CINXE.COM

Search results for: porphyromonas gingivalis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: porphyromonas gingivalis</title> <meta name="description" content="Search results for: porphyromonas gingivalis"> <meta name="keywords" content="porphyromonas gingivalis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="porphyromonas gingivalis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="porphyromonas gingivalis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: porphyromonas gingivalis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kah%20Yan%20How">Kah Yan How</a>, <a href="https://publications.waset.org/abstracts/search?q=Peh%20Fern%20Ong"> Peh Fern Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=Keang%20Peng%20Song"> Keang Peng Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Porphyromonas%20gingivalis" title="Porphyromonas gingivalis">Porphyromonas gingivalis</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20diseases" title=" periodontal diseases"> periodontal diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=HmuX" title=" HmuX"> HmuX</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20characterization" title=" protein characterization"> protein characterization</a> </p> <a href="https://publications.waset.org/abstracts/2229/characterization-of-a-novel-hemin-binding-protein-hmux-in-porphyromonas-gingivalis-w50" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Treatment of Porphyromonas gingivalis Induced Gingivitis in Albino Rats with Tetracycline-Loaded Nanochitosan, an Immunohistochemical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20Hanafi%20Said">Rania Hanafi Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Mohamed%20Taha"> Rasha Mohamed Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: By using nanoparticles as drug delivery, it may be possible to avoid the drawbacks of systemic antibiotic dosing, including bacterial antibiotic resistance. The goal of this study was to see how well tetracycline loaded on nanochitosan worked to treat gingival inflammation in albino rats caused by Porphyromonas gingivalis. The study analyzed immunohistochemically the localization of the pro-inflammatory cytokine Interleukin-1beta (IL-1β). Material and methods: In this study, fifty mature male albino rats weighing 150 to 180 grams each were used. They were randomly divided into five groups. We checked for weight changes in rats. Ten male albino rats were included in Group I, which served as a negative control group. Ten rats were included in Group II, where they were exposed once to Porphyromonas. Group III contained ten rats, which were treated the same as Group II plus daily injections of diluted tetracycline powder at the infection sites. Ten rats in Group IV received the same procedure as those in Group II before receiving daily injections of nanochitosan at the injection sites. Finally, Group V, which had ten rats. Following the same protocol as Group II, they received localized injections of tetracycline loaded on nanochitosan once daily. Rats' gingivae were extracted and prepared after they were anesthetized. The biopsies were examined histologically and immunohistochemically by light microscopy. Results: Groups I and V had a nearly normal histological appearance of gingival tissue. In Groups II, III, and IV, degeneration was seen because the epithelial cells were bigger, collagen fibers were pulling away from the lamina propria connective tissue, and the basement membranes had come to an end. There was no discernible difference between groups V and I when they were examined immunohistochemically. Conclusion: The use of nano chitosan as a tetracycline carrier is a novel technique to overcome the drug's rising level of resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Immunohistochemistry" title="Immunohistochemistry">Immunohistochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanochitosan" title=" Nanochitosan"> Nanochitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyromonas%20gingivitis" title=" porphyromonas gingivitis"> porphyromonas gingivitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetracycline" title=" Tetracycline"> Tetracycline</a> </p> <a href="https://publications.waset.org/abstracts/163221/treatment-of-porphyromonas-gingivalis-induced-gingivitis-in-albino-rats-with-tetracycline-loaded-nanochitosan-an-immunohistochemical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Immunohistochemical Study on the Effect of Tetracycline Loaded on Nanochitosan in the Treatment of Induced Infection with Porphyromonas gingivalis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20Hanafi%20Mahmoud%20Said">Rania Hanafi Mahmoud Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Mohamed%20Taha"> Rasha Mohamed Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The use of nanoparticles for medication delivery offers the possibility of avoiding the negative effects of systemic antibiotic dosing as well as antibiotic resistance in bacteria. Aim of the study: The goal of this study was to see the efficiency of local administration of tetracycline loaded on nano chitosan in the treatment of the induced infection of the albino rats gingiva with Porphyromonas gingivalis through Immunohistochemical localization of Interleukin-1beta (IL-1β) as a proinflammatory cytokine.Material and methods: Fifty adult male albino rats 150 - 180 grams body weight used in this investigation. Any changes in rats’ weights were detected. The male albino rats were divided haphazardly into five groups as Group I involved ten rats; they served as a normal negative control group. Group II involved ten rats; they were infected once with P.gingivalis that was injected into the interdental gingiva. Group III involved ten rats; they were subjected to the same procedure as group II and then to daily injection at the site of infection with diluted tetracycline powder. Group IV involved ten rats; they were subjected to the same procedure as group II and then to daily injection of nano Chitosan at the site of injection. Group V involved ten rats; they were subjected to the same procedure as group II and then to daily injection of tetracycline loaded on nano Chitosan at the site of injection. After rats had been euthanized, the extraction and preparation of their gingiva were carried out in order to examine histologically and immunohistochemically. Results: The light microscopic results of groups II, III, and IV showed degeneration represented by swollen epithelial cells, collagen fibers dissociation of the connective tissue of lamina propria, and areas of basement membrane discontinuation, while groups I and V showed an almost normal histological picture of gingival tissue. Immunohistochemical results showed a significant difference in Group II and III when compared to control. No significant difference appears in group V when compared to the control (group I). Conclusion: Using nanochitosan as a carrier for tetracycline is a new technology to get over the increasing resistance of tetracycline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title="immunohistochemistry">immunohistochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=P.gingivalis" title=" P.gingivalis"> P.gingivalis</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-chitosan" title=" nano-chitosan"> nano-chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline" title=" tetracycline"> tetracycline</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontitis" title=" periodontitis"> periodontitis</a> </p> <a href="https://publications.waset.org/abstracts/152888/immunohistochemical-study-on-the-effect-of-tetracycline-loaded-on-nanochitosan-in-the-treatment-of-induced-infection-with-porphyromonas-gingivalis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Correlation between Total Polyphenol Content and Antimicrobial Activity of Opuntia ficus indica Extracts against Periodontopathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Chikhi-Chorfi">N. Chikhi-Chorfi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Arbia"> L. Arbia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenia"> S. Zenia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.Lounici"> H.Lounici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Opuntia ficus-indica belongs to the Cactaceae family. The cactus is mainly cultivated for its fruit (prickly pear) that, eaten after pealing, is sweet and juicy, and rich in nutritional compounds, such as ascorbic acid and polyphenols. Different parts of O. ficus-indica are used in the traditional medicine of several countries: the cladodes are utilized to reduce serum cholesterol level and blood pressure, for treatment of ulcers, rheumatic pain, wounds, fatigue, capillary fragility, and liver conditions. This original study, investigate the effect of polyphenols of O. ficus indica (cactus) cladodes against periodontal bacteria collected from patients with periodontitis. The quantitative analysis of total polyphenols (TPP) was determined with Follin-Ciocalteu method. Different concentrations of extracts of O. ficus indica were tested by the disk method on two bacterial strains: Porphyromonas gingivalis and Prevotella intermedia responsible for periodontal disease. The results showed a good correlation between the concentration of total polyphenols and the antibacterial activity of the extracts of Opuntia ficus indica against P. gingivalis and P. intermedia with R² = 0.94 and R² = 0.90 respectively. This observation suggests that these extracts could be used in the treatment and prevention of periodontitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontal%20disease" title="periodontal disease">periodontal disease</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20gingivalis" title=" P. gingivalis"> P. gingivalis</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20intermedia" title=" P. intermedia"> P. intermedia</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus%20indica" title=" Opuntia ficus indica"> Opuntia ficus indica</a> </p> <a href="https://publications.waset.org/abstracts/102269/correlation-between-total-polyphenol-content-and-antimicrobial-activity-of-opuntia-ficus-indica-extracts-against-periodontopathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effect of Salvadora Persica Gel on Clinical and Microbiological Parameters of Chronic Periodontitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Hyder">Tahira Hyder</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Quraeshi"> Saima Quraeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohaib%20Akram"> Zohaib Akram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salvadora Persica (SP) is known to have anti-inflammatory, antioxidant, anti-coagulant and anti-bacterial properties that may provide therapeutic benefits in the treatment of chronic periodontitis (CP). The current clinical trial was designed to investigate the clinical and anti-microbial effects of SP gel as an adjunct to scaling and root planning (SRP) in subjects with generalized CP. Sixty-six subjects with CP were randomized allocated into two groups: SRP + SP gel (test group) and SRP only (control group). Clinical parameters (periodontal pocket depth, gingival recession, clinical attachment level, bleeding score and plaque score) were recorded at baseline before SRP and at 6 weeks. At baseline and 6 weeks subgingival plaque samples were collected and periodontopathogen Porphyromonas Gingivalis (Pg) quantified using Real-time Polymerase Chain Reaction (RT-PCR). Both therapies reduced the mean periodontal pocket depth (PPD), plaque score (PS) and bleeding score (BOP) and improved the mean clinical attachment level (CAL) between baseline and 6 weeks. In subjects receiving adjunctive SP gel a statistically significant improvement was observed in BOP at follow-up compared to control group (15.01±3.47% and 22.81±6.81% respectively, p=0.001), while there was no statistically significant difference in periodontal pocket depth, gingival recession, clinical attachment level and plaque score between both groups. The test group displayed significantly greater Pg reduction compared to the control group after 6 weeks. The current study establishes that local delivery of SP gel into periodontal pocket in CP stimulated a significant reduction in bacteria Pg level and an improvement in gingival health, as evident from a reduced bleeding score, when used as an adjunct to SRP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miswak" title="miswak">miswak</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20and%20root%20planing" title=" scaling and root planing"> scaling and root planing</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyromonas%20gingivalis" title=" porphyromonas gingivalis"> porphyromonas gingivalis</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20periodontitis" title=" chronic periodontitis"> chronic periodontitis</a> </p> <a href="https://publications.waset.org/abstracts/157808/effect-of-salvadora-persica-gel-on-clinical-and-microbiological-parameters-of-chronic-periodontitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Enhancing Root Canal Therapy with MTA and Tetracycline-Loaded Nanochitosan: An Approach for Infected Root Canal Treatment in Dogs (in-vivo Animal Study)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rania%20Hanafi%20Mahmoud%20Said">Rania Hanafi Mahmoud Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Mohamed%20Taha"> Rasha Mohamed Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: A recent study has explored the potential of an approach to treating infected root canals using a combination of Mineral Trioxide Aggregate (MTA) and Tetracycline-loaded Nanochitosan. Material and methods: Forty dogs were included in the study, with infected periapical areas induced by leaving access openings in their teeth for four months. Bacteriological samples from the infected root canals were collected and managed anaerobically to identify and count the different microorganisms present. The most common microorganisms detected were Prevotella oris, Fusobacterium nucleatum, Streptococcus viridans, Enterococcus faecalis, Clostridium subterminale, Porphyromonas gingivalis, and Peptostreptococcus anaerobius. The dogs were divided into four groups based on the sealant used to treat the infected periapical areas: Group I: Negative control (no treatment) Group II: Positive control (MTA only) Group III: MTA + tetracycline Group IV: MTA + tetracycline loaded on nanochitosan Results: Periapical areas in Group IV showed significantly more bone healing than those in Groups I, II, and III. The newly formed bone was evaluated radiographically, histologically, and immunohistochemically using Osteopontin (OSP) antibodies. Data collected was statistically analysed using SPSS software at a 0.05 significance level. Conclusion: The study concluded that the combined use of Tetracycline-loaded Nanochitosan and MTA presents a promising approach for the treatment of infected root canals. The potent antimicrobial activity of Tetracycline-loaded Nanochitosan, along with the biocompatibility and desirable properties of MTA, may synergistically contribute to improved clinical outcomes in endodontic therapy. This study has important implications for the clinical management of infected root canals. The combination of Tetracycline-loaded Nanochitosan and MTA could provide a more effective and efficient means of treating these challenging cases. Further research is needed to confirm these findings in humans and to optimize the treatment protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20trioxide%20aggregate" title="mineral trioxide aggregate">mineral trioxide aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline-loaded%20nanochitosan" title=" tetracycline-loaded nanochitosan"> tetracycline-loaded nanochitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=periapical%20infection" title=" periapical infection"> periapical infection</a>, <a href="https://publications.waset.org/abstracts/search?q=osteopontine" title=" osteopontine"> osteopontine</a> </p> <a href="https://publications.waset.org/abstracts/175171/enhancing-root-canal-therapy-with-mta-and-tetracycline-loaded-nanochitosan-an-approach-for-infected-root-canal-treatment-in-dogs-in-vivo-animal-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuliani%20Mahmood">Zuliani Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Thirumulu%20Ponnuraj%20Kannan"> Thirumulu Ponnuraj Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yean%20Yean%20Chan"> Yean Yean Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Salahddin%20A.%20Al-Hudhairy"> Salahddin A. Al-Hudhairy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20childhood%20caries" title="early childhood caries">early childhood caries</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypic%20identification" title=" genotypic identification"> genotypic identification</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20bacteria" title=" oral bacteria"> oral bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA" title=" 16S rRNA"> 16S rRNA</a> </p> <a href="https://publications.waset.org/abstracts/51882/genotypic-identification-of-oral-bacteria-using-16s-rrna-in-children-with-and-without-early-childhood-caries-in-kelantan-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Pro-Reparative Effect of Vasoactive Intestinal Peptide in Chronic Inflammatory Osteolytic Periapical Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20C.%20S.%20Azevedo">Michelle C. S. Azevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Priscila%20M.%20Colavite"> Priscila M. Colavite</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolina%20F.%20Francisconi"> Carolina F. Francisconi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20P.%20Trombone"> Ana P. Trombone</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20P.%20Garlet"> Gustavo P. Garlet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> VIP (vasoactive intestinal peptide) know as a potential protective factor in the view of its marked immunosuppressive properties. In this work, we investigated a possible association of VIP with the clinical status of experimental periapical granulomas and the association with expression markers in the lesions potentially associated with periapical lesions pathogenesis. C57BL/6WT mice were treated or not with recombinant VIP. Animals with active/progressive (N=40), inactive/stable (N=70) periapical granulomas and controls (N=50) were anesthetized and the right mandibular first molar was surgically opened, allowing exposure of dental pulp. Endodontic pathogenic bacterial strains were inoculated: Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces viscosus, and Fusobacterium nucleatum subsp. polymorphum. The cavity was not sealed after bacterial inoculation. During lesion development, animals were treated or not with recombinant VIP 3 days post infection. Animals were killed after 3, 7, 14, and 21 days of infection and the jaws were dissected. The extraction of total RNA from periodontal tissues was performed and the integrity of samples was checked. qPCR reaction using TaqMan chemistry with inventoried primers were performed in ViiA7 equipment. The results, depicted as the relative levels of gene expression, were calculated in reference to GAPDH and β-actin expression. Periodontal tissues from upper molars were vested and incubated supplemented RPMI, followed by processing with 0.05% DNase. Cell viability and couting were determined by Neubauer chamber analysis. For flow cytometry analysis, after cell counting the cells were stained with the optimal dilution of each antibody; (PE)-conjugated and (FITC)-conjugated antibodies against CD4, CD25, FOXP3, IL-4, IL-17 and IFN-γ antibodies, as well their respective isotype controls. Cells were analyzed by FACScan and CellQuest software. Results are presented as the number of cells in the periodontal tissues or the number of positive cells for each marker in the CD4+FOXp3+, CD4+IL-4+, CD4+IFNg+ and CD4+IL-17+ subpopulations. The levels mRNA were measured by qPCR. The VIP expression was predominated in inactive lesions, as well part of the clusters of cytokine/Th markers identified as protective factors and a negative correlation between VIP expression and lesion evolution was observed. A quantitative analysis of IL1β, IL17, TNF, IFN, MMP2, RANKL, OPG, IL10, TGFβ, CTLA4, COL5A1, CTGF, CXCL11, FGF7, ITGA4, ITGA5, SERP1 and VTN expression was measured in experimental periapical lesions treated with VIP 7 and 14 days after lesion induction and healthy animals. After 7 days, all targets presented a significate increase in comparison to untreated animals. About migration kinetics, profile of chemokine receptors expression of TCD4+ subsets and phenotypic analysis of Tregs, Th1, Th2 and Th17 cells during the course of experimental periodontal disease evaluated by flow cytometry and depicted as the number of positive cells for each marker. CD4+IFNg+ and CD4+FOXp3+ cells migration were significate increased 7 days post VIP treatment. CD4+IL17+ cells migration were significate increased 7 and 14 days post VIP treatment, CD4+IL4+ cells migration were significate increased 14 and 21 days post VIP treatment compared to the control group. In conclusion, our experimental data support VIP involvement in determining the inactivity of periapical lesions. Financial support: FAPESP #2015/25618-2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20inflammation" title="chronic inflammation">chronic inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=osteolytic%20lesions" title=" osteolytic lesions"> osteolytic lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=VIP%20%28Vasoactive%20Intestinal%20Peptide%29" title=" VIP (Vasoactive Intestinal Peptide)"> VIP (Vasoactive Intestinal Peptide)</a> </p> <a href="https://publications.waset.org/abstracts/76218/the-pro-reparative-effect-of-vasoactive-intestinal-peptide-in-chronic-inflammatory-osteolytic-periapical-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10