CINXE.COM

Search results for: flotation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flotation</title> <meta name="description" content="Search results for: flotation"> <meta name="keywords" content="flotation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flotation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flotation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 68</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flotation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Investigation of Some Flotation Parameters and the Role of Dispersants in the Flotation of Chalcopyrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Taner">H. A. Taner</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20%C3%96nen"> V. Önen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A suitable choice of flotation parameters and reagents have a strong effect on the effectiveness of flotation process. The objective of this paper is to give an overview of the flotation of chalcopyrite with the different conditions and dispersants. Flotation parameters such as grinding time, pH, type, and dosage of dispersant were investigated. In order to understand the interaction of some dispersants, sodium silicate, sodium hexametaphosphate and sodium polyphosphate were used. The optimum results were obtained at a pH of 11.5 and a grinding time of 10 minutes. A copper concentrate was produced assaying 29.85% CuFeS<sub>2</sub> and 65.97% flotation recovery under optimum rougher flotation conditions with sodium silicate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite" title="chalcopyrite">chalcopyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersant" title=" dispersant"> dispersant</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=reagent" title=" reagent"> reagent</a> </p> <a href="https://publications.waset.org/abstracts/91056/investigation-of-some-flotation-parameters-and-the-role-of-dispersants-in-the-flotation-of-chalcopyrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> The Flotation Device Designed to Treat Phosphate Rock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Q.%20Zhang">Z. Q. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Li"> D. L. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers&rsquo; speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P<sub>2</sub>O<sub>5</sub> and 1% MgO with a P<sub>2</sub>O<sub>5</sub> recovery of about 81% was obtained from a Yuan&#39;an phosphate ore sample containing about 22.30% P<sub>2</sub>O<sub>5</sub> and 3.2% MgO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collophanite%20flotation" title="collophanite flotation">collophanite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20columns" title=" flotation columns"> flotation columns</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20machines" title=" flotation machines"> flotation machines</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-impeller%20pump" title=" multi-impeller pump"> multi-impeller pump</a> </p> <a href="https://publications.waset.org/abstracts/76296/the-flotation-device-designed-to-treat-phosphate-rock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> The Role of Sodium Alginate in the Selective Flotation of Chalcopyrite Against Pyrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Mu">Yufan Mu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selective depression of pyrite in the flotation of copper minerals is difficult due to the activation of pyrite surface by copper ions. Novel depressants for pyrite are needed to responsibly extract copper resources for a greener and cleaner future. In this paper, the non-toxic sodium alginate was employed as a depressant to selectively separate chalcopyrite from pyrite in flotation using potassium amyl xanthate as the collector. The results from flotation tests showed that sodium alginate significantly depressed pyrite flotation while had slight influence on chalcopyrite flotation. The adsorption tests showed that the adsorption amount of sodium alginate on pyrite surface was much higher than that on chalcopyrite surface. The pre-adsorbed sodium alginate could effectively hinder the subsequent adsorption of collector on pyrite surface, thereby inhibiting pyrite flotation. The selective adsorption of sodium alginate on pyrite surface was caused by the interactions between the activating cuprous ions on pyrite surface and the carboxyl groups in sodium alginate. The paper shows that sodium alginate is a promising depressant for pyrite in the flotation of chalcopyrite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite%20flotation" title="chalcopyrite flotation">chalcopyrite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20depression" title=" pyrite depression"> pyrite depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-activated%20pyrite" title=" copper-activated pyrite"> copper-activated pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/165954/the-role-of-sodium-alginate-in-the-selective-flotation-of-chalcopyrite-against-pyrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Removal of Copper from Wastewaters by Nano-Micro Bubble Ion Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ahmadi">R. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khodadadi"> A. Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdollahi"> M. Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The removal of copper from a dilute synthetic wastewater (10 mg/L) was studied by ion flotation at laboratory scale. Anionic sodium dodecyl sulfate (SDS) was used as a collector and ethanol as a frother. Different parameters such as pH, collector and frother concentrations, foam height and bubble size distribution (multi bubble ion flotation) were tested to determine the optimum flotation conditions in a Denver type flotation machine. To see into the effect of bubbles size distribution in this paper, a nano-micro bubble generator was designed. The nano and microbubbles that are generated in this way were combined with normal size bubbles generated mechanically. Under the optimum conditions (concentration of SDS: 192mg/l, ethanol: 0.5%v/v, pH value: 4 and froth height=12.5 cm) the best removal obtained for the system Cu/SDS with a dry foam (water recovery: 15.5%) was 85.6%. Coalescence of nano-microbubbles with bubbles of normal size belonging to mechanical flotation cell improved the removal of Cu to a maximum floatability of 92.8% and reduced the water recovery to a 13.1%.The flotation time decreased considerably at 37.5% when the multi bubble ion flotation was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title="froth flotation">froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/1665/removal-of-copper-from-wastewaters-by-nano-micro-bubble-ion-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Mu">Yufan Mu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20flotation" title="copper flotation">copper flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20depression" title=" pyrite depression"> pyrite depression</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-activated%20pyrite" title=" copper-activated pyrite"> copper-activated pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20ferrate" title=" potassium ferrate"> potassium ferrate</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20salinity%20process%20water" title=" high salinity process water"> high salinity process water</a> </p> <a href="https://publications.waset.org/abstracts/165931/depression-of-copper-activated-pyrite-by-potassium-ferrate-in-copper-ore-flotation-using-high-salinity-process-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Improving Flotation Separation of Apatite Ore Using Calcium Lignosulphonate and Tannin as Combined Depressant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Sok%20Jong">Kwang Sok Jong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apatite is separated from carbonate minerals via direct flotation by using lignosulphonate as a depressant, but its dosage is high, and its inhibition ability is insufficient. Therefore a combination of depressant calcium lignosulphonate and depressant tannin was considered to improve flotation selectivity and decrease the dosage of depressant. In the present work, the effects of several reagents- pH regulators (sodium carbonate and sodium hydroxide), combined depressant (calcium lignosulphonate and tannin) and collector (fatty acid amide soap) on the flotation performance of apatite ore were investigated using Design Expert software. Flotation results showed that the combined depressant had not only more excellent inhibition ability compared with the individual depressant respectively, but also lower dosage. In the raw ore containing 6.65% P₂O₅, a concentrate containing 32.93% P₂O₅ with 93.24% recovery was obtained using 3.5kg/t sodium carbonate, 0.75kg/t sodium hydroxide, 1kg/t calcium lignosulphonate, 50g/t tannin and 100g/t fatty acid amide soap in the rougher flotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite%20flotation" title="apatite flotation">apatite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20depressant" title=" combined depressant"> combined depressant</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20lignosulphonate" title=" calcium lignosulphonate"> calcium lignosulphonate</a>, <a href="https://publications.waset.org/abstracts/search?q=tannin" title=" tannin"> tannin</a> </p> <a href="https://publications.waset.org/abstracts/187062/improving-flotation-separation-of-apatite-ore-using-calcium-lignosulphonate-and-tannin-as-combined-depressant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Gas Flotation Unit in Kuwait Oil Company Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homoud%20Bourisli">Homoud Bourisli</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Safar"> Haitham Safar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20oil%20company" title="Kuwait oil company">Kuwait oil company</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20gas%20flotation%20unit" title=" dissolved gas flotation unit"> dissolved gas flotation unit</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20gas%20flotation%20unit" title=" induced gas flotation unit"> induced gas flotation unit</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a> </p> <a href="https://publications.waset.org/abstracts/29539/gas-flotation-unit-in-kuwait-oil-company-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Application of Dissolved Air Flotation for Removal of Oil from Wastewater </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talat%20Ghomashchi">Talat Ghomashchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Akbari"> Zahra Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Malekpour"> Shirin Malekpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Alimirzaee"> Marjan Alimirzaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20air%20flotation" title="dissolved air flotation">dissolved air flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20industry" title=" oil industry"> oil industry</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/33427/application-of-dissolved-air-flotation-for-removal-of-oil-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Integrated Design of Froth Flotation Process in Sludge Oil Recovery Using Cavitation Nanobubbles for Increase the Efficiency and High Viscose Compatibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yolla%20Miranda">Yolla Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Marini%20Altyra"> Marini Altyra</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Kalmapuspita%20Imas"> Karina Kalmapuspita Imas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oily sludge wastes always fill in upstream and downstream petroleum industry process. Sludge still contains oil that can use for energy storage. Recycling sludge is a method to handling it for reduce the toxicity and very probable to get the remaining oil around 20% from its volume. Froth flotation, a common method based on chemical unit for separate fine solid particles from an aqueous suspension. The basic composition of froth flotation is the capture of oil droplets or small solids by air bubbles in an aqueous slurry, followed by their levitation and collection in a froth layer. This method has been known as no intensive energy requirement and easy to apply. But the low efficiency and unable treat the high viscosity become the biggest problem in froth flotation unit. This study give the design to manage the high viscosity of sludge first and then entering the froth flotation including cavitation tube on it to change the bubbles into nano particles. The recovery in flotation starts with the collision and adhesion of hydrophobic particles to the air bubbles followed by transportation of the hydrophobic particle-bubble aggregate from the collection zone to the froth zone, drainage and enrichment of the froth, and finally by its overflow removal from the cell top. The effective particle separation by froth flotation relies on the efficient capture of hydrophobic particles by air bubbles in three steps. The important step is collision. Decreasing the bubble particles will increasing the collision effect. It cause the process more efficient. The pre-treatment, froth flotation, and cavitation tube integrated each other. The design shows the integrated unit and its process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sludge%20oil%20recovery" title="sludge oil recovery">sludge oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title=" froth flotation"> froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20tube" title=" cavitation tube"> cavitation tube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobubbles" title=" nanobubbles"> nanobubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20viscosity" title=" high viscosity "> high viscosity </a> </p> <a href="https://publications.waset.org/abstracts/31550/integrated-design-of-froth-flotation-process-in-sludge-oil-recovery-using-cavitation-nanobubbles-for-increase-the-efficiency-and-high-viscose-compatibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tang">M. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Wen"> S. M. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Liu"> D. W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=serpentine" title="serpentine">serpentine</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20nickel%20sulfides" title=" copper and nickel sulfides"> copper and nickel sulfides</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a> </p> <a href="https://publications.waset.org/abstracts/5044/exploring-the-influences-on-entrainment-of-serpentines-by-grinding-and-reagents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Flotation of Rare Earth Oxides from Iron-Oxide Silicate Rich Tailings Using Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20B.%20Abaka-Wood">George B. Abaka-Wood</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20%20Zanin"> Massimiliano Zanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Addai-Mensah"> Jonas Addai-Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Skinner"> William Skinner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The versatility of froth flotation has made it vital in the beneficiation of rare earth elements minerals from either high or low-grade ores. There has been a significant increase in the quantity of iron oxide silicate-rich tailings generated from the extraction of primary commodities such as copper and gold in Australia, which have been identified to contain very low-grade rare earth oxides (≤ 1%). There is a vast knowledge gap in the beneficiation of rare earth oxides from such tailings. The aim of this research is to investigate the feasibility of using fatty acids as collectors for the flotation recovery and upgrade of rare earth oxides from selected iron-oxide silicate-rich tailings. Two forms of fatty acid collectors (oleic acid and sodium oleate) were tested in this investigation. Flotation tests were carried out using a 1.2 L Denver D-12 cell. The effects of pulp pH, fatty acid dosage, particle size distribution (-150 +75 µm, -75 +38 µm and -38 µm) and conventional depressants (sodium silicate and starch) dosage on flotation recovery of rare earth oxides were investigated. A comparison of the flotation results indicated that sodium oleate was the more efficient fatty acid for rare earth oxides flotation at all the pulp pH investigated. The flotation performance was found to be particle size-dependent. Both sodium silicate and starch were unselective in decreasing the recovery of iron oxides and silicate minerals, respectively with the corresponding decrease in rare earth oxides recovery. Generally, iron oxides and silicate minerals formed the substantial fraction of the flotation concentrates obtained, both in the absence and presence of depressants, resulting in a generally low rare earth oxides upgrade, even though rare earth oxides recoveries were high. The flotation tests carried out on the tailings sample suggest the feasibility of rare earth oxides recovery using fatty acids, although particle size distribution and minerals liberation are key limiting factors in achieving selective rare earth oxides upgrade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depressants" title="depressants">depressants</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20oleate" title=" sodium oleate"> sodium oleate</a> </p> <a href="https://publications.waset.org/abstracts/97243/flotation-of-rare-earth-oxides-from-iron-oxide-silicate-rich-tailings-using-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Jatropha curcas L. Oil Selectivity in Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20L.%20A.%20Moraes"> Izabela L. A. Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20Silva%20Filho"> Carlos M. Silva Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Brazil, most soils are acidic and low in essential nutrients required for the growth and development of plants, making fertilizers essential for agriculture. As the biggest producer of soy in the world and a major producer of coffee, sugar cane and citrus fruits, Brazil is a large consumer of phosphate. Brazilian&rsquo;s phosphate ores are predominantly from igneous rocks showing a complex mineralogy, associated with carbonites and oxides, typically iron, silicon and barium. The adopted industrial concentration circuit for this type of ore is a mix between magnetic separation (both low and high field) to remove the magnetic fraction and a froth flotation circuit composed by a reverse flotation of apatite (barite&rsquo;s flotation) followed by direct flotation circuit (rougher, cleaner and scavenger circuit). Since the 70&rsquo;s fatty acids obtained from vegetable oils are widely used as lower-cost collectors in apatite froth flotation. This is a very effective approach to the apatite family of minerals, being that this type of collector is both selective and efficient (high recovery). This paper presents <em>Jatropha curcas</em> <em>L.</em> oil (JCO) as a renewable and sustainable source of fatty acids with high selectivity in froth flotation of apatite. JCO is considerably rich in fatty acids such as linoleic, oleic and palmitic acid. The experimental campaign involved 216 tests using a modified Hallimond tube and two different minerals (apatite and quartz). In order to be used as a collector, the oil was saponified. The results found were compared with the synthetic collector, Fotigam 5806 produced by Clariant, which is composed mainly by soy oil. JCO showed the highest selectivity for apatite flotation with cold saponification at pH 8 and concentration of 2.5 mg/L. In this case, the mineral recovery was around 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title="froth flotation">froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas" title=" jatropha curcas"> jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=microflotation" title=" microflotation"> microflotation</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/50900/jatropha-curcas-l-oil-selectivity-in-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thanh%20Truc">Nguyen Thi Thanh Truc</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati"> Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS" title="ABS">ABS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title=" froth flotation"> froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a> </p> <a href="https://publications.waset.org/abstracts/32214/separation-of-hazardous-brominated-plastics-from-waste-plastics-by-froth-flotation-after-surface-modification-with-mild-heat-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bogale%20Tadesse">Bogale Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Krutik%20Parikh"> Krutik Parikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndagha%20Mkandawire"> Ndagha Mkandawire</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Albijanic"> Boris Albijanic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimal%20Subasinghe"> Nimal Subasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroflotation" title="electroflotation">electroflotation</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20bubbles" title=" fine bubbles"> fine bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20particles" title=" ultrafine particles"> ultrafine particles</a> </p> <a href="https://publications.waset.org/abstracts/51923/enhancing-the-flotation-of-fine-and-ultrafine-pyrite-particles-using-electrolytically-generated-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Rattanakawin">C. Rattanakawin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vasailor"> S. Vasailor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 <sup>o</sup>C and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation%20leaching" title="agitation leaching">agitation leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution%20kinetics" title=" dissolution kinetics"> dissolution kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20concentrate" title=" flotation concentrate"> flotation concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20copper%20ore" title=" oxide copper ore"> oxide copper ore</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfuric%20acid" title=" sulfuric acid"> sulfuric acid</a> </p> <a href="https://publications.waset.org/abstracts/108978/leaching-of-flotation-concentrate-of-oxide-copper-ore-from-sepon-mine-lao-pdr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Ibrahim">Ayman M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinpeng%20Cai"> Jinpeng Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Peilun%20Shen"> Peilun Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianwen%20Liu"> Dianwen Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfurization%20flotation" title="sulfurization flotation">sulfurization flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20characteristics" title=" adsorption characteristics"> adsorption characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite" title=" malachite"> malachite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/170990/malachite-ore-treatment-with-typical-ammonium-salts-and-its-mechanism-to-promote-the-flotation-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Bladergroen">Bernard Bladergroen</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Vlotman"> David Vlotman</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20Cerff"> Bradley Cerff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20enhanced%20flotation" title="shear enhanced flotation">shear enhanced flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20solids" title=" suspended solids"> suspended solids</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20wastewater%20treatment" title=" primary wastewater treatment"> primary wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a> </p> <a href="https://publications.waset.org/abstracts/172998/shear-enhanced-flotation-technology-applied-to-treat-winery-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20N.%20Sousa"> Débora N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Thales%20P.%20Fontes"> Thales P. Fontes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20S.%20Tomaz"> Raphael S. Tomaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 <sup>o</sup>C. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title="froth flotation">froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinization" title=" gelatinization"> gelatinization</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=starches%20and%20flours" title=" starches and flours"> starches and flours</a> </p> <a href="https://publications.waset.org/abstracts/50896/optimal-consume-of-naoh-in-starches-gelatinization-for-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Flotation Recovery of Gold-Loaded Fine Activated Carbon Using Emulsified Diesel and Kerosene as Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Jr.%20Ballad">Emmanuel Jr. Ballad</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Mendoza"> Herman Mendoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recovery of fine activated carbon with adsorbed gold in the cyanidation tailings of a small-scale gold plant was investigated due to the high amount of gold present. In the study, collectors that were used are kerosene and diesel. Emulsification of the oils was done to improve its collecting property, thus also the recovery. It was found out that the best hydrophile lypophile balance (HLB) of emulsified diesel and kerosene oil is 13 and 12 respectively. The amount of surfactants (SPAN 20 and TWEEN 20) for the best stability of the emulsified oils was found to be 10% in both kerosene and diesel. Optical microscopy showed that the oil dispersion in the water forms spherical droplets like features. The higher the stability, the smaller the droplets and their number were increasing. The smaller droplets indicate better dispersion of oil in the water. Consequently, it will have a greater chance of oil and activated carbon particle interaction during flotation. Due to the interaction of dispersed oil phase with carbon, the hydrophobicity of the carbon will be improved and will be attached to the bubble. Thus, flotation recovery will be increased. Results showed that the recovery of the fine activated carbon using emulsified diesel or kerosene is three times more effective than using pure diesel or kerosene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsified%20oils" title="emulsified oils">emulsified oils</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophile%20lyophile%20balance" title=" hydrophile lyophile balance"> hydrophile lyophile balance</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20surfactants" title=" non-ionic surfactants"> non-ionic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/68257/flotation-recovery-of-gold-loaded-fine-activated-carbon-using-emulsified-diesel-and-kerosene-as-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> SEM and FTIR Study of Adsorption Characteristics Using Xanthate (KIBX) Synthesized Collectors on Sphalerite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohir%20Nedjar">Zohir Nedjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Barkat"> Djamel Barkat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thiols such as alkyl xanthates are commonly used as collectors in the froth flotation of sulfide minerals. Under the concen-tration, pH and Eh conditions relevant to flotation, the thermodynamically favoured reaction between a thiol and a sulfide mineral surface is charge transfechemisorption in which the collector becomes bonded to metal atoms in the outermost layer of the sulfide lattice. The adsorption of potassium isobutyl xanthate (KIBX 3.10-3M) on sphalerite has been also studied using electrochemical potential, FTIR technique and SEM. Non activated minerals and minerals activated with copper sulfate (10-4 M) and copper nitrate (10-4 M) have been investigated at pH = 7.5. Surface species have been identified by FTIR and correlated with SEM. After copper sulfate activation, copper xanthate exists on all of the minerals studied. Neutral pH is most favorable for potassium isobutyl xanthate adsorption on sphalerite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flotation" title="flotation">flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthate%20KIBX" title=" xanthate KIBX"> xanthate KIBX</a>, <a href="https://publications.waset.org/abstracts/search?q=sphalerite" title=" sphalerite"> sphalerite</a> </p> <a href="https://publications.waset.org/abstracts/11381/sem-and-ftir-study-of-adsorption-characteristics-using-xanthate-kibx-synthesized-collectors-on-sphalerite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Treatment of Rice Industry Waste Water by Flotation-Flocculation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Kapoor">J. K. Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Jabin"> Shagufta Jabin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Bhatia"> H. S. Bhatia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flotation%20technique" title=" air flotation technique"> air flotation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity "> turbidity </a> </p> <a href="https://publications.waset.org/abstracts/16797/treatment-of-rice-industry-waste-water-by-flotation-flocculation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syamala%20Krishnannair">Syamala Krishnannair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20monitoring" title=" process monitoring"> process monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilarity%20scale" title=" dissimilarity scale"> dissimilarity scale</a> </p> <a href="https://publications.waset.org/abstracts/83263/multivariate-statistical-process-monitoring-of-base-metal-flotation-plant-using-dissimilarity-scale-based-singular-spectrum-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Synergetic effect of the Sodium Hydrosulfide and Ammonium Sulfate as Activators in the Flotation of Copper-cobalt Bearing Oxide Minerals from the Kamoya Mineralization in the Democratic Republic of Congo (DRC).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Craig%20Nsakabwebwe%20Kabange">Craig Nsakabwebwe Kabange</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigated the synergetic effect of two activators, mainly sodium hydrosulfide (NaHS) and ammonium sulfate (NH₄)₂SO₄, as sulphidizersin the flotation of oxide minerals. A series of flotation tests were conducted on copper-cobalt samples originating from the Kamoyaopen pitin the DRCat an adjusted pH value of 9.5. The results revealed that in the presence of NaHS (5000g/t), an increase in the recovery values of both metals to a maximum of 87% copper and 78.1% cobalt could be achieved. However, the addition of (NH4)₂SO4 to theNaHS-containing pulp had a negative effect on the recoveries, shifting it from 87 to 49.1% for copper and from78.1 to 49.2% forcobalt. The recovery trend for the two metals waskept below 50% with an increase in the concentration of(NH₄)₂SO4. A satisfactory result was obtained at a NaHS - (NH₄)₂SO₄ concentration ratio of 1/1, which delivered 89.5 % Cu recovery and 79.2% Co recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20sulphate" title="ammonium sulphate">ammonium sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydrosulphide" title=" sodium hydrosulphide"> sodium hydrosulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphidizer" title=" sulphidizer"> sulphidizer</a>, <a href="https://publications.waset.org/abstracts/search?q=activator" title=" activator"> activator</a> </p> <a href="https://publications.waset.org/abstracts/158296/synergetic-effect-of-the-sodium-hydrosulfide-and-ammonium-sulfate-as-activators-in-the-flotation-of-copper-cobalt-bearing-oxide-minerals-from-the-kamoya-mineralization-in-the-democratic-republic-of-congo-drc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hee%20Park"> Min Hee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Mim%20Cho"> Soo Mim Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyeon%20Yoon"> Sung Hyeon Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20of%20life%20vehicles%20shredder%20residue" title="end of life vehicles shredder residue">end of life vehicles shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20plastics" title=" hazardous plastics"> hazardous plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20froth%20flotation" title=" nanoparticle froth flotation"> nanoparticle froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20process" title=" separation process"> separation process</a> </p> <a href="https://publications.waset.org/abstracts/64596/advanced-separation-process-of-hazardous-plastics-and-metals-from-end-of-life-vehicles-shredder-residue-by-nanoparticle-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20A.%20S.%20Bergamo">Pedro A. S. Bergamo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilia%20S.%20Streng"> Emilia S. Streng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Rosenkranz"> Jan Rosenkranz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Ghorbani"> Yousef Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=training%20evaluation" title="training evaluation">training evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20based%20training" title=" simulation based training"> simulation based training</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20simulation" title=" and simulation"> and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title=" froth flotation"> froth flotation</a> </p> <a href="https://publications.waset.org/abstracts/154930/improving-trainings-of-mineral-processing-operators-through-gamification-and-modelling-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balraju%20Vadlakonda">Balraju Vadlakonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narasimha%20Mangadoddy"> Narasimha Mangadoddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry%20%28PIV%29" title="particle image velocimetry (PIV)">particle image velocimetry (PIV)</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20velocity" title=" bubble velocity"> bubble velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20diameter" title=" bubble diameter"> bubble diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20kinetic%20energy" title=" turbulent kinetic energy"> turbulent kinetic energy</a> </p> <a href="https://publications.waset.org/abstracts/11962/analysis-of-two-phase-hydrodynamics-in-a-column-flotation-by-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Kondratyev">S. A. Kondratyev</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Ibragimova"> O. I. Ibragimova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criterion%20of%20action%20of%20physically%20adsorbed%20reagent" title="criterion of action of physically adsorbed reagent">criterion of action of physically adsorbed reagent</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20fatty%20acids" title=" saturated fatty acids"> saturated fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20pressure" title=" surface pressure"> surface pressure</a> </p> <a href="https://publications.waset.org/abstracts/76153/the-role-of-physically-adsorbing-species-of-oxyhydryl-reagents-in-flotation-aggregate-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Apatite Flotation Using Fruits&#039; Oil as Collector and Sorghum as Depressant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elenice%20Maria%20Schons%20Silva">Elenice Maria Schons Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Carlos%20Silva"> Andre Carlos Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collectors" title="collectors">collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=depressants" title=" depressants"> depressants</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20processing" title=" mineral processing"> mineral processing</a> </p> <a href="https://publications.waset.org/abstracts/92877/apatite-flotation-using-fruits-oil-as-collector-and-sorghum-as-depressant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Influence of S.carnosus Bacteria as Biocollector for the Recovery Organic Matter in the Flotation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Ramos-Escobedo">G. T. Ramos-Escobedo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20Pecina-Trevi%C3%B1o"> E. T. Pecina-Treviño</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20Camacho-Ortegon"> L. F. Camacho-Ortegon</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Orrantia-Borunda"> E. Orrantia-Borunda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mineral bioflotation represents a viable alternative for the evaluation of new processes benefit alternative. The adsorption bacteria on minerals surfaces will depend mainly on the type of the microorganism as well as of the studied mineral surface. In the current study, adhesion of S. carnosus on coal was studied. Several methods were used as: DRX, Fourier Transform Infra Red (FTIR) adhesion isotherms and kinetic. The main goal is the recovery of organic matter by the microflotation process on coal particles with biological reagent (S. carnosus). Adhesion tests revealed that adhesion took place after 8 h at pH 9. The results suggest that the adhesion of bacteria to solid substrates can be considered an abiotic physicochemical process that is consequently governed by bacterial surface properties such as their specific surface area, hydrophobicity and surface functionalities. The greatest coal fine flotability was 75%, after 5 min of flotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine%20coal" title="fine coal">fine coal</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20organic%20matter" title=" recovery organic matter"> recovery organic matter</a> </p> <a href="https://publications.waset.org/abstracts/14320/influence-of-scarnosus-bacteria-as-biocollector-for-the-recovery-organic-matter-in-the-flotation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Comparing the Effectiveness of the Crushing and Grinding Route of Comminution to That of the Mine to Mill Route in Terms of the Percentage of Middlings Present in Processed Lead-Zinc Ore Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20F.%20Anochie">Chinedu F. Anochie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of gangue particles in recovered metal concentrates has been a serious challenge to ore dressing engineers. Middlings lower the quality of concentrates, and in most cases, drastically affect the smelter terms, owing to exorbitant amounts paid by Mineral Processing industries as treatment charge. Models which encourage optimization of liberation operations have been utilized in most ore beneficiation industries to reduce the presence of locked particles in valuable concentrates. Moreover, methods such as incorporation of regrind mills, scavenger, rougher and cleaner cells, to the milling and flotation plants has been widely employed to tackle these concerns, and to optimize the grade–recovery relationship of metal concentrates. This work compared the crushing and grinding method of liberation, to the mine to mill route, by evaluating the proportion of middlings present in selectively processed complex Pb-Zn ore samples. To establish the effect of size reduction operations on the percentage of locked particles present in recovered concentrates, two similar samples of complex Pb- Zn ores were processed. Following blasting operation, the first ore sample was ground directly in a ball mill (Mine to Mill Route of Comminution), while the other sample was manually crushed, and subsequently ground in the ball mill (Crushing and Grinding Route of Comminution). The two samples were separately sieved in a mesh to obtain the desired representative particle sizes. An equal amount of each sample that would be processed in the flotation circuit was then obtained with the aid of a weighing balance. These weighed fine particles were simultaneously processed in the flotation circuit using the selective flotation technique. Sodium cyanide, Methyl isobutyl carbinol, Sodium ethyl xanthate, Copper sulphate, Sodium hydroxide, Lime and Isopropyl xanthate, were the reagents used to effect differential flotation of the two ore samples. Analysis and calculations showed that the degree of liberation obtained for the ore sample which went through the conventional crushing and grinding route of comminution, was higher than that of the directly milled run off mine (ROM) ore. Similarly, the proportion of middlings obtained from the separated galena (PbS) and sphalerite (ZnS) concentrates, were lower for the crushed and ground ore sample. A concise data which proved that the mine to mill method of size reduction is not the most ideal technique for the recovery of quality metal concentrates has been established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comminution" title="comminution">comminution</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20liberation" title=" degree of liberation"> degree of liberation</a>, <a href="https://publications.waset.org/abstracts/search?q=middlings" title=" middlings"> middlings</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20to%20mill" title=" mine to mill"> mine to mill</a> </p> <a href="https://publications.waset.org/abstracts/126873/comparing-the-effectiveness-of-the-crushing-and-grinding-route-of-comminution-to-that-of-the-mine-to-mill-route-in-terms-of-the-percentage-of-middlings-present-in-processed-lead-zinc-ore-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flotation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flotation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flotation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10