CINXE.COM

Multimodal entailment

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/examples/nlp/multimodal_entailment/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: Multimodal entailment"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: Multimodal entailment"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>Multimodal entailment</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link active" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-sublink" href="/examples/vision/">Computer Vision</a> <a class="nav-sublink active" href="/examples/nlp/">Natural Language Processing</a> <a class="nav-sublink2" href="/examples/nlp/text_classification_from_scratch/">Text classification from scratch</a> <a class="nav-sublink2" href="/examples/nlp/active_learning_review_classification/">Review Classification using Active Learning</a> <a class="nav-sublink2" href="/examples/nlp/fnet_classification_with_keras_hub/">Text Classification using FNet</a> <a class="nav-sublink2" href="/examples/nlp/multi_label_classification/">Large-scale multi-label text classification</a> <a class="nav-sublink2" href="/examples/nlp/text_classification_with_transformer/">Text classification with Transformer</a> <a class="nav-sublink2" href="/examples/nlp/text_classification_with_switch_transformer/">Text classification with Switch Transformer</a> <a class="nav-sublink2" href="/examples/nlp/tweet-classification-using-tfdf/">Text classification using Decision Forests and pretrained embeddings</a> <a class="nav-sublink2" href="/examples/nlp/pretrained_word_embeddings/">Using pre-trained word embeddings</a> <a class="nav-sublink2" href="/examples/nlp/bidirectional_lstm_imdb/">Bidirectional LSTM on IMDB</a> <a class="nav-sublink2" href="/examples/nlp/data_parallel_training_with_keras_hub/">Data Parallel Training with KerasHub and tf.distribute</a> <a class="nav-sublink2" href="/examples/nlp/neural_machine_translation_with_keras_hub/">English-to-Spanish translation with KerasHub</a> <a class="nav-sublink2" href="/examples/nlp/neural_machine_translation_with_transformer/">English-to-Spanish translation with a sequence-to-sequence Transformer</a> <a class="nav-sublink2" href="/examples/nlp/lstm_seq2seq/">Character-level recurrent sequence-to-sequence model</a> <a class="nav-sublink2 active" href="/examples/nlp/multimodal_entailment/">Multimodal entailment</a> <a class="nav-sublink2" href="/examples/nlp/ner_transformers/">Named Entity Recognition using Transformers</a> <a class="nav-sublink2" href="/examples/nlp/text_extraction_with_bert/">Text Extraction with BERT</a> <a class="nav-sublink2" href="/examples/nlp/addition_rnn/">Sequence to sequence learning for performing number addition</a> <a class="nav-sublink2" href="/examples/nlp/semantic_similarity_with_keras_hub/">Semantic Similarity with KerasHub</a> <a class="nav-sublink2" href="/examples/nlp/semantic_similarity_with_bert/">Semantic Similarity with BERT</a> <a class="nav-sublink2" href="/examples/nlp/sentence_embeddings_with_sbert/">Sentence embeddings using Siamese RoBERTa-networks</a> <a class="nav-sublink2" href="/examples/nlp/masked_language_modeling/">End-to-end Masked Language Modeling with BERT</a> <a class="nav-sublink2" href="/examples/nlp/abstractive_summarization_with_bart/">Abstractive Text Summarization with BART</a> <a class="nav-sublink2" href="/examples/nlp/pretraining_BERT/">Pretraining BERT with Hugging Face Transformers</a> <a class="nav-sublink2" href="/examples/nlp/parameter_efficient_finetuning_of_gpt2_with_lora/">Parameter-efficient fine-tuning of GPT-2 with LoRA</a> <a class="nav-sublink2" href="/examples/nlp/multiple_choice_task_with_transfer_learning/">MultipleChoice Task with Transfer Learning</a> <a class="nav-sublink2" href="/examples/nlp/question_answering/">Question Answering with Hugging Face Transformers</a> <a class="nav-sublink2" href="/examples/nlp/t5_hf_summarization/">Abstractive Summarization with Hugging Face Transformers</a> <a class="nav-sublink" href="/examples/structured_data/">Structured Data</a> <a class="nav-sublink" href="/examples/timeseries/">Timeseries</a> <a class="nav-sublink" href="/examples/generative/">Generative Deep Learning</a> <a class="nav-sublink" href="/examples/audio/">Audio Data</a> <a class="nav-sublink" href="/examples/rl/">Reinforcement Learning</a> <a class="nav-sublink" href="/examples/graph/">Graph Data</a> <a class="nav-sublink" href="/examples/keras_recipes/">Quick Keras Recipes</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/examples/'>Code examples</a> / <a href='/examples/nlp/'>Natural Language Processing</a> / Multimodal entailment </div> <div class='k-content'> <h1 id="multimodal-entailment">Multimodal entailment</h1> <p><strong>Author:</strong> <a href="https://twitter.com/RisingSayak">Sayak Paul</a><br> <strong>Date created:</strong> 2021/08/08<br> <strong>Last modified:</strong> 2025/01/03<br> <strong>Description:</strong> Training a multimodal model for predicting entailment.</p> <div class='example_version_banner keras_2'>ⓘ This example uses Keras 2</div> <p><img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> <a href="https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/multimodal_entailment.ipynb"><strong>View in Colab</strong></a> <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> <a href="https://github.com/keras-team/keras-io/blob/master/examples/nlp/multimodal_entailment.py"><strong>GitHub source</strong></a></p> <hr /> <h2 id="introduction">Introduction</h2> <p>In this example, we will build and train a model for predicting multimodal entailment. We will be using the <a href="https://github.com/google-research-datasets/recognizing-multimodal-entailment">multimodal entailment dataset</a> recently introduced by Google Research.</p> <h3 id="what-is-multimodal-entailment">What is multimodal entailment?</h3> <p>On social media platforms, to audit and moderate content we may want to find answers to the following questions in near real-time:</p> <ul> <li>Does a given piece of information contradict the other?</li> <li>Does a given piece of information imply the other?</li> </ul> <p>In NLP, this task is called analyzing <em>textual entailment</em>. However, that's only when the information comes from text content. In practice, it's often the case the information available comes not just from text content, but from a multimodal combination of text, images, audio, video, etc. <em>Multimodal entailment</em> is simply the extension of textual entailment to a variety of new input modalities.</p> <h3 id="requirements">Requirements</h3> <p>This example requires TensorFlow 2.5 or higher. In addition, TensorFlow Hub and TensorFlow Text are required for the BERT model (<a href="https://arxiv.org/abs/1810.04805">Devlin et al.</a>). These libraries can be installed using the following command:</p> <div class="codehilite"><pre><span></span><code><span class="err">!</span><span class="n">pip</span> <span class="n">install</span> <span class="o">-</span><span class="n">q</span> <span class="n">tensorflow_text</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> [notice] A new release of pip is available: 24.0 -&gt; 24.3.1 [notice] To update, run: pip install --upgrade pip </code></pre></div> </div> <hr /> <h2 id="imports">Imports</h2> <div class="codehilite"><pre><span></span><code><span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.model_selection</span><span class="w"> </span><span class="kn">import</span> <span class="n">train_test_split</span> <span class="kn">import</span><span class="w"> </span><span class="nn">matplotlib.pyplot</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">plt</span> <span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span> <span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span> <span class="kn">import</span><span class="w"> </span><span class="nn">random</span> <span class="kn">import</span><span class="w"> </span><span class="nn">math</span> <span class="kn">from</span><span class="w"> </span><span class="nn">skimage.io</span><span class="w"> </span><span class="kn">import</span> <span class="n">imread</span> <span class="kn">from</span><span class="w"> </span><span class="nn">skimage.transform</span><span class="w"> </span><span class="kn">import</span> <span class="n">resize</span> <span class="kn">from</span><span class="w"> </span><span class="nn">PIL</span><span class="w"> </span><span class="kn">import</span> <span class="n">Image</span> <span class="kn">import</span><span class="w"> </span><span class="nn">os</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;KERAS_BACKEND&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;jax&quot;</span> <span class="c1"># or tensorflow, or torch</span> <span class="kn">import</span><span class="w"> </span><span class="nn">keras</span> <span class="kn">import</span><span class="w"> </span><span class="nn">keras_hub</span> <span class="kn">from</span><span class="w"> </span><span class="nn">keras.utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">PyDataset</span> </code></pre></div> <hr /> <h2 id="define-a-label-map">Define a label map</h2> <div class="codehilite"><pre><span></span><code><span class="n">label_map</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;Contradictory&quot;</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;Implies&quot;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s2">&quot;NoEntailment&quot;</span><span class="p">:</span> <span class="mi">2</span><span class="p">}</span> </code></pre></div> <hr /> <h2 id="collect-the-dataset">Collect the dataset</h2> <p>The original dataset is available <a href="https://github.com/google-research-datasets/recognizing-multimodal-entailment">here</a>. It comes with URLs of images which are hosted on Twitter's photo storage system called the <a href="https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system">Photo Blob Storage (PBS for short)</a>. We will be working with the downloaded images along with additional data that comes with the original dataset. Thanks to <a href="https://de.linkedin.com/in/nilabhraroychowdhury">Nilabhra Roy Chowdhury</a> who worked on preparing the image data.</p> <div class="codehilite"><pre><span></span><code><span class="n">image_base_path</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">get_file</span><span class="p">(</span> <span class="s2">&quot;tweet_images&quot;</span><span class="p">,</span> <span class="s2">&quot;https://github.com/sayakpaul/Multimodal-Entailment-Baseline/releases/download/v1.0.0/tweet_images.tar.gz&quot;</span><span class="p">,</span> <span class="n">untar</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <hr /> <h2 id="read-the-dataset-and-apply-basic-preprocessing">Read the dataset and apply basic preprocessing</h2> <div class="codehilite"><pre><span></span><code><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span> <span class="s2">&quot;https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/csvs/tweets.csv&quot;</span> <span class="p">)</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span> <span class="mi">0</span><span class="p">:</span><span class="mi">1000</span> <span class="p">]</span> <span class="c1"># Resources conservation since these are examples and not SOTA</span> <span class="n">df</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> </code></pre></div> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></div> </div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id_1</th> <th>text_1</th> <th>image_1</th> <th>id_2</th> <th>text_2</th> <th>image_2</th> <th>label</th> </tr> </thead> <tbody> <tr> <th>815</th> <td>1370730009921343490</td> <td>Sticky bombs are a threat as they have magnets...</td> <td>http://pbs.twimg.com/media/EwXOFrgVIAEkfjR.jpg</td> <td>1370731764906295307</td> <td>Sticky bombs are a threat as they have magnets...</td> <td>http://pbs.twimg.com/media/EwXRK_3XEAA6Q6F.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>615</th> <td>1364119737446395905</td> <td>Daily Horoscope for #Cancer 2.23.21 ♊️❤️✨ #Hor...</td> <td>http://pbs.twimg.com/media/Eu5Te44VgAIo1jZ.jpg</td> <td>1365218087906078720</td> <td>Daily Horoscope for #Cancer 2.26.21 ♊️❤️✨ #Hor...</td> <td>http://pbs.twimg.com/media/EvI6nW4WQAA4_E_.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>624</th> <td>1335542260923068417</td> <td>The Reindeer Run is back and this year's run i...</td> <td>http://pbs.twimg.com/media/Eoi99DyXEAE0AFV.jpg</td> <td>1335872932267122689</td> <td>Get your red nose and antlers on for the 2020 ...</td> <td>http://pbs.twimg.com/media/Eon5Wk7XUAE-CxN.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>970</th> <td>1345058844439949312</td> <td>Participants needed for online survey!\n\nTopi...</td> <td>http://pbs.twimg.com/media/Eqqb4_MXcAA-Pvu.jpg</td> <td>1361211461792632835</td> <td>Participants needed for top-ranked study on Su...</td> <td>http://pbs.twimg.com/media/EuPz0GwXMAMDklt.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>456</th> <td>1379831489043521545</td> <td>comission for @NanoBiteTSF \nenjoyed bros and ...</td> <td>http://pbs.twimg.com/media/EyVf0_VXMAMtRaL.jpg</td> <td>1380660763749142531</td> <td>another comission for @NanoBiteTSF \nhope you ...</td> <td>http://pbs.twimg.com/media/EykW0iXXAAA2SBC.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>917</th> <td>1336180735191891968</td> <td>(2/10)\n(Seoul Jung-gu) Market cluster -&amp;gt;\n...</td> <td>http://pbs.twimg.com/media/EosRFpGVQAIeuYG.jpg</td> <td>1356113330536996866</td> <td>(3/11)\n(Seoul Dongdaemun-gu) Goshitel cluster...</td> <td>http://pbs.twimg.com/media/EtHhj7QVcAAibvF.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>276</th> <td>1339270210029834241</td> <td>Today the message of freedom goes to Kisoro, R...</td> <td>http://pbs.twimg.com/media/EpVK3pfXcAAZ5Du.jpg</td> <td>1340881971132698625</td> <td>Today the message of freedom is going to the p...</td> <td>http://pbs.twimg.com/media/EpvDorkXYAEyz4g.jpg</td> <td>Implies</td> </tr> <tr> <th>35</th> <td>1360186999836200961</td> <td>Bitcoin in Argentina - Google Trends https://t...</td> <td>http://pbs.twimg.com/media/EuBa3UxXYAMb99_.jpg</td> <td>1382778703055228929</td> <td>Argentina wants #Bitcoin https://t.co/9lNxJdxX...</td> <td>http://pbs.twimg.com/media/EzCbUFNXMAABwPD.jpg</td> <td>Implies</td> </tr> <tr> <th>762</th> <td>1370824756400959491</td> <td>$HSBA.L: The long term trend is positive and t...</td> <td>http://pbs.twimg.com/media/EwYl2hPWYAE2niq.png</td> <td>1374347458126475269</td> <td>Although the technical rating is only medium, ...</td> <td>http://pbs.twimg.com/media/ExKpuwrWgAAktg4.png</td> <td>NoEntailment</td> </tr> <tr> <th>130</th> <td>1373789433607172097</td> <td>I've just watched episode S01 | E05 of Ted Las...</td> <td>http://pbs.twimg.com/media/ExCuNbDXAAQaPiL.jpg</td> <td>1374913509662806016</td> <td>I've just watched episode S01 | E06 of Ted Las...</td> <td>http://pbs.twimg.com/media/ExSsjRQWgAUVRPz.jpg</td> <td>Contradictory</td> </tr> </tbody> </table> </div> <p>The columns we are interested in are the following:</p> <ul> <li><code>text_1</code></li> <li><code>image_1</code></li> <li><code>text_2</code></li> <li><code>image_2</code></li> <li><code>label</code></li> </ul> <p>The entailment task is formulated as the following:</p> <p><strong><em>Given the pairs of (<code>text_1</code>, <code>image_1</code>) and (<code>text_2</code>, <code>image_2</code>) do they entail (or not entail or contradict) each other?</em></strong></p> <p>We have the images already downloaded. <code>image_1</code> is downloaded as <code>id1</code> as its filename and <code>image2</code> is downloaded as <code>id2</code> as its filename. In the next step, we will add two more columns to <code>df</code> - filepaths of <code>image_1</code>s and <code>image_2</code>s.</p> <div class="codehilite"><pre><span></span><code><span class="n">images_one_paths</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">images_two_paths</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)):</span> <span class="n">current_row</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span> <span class="n">id_1</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;id_1&quot;</span><span class="p">]</span> <span class="n">id_2</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;id_2&quot;</span><span class="p">]</span> <span class="n">extentsion_one</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;image_1&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;.&quot;</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="n">extentsion_two</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;image_2&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;.&quot;</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="n">image_one_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">image_base_path</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">id_1</span><span class="p">)</span> <span class="o">+</span> <span class="sa">f</span><span class="s2">&quot;.</span><span class="si">{</span><span class="n">extentsion_one</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="n">image_two_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">image_base_path</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">id_2</span><span class="p">)</span> <span class="o">+</span> <span class="sa">f</span><span class="s2">&quot;.</span><span class="si">{</span><span class="n">extentsion_two</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="n">images_one_paths</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">image_one_path</span><span class="p">)</span> <span class="n">images_two_paths</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">image_two_path</span><span class="p">)</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;image_1_path&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">images_one_paths</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;image_2_path&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">images_two_paths</span> <span class="c1"># Create another column containing the integer ids of</span> <span class="c1"># the string labels.</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;label_idx&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">label_map</span><span class="p">[</span><span class="n">x</span><span class="p">])</span> </code></pre></div> <hr /> <h2 id="dataset-visualization">Dataset visualization</h2> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">visualize</span><span class="p">(</span><span class="n">idx</span><span class="p">):</span> <span class="n">current_row</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span> <span class="n">image_1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;image_1_path&quot;</span><span class="p">])</span> <span class="n">image_2</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">imread</span><span class="p">(</span><span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;image_2_path&quot;</span><span class="p">])</span> <span class="n">text_1</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;text_1&quot;</span><span class="p">]</span> <span class="n">text_2</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;text_2&quot;</span><span class="p">]</span> <span class="n">label</span> <span class="o">=</span> <span class="n">current_row</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">image_1</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">&quot;off&quot;</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Image One&quot;</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">image_1</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">&quot;off&quot;</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Image Two&quot;</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Text one: </span><span class="si">{</span><span class="n">text_1</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Text two: </span><span class="si">{</span><span class="n">text_2</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Label: </span><span class="si">{</span><span class="n">label</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="n">random_idx</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)))</span> <span class="n">visualize</span><span class="p">(</span><span class="n">random_idx</span><span class="p">)</span> <span class="n">random_idx</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)))</span> <span class="n">visualize</span><span class="p">(</span><span class="n">random_idx</span><span class="p">)</span> </code></pre></div> <p><img alt="png" src="/img/examples/nlp/multimodal_entailment/multimodal_entailment_14_0.png" /></p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Text one: World #water day reminds that we should follow the #guidelines to save water for us. This Day is an #opportunity to learn more about water related issues, be #inspired to tell others and take action to make a difference. Just remember, every #drop counts. </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>#WorldWaterDay2021 https://t.co/bQ9Hp53qUj Text two: Water is an extremely precious resource without which life would be impossible. We need to ensure that water is used judiciously, this #WorldWaterDay, let us pledge to reduce water wastage and conserve it. </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>#WorldWaterDay2021 https://t.co/0KWnd8Kn8r Label: NoEntailment </code></pre></div> </div> <p><img alt="png" src="/img/examples/nlp/multimodal_entailment/multimodal_entailment_14_2.png" /></p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Text one: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟬: 𝗗𝗬𝗟𝗔𝗡 𝗙𝗜𝗧𝗭𝗦𝗜𝗠𝗢𝗡𝗦 </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Dylan Fitzsimons is a young passionate greyhound supporter. </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>He and @Drakesport enjoy a great chat about everything greyhounds! </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Listen: https://t.co/B2XgMp0yaO </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>#GoGreyhoundRacing #ThisRunsDeep #TalkingDogs https://t.co/crBiSqHUvp Text two: 🎧 𝗘𝗣𝗜𝗦𝗢𝗗𝗘 𝟯𝟳: 𝗣𝗜𝗢 𝗕𝗔𝗥𝗥𝗬 🎧 </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Well known within greyhound circles, Pio Barry shares some wonderful greyhound racing stories with @Drakesport in this podcast episode. </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>A great chat. </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Listen: https://t.co/mJTVlPHzp0 </code></pre></div> </div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>#TalkingDogs #GoGreyhoundRacing #ThisRunsDeep https://t.co/QbxtCpLcGm Label: NoEntailment </code></pre></div> </div> <hr /> <h2 id="traintest-split">Train/test split</h2> <p>The dataset suffers from <a href="https://developers.google.com/machine-learning/glossary#class-imbalanced-dataset">class imbalance problem</a>. We can confirm that in the following cell.</p> <div class="codehilite"><pre><span></span><code><span class="n">df</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>label NoEntailment 819 Contradictory 92 Implies 89 Name: count, dtype: int64 </code></pre></div> </div> <p>To account for that we will go for a stratified split.</p> <div class="codehilite"><pre><span></span><code><span class="c1"># 10% for test</span> <span class="n">train_df</span><span class="p">,</span> <span class="n">test_df</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span> <span class="n">df</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">stratify</span><span class="o">=</span><span class="n">df</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span> <span class="p">)</span> <span class="c1"># 5% for validation</span> <span class="n">train_df</span><span class="p">,</span> <span class="n">val_df</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span> <span class="n">train_df</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">stratify</span><span class="o">=</span><span class="n">train_df</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span> <span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Total training examples: </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">train_df</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Total validation examples: </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">val_df</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Total test examples: </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">test_df</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Total training examples: 855 Total validation examples: 45 Total test examples: 100 </code></pre></div> </div> <hr /> <h2 id="data-input-pipeline">Data input pipeline</h2> <p>Keras Hub provides <a href="https://keras.io/keras_hub/presets/">variety of BERT family of models</a>. Each of those models comes with a corresponding preprocessing layer. You can learn more about these models and their preprocessing layers from <a href="https://www.kaggle.com/models/keras/bert/keras/bert_base_en_uncased/2">this resource</a>.</p> <p>To keep the runtime of this example relatively short, we will use a base_unacased variant of the original BERT model.</p> <p>text preprocessing using KerasHub</p> <div class="codehilite"><pre><span></span><code><span class="n">text_preprocessor</span> <span class="o">=</span> <span class="n">keras_hub</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">BertTextClassifierPreprocessor</span><span class="o">.</span><span class="n">from_preset</span><span class="p">(</span> <span class="s2">&quot;bert_base_en_uncased&quot;</span><span class="p">,</span> <span class="n">sequence_length</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <h3 id="run-the-preprocessor-on-a-sample-input">Run the preprocessor on a sample input</h3> <div class="codehilite"><pre><span></span><code><span class="n">idx</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">train_df</span><span class="p">)))</span> <span class="n">row</span> <span class="o">=</span> <span class="n">train_df</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span> <span class="n">sample_text_1</span><span class="p">,</span> <span class="n">sample_text_2</span> <span class="o">=</span> <span class="n">row</span><span class="p">[</span><span class="s2">&quot;text_1&quot;</span><span class="p">],</span> <span class="n">row</span><span class="p">[</span><span class="s2">&quot;text_2&quot;</span><span class="p">]</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Text 1: </span><span class="si">{</span><span class="n">sample_text_1</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Text 2: </span><span class="si">{</span><span class="n">sample_text_2</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="n">test_text</span> <span class="o">=</span> <span class="p">[</span><span class="n">sample_text_1</span><span class="p">,</span> <span class="n">sample_text_2</span><span class="p">]</span> <span class="n">text_preprocessed</span> <span class="o">=</span> <span class="n">text_preprocessor</span><span class="p">(</span><span class="n">test_text</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Keys : &quot;</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="n">text_preprocessed</span><span class="o">.</span><span class="n">keys</span><span class="p">()))</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Shape Token Ids : &quot;</span><span class="p">,</span> <span class="n">text_preprocessed</span><span class="p">[</span><span class="s2">&quot;token_ids&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Token Ids : &quot;</span><span class="p">,</span> <span class="n">text_preprocessed</span><span class="p">[</span><span class="s2">&quot;token_ids&quot;</span><span class="p">][</span><span class="mi">0</span><span class="p">,</span> <span class="p">:</span><span class="mi">16</span><span class="p">])</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot; Shape Padding Mask : &quot;</span><span class="p">,</span> <span class="n">text_preprocessed</span><span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Padding Mask : &quot;</span><span class="p">,</span> <span class="n">text_preprocessed</span><span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">][</span><span class="mi">0</span><span class="p">,</span> <span class="p">:</span><span class="mi">16</span><span class="p">])</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Shape Segment Ids : &quot;</span><span class="p">,</span> <span class="n">text_preprocessed</span><span class="p">[</span><span class="s2">&quot;segment_ids&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Segment Ids : &quot;</span><span class="p">,</span> <span class="n">text_preprocessed</span><span class="p">[</span><span class="s2">&quot;segment_ids&quot;</span><span class="p">][</span><span class="mi">0</span><span class="p">,</span> <span class="p">:</span><span class="mi">16</span><span class="p">])</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu. Text 1: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered 02 bags on 20.02.2021 at Station platform and in T/No.08310 Spl. respectively and handed over to their actual owner correctly. @RPF_INDIA https://t.co/bdEBl2egIc Text 2: The RPF Lohardaga and Hatia Post of Ranchi Division have recovered 02 bags on 20.02.2021 at Station platform and in T/No.08310 (JAT-SBP) Spl. respectively and handed over to their actual owner correctly. @RPF_INDIA https://t.co/Q5l2AtA4uq Keys : [&#39;token_ids&#39;, &#39;padding_mask&#39;, &#39;segment_ids&#39;] Shape Token Ids : (2, 128) Token Ids : [ 101 1996 1054 14376 8840 11783 16098 1998 6045 2401 2695 1997 8086 2072 2407 2031] Shape Padding Mask : (2, 128) Padding Mask : [ True True True True True True True True True True True True True True True True] Shape Segment Ids : (2, 128) Segment Ids : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] </code></pre></div> </div> <p>We will now create <a href="https://www.tensorflow.org/api_docs/python/tf/data/Dataset"><code>tf.data.Dataset</code></a> objects from the dataframes.</p> <p>Note that the text inputs will be preprocessed as a part of the data input pipeline. But the preprocessing modules can also be a part of their corresponding BERT models. This helps reduce the training/serving skew and lets our models operate with raw text inputs. Follow <a href="https://www.tensorflow.org/text/tutorials/classify_text_with_bert">this tutorial</a> to learn more about how to incorporate the preprocessing modules directly inside the models.</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">dataframe_to_dataset</span><span class="p">(</span><span class="n">dataframe</span><span class="p">):</span> <span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;image_1_path&quot;</span><span class="p">,</span> <span class="s2">&quot;image_2_path&quot;</span><span class="p">,</span> <span class="s2">&quot;text_1&quot;</span><span class="p">,</span> <span class="s2">&quot;text_2&quot;</span><span class="p">,</span> <span class="s2">&quot;label_idx&quot;</span><span class="p">]</span> <span class="n">ds</span> <span class="o">=</span> <span class="n">UnifiedPyDataset</span><span class="p">(</span> <span class="n">dataframe</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">workers</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="p">)</span> <span class="k">return</span> <span class="n">ds</span> </code></pre></div> <h3 id="preprocessing-utilities">Preprocessing utilities</h3> <div class="codehilite"><pre><span></span><code><span class="n">bert_input_features</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">,</span> <span class="s2">&quot;segment_ids&quot;</span><span class="p">,</span> <span class="s2">&quot;token_ids&quot;</span><span class="p">]</span> <span class="k">def</span><span class="w"> </span><span class="nf">preprocess_text</span><span class="p">(</span><span class="n">text_1</span><span class="p">,</span> <span class="n">text_2</span><span class="p">):</span> <span class="n">output</span> <span class="o">=</span> <span class="n">text_preprocessor</span><span class="p">([</span><span class="n">text_1</span><span class="p">,</span> <span class="n">text_2</span><span class="p">])</span> <span class="n">output</span> <span class="o">=</span> <span class="p">{</span> <span class="n">feature</span><span class="p">:</span> <span class="n">keras</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">output</span><span class="p">[</span><span class="n">feature</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="k">for</span> <span class="n">feature</span> <span class="ow">in</span> <span class="n">bert_input_features</span> <span class="p">}</span> <span class="k">return</span> <span class="n">output</span> </code></pre></div> <h3 id="create-the-final-datasets-method-adapted-from-pydataset-doc-string">Create the final datasets, method adapted from PyDataset doc string.</h3> <div class="codehilite"><pre><span></span><code><span class="k">class</span><span class="w"> </span><span class="nc">UnifiedPyDataset</span><span class="p">(</span><span class="n">PyDataset</span><span class="p">):</span> <span class="w"> </span><span class="sd">&quot;&quot;&quot;A Keras-compatible dataset that processes a DataFrame for TensorFlow, JAX, and PyTorch.&quot;&quot;&quot;</span> <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span> <span class="bp">self</span><span class="p">,</span> <span class="n">df</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">workers</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">use_multiprocessing</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">max_queue_size</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">,</span> <span class="p">):</span> <span class="w"> </span><span class="sd">&quot;&quot;&quot;</span> <span class="sd"> Args:</span> <span class="sd"> df: pandas DataFrame with data</span> <span class="sd"> batch_size: Batch size for dataset</span> <span class="sd"> workers: Number of workers to use for parallel loading (Keras)</span> <span class="sd"> use_multiprocessing: Whether to use multiprocessing</span> <span class="sd"> max_queue_size: Maximum size of the data queue for parallel loading</span> <span class="sd"> &quot;&quot;&quot;</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span> <span class="o">=</span> <span class="n">df</span> <span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;image_1_path&quot;</span><span class="p">,</span> <span class="s2">&quot;image_2_path&quot;</span><span class="p">,</span> <span class="s2">&quot;text_1&quot;</span><span class="p">,</span> <span class="s2">&quot;text_2&quot;</span><span class="p">]</span> <span class="c1"># image files</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_x_1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">[</span><span class="s2">&quot;image_1_path&quot;</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_x_2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">[</span><span class="s2">&quot;image_1_path&quot;</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">[</span><span class="s2">&quot;label_idx&quot;</span><span class="p">]</span> <span class="c1"># text files</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_x_1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">[</span><span class="s2">&quot;text_1&quot;</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_x_2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">[</span><span class="s2">&quot;text_2&quot;</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">[</span><span class="s2">&quot;label_idx&quot;</span><span class="p">]</span> <span class="c1"># general</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span> <span class="o">=</span> <span class="n">batch_size</span> <span class="bp">self</span><span class="o">.</span><span class="n">workers</span> <span class="o">=</span> <span class="n">workers</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_multiprocessing</span> <span class="o">=</span> <span class="n">use_multiprocessing</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_queue_size</span> <span class="o">=</span> <span class="n">max_queue_size</span> <span class="k">def</span><span class="w"> </span><span class="fm">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">index</span><span class="p">):</span> <span class="w"> </span><span class="sd">&quot;&quot;&quot;</span> <span class="sd"> Fetches a batch of data from the dataset at the given index.</span> <span class="sd"> &quot;&quot;&quot;</span> <span class="c1"># Return x, y for batch idx.</span> <span class="n">low</span> <span class="o">=</span> <span class="n">index</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span> <span class="c1"># Cap upper bound at array length; the last batch may be smaller</span> <span class="c1"># if the total number of items is not a multiple of batch size.</span> <span class="n">high_image_1</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">low</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">image_x_1</span><span class="p">))</span> <span class="n">high_image_2</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">low</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">image_x_2</span><span class="p">))</span> <span class="n">high_text_1</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">low</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">text_x_1</span><span class="p">))</span> <span class="n">high_text_2</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">low</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">text_x_1</span><span class="p">))</span> <span class="c1"># images files</span> <span class="n">batch_image_x_1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_x_1</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_image_1</span><span class="p">]</span> <span class="n">batch_image_y_1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_y</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_image_1</span><span class="p">]</span> <span class="n">batch_image_x_2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_x_2</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_image_2</span><span class="p">]</span> <span class="n">batch_image_y_2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_y</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_image_2</span><span class="p">]</span> <span class="c1"># text files</span> <span class="n">batch_text_x_1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_x_1</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_text_1</span><span class="p">]</span> <span class="n">batch_text_y_1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_y</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_text_1</span><span class="p">]</span> <span class="n">batch_text_x_2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_x_2</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_text_2</span><span class="p">]</span> <span class="n">batch_text_y_2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_y</span><span class="p">[</span><span class="n">low</span><span class="p">:</span><span class="n">high_text_2</span><span class="p">]</span> <span class="c1"># image number 1 inputs</span> <span class="n">image_1</span> <span class="o">=</span> <span class="p">[</span> <span class="n">resize</span><span class="p">(</span><span class="n">imread</span><span class="p">(</span><span class="n">file_name</span><span class="p">),</span> <span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">))</span> <span class="k">for</span> <span class="n">file_name</span> <span class="ow">in</span> <span class="n">batch_image_x_1</span> <span class="p">]</span> <span class="n">image_1</span> <span class="o">=</span> <span class="p">[</span> <span class="p">(</span> <span class="c1"># exeperienced some shapes which were different from others.</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">((</span><span class="n">img</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">uint8</span><span class="p">)))</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="s2">&quot;RGB&quot;</span><span class="p">))</span> <span class="k">if</span> <span class="n">img</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">==</span> <span class="mi">4</span> <span class="k">else</span> <span class="n">img</span> <span class="p">)</span> <span class="k">for</span> <span class="n">img</span> <span class="ow">in</span> <span class="n">image_1</span> <span class="p">]</span> <span class="n">image_1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">image_1</span><span class="p">)</span> <span class="c1"># Both text inputs to the model, return a dict for inputs to BertBackbone</span> <span class="n">text</span> <span class="o">=</span> <span class="p">{</span> <span class="n">key</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span> <span class="p">[</span> <span class="n">d</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="p">[</span> <span class="n">preprocess_text</span><span class="p">(</span><span class="n">file_path1</span><span class="p">,</span> <span class="n">file_path2</span><span class="p">)</span> <span class="k">for</span> <span class="n">file_path1</span><span class="p">,</span> <span class="n">file_path2</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span> <span class="n">batch_text_x_1</span><span class="p">,</span> <span class="n">batch_text_x_2</span> <span class="p">)</span> <span class="p">]</span> <span class="p">]</span> <span class="p">)</span> <span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">,</span> <span class="s2">&quot;token_ids&quot;</span><span class="p">,</span> <span class="s2">&quot;segment_ids&quot;</span><span class="p">]</span> <span class="p">}</span> <span class="c1"># Image number 2 model inputs</span> <span class="n">image_2</span> <span class="o">=</span> <span class="p">[</span> <span class="n">resize</span><span class="p">(</span><span class="n">imread</span><span class="p">(</span><span class="n">file_name</span><span class="p">),</span> <span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">))</span> <span class="k">for</span> <span class="n">file_name</span> <span class="ow">in</span> <span class="n">batch_image_x_2</span> <span class="p">]</span> <span class="n">image_2</span> <span class="o">=</span> <span class="p">[</span> <span class="p">(</span> <span class="c1"># exeperienced some shapes which were different from others</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">((</span><span class="n">img</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">uint8</span><span class="p">)))</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="s2">&quot;RGB&quot;</span><span class="p">))</span> <span class="k">if</span> <span class="n">img</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">==</span> <span class="mi">4</span> <span class="k">else</span> <span class="n">img</span> <span class="p">)</span> <span class="k">for</span> <span class="n">img</span> <span class="ow">in</span> <span class="n">image_2</span> <span class="p">]</span> <span class="c1"># Stack the list comprehension to an nd.array</span> <span class="n">image_2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">image_2</span><span class="p">)</span> <span class="k">return</span> <span class="p">(</span> <span class="p">{</span> <span class="s2">&quot;image_1&quot;</span><span class="p">:</span> <span class="n">image_1</span><span class="p">,</span> <span class="s2">&quot;image_2&quot;</span><span class="p">:</span> <span class="n">image_2</span><span class="p">,</span> <span class="s2">&quot;padding_mask&quot;</span><span class="p">:</span> <span class="n">text</span><span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">],</span> <span class="s2">&quot;segment_ids&quot;</span><span class="p">:</span> <span class="n">text</span><span class="p">[</span><span class="s2">&quot;segment_ids&quot;</span><span class="p">],</span> <span class="s2">&quot;token_ids&quot;</span><span class="p">:</span> <span class="n">text</span><span class="p">[</span><span class="s2">&quot;token_ids&quot;</span><span class="p">],</span> <span class="p">},</span> <span class="c1"># Target lables</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">batch_image_y_1</span><span class="p">),</span> <span class="p">)</span> <span class="k">def</span><span class="w"> </span><span class="fm">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="w"> </span><span class="sd">&quot;&quot;&quot;</span> <span class="sd"> Returns the number of batches in the dataset.</span> <span class="sd"> &quot;&quot;&quot;</span> <span class="k">return</span> <span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dataframe</span><span class="p">)</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span><span class="p">)</span> </code></pre></div> <p>Create train, validation and test datasets</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">prepare_dataset</span><span class="p">(</span><span class="n">dataframe</span><span class="p">):</span> <span class="n">ds</span> <span class="o">=</span> <span class="n">dataframe_to_dataset</span><span class="p">(</span><span class="n">dataframe</span><span class="p">)</span> <span class="k">return</span> <span class="n">ds</span> <span class="n">train_ds</span> <span class="o">=</span> <span class="n">prepare_dataset</span><span class="p">(</span><span class="n">train_df</span><span class="p">)</span> <span class="n">validation_ds</span> <span class="o">=</span> <span class="n">prepare_dataset</span><span class="p">(</span><span class="n">val_df</span><span class="p">)</span> <span class="n">test_ds</span> <span class="o">=</span> <span class="n">prepare_dataset</span><span class="p">(</span><span class="n">test_df</span><span class="p">)</span> </code></pre></div> <hr /> <h2 id="model-building-utilities">Model building utilities</h2> <p>Our final model will accept two images along with their text counterparts. While the images will be directly fed to the model the text inputs will first be preprocessed and then will make it into the model. Below is a visual illustration of this approach:</p> <p><img alt="" src="https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/figures/brief_architecture.png" /></p> <p>The model consists of the following elements:</p> <ul> <li>A standalone encoder for the images. We will use a <a href="https://arxiv.org/abs/1603.05027">ResNet50V2</a> pre-trained on the ImageNet-1k dataset for this.</li> <li>A standalone encoder for the images. A pre-trained BERT will be used for this.</li> </ul> <p>After extracting the individual embeddings, they will be projected in an identical space. Finally, their projections will be concatenated and be fed to the final classification layer.</p> <p>This is a multi-class classification problem involving the following classes:</p> <ul> <li>NoEntailment</li> <li>Implies</li> <li>Contradictory</li> </ul> <p><code>project_embeddings()</code>, <code>create_vision_encoder()</code>, and <code>create_text_encoder()</code> utilities are referred from <a href="https://keras.io/examples/nlp/nl_image_search/">this example</a>.</p> <p>Projection utilities</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">project_embeddings</span><span class="p">(</span> <span class="n">embeddings</span><span class="p">,</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span> <span class="p">):</span> <span class="n">projected_embeddings</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="n">units</span><span class="o">=</span><span class="n">projection_dims</span><span class="p">)(</span><span class="n">embeddings</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_projection_layers</span><span class="p">):</span> <span class="n">x</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">gelu</span><span class="p">(</span><span class="n">projected_embeddings</span><span class="p">)</span> <span class="n">x</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="n">projection_dims</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span> <span class="n">x</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout_rate</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span> <span class="n">x</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Add</span><span class="p">()([</span><span class="n">projected_embeddings</span><span class="p">,</span> <span class="n">x</span><span class="p">])</span> <span class="n">projected_embeddings</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">LayerNormalization</span><span class="p">()(</span><span class="n">x</span><span class="p">)</span> <span class="k">return</span> <span class="n">projected_embeddings</span> </code></pre></div> <p>Vision encoder utilities</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">create_vision_encoder</span><span class="p">(</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="p">,</span> <span class="n">trainable</span><span class="o">=</span><span class="kc">False</span> <span class="p">):</span> <span class="c1"># Load the pre-trained ResNet50V2 model to be used as the base encoder.</span> <span class="n">resnet_v2</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">applications</span><span class="o">.</span><span class="n">ResNet50V2</span><span class="p">(</span> <span class="n">include_top</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">weights</span><span class="o">=</span><span class="s2">&quot;imagenet&quot;</span><span class="p">,</span> <span class="n">pooling</span><span class="o">=</span><span class="s2">&quot;avg&quot;</span> <span class="p">)</span> <span class="c1"># Set the trainability of the base encoder.</span> <span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">resnet_v2</span><span class="o">.</span><span class="n">layers</span><span class="p">:</span> <span class="n">layer</span><span class="o">.</span><span class="n">trainable</span> <span class="o">=</span> <span class="n">trainable</span> <span class="c1"># Receive the images as inputs.</span> <span class="n">image_1</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;image_1&quot;</span><span class="p">)</span> <span class="n">image_2</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;image_2&quot;</span><span class="p">)</span> <span class="c1"># Preprocess the input image.</span> <span class="n">preprocessed_1</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">applications</span><span class="o">.</span><span class="n">resnet_v2</span><span class="o">.</span><span class="n">preprocess_input</span><span class="p">(</span><span class="n">image_1</span><span class="p">)</span> <span class="n">preprocessed_2</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">applications</span><span class="o">.</span><span class="n">resnet_v2</span><span class="o">.</span><span class="n">preprocess_input</span><span class="p">(</span><span class="n">image_2</span><span class="p">)</span> <span class="c1"># Generate the embeddings for the images using the resnet_v2 model</span> <span class="c1"># concatenate them.</span> <span class="n">embeddings_1</span> <span class="o">=</span> <span class="n">resnet_v2</span><span class="p">(</span><span class="n">preprocessed_1</span><span class="p">)</span> <span class="n">embeddings_2</span> <span class="o">=</span> <span class="n">resnet_v2</span><span class="p">(</span><span class="n">preprocessed_2</span><span class="p">)</span> <span class="n">embeddings</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Concatenate</span><span class="p">()([</span><span class="n">embeddings_1</span><span class="p">,</span> <span class="n">embeddings_2</span><span class="p">])</span> <span class="c1"># Project the embeddings produced by the model.</span> <span class="n">outputs</span> <span class="o">=</span> <span class="n">project_embeddings</span><span class="p">(</span> <span class="n">embeddings</span><span class="p">,</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span> <span class="p">)</span> <span class="c1"># Create the vision encoder model.</span> <span class="k">return</span> <span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">([</span><span class="n">image_1</span><span class="p">,</span> <span class="n">image_2</span><span class="p">],</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;vision_encoder&quot;</span><span class="p">)</span> </code></pre></div> <p>Text encoder utilities</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">create_text_encoder</span><span class="p">(</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="p">,</span> <span class="n">trainable</span><span class="o">=</span><span class="kc">False</span> <span class="p">):</span> <span class="c1"># Load the pre-trained BERT BackBone using KerasHub.</span> <span class="n">bert</span> <span class="o">=</span> <span class="n">keras_hub</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">BertBackbone</span><span class="o">.</span><span class="n">from_preset</span><span class="p">(</span> <span class="s2">&quot;bert_base_en_uncased&quot;</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="mi">3</span> <span class="p">)</span> <span class="c1"># Set the trainability of the base encoder.</span> <span class="n">bert</span><span class="o">.</span><span class="n">trainable</span> <span class="o">=</span> <span class="n">trainable</span> <span class="c1"># Receive the text as inputs.</span> <span class="n">bert_input_features</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">,</span> <span class="s2">&quot;segment_ids&quot;</span><span class="p">,</span> <span class="s2">&quot;token_ids&quot;</span><span class="p">]</span> <span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span> <span class="n">feature</span><span class="p">:</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">256</span><span class="p">,),</span> <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;int32&quot;</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">feature</span><span class="p">)</span> <span class="k">for</span> <span class="n">feature</span> <span class="ow">in</span> <span class="n">bert_input_features</span> <span class="p">}</span> <span class="c1"># Generate embeddings for the preprocessed text using the BERT model.</span> <span class="n">embeddings</span> <span class="o">=</span> <span class="n">bert</span><span class="p">(</span><span class="n">inputs</span><span class="p">)[</span><span class="s2">&quot;pooled_output&quot;</span><span class="p">]</span> <span class="c1"># Project the embeddings produced by the model.</span> <span class="n">outputs</span> <span class="o">=</span> <span class="n">project_embeddings</span><span class="p">(</span> <span class="n">embeddings</span><span class="p">,</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span> <span class="p">)</span> <span class="c1"># Create the text encoder model.</span> <span class="k">return</span> <span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;text_encoder&quot;</span><span class="p">)</span> </code></pre></div> <p>Multimodal model utilities</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">create_multimodal_model</span><span class="p">(</span> <span class="n">num_projection_layers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">projection_dims</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">vision_trainable</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">text_trainable</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="p">):</span> <span class="c1"># Receive the images as inputs.</span> <span class="n">image_1</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;image_1&quot;</span><span class="p">)</span> <span class="n">image_2</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;image_2&quot;</span><span class="p">)</span> <span class="c1"># Receive the text as inputs.</span> <span class="n">bert_input_features</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;padding_mask&quot;</span><span class="p">,</span> <span class="s2">&quot;segment_ids&quot;</span><span class="p">,</span> <span class="s2">&quot;token_ids&quot;</span><span class="p">]</span> <span class="n">text_inputs</span> <span class="o">=</span> <span class="p">{</span> <span class="n">feature</span><span class="p">:</span> <span class="n">keras</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">256</span><span class="p">,),</span> <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;int32&quot;</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">feature</span><span class="p">)</span> <span class="k">for</span> <span class="n">feature</span> <span class="ow">in</span> <span class="n">bert_input_features</span> <span class="p">}</span> <span class="n">text_inputs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">text_inputs</span><span class="o">.</span><span class="n">values</span><span class="p">())</span> <span class="c1"># Create the encoders.</span> <span class="n">vision_encoder</span> <span class="o">=</span> <span class="n">create_vision_encoder</span><span class="p">(</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="p">,</span> <span class="n">vision_trainable</span> <span class="p">)</span> <span class="n">text_encoder</span> <span class="o">=</span> <span class="n">create_text_encoder</span><span class="p">(</span> <span class="n">num_projection_layers</span><span class="p">,</span> <span class="n">projection_dims</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="p">,</span> <span class="n">text_trainable</span> <span class="p">)</span> <span class="c1"># Fetch the embedding projections.</span> <span class="n">vision_projections</span> <span class="o">=</span> <span class="n">vision_encoder</span><span class="p">([</span><span class="n">image_1</span><span class="p">,</span> <span class="n">image_2</span><span class="p">])</span> <span class="n">text_projections</span> <span class="o">=</span> <span class="n">text_encoder</span><span class="p">(</span><span class="n">text_inputs</span><span class="p">)</span> <span class="c1"># Concatenate the projections and pass through the classification layer.</span> <span class="n">concatenated</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Concatenate</span><span class="p">()([</span><span class="n">vision_projections</span><span class="p">,</span> <span class="n">text_projections</span><span class="p">])</span> <span class="n">outputs</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s2">&quot;softmax&quot;</span><span class="p">)(</span><span class="n">concatenated</span><span class="p">)</span> <span class="k">return</span> <span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">([</span><span class="n">image_1</span><span class="p">,</span> <span class="n">image_2</span><span class="p">,</span> <span class="o">*</span><span class="n">text_inputs</span><span class="p">],</span> <span class="n">outputs</span><span class="p">)</span> <span class="n">multimodal_model</span> <span class="o">=</span> <span class="n">create_multimodal_model</span><span class="p">()</span> <span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">plot_model</span><span class="p">(</span><span class="n">multimodal_model</span><span class="p">,</span> <span class="n">show_shapes</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> </code></pre></div> <p><img alt="png" src="/img/examples/nlp/multimodal_entailment/multimodal_entailment_40_0.png" /></p> <p>You can inspect the structure of the individual encoders as well by setting the <code>expand_nested</code> argument of <code>plot_model()</code> to <code>True</code>. You are encouraged to play with the different hyperparameters involved in building this model and observe how the final performance is affected.</p> <hr /> <h2 id="compile-and-train-the-model">Compile and train the model</h2> <div class="codehilite"><pre><span></span><code><span class="n">multimodal_model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span> <span class="n">optimizer</span><span class="o">=</span><span class="s2">&quot;adam&quot;</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s2">&quot;sparse_categorical_crossentropy&quot;</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;accuracy&quot;</span><span class="p">]</span> <span class="p">)</span> <span class="n">history</span> <span class="o">=</span> <span class="n">multimodal_model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_ds</span><span class="p">,</span> <span class="n">validation_data</span><span class="o">=</span><span class="n">validation_ds</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg) /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg) </code></pre></div> </div> <p>1/27 ━━━━━━━━━━━━━━━━━━━━ 45:45 106s/step - accuracy: 0.0625 - loss: 1.6335</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>2/27 ━━━━━━━━━━━━━━━━━━━━ 42:14 101s/step - accuracy: 0.2422 - loss: 1.9508</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>3/27 ━━━━━━━━━━━━━━━━━━━━ 38:49 97s/step - accuracy: 0.3524 - loss: 2.0126 </p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>4/27 ━━━━━━━━━━━━━━━━━━━━ 37:09 97s/step - accuracy: 0.4284 - loss: 1.9870</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>5/27 ━━━━━━━━━━━━━━━━━━━━ 35:08 96s/step - accuracy: 0.4815 - loss: 1.9855</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>6/27 ━━━━━━━━━━━━━━━━━━━━ 31:56 91s/step - accuracy: 0.5210 - loss: 1.9939</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>7/27 ━━━━━━━━━━━━━━━━━━━━ 29:30 89s/step - accuracy: 0.5512 - loss: 1.9980</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>8/27 ━━━━━━━━━━━━━━━━━━━━ 27:12 86s/step - accuracy: 0.5750 - loss: 2.0061</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>9/27 ━━━━━━━━━━━━━━━━━━━━ 25:15 84s/step - accuracy: 0.5956 - loss: 1.9959</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>10/27 ━━━━━━━━━━━━━━━━━━━━ 23:33 83s/step - accuracy: 0.6120 - loss: 1.9738</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>11/27 ━━━━━━━━━━━━━━━━━━━━ 22:09 83s/step - accuracy: 0.6251 - loss: 1.9579</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>12/27 ━━━━━━━━━━━━━━━━━━━━ 20:59 84s/step - accuracy: 0.6357 - loss: 1.9524</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>13/27 ━━━━━━━━━━━━━━━━━━━━ 19:44 85s/step - accuracy: 0.6454 - loss: 1.9439</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>14/27 ━━━━━━━━━━━━━━━━━━━━ 18:22 85s/step - accuracy: 0.6540 - loss: 1.9346</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(23, 256))&#39;, &#39;Tensor(shape=(23, 256))&#39;, &#39;Tensor(shape=(23, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>15/27 ━━━━━━━━━━━━━━━━━━━━ 16:52 84s/step - accuracy: 0.6621 - loss: 1.9213</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>16/27 ━━━━━━━━━━━━━━━━━━━━ 15:29 85s/step - accuracy: 0.6693 - loss: 1.9101</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>17/27 ━━━━━━━━━━━━━━━━━━━━ 14:08 85s/step - accuracy: 0.6758 - loss: 1.9021</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>18/27 ━━━━━━━━━━━━━━━━━━━━ 12:45 85s/step - accuracy: 0.6819 - loss: 1.8916</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>19/27 ━━━━━━━━━━━━━━━━━━━━ 11:24 86s/step - accuracy: 0.6874 - loss: 1.8851</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>20/27 ━━━━━━━━━━━━━━━━━━━━ 10:00 86s/step - accuracy: 0.6925 - loss: 1.8791</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>21/27 ━━━━━━━━━━━━━━━━━━━━ 8:36 86s/step - accuracy: 0.6976 - loss: 1.8699 </p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>22/27 ━━━━━━━━━━━━━━━━━━━━ 7:11 86s/step - accuracy: 0.7020 - loss: 1.8623</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>23/27 ━━━━━━━━━━━━━━━━━━━━ 5:46 87s/step - accuracy: 0.7061 - loss: 1.8573</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>24/27 ━━━━━━━━━━━━━━━━━━━━ 4:20 87s/step - accuracy: 0.7100 - loss: 1.8534</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>25/27 ━━━━━━━━━━━━━━━━━━━━ 2:54 87s/step - accuracy: 0.7136 - loss: 1.8494</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>26/27 ━━━━━━━━━━━━━━━━━━━━ 1:27 87s/step - accuracy: 0.7170 - loss: 1.8449</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 88s/step - accuracy: 0.7201 - loss: 1.8414 </p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg) /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(13, 256))&#39;, &#39;Tensor(shape=(13, 256))&#39;, &#39;Tensor(shape=(13, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>27/27 ━━━━━━━━━━━━━━━━━━━━ 2508s 92s/step - accuracy: 0.7231 - loss: 1.8382 - val_accuracy: 0.8222 - val_loss: 1.7304</p> <hr /> <h2 id="evaluate-the-model">Evaluate the model</h2> <div class="codehilite"><pre><span></span><code><span class="n">_</span><span class="p">,</span> <span class="n">acc</span> <span class="o">=</span> <span class="n">multimodal_model</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">test_ds</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Accuracy on the test set: </span><span class="si">{</span><span class="nb">round</span><span class="p">(</span><span class="n">acc</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">100</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="si">}</span><span class="s2">%.&quot;</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/PIL/Image.py:1054: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;, &#39;Tensor(shape=(32, 256))&#39;] warnings.warn(msg) </code></pre></div> </div> <p>1/4 ━━━━━━━━━━━━━━━━━━━━ 5:32 111s/step - accuracy: 0.7812 - loss: 1.9384</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>2/4 ━━━━━━━━━━━━━━━━━━━━ 2:10 65s/step - accuracy: 0.7969 - loss: 1.8931 </p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>3/4 ━━━━━━━━━━━━━━━━━━━━ 1:05 65s/step - accuracy: 0.8056 - loss: 1.8200</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:248: UserWarning: The structure of `inputs` doesn&#39;t match the expected structure. Expected: {&#39;padding_mask&#39;: &#39;padding_mask&#39;, &#39;segment_ids&#39;: &#39;segment_ids&#39;, &#39;token_ids&#39;: &#39;token_ids&#39;} Received: inputs=[&#39;Tensor(shape=(4, 256))&#39;, &#39;Tensor(shape=(4, 256))&#39;, &#39;Tensor(shape=(4, 256))&#39;] warnings.warn(msg)  </code></pre></div> </div> <p>4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 49s/step - accuracy: 0.8092 - loss: 1.8075 </p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code> </code></pre></div> </div> <p>4/4 ━━━━━━━━━━━━━━━━━━━━ 256s 49s/step - accuracy: 0.8113 - loss: 1.8000</p> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Accuracy on the test set: 82.0%. </code></pre></div> </div> <hr /> <h2 id="additional-notes-regarding-training">Additional notes regarding training</h2> <p><strong>Incorporating regularization</strong>:</p> <p>The training logs suggest that the model is starting to overfit and may have benefitted from regularization. Dropout (<a href="https://jmlr.org/papers/v15/srivastava14a.html">Srivastava et al.</a>) is a simple yet powerful regularization technique that we can use in our model. But how should we apply it here?</p> <p>We could always introduce Dropout (<a href="/api/layers/regularization_layers/dropout#dropout-class"><code>keras.layers.Dropout</code></a>) in between different layers of the model. But here is another recipe. Our model expects inputs from two different data modalities. What if either of the modalities is not present during inference? To account for this, we can introduce Dropout to the individual projections just before they get concatenated:</p> <div class="codehilite"><pre><span></span><code><span class="n">vision_projections</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">rate</span><span class="p">)(</span><span class="n">vision_projections</span><span class="p">)</span> <span class="n">text_projections</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">rate</span><span class="p">)(</span><span class="n">text_projections</span><span class="p">)</span> <span class="n">concatenated</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Concatenate</span><span class="p">()([</span><span class="n">vision_projections</span><span class="p">,</span> <span class="n">text_projections</span><span class="p">])</span> </code></pre></div> <p><strong>Attending to what matters</strong>:</p> <p>Do all parts of the images correspond equally to their textual counterparts? It's likely not the case. To make our model only focus on the most important bits of the images that relate well to their corresponding textual parts we can use "cross-attention":</p> <div class="codehilite"><pre><span></span><code><span class="c1"># Embeddings.</span> <span class="n">vision_projections</span> <span class="o">=</span> <span class="n">vision_encoder</span><span class="p">([</span><span class="n">image_1</span><span class="p">,</span> <span class="n">image_2</span><span class="p">])</span> <span class="n">text_projections</span> <span class="o">=</span> <span class="n">text_encoder</span><span class="p">(</span><span class="n">text_inputs</span><span class="p">)</span> <span class="c1"># Cross-attention (Luong-style).</span> <span class="n">query_value_attention_seq</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Attention</span><span class="p">(</span><span class="n">use_scale</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mf">0.2</span><span class="p">)(</span> <span class="p">[</span><span class="n">vision_projections</span><span class="p">,</span> <span class="n">text_projections</span><span class="p">]</span> <span class="p">)</span> <span class="c1"># Concatenate.</span> <span class="n">concatenated</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Concatenate</span><span class="p">()([</span><span class="n">vision_projections</span><span class="p">,</span> <span class="n">text_projections</span><span class="p">])</span> <span class="n">contextual</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Concatenate</span><span class="p">()([</span><span class="n">concatenated</span><span class="p">,</span> <span class="n">query_value_attention_seq</span><span class="p">])</span> </code></pre></div> <p>To see this in action, refer to <a href="https://github.com/sayakpaul/Multimodal-Entailment-Baseline/blob/main/multimodal_entailment_attn.ipynb">this notebook</a>.</p> <p><strong>Handling class imbalance</strong>:</p> <p>The dataset suffers from class imbalance. Investigating the confusion matrix of the above model reveals that it performs poorly on the minority classes. If we had used a weighted loss then the training would have been more guided. You can check out <a href="https://github.com/sayakpaul/Multimodal-Entailment-Baseline/blob/main/multimodal_entailment.ipynb">this notebook</a> that takes class-imbalance into account during model training.</p> <p><strong>Using only text inputs</strong>:</p> <p>Also, what if we had only incorporated text inputs for the entailment task? Because of the nature of the text inputs encountered on social media platforms, text inputs alone would have hurt the final performance. Under a similar training setup, by only using text inputs we get to 67.14% top-1 accuracy on the same test set. Refer to <a href="https://github.com/sayakpaul/Multimodal-Entailment-Baseline/blob/main/text_entailment.ipynb">this notebook</a> for details.</p> <p>Finally, here is a table comparing different approaches taken for the entailment task:</p> <table> <thead> <tr> <th style="text-align: center;">Type</th> <th style="text-align: center;">Standard<br>Cross-entropy</th> <th style="text-align: center;">Loss-weighted<br>Cross-entropy</th> <th style="text-align: center;">Focal Loss</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">Multimodal</td> <td style="text-align: center;">77.86%</td> <td style="text-align: center;">67.86%</td> <td style="text-align: center;">86.43%</td> </tr> <tr> <td style="text-align: center;">Only text</td> <td style="text-align: center;">67.14%</td> <td style="text-align: center;">11.43%</td> <td style="text-align: center;">37.86%</td> </tr> </tbody> </table> <p>You can check out <a href="https://git.io/JR0HU">this repository</a> to learn more about how the experiments were conducted to obtain these numbers.</p> <hr /> <h2 id="final-remarks">Final remarks</h2> <ul> <li>The architecture we used in this example is too large for the number of data points available for training. It's going to benefit from more data.</li> <li>We used a smaller variant of the original BERT model. Chances are high that with a larger variant, this performance will be improved. TensorFlow Hub <a href="https://www.tensorflow.org/text/tutorials/bert_glue#loading_models_from_tensorflow_hub">provides</a> a number of different BERT models that you can experiment with.</li> <li>We kept the pre-trained models frozen. Fine-tuning them on the multimodal entailment task would could resulted in better performance.</li> <li>We built a simple baseline model for the multimodal entailment task. There are various approaches that have been proposed to tackle the entailment problem. <a href="https://docs.google.com/presentation/d/1mAB31BCmqzfedreNZYn4hsKPFmgHA9Kxz219DzyRY3c/edit?usp=sharing">This presentation deck</a> from the <a href="https://multimodal-entailment.github.io/">Recognizing Multimodal Entailment</a> tutorial provides a comprehensive overview.</li> </ul> <p>You can use the trained model hosted on <a href="https://huggingface.co/keras-io/multimodal-entailment">Hugging Face Hub</a> and try the demo on <a href="https://huggingface.co/spaces/keras-io/multimodal_entailment">Hugging Face Spaces</a></p> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#multimodal-entailment'>Multimodal entailment</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#introduction'>Introduction</a> </div> <div class='k-outline-depth-3'> <a href='#what-is-multimodal-entailment'>What is multimodal entailment?</a> </div> <div class='k-outline-depth-3'> <a href='#requirements'>Requirements</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#imports'>Imports</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#define-a-label-map'>Define a label map</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#collect-the-dataset'>Collect the dataset</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#read-the-dataset-and-apply-basic-preprocessing'>Read the dataset and apply basic preprocessing</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#dataset-visualization'>Dataset visualization</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#traintest-split'>Train/test split</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#data-input-pipeline'>Data input pipeline</a> </div> <div class='k-outline-depth-3'> <a href='#run-the-preprocessor-on-a-sample-input'>Run the preprocessor on a sample input</a> </div> <div class='k-outline-depth-3'> <a href='#preprocessing-utilities'>Preprocessing utilities</a> </div> <div class='k-outline-depth-3'> <a href='#create-the-final-datasets-method-adapted-from-pydataset-doc-string'>Create the final datasets, method adapted from PyDataset doc string.</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#model-building-utilities'>Model building utilities</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#compile-and-train-the-model'>Compile and train the model</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#evaluate-the-model'>Evaluate the model</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#additional-notes-regarding-training'>Additional notes regarding training</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#final-remarks'>Final remarks</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>

Pages: 1 2 3 4 5 6 7 8 9 10