date=2008-12-01&amp;rft.aulast=Thomas&amp;rft.aufirst=Rachel&amp;rft_id=http%3A%2F%2Fplus.maths.org%2Fcontent%2Fdisappearing-number&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-NYT-20140203-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-NYT-20140203_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-NYT-20140203_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOverbye2014" class="citation cs2"><a href="/wiki/Dennis_Overbye" title="Dennis Overbye">Overbye, Dennis</a> (February 3, 2014), <a rel="nofollow" class="external text" href="https://www.nytimes.com/2014/02/04/science/in-the-end-it-all-adds-up-to.html">"In the End, It All Adds Up to –1/12"</a>, <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">February 3,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=In+the+End%2C+It+All+Adds+Up+to+%E2%80%931%2F12&amp;rft.date=2014-02-03&amp;rft.aulast=Overbye&amp;rft.aufirst=Dennis&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2014%2F02%2F04%2Fscience%2Fin-the-end-it-all-adds-up-to.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=w-I6XTVZXww"><span class="plainlinks">ASTOUNDING: 1 + 2 + 3 + 4 + 5 + ... = –1/12</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=E-d9mgo8FGk"><span class="plainlinks">Sum of Natural Numbers (second proof and extra footage)</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a>.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPadilla" class="citation cs2">Padilla, Tony, <a rel="nofollow" class="external text" href="http://www.nottingham.ac.uk/~ppzap4/response.html"><i>What do we get if we sum all the natural numbers?</i></a><span class="reference-accessdate">, retrieved <span class="nowrap">February 3,</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=What+do+we+get+if+we+sum+all+the+natural+numbers%3F&amp;rft.aulast=Padilla&amp;rft.aufirst=Tony&amp;rft_id=http%3A%2F%2Fwww.nottingham.ac.uk%2F~ppzap4%2Fresponse.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span>.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchultz2014" class="citation web cs1">Schultz, Colin (2014-01-31). <a rel="nofollow" class="external text" href="http://www.smithsonianmag.com/smart-news/great-debate-over-whether-1234-112-180949559/">"The Great Debate Over Whether 1 + 2 + 3 + 4... + ∞ = −1/12"</a>. <i>Smithsonian</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2016-05-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Smithsonian&amp;rft.atitle=The+Great+Debate+Over+Whether+1+%2B+2+%2B+3+%2B+4...+%2B+%E2%88%9E+%3D+%E2%88%921%2F12&amp;rft.date=2014-01-31&amp;rft.aulast=Schultz&amp;rft.aufirst=Colin&amp;rft_id=http%3A%2F%2Fwww.smithsonianmag.com%2Fsmart-news%2Fgreat-debate-over-whether-1234-112-180949559%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation audio-visual cs1">Polster, Burkard (January 13, 2018). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=YuIIjLr6vUA"><i>Numberphile v. Math: the truth about 1+2+3+...=-1/12</i></a><span class="reference-accessdate">. Retrieved <span class="nowrap">August 31,</span> 2023</span> &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Numberphile+v.+Math%3A+the+truth+about+1%2B2%2B3%2B...%3D-1%2F12&amp;rft.date=2018-01-13&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYuIIjLr6vUA&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=12" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerndtSrinivasa_Ramanujan_AiyangarRankin1995" class="citation book cs1">Berndt, Bruce C.; <a href="/wiki/Srinivasa_Ramanujan" title="Srinivasa Ramanujan">Srinivasa Ramanujan Aiyangar</a>; Rankin, Robert A. (1995). <i>Ramanujan: letters and commentary</i>. American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-0287-9" title="Special:BookSources/0-8218-0287-9"><bdi>0-8218-0287-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ramanujan%3A+letters+and+commentary&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1995&amp;rft.isbn=0-8218-0287-9&amp;rft.aulast=Berndt&amp;rft.aufirst=Bruce+C.&amp;rft.au=Srinivasa+Ramanujan+Aiyangar&amp;rft.au=Rankin%2C+Robert+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1949" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a> (1949). <i>Divergent Series</i>. Clarendon Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Divergent+Series&amp;rft.pub=Clarendon+Press&amp;rft.date=1949&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZee2003" class="citation book cs1">Zee, A. (2003). <i>Quantum field theory in a nutshell</i>. Princeton UP. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-691-01019-6" title="Special:BookSources/0-691-01019-6"><bdi>0-691-01019-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+field+theory+in+a+nutshell&amp;rft.pub=Princeton+UP&amp;rft.date=2003&amp;rft.isbn=0-691-01019-6&amp;rft.aulast=Zee&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=13" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZwiebach2004" class="citation book cs1">Zwiebach, Barton (2004). <i>A First Course in String Theory</i>. Cambridge UP. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-83143-1" title="Special:BookSources/0-521-83143-1"><bdi>0-521-83143-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+String+Theory&amp;rft.pub=Cambridge+UP&amp;rft.date=2004&amp;rft.isbn=0-521-83143-1&amp;rft.aulast=Zwiebach&amp;rft.aufirst=Barton&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span> See p.&#160;293.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElizalde2004" class="citation encyclopaedia cs1">Elizalde, Emilio (2004). "Cosmology: Techniques and Applications". <i>Proceedings of the II International Conference on Fundamental Interactions</i>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0409076">gr-qc/0409076</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004gr.qc.....9076E">2004gr.qc.....9076E</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Cosmology%3A+Techniques+and+Applications&amp;rft.btitle=Proceedings+of+the+II+International+Conference+on+Fundamental+Interactions&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0409076&amp;rft_id=info%3Abibcode%2F2004gr.qc.....9076E&amp;rft.aulast=Elizalde&amp;rft.aufirst=Emilio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWatson1929" class="citation cs2">Watson, G. N. (April 1929), "Theorems stated by Ramanujan (VIII): Theorems on Divergent Series", <i>Journal of the London Mathematical Society</i>, 1, <b>4</b> (2): 82–86, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fjlms%2Fs1-4.14.82">10.1112/jlms/s1-4.14.82</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+London+Mathematical+Society&amp;rft.atitle=Theorems+stated+by+Ramanujan+%28VIII%29%3A+Theorems+on+Divergent+Series&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=82-86&amp;rft.date=1929-04&amp;rft_id=info%3Adoi%2F10.1112%2Fjlms%2Fs1-4.14.82&amp;rft.aulast=Watson&amp;rft.aufirst=G.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;action=edit&amp;section=14" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/40px-Wikiversity_logo_2017.svg.png" decoding="async" width="40" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/60px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/80px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Wikiversity has learning resources about <i><b><a href="https://en.wikiversity.org/wiki/divergent_series" class="extiw" title="v:divergent series">divergent series</a></b></i></div></div> </div> <ul><li>Lamb E. (2014), "<a rel="nofollow" class="external text" href="http://blogs.scientificamerican.com/roots-of-unity/2014/01/20/is-the-sum-of-positive-integers-negative/">Does 1+2+3... Really Equal –1/12?</a>", <a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a> Blogs.</li> <li><a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/week124.html">This Week's Finds in Mathematical Physics (Week 124)</a>, <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/week126.html">(Week 126)</a>, <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/week147.html">(Week 147)</a>, <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/week213.html">(Week 213)</a> <ul><li><a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/qg-winter2004/zeta.pdf">Euler's Proof That 1 + 2 + 3 + ⋯ = −1/12</a> – by <a href="/wiki/John_Baez" class="mw-redirect" title="John Baez">John Baez</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Baez2008" class="citation web cs1"><a href="/wiki/John_Baez" class="mw-redirect" title="John Baez">John Baez</a> (September 19, 2008). <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/numbers/24.pdf">"My Favorite Numbers: 24"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=My+Favorite+Numbers%3A+24&amp;rft.date=2008-09-19&amp;rft.au=John+Baez&amp;rft_id=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fnumbers%2F24.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A1+%2B+2+%2B+3+%2B+4+%2B+%E2%8B%AF" class="Z3988"></span></li></ul></li> <li><a rel="nofollow" class="external text" href="http://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/">The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation</a> by <a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a></li> <li><a rel="nofollow" class="external text" href="http://motls.blogspot.co.uk/2014/01/a-recursive-evaluation-of-zeta-of.html">A recursive evaluation of zeta of negative integers</a> by <a href="/wiki/Lubo%C5%A1_Motl" title="Luboš Motl">Luboš Motl</a></li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=w-I6XTVZXww">Link to Numberphile video 1 + 2 + 3 + 4 + 5 + ... = –1/12</a> <ul><li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=E-d9mgo8FGk">Sum of Natural Numbers (second proof and extra footage)</a> includes demonstration of Euler's method.</li> <li><a rel="nofollow" class="external text" href="http://www.nottingham.ac.uk/~ppzap4/response.html">What do we get if we sum all the natural numbers?</a> response to comments about video by Tony Padilla</li> <li><a rel="nofollow" class="external text" href="https://www.nytimes.com/2014/02/04/science/in-the-end-it-all-adds-up-to.html?hpw&amp;rref=science">Related article from New York Times</a></li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=0Oazb7IWzbA">Why –1/12 is a gold nugget</a> follow-up Numberphile video with <a href="/wiki/Edward_Frenkel" title="Edward Frenkel">Edward Frenkel</a></li></ul></li> <li><a rel="nofollow" class="external text" href="http://math.arizona.edu/~cais/Papers/Expos/div.pdf">Divergent Series: why 1 + 2 + 3 + ⋯ = −1/12</a> by Brydon Cais from University of Arizona</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Sequences_and_series" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Series_(mathematics)" title="Template:Series (mathematics)"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Series_(mathematics)" title="Template talk:Series (mathematics)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Series_(mathematics)" title="Special:EditPage/Template:Series (mathematics)"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Sequences_and_series" style="font-size:114%;margin:0 4em"><a href="/wiki/Sequence" title="Sequence">Sequences</a> and <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integer_sequence" title="Integer sequence">Integer sequences</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Basic</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic_progression" title="Arithmetic progression">Arithmetic progression</a></li> <li><a href="/wiki/Geometric_progression" title="Geometric progression">Geometric progression</a></li> <li><a href="/wiki/Harmonic_progression_(mathematics)" title="Harmonic progression (mathematics)">Harmonic progression</a></li> <li><a href="/wiki/Square_number" title="Square number">Square number</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cubic number</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Power_of_two" title="Power of two">Powers of two</a></li> <li><a href="/wiki/Power_of_three" title="Power of three">Powers of three</a></li> <li><a href="/wiki/Power_of_10" title="Power of 10">Powers of 10</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Advanced <span class="nobold">(<a href="/wiki/List_of_OEIS_sequences" class="mw-redirect" title="List of OEIS sequences">list</a>)</span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Complete_sequence" title="Complete sequence">Complete sequence</a></li> <li><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci sequence</a></li> <li><a href="/wiki/Figurate_number" title="Figurate number">Figurate number</a></li> <li><a href="/wiki/Heptagonal_number" title="Heptagonal number">Heptagonal number</a></li> <li><a href="/wiki/Hexagonal_number" title="Hexagonal number">Hexagonal number</a></li> <li><a href="/wiki/Lucas_number" title="Lucas number">Lucas number</a></li> <li><a href="/wiki/Pell_number" title="Pell number">Pell number</a></li> <li><a href="/wiki/Pentagonal_number" title="Pentagonal number">Pentagonal number</a></li> <li><a href="/wiki/Polygonal_number" title="Polygonal number">Polygonal number</a></li> <li><a href="/wiki/Triangular_number" title="Triangular number">Triangular number</a> <ul><li><a href="/wiki/Triangular_array" title="Triangular array">array</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence"><img alt="Fibonacci spiral with square sizes up to 34." src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/80px-Fibonacci_spiral_34.svg.png" decoding="async" width="80" height="51" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/120px-Fibonacci_spiral_34.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Fibonacci_spiral_34.svg/160px-Fibonacci_spiral_34.svg.png 2x" data-file-width="915" data-file-height="579" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties of sequences</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a></li> <li><a href="/wiki/Monotonic_function" title="Monotonic function">Monotonic function</a></li> <li><a href="/wiki/Periodic_sequence" title="Periodic sequence">Periodic sequence</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties of series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Series</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Convergent_series" title="Convergent series">Convergent</a></li> <li><a href="/wiki/Divergent_series" title="Divergent series">Divergent</a></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Convergence</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_convergence" title="Absolute convergence">Absolute</a></li> <li><a href="/wiki/Conditional_convergence" title="Conditional convergence">Conditional</a></li> <li><a href="/wiki/Uniform_convergence" title="Uniform convergence">Uniform</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Explicit series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Convergent</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/1/2_%E2%88%92_1/4_%2B_1/8_%E2%88%92_1/16_%2B_%E2%8B%AF" title="1/2 − 1/4 + 1/8 − 1/16 + ⋯">1/2 − 1/4 + 1/8 − 1/16 + ⋯</a></li> <li><a href="/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/16_%2B_%E2%8B%AF" title="1/2 + 1/4 + 1/8 + 1/16 + ⋯">1/2 + 1/4 + 1/8 + 1/16 + ⋯</a></li> <li><a href="/wiki/1/4_%2B_1/16_%2B_1/64_%2B_1/256_%2B_%E2%8B%AF" title="1/4 + 1/16 + 1/64 + 1/256 + ⋯">1/4 + 1/16 + 1/64 + 1/256 + ⋯</a></li> <li><a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">1 + 1/2<sup><i>s</i></sup> + 1/3<sup><i>s</i></sup> + ... (Riemann zeta function)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:left">Divergent</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/1_%2B_1_%2B_1_%2B_1_%2B_%E2%8B%AF" title="1 + 1 + 1 + 1 + ⋯">1 + 1 + 1 + 1 + ⋯</a></li> <li><a href="/wiki/Grandi%27s_series" title="Grandi&#39;s series">1 − 1 + 1 − 1 + ⋯ (Grandi's series)</a></li> <li><a class="mw-selflink selflink">1 + 2 + 3 + 4 + ⋯</a></li> <li><a href="/wiki/1_%E2%88%92_2_%2B_3_%E2%88%92_4_%2B_%E2%8B%AF" title="1 − 2 + 3 − 4 + ⋯">1 − 2 + 3 − 4 + ⋯</a></li> <li><a href="/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E2%8B%AF" title="1 + 2 + 4 + 8 + ⋯">1 + 2 + 4 + 8 + ⋯</a></li> <li><a href="/wiki/1_%E2%88%92_2_%2B_4_%E2%88%92_8_%2B_%E2%8B%AF" title="1 − 2 + 4 − 8 + ⋯">1 − 2 + 4 − 8 + ⋯</a></li> <li><a href="/wiki/Infinite_arithmetic_series" class="mw-redirect" title="Infinite arithmetic series">Infinite arithmetic series</a></li> <li><a href="/wiki/1_%E2%88%92_1_%2B_2_%E2%88%92_6_%2B_24_%E2%88%92_120_%2B_..." class="mw-redirect" title="1 − 1 + 2 − 6 + 24 − 120 + ...">1 − 1 + 2 − 6 + 24 − 120 + ⋯ (alternating factorials)</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">1 + 1/2 + 1/3 + 1/4 + ⋯ (harmonic series)</a></li> <li><a href="/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes" title="Divergence of the sum of the reciprocals of the primes">1/2 + 1/3 + 1/5 + 1/7 + 1/11 + ⋯ (inverses of primes)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Kinds of series</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a></li> <li><a href="/wiki/Power_series" title="Power series">Power series</a></li> <li><a href="/wiki/Formal_power_series" title="Formal power series">Formal power series</a></li> <li><a href="/wiki/Laurent_series" title="Laurent series">Laurent series</a></li> <li><a href="/wiki/Puiseux_series" title="Puiseux series">Puiseux series</a></li> <li><a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a></li> <li><a href="/wiki/Trigonometric_series" title="Trigonometric series">Trigonometric series</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a></li> <li><a href="/wiki/Generating_series" class="mw-redirect" title="Generating series">Generating series</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hypergeometric_function" title="Hypergeometric function">Hypergeometric series</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_hypergeometric_series" class="mw-redirect" title="Generalized hypergeometric series">Generalized hypergeometric series</a></li> <li><a href="/wiki/Hypergeometric_function_of_a_matrix_argument" title="Hypergeometric function of a matrix argument">Hypergeometric function of a matrix argument</a></li> <li><a href="/wiki/Lauricella_hypergeometric_series" title="Lauricella hypergeometric series">Lauricella hypergeometric series</a></li> <li><a href="/wiki/Modular_hypergeometric_series" class="mw-redirect" title="Modular hypergeometric series">Modular hypergeometric series</a></li> <li><a href="/wiki/Riemann%27s_differential_equation" title="Riemann&#39;s differential equation">Riemann's differential equation</a></li> <li><a href="/wiki/Theta_hypergeometric_series" class="mw-redirect" title="Theta hypergeometric series">Theta hypergeometric series</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Mathematical_series" title="Category:Mathematical series">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐m5gcf Cached time: 20241122152603 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.105 seconds Real time usage: 1.358 seconds Preprocessor visited node count: 4317/1000000 Post‐expand include size: 122339/2097152 bytes Template argument size: 6016/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 159059/5000000 bytes Lua time usage: 0.717/10.000 seconds Lua memory usage: 27049271/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1148.005 1 -total 38.53% 442.380 1 Template:Reflist 21.12% 242.498 22 Template:Citation 15.09% 173.195 1 Template:Lang 10.86% 124.725 4 Template:Navbox 10.18% 116.848 1 Template:Series_(mathematics) 8.95% 102.769 1 Template:Short_description 5.19% 59.637 9 Template:Cite_book 5.19% 59.563 3 Template:Sfn 5.13% 58.890 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:9723822-0!canonical and timestamp 20241122152603 and revision id 1258954880. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_⋯&amp;oldid=1258954880">https://en.wikipedia.org/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_⋯&amp;oldid=1258954880</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Divergent_series" title="Category:Divergent series">Divergent series</a></li><li><a href="/wiki/Category:Arithmetic_series" title="Category:Arithmetic series">Arithmetic series</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_May_2021" title="Category:Articles lacking reliable references from May 2021">Articles lacking reliable references from May 2021</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 22 November 2024, at 15:25<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-68pwz","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"1.105","walltime":"1.358","ppvisitednodes":{"value":4317,"limit":1000000},"postexpandincludesize":{"value":122339,"limit":2097152},"templateargumentsize":{"value":6016,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":159059,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1148.005 1 -total"," 38.53% 442.380 1 Template:Reflist"," 21.12% 242.498 22 Template:Citation"," 15.09% 173.195 1 Template:Lang"," 10.86% 124.725 4 Template:Navbox"," 10.18% 116.848 1 Template:Series_(mathematics)"," 8.95% 102.769 1 Template:Short_description"," 5.19% 59.637 9 Template:Cite_book"," 5.19% 59.563 3 Template:Sfn"," 5.13% 58.890 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.717","limit":"10.000"},"limitreport-memusage":{"value":27049271,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbdi1992\"] = 1,\n [\"CITEREFAiyangar1995\"] = 1,\n [\"CITEREFAyoub1974\"] = 1,\n [\"CITEREFBarbeauLeah1976\"] = 1,\n [\"CITEREFBarbiellini1987\"] = 1,\n [\"CITEREFBerndt1985\"] = 2,\n [\"CITEREFBerndtSrinivasa_Ramanujan_AiyangarRankin1995\"] = 1,\n [\"CITEREFComplicite2012\"] = 1,\n [\"CITEREFElizalde2004\"] = 1,\n [\"CITEREFEuler1768\"] = 1,\n [\"CITEREFEuler2006\"] = 1,\n [\"CITEREFGannon2010\"] = 1,\n [\"CITEREFHardy1949\"] = 1,\n [\"CITEREFJohn_Baez2008\"] = 1,\n [\"CITEREFKanekoKurokawaWakayama2003\"] = 1,\n [\"CITEREFKline1983\"] = 1,\n [\"CITEREFKnopp1990\"] = 2,\n [\"CITEREFLeavitt2007\"] = 1,\n [\"CITEREFLefort\"] = 1,\n [\"CITEREFLepowsky1999\"] = 1,\n [\"CITEREFNatielloSolari2015\"] = 1,\n [\"CITEREFOverbye2014\"] = 1,\n [\"CITEREFPadilla\"] = 1,\n [\"CITEREFPengelley2002\"] = 1,\n [\"CITEREFSchultz2014\"] = 1,\n [\"CITEREFSondow1994\"] = 1,\n [\"CITEREFStopple2003\"] = 1,\n [\"CITEREFTao2010\"] = 1,\n [\"CITEREFThomas2008\"] = 1,\n [\"CITEREFTong2012\"] = 1,\n [\"CITEREFWatson1929\"] = 1,\n [\"CITEREFZee2003\"] = 1,\n [\"CITEREFZeidler2007\"] = 1,\n [\"CITEREFZwiebach2004\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 1,\n [\"Citation\"] = 22,\n [\"Cite AV media\"] = 1,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 9,\n [\"Cite encyclopedia\"] = 1,\n [\"Cite journal\"] = 1,\n [\"Cite web\"] = 3,\n [\"DEFAULTSORT:1 + 2 + 3 + 4 + ...\"] = 1,\n [\"Lang\"] = 1,\n [\"Main\"] = 1,\n [\"Math\"] = 1,\n [\"Multiple image\"] = 1,\n [\"Nobr\"] = 1,\n [\"Nowrap\"] = 55,\n [\"Refbegin\"] = 2,\n [\"Refend\"] = 2,\n [\"Reflist\"] = 1,\n [\"Reliable source?\"] = 1,\n [\"See also\"] = 1,\n [\"Series (mathematics)\"] = 1,\n [\"Sfn\"] = 3,\n [\"Sfrac\"] = 24,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Wikiversity\"] = 1,\n [\"Xref\"] = 1,\n [\"YouTube\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-m5gcf","timestamp":"20241122152603","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"1 + 2 + 3 + 4 + \u22ef","url":"https:\/\/en.wikipedia.org\/wiki\/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2605420","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2605420","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-02-26T02:17:52Z","dateModified":"2024-11-22T15:25:58Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/23\/Sum1234Summary.svg","headline":"divergent series"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10