CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–35 of 35 results for author: <span class="mathjax">Alsum, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Alsum%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Alsum, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Alsum%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Alsum, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17120">arXiv:2211.17120</a> <span> [<a href="https://arxiv.org/pdf/2211.17120">pdf</a>, <a href="https://arxiv.org/format/2211.17120">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.012010">10.1103/PhysRevD.108.012010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/physics?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17120v2-abstract-short" style="display: inline;"> The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to $9.2\times10^{-48}$ cm$^2$ for the spin-independent interaction of a 36 GeV/c$^2$ WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-bet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17120v2-abstract-full').style.display = 'inline'; document.getElementById('2211.17120v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17120v2-abstract-full" style="display: none;"> The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to $9.2\times10^{-48}$ cm$^2$ for the spin-independent interaction of a 36 GeV/c$^2$ WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was $(6.3\pm0.5)\times10^{-5}$ events/keV$_{ee}$/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17120v2-abstract-full').style.display = 'none'; document.getElementById('2211.17120v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 012010 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05859">arXiv:2210.05859</a> <span> [<a href="https://arxiv.org/pdf/2210.05859">pdf</a>, <a href="https://arxiv.org/format/2210.05859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.061002">10.1103/PhysRevLett.134.061002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Recoil Calibration at Sub-keV Energies in LUX and Its Impact on Dark Matter Search Sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05859v4-abstract-short" style="display: inline;"> Dual-phase xenon time projection chamber (TPC) detectors offer heightened sensitivities for dark matter detection across a spectrum of particle masses. To broaden their capability to low-mass dark matter interactions, we investigated the light and charge responses of liquid xenon (LXe) to sub-keV nuclear recoils. Using neutron events from a pulsed Adelphi Deuterium-Deuterium neutron generator, an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05859v4-abstract-full').style.display = 'inline'; document.getElementById('2210.05859v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05859v4-abstract-full" style="display: none;"> Dual-phase xenon time projection chamber (TPC) detectors offer heightened sensitivities for dark matter detection across a spectrum of particle masses. To broaden their capability to low-mass dark matter interactions, we investigated the light and charge responses of liquid xenon (LXe) to sub-keV nuclear recoils. Using neutron events from a pulsed Adelphi Deuterium-Deuterium neutron generator, an in situ calibration was conducted on the LUX detector. We demonstrate direct measurements of light and charge yields down to 0.45 keV and 0.27 keV, respectively, both approaching single quanta production, the physical limit of LXe detectors. These results hold significant implications for the future of dual-phase xenon TPCs in detecting low-mass dark matter via nuclear recoils. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05859v4-abstract-full').style.display = 'none'; document.getElementById('2210.05859v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 134, 061002 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span> [<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Aerne%2C+V">V. Aerne</a>, <a href="/search/physics?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&query=Akshat%2C+J">J. Akshat</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05734">arXiv:2201.05734</a> <span> [<a href="https://arxiv.org/pdf/2201.05734">pdf</a>, <a href="https://arxiv.org/format/2201.05734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.072009">10.1103/PhysRevD.106.072009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast and Flexible Analysis of Direct Dark Matter Search Data with Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carrara%2C+N">N. Carrara</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Ernst%2C+J">J. Ernst</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05734v2-abstract-short" style="display: inline;"> We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its flexibility to capture non-linear correlations betwe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05734v2-abstract-full').style.display = 'inline'; document.getElementById('2201.05734v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05734v2-abstract-full" style="display: none;"> We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its flexibility to capture non-linear correlations between variables (such as smearing in light and charge signals due to position variation) by achieving equal performance using pulse areas with and without position-corrections applied. Its efficiency and scalability furthermore enables searching for dark matter using additional variables without significant computational burden. We demonstrate this by including a light signal pulse shape variable alongside more traditional inputs such as light and charge signal strengths. This technique can be exploited by future dark matter experiments to make use of additional information, reduce computational resources needed for signal searches and simulations, and make inclusion of physical nuisance parameters in fits tractable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05734v2-abstract-full').style.display = 'none'; document.getElementById('2201.05734v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106 (2022), 072009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06622">arXiv:2106.06622</a> <span> [<a href="https://arxiv.org/pdf/2106.06622">pdf</a>, <a href="https://arxiv.org/format/2106.06622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165955">10.1016/j.nima.2021.165955 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Linehan%2C+R">R. Linehan</a>, <a href="/search/physics?searchtype=author&query=Mannino%2C+R+L">R. L. Mannino</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Ignarra%2C+C+M">C. M. Ignarra</a>, <a href="/search/physics?searchtype=author&query=Luitz%2C+S">S. Luitz</a>, <a href="/search/physics?searchtype=author&query=Skarpaas%2C+K">K. Skarpaas</a>, <a href="/search/physics?searchtype=author&query=Shutt%2C+T+A">T. A. Shutt</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Auyeung%2C+H">H. Auyeung</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Breidenbach%2C+M">M. Breidenbach</a>, <a href="/search/physics?searchtype=author&query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&query=Conley%2C+R+A">R. A. Conley</a>, <a href="/search/physics?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/physics?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a>, <a href="/search/physics?searchtype=author&query=Glaenzer%2C+A">A. Glaenzer</a>, <a href="/search/physics?searchtype=author&query=Gonda%2C+T+G">T. G. Gonda</a>, <a href="/search/physics?searchtype=author&query=Hanzel%2C+K">K. Hanzel</a>, <a href="/search/physics?searchtype=author&query=Hoff%2C+M+D">M. D. Hoff</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+W">W. Ji</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06622v1-abstract-short" style="display: inline;"> The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06622v1-abstract-full').style.display = 'inline'; document.getElementById('2106.06622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06622v1-abstract-full" style="display: none;"> The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of the electrodes used to establish these fields is therefore required. We present the design and production of the LUX-ZEPLIN (LZ) experiment's high-voltage electrodes, a set of four woven mesh wire grids. Grid design drivers are discussed, with emphasis placed on design of the electron extraction region. We follow this with a description of the grid production process and a discussion of steps taken to validate the LZ grids prior to integration into the TPC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06622v1-abstract-full').style.display = 'none'; document.getElementById('2106.06622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 20 figures, to be submitted to Nuclear Instruments and Methods in Physics Research Section A. Corresponding authors: rlinehan@stanford.edu and mannino2@wisc.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13374">arXiv:2104.13374</a> <span> [<a href="https://arxiv.org/pdf/2104.13374">pdf</a>, <a href="https://arxiv.org/format/2104.13374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.065501">10.1103/PhysRevC.104.065501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of $^{134}$Xe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX-ZEPLIN%2C+T">The LUX-ZEPLIN</a>, <a href="/search/physics?searchtype=author&query=Collaboration"> Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Araujo%2C+H+M">H. M. Araujo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&query=Biekert%2C+A">A. Biekert</a> , et al. (172 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13374v3-abstract-short" style="display: inline;"> The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13374v3-abstract-full').style.display = 'inline'; document.getElementById('2104.13374v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13374v3-abstract-full" style="display: none;"> The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double beta decay of $^{134}$Xe, for which xenon detectors enriched in $^{136}$Xe are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7$\times$10$^{24}$ years at 90% confidence level (CL), and has a three-sigma observation potential of 8.7$\times$10$^{23}$ years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3$\times$10$^{24}$ years at 90% CL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13374v3-abstract-full').style.display = 'none'; document.getElementById('2104.13374v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in Phys. Rev. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08753">arXiv:2101.08753</a> <span> [<a href="https://arxiv.org/pdf/2101.08753">pdf</a>, <a href="https://arxiv.org/format/2101.08753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/physics?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a> , et al. (162 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08753v1-abstract-short" style="display: inline;"> Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08753v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08753v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08753v1-abstract-full" style="display: none;"> Two-phase xenon detectors, such as that at the core of the forthcoming LZ dark matter experiment, use photomultiplier tubes to sense the primary (S1) and secondary (S2) scintillation signals resulting from particle interactions in their liquid xenon target. This paper describes a simulation study exploring two techniques to lower the energy threshold of LZ to gain sensitivity to low-mass dark matter and astrophysical neutrinos, which will be applicable to other liquid xenon detectors. The energy threshold is determined by the number of detected S1 photons; typically, these must be recorded in three or more photomultiplier channels to avoid dark count coincidences that mimic real signals. To lower this threshold: a) we take advantage of the double photoelectron emission effect, whereby a single vacuum ultraviolet photon has a $\sim20\%$ probability of ejecting two photoelectrons from a photomultiplier tube photocathode; and b) we drop the requirement of an S1 signal altogether, and use only the ionization signal, which can be detected more efficiently. For both techniques we develop signal and background models for the nominal exposure, and explore accompanying systematic effects, including the dependence on the free electron lifetime in the liquid xenon. When incorporating double photoelectron signals, we predict a factor of $\sim 4$ sensitivity improvement to the dark matter-nucleon scattering cross-section at $2.5$ GeV/c$^2$, and a factor of $\sim1.6$ increase in the solar $^8$B neutrino detection rate. Dropping the S1 requirement may allow sensitivity gains of two orders of magnitude in both cases. Finally, we apply these techniques to even lower masses by taking into account the atomic Migdal effect; this could lower the dark matter particle mass threshold to $80$ MeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08753v1-abstract-full').style.display = 'none'; document.getElementById('2101.08753v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09602">arXiv:2011.09602</a> <span> [<a href="https://arxiv.org/pdf/2011.09602">pdf</a>, <a href="https://arxiv.org/format/2011.09602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012011">10.1103/PhysRevD.104.012011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09602v1-abstract-short" style="display: inline;"> This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the LUX detector, signatures of low-mass DM interactions would be very low energy ($\sim$keV) scatters in the active target that ionize only a few xenon atoms and seldom produce detectable scintillation signals. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09602v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09602v1-abstract-full" style="display: none;"> This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the LUX detector, signatures of low-mass DM interactions would be very low energy ($\sim$keV) scatters in the active target that ionize only a few xenon atoms and seldom produce detectable scintillation signals. In this regime, extra precaution is required to reject a complex set of low-energy electron backgrounds that have long been observed in this class of detector. Noticing backgrounds from the wire grid electrodes near the top and bottom of the active target are particularly pernicious, we develop a machine learning technique based on ionization pulse shape to identify and reject these events. We demonstrate the technique can improve Poisson limits on low-mass DM interactions by a factor of $2$-$7$ with improvement depending heavily on the size of ionization signals. We use the technique on events in an effective $5$ tonne$\cdot$day exposure from LUX's 2013 science operation to place strong limits on low-mass DM particles with masses in the range $m_蠂\in0.15$-$10$ GeV. This machine learning technique is expected to be useful for near-future experiments, such as LZ and XENONnT, which hope to perform low-mass DM searches with the stringent background control necessary to make a discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09602v1-abstract-full').style.display = 'none'; document.getElementById('2011.09602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012011 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02506">arXiv:2006.02506</a> <span> [<a href="https://arxiv.org/pdf/2006.02506">pdf</a>, <a href="https://arxiv.org/format/2006.02506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8420-x">10.1140/epjc/s10052-020-8420-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&query=Alquahtani%2C+A">A. Alquahtani</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Arbuckle%2C+A">A. Arbuckle</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Auyeung%2C+H">H. Auyeung</a>, <a href="/search/physics?searchtype=author&query=Aviles%2C+S">S. Aviles</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+P">P. Bauer</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bensinger%2C+J">J. Bensinger</a> , et al. (365 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02506v3-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02506v3-abstract-full').style.display = 'inline'; document.getElementById('2006.02506v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02506v3-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02506v3-abstract-full').style.display = 'none'; document.getElementById('2006.02506v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (79 inc. tables), 7 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The European Physical Journal C, Volume 80, Article number: 1044 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07791">arXiv:2004.07791</a> <span> [<a href="https://arxiv.org/pdf/2004.07791">pdf</a>, <a href="https://arxiv.org/format/2004.07791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.092004">10.1103/PhysRevD.102.092004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of background electron emission in the LUX detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/physics?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a>, <a href="/search/physics?searchtype=author&query=Gwilliam%2C+C">C. Gwilliam</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07791v2-abstract-short" style="display: inline;"> Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of background electron events in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper we report a systematic investigation of the electron pathologies observed in the LUX… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07791v2-abstract-full').style.display = 'inline'; document.getElementById('2004.07791v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07791v2-abstract-full" style="display: none;"> Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of background electron events in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper we report a systematic investigation of the electron pathologies observed in the LUX dark matter experiment. We characterize different electron populations based on their emission intensities and their correlations with preceding energy depositions in the detector. By studying the background under different experimental conditions, we identified the leading emission mechanisms, including photoionization and the photoelectric effect induced by the xenon luminescence, delayed emission of electrons trapped under the liquid surface, capture and release of drifting electrons by impurities, and grid electron emission. We discuss how these backgrounds can be mitigated in LUX and future xenon-based dark matter experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07791v2-abstract-full').style.display = 'none'; document.getElementById('2004.07791v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 092004 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06304">arXiv:2004.06304</a> <span> [<a href="https://arxiv.org/pdf/2004.06304">pdf</a>, <a href="https://arxiv.org/format/2004.06304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112002">10.1103/PhysRevD.102.112002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discrimination of electronic recoils from nuclear recoils in two-phase xenon time projection chambers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/physics?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06304v3-abstract-short" style="display: inline;"> We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06304v3-abstract-full').style.display = 'inline'; document.getElementById('2004.06304v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06304v3-abstract-full" style="display: none;"> We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclear recoil energy of $\sim$100 keV, we observe an electronic recoil background acceptance of $<10^{-5}$ at a nuclear recoil signal acceptance of 50%. We also observe modest electric field dependence of the discrimination power, which peaks at a field of around 300 V/cm over the range of fields explored in this study (50-500 V/cm). In the WIMP search region of S1 = 1-80 phd, the minimum electronic recoil leakage we observe is ${(7.3\pm0.6)\times10^{-4}}$, which is obtained for a drift field of 240-290 V/cm. Pulse shape discrimination is utilized to improve our results, and we find that, at low energies and low fields, there is an additional reduction in background leakage by a factor of up to 3. We develop an empirical model for recombination fluctuations which, when used alongside the Noble Element Scintillation Technique (NEST) simulation package, correctly reproduces the skewness of the electronic recoil data. We use this updated simulation to study the width of the electronic recoil band, finding that its dominant contribution comes from electron-ion recombination fluctuations, followed in magnitude of contribution by fluctuations in the S1 signal, fluctuations in the S2 signal, and fluctuations in the total number of quanta produced for a given energy deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06304v3-abstract-full').style.display = 'none'; document.getElementById('2004.06304v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 33 figures; minor typos corrected, references updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09363">arXiv:2001.09363</a> <span> [<a href="https://arxiv.org/pdf/2001.09363">pdf</a>, <a href="https://arxiv.org/format/2001.09363">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2020.102480">10.1016/j.astropartphys.2020.102480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+L">The LUX-ZEPLIN Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Alqahtani%2C+A">A. Alqahtani</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bensinger%2C+J">J. Bensinger</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/physics?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a> , et al. (173 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09363v2-abstract-short" style="display: inline;"> The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$\times10^{-12}$\,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of par… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09363v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09363v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09363v2-abstract-full" style="display: none;"> The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$\times10^{-12}$\,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09363v2-abstract-full').style.display = 'none'; document.getElementById('2001.09363v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures; Corresponding Authors: A. Cottle, V. Kudryavtsev, D. Woodward</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.02742">arXiv:1912.02742</a> <span> [<a href="https://arxiv.org/pdf/1912.02742">pdf</a>, <a href="https://arxiv.org/format/1912.02742">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ab9c2d">10.1088/1361-6471/ab9c2d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for two neutrino double electron capture of $^{124}$Xe and $^{126}$Xe in the full exposure of the LUX detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/physics?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.02742v2-abstract-short" style="display: inline;"> Two-neutrino double electron capture is a process allowed in the Standard Model of Particle Physics. This rare decay has been observed in $^{78}$Kr, $^{130}$Ba and more recently in $^{124}$Xe. In this publication we report on the search for this process in $^{124}$Xe and $^{126}$Xe using the full exposure of the Large Underground Xenon (LUX) experiment, in a total of of 27769.5~kg-days. No evidenc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.02742v2-abstract-full').style.display = 'inline'; document.getElementById('1912.02742v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.02742v2-abstract-full" style="display: none;"> Two-neutrino double electron capture is a process allowed in the Standard Model of Particle Physics. This rare decay has been observed in $^{78}$Kr, $^{130}$Ba and more recently in $^{124}$Xe. In this publication we report on the search for this process in $^{124}$Xe and $^{126}$Xe using the full exposure of the Large Underground Xenon (LUX) experiment, in a total of of 27769.5~kg-days. No evidence of a signal was observed, allowing us to set 90\% C.L. lower limits for the half-lives of these decays of $2.0\times10^{21}$~years for $^{124}$Xe and $1.9\times10^{21}$~years for $^{126}$Xe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.02742v2-abstract-full').style.display = 'none'; document.getElementById('1912.02742v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.G 47 (2020) 10, 105105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09124">arXiv:1910.09124</a> <span> [<a href="https://arxiv.org/pdf/1910.09124">pdf</a>, <a href="https://arxiv.org/format/1910.09124">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.163047">10.1016/j.nima.2019.163047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LUX-ZEPLIN (LZ) Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+LZ+Collaboration"> The LZ Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&query=Alquahtani%2C+A">A. Alquahtani</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Arbuckle%2C+A">A. Arbuckle</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Auyeung%2C+H">H. Auyeung</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/physics?searchtype=author&query=Barthel%2C+J">J. Barthel</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+P">P. Bauer</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a> , et al. (357 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09124v2-abstract-short" style="display: inline;"> We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09124v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09124v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09124v2-abstract-full" style="display: none;"> We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09124v2-abstract-full').style.display = 'none'; document.getElementById('1910.09124v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.04211">arXiv:1910.04211</a> <span> [<a href="https://arxiv.org/pdf/1910.04211">pdf</a>, <a href="https://arxiv.org/format/1910.04211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/02/T02007">10.1088/1748-0221/15/02/T02007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Modeling of $尾$ Electronic Recoils in Liquid Xenon Using LUX Calibration Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+LUX+Collaboration"> The LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/physics?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.04211v2-abstract-short" style="display: inline;"> We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $尾$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04211v2-abstract-full').style.display = 'inline'; document.getElementById('1910.04211v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.04211v2-abstract-full" style="display: none;"> We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $尾$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04211v2-abstract-full').style.display = 'none'; document.getElementById('1910.04211v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 Pages, 10 Figures, 2 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 15, February 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.06272">arXiv:1907.06272</a> <span> [<a href="https://arxiv.org/pdf/1907.06272">pdf</a>, <a href="https://arxiv.org/ps/1907.06272">ps</a>, <a href="https://arxiv.org/format/1907.06272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.042001">10.1103/PhysRevD.101.042001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extending light WIMP searches to single scintillation photons in LUX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.06272v2-abstract-short" style="display: inline;"> We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a 2-fold coincidence signal in its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06272v2-abstract-full').style.display = 'inline'; document.getElementById('1907.06272v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.06272v2-abstract-full" style="display: none;"> We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a 2-fold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5 GeV/c$^2$ WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06272v2-abstract-full').style.display = 'none'; document.getElementById('1907.06272v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 042001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02112">arXiv:1904.02112</a> <span> [<a href="https://arxiv.org/pdf/1904.02112">pdf</a>, <a href="https://arxiv.org/format/1904.02112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2019.102391">10.1016/j.astropartphys.2019.102391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Gamma Ray Background in the Davis Cavern at the Sanford Underground Research Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/physics?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Busenitz%2C+J+K">J. K. Busenitz</a>, <a href="/search/physics?searchtype=author&query=Carels%2C+C">C. Carels</a>, <a href="/search/physics?searchtype=author&query=Carlsmith%2C+D+L">D. L. Carlsmith</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Cascella%2C+M">M. Cascella</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02112v2-abstract-short" style="display: inline;"> Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from $纬$-rays emitted by $^{40}$K and the $^{238}$U and $^{232}$Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02112v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02112v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02112v2-abstract-full" style="display: none;"> Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from $纬$-rays emitted by $^{40}$K and the $^{238}$U and $^{232}$Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ $纬$-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of $1.9\pm0.4$~$纬~$cm$^{-2}$s$^{-1}$. The resulting activity in the walls of the cavern can be characterised as $220\pm60$~Bq/kg of $^{40}$K, $29\pm15$~Bq/kg of $^{238}$U, and $13\pm3$~Bq/kg of $^{232}$Th. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02112v2-abstract-full').style.display = 'none'; document.getElementById('1904.02112v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astroparticle Physics, Volume 116, Pages 102391 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.12372">arXiv:1903.12372</a> <span> [<a href="https://arxiv.org/pdf/1903.12372">pdf</a>, <a href="https://arxiv.org/format/1903.12372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.022002">10.1103/PhysRevD.100.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Measurements of the \b{eta}-Decay Response of Liquid Xenon with the LUX Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.12372v2-abstract-short" style="display: inline;"> We report results from an extensive set of measurements of the \b{eta}-decay response in liquid xenon.These measurements are derived from high-statistics calibration data from injected sources of both $^{3}$H and $^{14}$C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491 V/cm, and for energies ranging from 1.5 to 145 keV. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.12372v2-abstract-full" style="display: none;"> We report results from an extensive set of measurements of the \b{eta}-decay response in liquid xenon.These measurements are derived from high-statistics calibration data from injected sources of both $^{3}$H and $^{14}$C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491 V/cm, and for energies ranging from 1.5 to 145 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12372v2-abstract-full').style.display = 'none'; document.getElementById('1903.12372v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 022002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11241">arXiv:1811.11241</a> <span> [<a href="https://arxiv.org/pdf/1811.11241">pdf</a>, <a href="https://arxiv.org/format/1811.11241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.131301">10.1103/PhysRevLett.122.131301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11241v3-abstract-short" style="display: inline;"> The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a Bremsstrahlung photon or a so-called "Migdal" electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11241v3-abstract-full').style.display = 'inline'; document.getElementById('1811.11241v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11241v3-abstract-full" style="display: none;"> The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a Bremsstrahlung photon or a so-called "Migdal" electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.4-5 GeV/c$^2$ using 1.4$\times10^4$ kg$\cdot$day of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11241v3-abstract-full').style.display = 'none'; document.getElementById('1811.11241v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 131301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07113">arXiv:1807.07113</a> <span> [<a href="https://arxiv.org/pdf/1807.07113">pdf</a>, <a href="https://arxiv.org/format/1807.07113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.062005">10.1103/PhysRevD.98.062005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for annual and diurnal rate modulations in the LUX experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07113v2-abstract-short" style="display: inline;"> Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth's motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07113v2-abstract-full').style.display = 'inline'; document.getElementById('1807.07113v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07113v2-abstract-full" style="display: none;"> Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth's motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calendar months of data acquired between 2013 and 2016. This search focuses on electron recoil events at low energies, where leptophilic dark matter interactions are expected to occur and where the DAMA experiment has observed a strong rate modulation for over two decades. By using the innermost volume of the LUX detector and developing robust cuts and corrections, we obtained a stable event rate of 2.3$\pm$0.2~cpd/keV$_{\text{ee}}$/tonne, which is among the lowest in all dark matter experiments. No statistically significant annual modulation was observed in energy windows up to 26~keV$_{\text{ee}}$. Between 2 and 6~keV$_{\text{ee}}$, this analysis demonstrates the most sensitive annual modulation search up to date, with 9.2$蟽$ tension with the DAMA/LIBRA result. We also report no observation of diurnal modulations above 0.2~cpd/keV$_{\text{ee}}$/tonne amplitude between 2 and 6~keV$_{\text{ee}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07113v2-abstract-full').style.display = 'none'; document.getElementById('1807.07113v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-757487 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 062005 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07784">arXiv:1802.07784</a> <span> [<a href="https://arxiv.org/pdf/1802.07784">pdf</a>, <a href="https://arxiv.org/ps/1802.07784">ps</a>, <a href="https://arxiv.org/format/1802.07784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.07.094">10.1016/j.nima.2018.07.094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LUX Trigger Efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/physics?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07784v3-abstract-short" style="display: inline;"> The Large Underground Xenon experiment (LUX) searches for dark matter using a dual-phase xenon detector. LUX uses a custom-developed trigger system for event selection. In this paper, the trigger efficiency, which is defined as the probability that an event of interest is selected for offline analysis, is studied using raw data obtained from both electron recoil (ER) and nuclear recoil (NR) calibr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07784v3-abstract-full').style.display = 'inline'; document.getElementById('1802.07784v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07784v3-abstract-full" style="display: none;"> The Large Underground Xenon experiment (LUX) searches for dark matter using a dual-phase xenon detector. LUX uses a custom-developed trigger system for event selection. In this paper, the trigger efficiency, which is defined as the probability that an event of interest is selected for offline analysis, is studied using raw data obtained from both electron recoil (ER) and nuclear recoil (NR) calibrations. The measured efficiency exceeds 98\% at a pulse area of 90 detected photons, which is well below the WIMP analysis threshold on the S2 pulse area. The efficiency also exceeds 98\% at recoil energies of \mbox{0.2 keV} and above for ER, and \mbox{1.3 keV} and above for NR. The measured trigger efficiency varies between 99\% and 100\% over the fiducial volume of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07784v3-abstract-full').style.display = 'none'; document.getElementById('1802.07784v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06162">arXiv:1802.06162</a> <span> [<a href="https://arxiv.org/pdf/1802.06162">pdf</a>, <a href="https://arxiv.org/format/1802.06162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.112002">10.1103/PhysRevD.97.112002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+LUX+Collaboration"> The LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/physics?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06162v2-abstract-short" style="display: inline;"> Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately meas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06162v2-abstract-full').style.display = 'inline'; document.getElementById('1802.06162v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06162v2-abstract-full" style="display: none;"> Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-16 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46~keV, and we make a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74~keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50\% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06162v2-abstract-full').style.display = 'none'; document.getElementById('1802.06162v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 112002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06039">arXiv:1802.06039</a> <span> [<a href="https://arxiv.org/pdf/1802.06039">pdf</a>, <a href="https://arxiv.org/format/1802.06039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.052002">10.1103/PhysRevD.101.052002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/physics?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Busenitz%2C+J+K">J. K. Busenitz</a>, <a href="/search/physics?searchtype=author&query=Carels%2C+C">C. Carels</a>, <a href="/search/physics?searchtype=author&query=Carlsmith%2C+D+L">D. L. Carlsmith</a>, <a href="/search/physics?searchtype=author&query=Carlson%2C+B">B. Carlson</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06039v2-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7~tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06039v2-abstract-full').style.display = 'inline'; document.getElementById('1802.06039v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06039v2-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7~tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000~live day run using a 5.6~tonne fiducial mass, LZ is projected to exclude at 90\% confidence level spin-independent WIMP-nucleon cross sections above $1.4 \times 10^{-48}$~cm$^{2}$ for a 40~$\mathrm{GeV}/c^{2}$ mass WIMP. Additionally, a $5蟽$ discovery potential is projected reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $2.3 \times 10^{-43}$~cm$^{2}$ ($7.1 \times 10^{-42}$~cm$^{2}$) for a 40~$\mathrm{GeV}/c^{2}$ mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06039v2-abstract-full').style.display = 'none'; document.getElementById('1802.06039v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 052002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.05696">arXiv:1712.05696</a> <span> [<a href="https://arxiv.org/pdf/1712.05696">pdf</a>, <a href="https://arxiv.org/format/1712.05696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.102008">10.1103/PhysRevD.97.102008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration, event reconstruction, data analysis and limits calculation for the LUX dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/physics?searchtype=author&query=Faham%2C+C+H">C. H. Faham</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.05696v1-abstract-short" style="display: inline;"> The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from ${1.4}\times 10^{4}\;\mathrm{kg\,days}$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05696v1-abstract-full').style.display = 'inline'; document.getElementById('1712.05696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.05696v1-abstract-full" style="display: none;"> The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from ${1.4}\times 10^{4}\;\mathrm{kg\,days}$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05696v1-abstract-full').style.display = 'none'; document.getElementById('1712.05696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 102008 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.02752">arXiv:1710.02752</a> <span> [<a href="https://arxiv.org/pdf/1710.02752">pdf</a>, <a href="https://arxiv.org/format/1710.02752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/02/P02001">10.1088/1748-0221/13/02/P02001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Position Reconstruction in LUX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.02752v2-abstract-short" style="display: inline;"> The $(x, y)$ position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.02752v2-abstract-full').style.display = 'inline'; document.getElementById('1710.02752v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.02752v2-abstract-full" style="display: none;"> The $(x, y)$ position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessed with calibration data including ${}^{\mathrm{83m}}$Kr (releasing a total energy of 41.5 keV) and ${}^{3}$H ($尾^-$ with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV). In the horizontal plane, the reconstruction has achieved an $(x, y)$ position uncertainty of $蟽$= 0.82 cm for events of only 200 electroluminescence photons and $蟽$ = 0.17 cm for 4,000 electroluminescence photons. Such signals are associated with electron recoils of energies $\sim$0.25 keV and $\sim$10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface has a horizontal $(x, y)$ uncertainty of 2.13 cm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.02752v2-abstract-full').style.display = 'none'; document.getElementById('1710.02752v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 13, February 2018, P02001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00800">arXiv:1709.00800</a> <span> [<a href="https://arxiv.org/pdf/1709.00800">pdf</a>, <a href="https://arxiv.org/format/1709.00800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.112011">10.1103/PhysRevD.96.112011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-Low Energy Calibration of LUX Detector using $^{127}$Xe Electron Capture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00800v1-abstract-short" style="display: inline;"> We report an absolute calibration of the ionization yields($\textit{Q$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $^{127}$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in sea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00800v1-abstract-full').style.display = 'inline'; document.getElementById('1709.00800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00800v1-abstract-full" style="display: none;"> We report an absolute calibration of the ionization yields($\textit{Q$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $^{127}$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with $^{127}$I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil $\textit{in situ}$ measurements that have been explored in liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00800v1-abstract-full').style.display = 'none'; document.getElementById('1709.00800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 112011 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00095">arXiv:1709.00095</a> <span> [<a href="https://arxiv.org/pdf/1709.00095">pdf</a>, <a href="https://arxiv.org/format/1709.00095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/11/P11022">10.1088/1748-0221/12/11/P11022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D Modeling of Electric Fields in the LUX Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00095v4-abstract-short" style="display: inline;"> This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00095v4-abstract-full').style.display = 'inline'; document.getElementById('1709.00095v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00095v4-abstract-full" style="display: none;"> This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were built on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to $-5.5~渭$C/m$^2$. From our studies, we deduce that the electric field magnitude varied while the mean value of the field of $\sim200$~V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00095v4-abstract-full').style.display = 'none'; document.getElementById('1709.00095v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 12, no. 11, P11022 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.02566">arXiv:1708.02566</a> <span> [<a href="https://arxiv.org/pdf/1708.02566">pdf</a>, <a href="https://arxiv.org/format/1708.02566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.112009">10.1103/PhysRevD.96.112009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{83\textrm{m}}$Kr calibration of the 2013 LUX dark matter search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/physics?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.02566v1-abstract-short" style="display: inline;"> LUX was the first dark matter experiment to use a $^{83\textrm{m}}$Kr calibration source. In this paper we describe the source preparation and injection. We also present several $^{83\textrm{m}}$Kr calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to unders… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02566v1-abstract-full').style.display = 'inline'; document.getElementById('1708.02566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.02566v1-abstract-full" style="display: none;"> LUX was the first dark matter experiment to use a $^{83\textrm{m}}$Kr calibration source. In this paper we describe the source preparation and injection. We also present several $^{83\textrm{m}}$Kr calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02566v1-abstract-full').style.display = 'none'; document.getElementById('1708.02566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 112009 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.09144">arXiv:1703.09144</a> <span> [<a href="https://arxiv.org/pdf/1703.09144">pdf</a>, <a href="https://arxiv.org/format/1703.09144">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> LUX-ZEPLIN (LZ) Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mount%2C+B+J">B. J. Mount</a>, <a href="/search/physics?searchtype=author&query=Hans%2C+S">S. Hans</a>, <a href="/search/physics?searchtype=author&query=Rosero%2C+R">R. Rosero</a>, <a href="/search/physics?searchtype=author&query=Yeh%2C+M">M. Yeh</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+D+Q">D. Q. Huang</a>, <a href="/search/physics?searchtype=author&query=Makkinje%2C+J">J. Makkinje</a>, <a href="/search/physics?searchtype=author&query=Malling%2C+D+C">D. C. Malling</a>, <a href="/search/physics?searchtype=author&query=Pangilinan%2C+M">M. Pangilinan</a>, <a href="/search/physics?searchtype=author&query=Rhyne%2C+C+A">C. A. Rhyne</a>, <a href="/search/physics?searchtype=author&query=Taylor%2C+W+C">W. C. Taylor</a>, <a href="/search/physics?searchtype=author&query=Verbus%2C+J+R">J. R. Verbus</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+J">J. Lee</a>, <a href="/search/physics?searchtype=author&query=Leonard%2C+D+S">D. S. Leonard</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/physics?searchtype=author&query=Cottle%2C+A">A. Cottle</a>, <a href="/search/physics?searchtype=author&query=Lippincott%2C+W+H">W. H. Lippincott</a>, <a href="/search/physics?searchtype=author&query=Markley%2C+D+J">D. J. Markley</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+T+J">T. J. Martin</a>, <a href="/search/physics?searchtype=author&query=Sarychev%2C+M">M. Sarychev</a>, <a href="/search/physics?searchtype=author&query=Tope%2C+T+E">T. E. Tope</a> , et al. (237 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.09144v1-abstract-short" style="display: inline;"> In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.09144v1-abstract-full" style="display: none;"> In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.09144v1-abstract-full').style.display = 'none'; document.getElementById('1703.09144v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">392 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Numbers Two and Three (CD-2 and CD-3) management processes. Report also available by chapter at <a href="http://hep.ucsb.edu/LZ/TDR/">this URL</a></span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LBNL-1007256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02646">arXiv:1702.02646</a> <span> [<a href="https://arxiv.org/pdf/1702.02646">pdf</a>, <a href="https://arxiv.org/format/1702.02646">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2017.09.002">10.1016/j.astropartphys.2017.09.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/physics?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/physics?searchtype=author&query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/physics?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/physics?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02646v5-abstract-short" style="display: inline;"> The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02646v5-abstract-full').style.display = 'inline'; document.getElementById('1702.02646v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02646v5-abstract-full" style="display: none;"> The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of $^{238}$U$_{e}$~$<$1.6~mBq/kg, $^{238}$U$_{l}$~$<$0.09~mBq/kg, $^{232}$Th$_{e}$~$=0.28\pm 0.03$~mBq/kg, $^{232}$Th$_{l}$~$=0.25\pm 0.02$~mBq/kg, $^{40}$K~$<$0.54~mBq/kg, and $^{60}$Co~$<$0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $0.160\pm0.001$(stat)$\pm0.030$(sys) counts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02646v5-abstract-full').style.display = 'none'; document.getElementById('1702.02646v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, accepted for publication in Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02076">arXiv:1610.02076</a> <span> [<a href="https://arxiv.org/pdf/1610.02076">pdf</a>, <a href="https://arxiv.org/format/1610.02076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.012008">10.1103/PhysRevD.95.012008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal yields, energy resolution, and recombination fluctuations in liquid xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02076v1-abstract-short" style="display: inline;"> This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additiona… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02076v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02076v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02076v1-abstract-full" style="display: none;"> This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon re- combination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2-16 keV with $^3$H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02076v1-abstract-full').style.display = 'none'; document.getElementById('1610.02076v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 012008 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07648">arXiv:1608.07648</a> <span> [<a href="https://arxiv.org/pdf/1608.07648">pdf</a>, <a href="https://arxiv.org/format/1608.07648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.021303">10.1103/PhysRevLett.118.021303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results from a search for dark matter in the complete LUX exposure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/physics?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/physics?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a>, <a href="/search/physics?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07648v3-abstract-short" style="display: inline;"> We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07648v3-abstract-full').style.display = 'inline'; document.getElementById('1608.07648v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07648v3-abstract-full" style="display: none;"> We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV/c^2, WIMP-nucleon spin-independent cross sections above 2.2e-46 cm^2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1e-46 cm^2 at 50 GeV/c^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07648v3-abstract-full').style.display = 'none'; document.getElementById('1608.07648v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version includes a combined analysis with previously published LUX results, and matches the version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 021303 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05381">arXiv:1608.05381</a> <span> [<a href="https://arxiv.org/pdf/1608.05381">pdf</a>, <a href="https://arxiv.org/format/1608.05381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/physics?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/physics?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/physics?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/physics?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/physics?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/physics?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/physics?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a> , et al. (82 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05381v2-abstract-short" style="display: inline;"> The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $\textit{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05381v2-abstract-full').style.display = 'inline'; document.getElementById('1608.05381v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05381v2-abstract-full" style="display: none;"> The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $\textit{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. The nuclear recoil energy from the first neutron scatter in the TPC was reconstructed using the measured scattering angle defined by double-scatter neutron events within the active xenon volume. We measured the absolute charge ($Q_{y}$) and light ($L_{y}$) yields at an average electric field of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to 74 keV, respectively. This calibration of the nuclear recoil signal yields will permit the further refinement of liquid xenon nuclear recoil signal models and, importantly for dark matter searches, clearly demonstrates measured ionization and scintillation signals in this medium at recoil energies down to $\mathcal{O}$(1 keV). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05381v2-abstract-full').style.display = 'none'; document.getElementById('1608.05381v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02910">arXiv:1509.02910</a> <span> [<a href="https://arxiv.org/pdf/1509.02910">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> LUX-ZEPLIN (LZ) Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+LZ+Collaboration"> The LZ Collaboration</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/physics?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/physics?searchtype=author&query=Bauer%2C+P">P. Bauer</a>, <a href="/search/physics?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/physics?searchtype=author&query=Bolozdynya%2C+A+I">A. I. Bolozdynya</a>, <a href="/search/physics?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/physics?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a>, <a href="/search/physics?searchtype=author&query=Bunker%2C+R">R. Bunker</a>, <a href="/search/physics?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/physics?searchtype=author&query=Busenitz%2C+J+K">J. K. Busenitz</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02910v2-abstract-short" style="display: inline;"> The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive exp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02910v2-abstract-full').style.display = 'inline'; document.getElementById('1509.02910v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02910v2-abstract-full" style="display: none;"> The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02910v2-abstract-full').style.display = 'none'; document.getElementById('1509.02910v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">278 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Number One (CD-1) management process. Report also available by chapter at http://hep.ucsb.edu/LZ/CDR. This version includes corrections of minor typographic errors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LBNL-190005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.0863">arXiv:1305.0863</a> <span> [<a href="https://arxiv.org/pdf/1305.0863">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spatial Templates for Studies of Patterns and Interactions in Dielectric-Barrier Discharges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alsum%2C+S">Shaun Alsum</a>, <a href="/search/physics?searchtype=author&query=Carter%2C+M">Margeaux Carter</a>, <a href="/search/physics?searchtype=author&query=Hess%2C+A">Andrew Hess</a>, <a href="/search/physics?searchtype=author&query=Lampen%2C+J">Jacob Lampen</a>, <a href="/search/physics?searchtype=author&query=Walhout%2C+M">Matthew Walhout</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.0863v1-abstract-short" style="display: inline;"> We use various electrode layouts to tailor the profile of the electric field in a two-dimensional (2D) dielectric-barrier-discharge system, thereby creating spatial templates for the lateral distribution of discharge filaments. Our discussion focuses on the formation of patterns and the interactions between filaments in several template configurations. Hexagonal and square lattice templates produc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.0863v1-abstract-full').style.display = 'inline'; document.getElementById('1305.0863v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.0863v1-abstract-full" style="display: none;"> We use various electrode layouts to tailor the profile of the electric field in a two-dimensional (2D) dielectric-barrier-discharge system, thereby creating spatial templates for the lateral distribution of discharge filaments. Our discussion focuses on the formation of patterns and the interactions between filaments in several template configurations. Hexagonal and square lattice templates produce patterns reminiscent of the surface phases of adatoms on crystal surfaces. For the square lattice, a lateral displacement between opposing lattice electrodes modifies the pattern-forming behavior of the system. In a stripe-electrode arrangement, each discharge filament terminates in two dissimilar footprints, and the resulting pattern exhibits smectic behavior. A circular ring template establishes periodic boundary conditions and produces a new pattern in which adjacent filament footprints differ in shape. Finally, electrodes featuring isolated and twinned pins are used to investigate the pairing and clustering of filaments. We find that under certain conditions, filament pairs may stabilize at either of two characteristic bonding distances. We also study the range of distances over which a filament will either prevent the ignition of or annihilate nearby filaments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.0863v1-abstract-full').style.display = 'none'; document.getElementById('1305.0863v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>