CINXE.COM

Search results for: undrained shear strength

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: undrained shear strength</title> <meta name="description" content="Search results for: undrained shear strength"> <meta name="keywords" content="undrained shear strength"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="undrained shear strength" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="undrained shear strength"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4652</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: undrained shear strength</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4382</span> A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsun%20Kim">Minsun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Sun%20Choi"> Ki-Sun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jee%20Lee"> Hyun-Jee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chan%20You"> Young-Chan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20for%20extension" title="design for extension">design for extension</a>, <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title=" performance-based design"> performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=remodeling" title=" remodeling"> remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20frame" title=" shear wall frame"> shear wall frame</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/79730/a-study-on-performance-based-design-analysis-for-vertical-extension-of-apartment-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4381</span> Detailed Microzonation Studies around Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aydin">A. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Akyol"> E. Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Soyatik"> N. Soyatik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20microzonation" title="seismic microzonation">seismic microzonation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20management" title=" land use management"> land use management</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20refraction" title=" seismic refraction"> seismic refraction</a> </p> <a href="https://publications.waset.org/abstracts/12346/detailed-microzonation-studies-around-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4380</span> Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Martin%20Torrejon">Virginia Martin Torrejon</a>, <a href="https://publications.waset.org/abstracts/search?q=Binjie%20Wu"> Binjie Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatine%20gelation%20kinetics" title="gelatine gelation kinetics">gelatine gelation kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatine-SDS%20interactions" title=" gelatine-SDS interactions"> gelatine-SDS interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatine-surfactant%20hydrogels" title=" gelatine-surfactant hydrogels"> gelatine-surfactant hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20and%20gelling%20temperature%20of%20gelatine%20gels" title=" melting and gelling temperature of gelatine gels"> melting and gelling temperature of gelatine gels</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology%20of%20gelatine%20hydrogels" title=" rheology of gelatine hydrogels"> rheology of gelatine hydrogels</a> </p> <a href="https://publications.waset.org/abstracts/147971/effect-of-curing-temperature-on-the-textural-and-rheological-of-gelatine-sds-hydrogels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4379</span> Experimental and Analytical Study of Various Types of Shear Connector Used for Cold-Formed Steel-Ferrocement Composite Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Alhajri">Talal Alhajri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20M.%20Tahir"> Mahmood M. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alenezi"> Khaled Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ragaee"> Mohamad Ragaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the experimental tests carried out to evaluate the behaviour of different types of shear connectors proposed for cold formed steel (CFS) section integrated with ferrocement slab as potential used for composite beam. Ten push-out test specimens of cold-formed steel lipped channel sections connected with ferrocement slab were tested. Three types of shear connectors were studied comprised of bolts, self-drilling-screw and bar angle. The connection behavior is analysed in terms of its load-slip relationship and the failure mode. The parametric studies were performed to investigate the effect on the shear connector’s capacity by varying the number of layers of wire mesh used in ferrocement slab and types of shear connector used. An analytical analysis using ANSYS program and theoretical analysis (Eurocode 4) were carried out to verify the experiment results. The results show that the experimental, theoretical, and numerical values proved to have good agreement with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title=" composite beam"> composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title=" ferrocement"> ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=push-out%20test" title=" push-out test"> push-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connector" title=" shear connector"> shear connector</a> </p> <a href="https://publications.waset.org/abstracts/14006/experimental-and-analytical-study-of-various-types-of-shear-connector-used-for-cold-formed-steel-ferrocement-composite-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4378</span> Punching Shear Strengthening of Reinforced Concrete Flat Slabs Using Internal Square Patches of Carbon Fiber Reinforced Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malik%20Assi">Malik Assi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a strengthening technique for enhancing the punching shear resistance of concrete flat slabs. Internal square patches of CFRP were centrally installed inside 450*450mm concrete panels during casting at a chosen distance from the tension face to produce six simply supported samples. The dimensions of those patches ranged from 50*50mm to 360*360mm. All the examined slabs contained the same amount of tensile reinforcement, had identical dimensions, were designed according to the American Concrete Institute code (ACI) and tested to failure. Compared to the control unstrengthened spacemen, all the strengthened slabs have shown an enhancement in punching capacity and stiffness. This enhancement has been found to be proportional to the area of the installed CFRP patches. In addition to the reasonably enhanced stiffness and punching shear, this strengthening technique can change the slab failure mode from shear to flexural. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20patches" title="CFRP patches">CFRP patches</a>, <a href="https://publications.waset.org/abstracts/search?q=Flat%20slabs" title=" Flat slabs"> Flat slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexural" title=" Flexural"> Flexural</a>, <a href="https://publications.waset.org/abstracts/search?q=Stiffness" title=" Stiffness"> Stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=Punching%20shear" title=" Punching shear"> Punching shear</a> </p> <a href="https://publications.waset.org/abstracts/66194/punching-shear-strengthening-of-reinforced-concrete-flat-slabs-using-internal-square-patches-of-carbon-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4377</span> Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Shah">A. J. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Sahu"> Neeraj Kumar Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title="high strength concrete">high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20flexural%20strength%20of%20RPC" title=" the flexural strength of RPC"> the flexural strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20RPC" title=" compressive strength of RPC"> compressive strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/96189/experimental-studies-on-reactive-powder-concrete-containing-fly-ash-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4376</span> Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20Lobmann">Michael T. Lobmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilla%20Wellstein"> Camilla Wellstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Zerbe"> Stefan Zerbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grassland" title="grassland">grassland</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20root%20effect" title=" horizontal root effect"> horizontal root effect</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain" title=" mountain"> mountain</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20erosion" title=" shallow erosion"> shallow erosion</a> </p> <a href="https://publications.waset.org/abstracts/91594/measurement-of-in-situ-horizontal-root-tensile-strength-of-herbaceous-vegetation-for-improved-evaluation-of-slope-stability-in-the-alps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4375</span> Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Elamary">Ahmed S. Elamary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Hӧglund theory. This paper will be concerned with predicting the USR using Hӧglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety-six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20shear%20resistance" title="ultimate shear resistance">ultimate shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20girder" title=" plate girder"> plate girder</a>, <a href="https://publications.waset.org/abstracts/search?q=H%D3%A7glund%E2%80%99s%20theory" title=" Hӧglund’s theory"> Hӧglund’s theory</a>, <a href="https://publications.waset.org/abstracts/search?q=EC3" title=" EC3"> EC3</a> </p> <a href="https://publications.waset.org/abstracts/2897/ultimate-shear-resistance-of-plate-girders-part-2-hoglund-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4374</span> Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamika%20Sahu">Anamika Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MASW" title="MASW">MASW</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=petrophysical" title=" petrophysical"> petrophysical</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title=" site characterization"> site characterization</a> </p> <a href="https://publications.waset.org/abstracts/151537/relationships-between-the-petrophysical-and-mechanical-properties-of-rocks-and-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4373</span> Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Gyansah">L. Gyansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanfang%20Shen"> Yanfang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqiang%20Wang"> Jiqiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianying%20Xiong"> Tianying Xiong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spraying" title="cold spraying">cold spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20deformation" title=" hot deformation"> hot deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20temperature" title=" deformation temperature"> deformation temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechancal%20properties" title=" thermomechancal properties"> thermomechancal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC%2FAl%20composite" title=" SiC/Al composite"> SiC/Al composite</a> </p> <a href="https://publications.waset.org/abstracts/159583/thermomechanical-deformation-response-in-cold-sprayed-sicpal-composites-strengthening-microstructure-characterization-and-thermomechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4372</span> Recurring as a Means of Partial Strength Recovery of Concrete Subjected to Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shree%20Laxmi%20Prashant">Shree Laxmi Prashant</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhash%20C.%20Yaragal"> Subhash C. Yaragal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Babu%20Narayan"> K. S. Babu Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is found to undergo degradation when subjected to elevated temperatures and loose substantial amount of its strength. The loss of strength in concrete is mainly attributed to decomposition of C-S-H and release of physically and chemically bound water, which begins when the exposure temperature exceeds 100°C. When such a concrete comes in contact with moisture, the cement paste is found rehydrate and considerable amount of strength lost is found to recover. This paper presents results of an experimental program carried out to investigate the effect of recuring on strength gain of OPC concrete specimens subjected to elevated temperatures from 200°C to 800°C, which were subjected to retention time of two hours and four hours at the designated temperature. Strength recoveries for concrete subjected to 7 designated elevated temperatures are compared. It is found that the efficacy of recuring as a measure of strength recovery reduces with increase in exposure temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title="elevated temperature">elevated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=recuring" title=" recuring"> recuring</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20recovery" title=" strength recovery"> strength recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/23449/recurring-as-a-means-of-partial-strength-recovery-of-concrete-subjected-to-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4371</span> Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safitri%20Nur%20Wulandari">Safitri Nur Wulandari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ivan%20Adi%20Perdana"> M. Ivan Adi Perdana</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathisto%20L.%20Panuntun%20Unggul"> Prathisto L. Panuntun Unggul</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dary%20Wira%20Mahadika"> R. Dary Wira Mahadika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20cracks" title="building cracks">building cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=influence%20area" title=" influence area"> influence area</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement%20plate" title=" settlement plate"> settlement plate</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20formula" title=" empirical formula"> empirical formula</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a> </p> <a href="https://publications.waset.org/abstracts/54191/comparative-settlement-analysis-on-the-under-of-embankment-with-empirical-formulas-and-settlement-plate-measurement-for-reducing-building-crack-around-of-embankments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4370</span> Using Micropiles to Improve the Anzali&#039;s Saturated Loose Silty Sand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini">S. A. Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamidzadeh"> M. Hamidzadeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali&#39;s saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran&#39;s coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title="soil improvement">soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=silty%20sand" title=" silty sand"> silty sand</a>, <a href="https://publications.waset.org/abstracts/search?q=micropiles" title=" micropiles"> micropiles</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT" title=" SPT"> SPT</a>, <a href="https://publications.waset.org/abstracts/search?q=PLT" title=" PLT"> PLT</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/73978/using-micropiles-to-improve-the-anzalis-saturated-loose-silty-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4369</span> Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ralph%20Gruber">Ralph Gruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Hafner"> Martina Hafner</a>, <a href="https://publications.waset.org/abstracts/search?q=Theresia%20Greunz"> Theresia Greunz</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Reisecker"> Christian Reisecker</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Stifter"> David Stifter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observed <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloys" title="aluminium alloys">aluminium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20film%20lubricants" title=" dry film lubricants"> dry film lubricants</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20bonding" title=" adhesive bonding"> adhesive bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/154769/influence-of-dry-film-lubricants-on-bond-strength-and-corrosion-behaviour-of-6xxx-aluminium-alloy-adhesive-joints-for-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4368</span> Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Solemanifar">Armin Solemanifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Wilkinson"> Arthur Wilkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinjalkumar%20Patel"> Kinjalkumar Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title="hybrid composite">hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20fibre" title=" thermoplastic fibre"> thermoplastic fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title=" damage tolerance"> damage tolerance</a> </p> <a href="https://publications.waset.org/abstracts/50246/damage-tolerance-of-composites-containing-hybrid-carbon-innegra-fibre-reinforcements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4367</span> Calibration of Resistance Factors for Reliability-Based Design of Driven Piles Considering Unsaturated Soil Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Amin%20Tutunchian">Mohammad Amin Tutunchian</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedram%20Roshani"> Pedram Roshani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rezvani"> Reza Rezvani</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20%C3%81ngel%20Infante%20Sedano"> Julio Ángel Infante Sedano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The highly recommended approach to design, known as the load and resistance factor design (LRFD) method, employs the geotechnical resistance factor (GRF) for shaping pile foundation designs. Within the standard process for designing pile foundations, geotechnical engineers commonly adopt a design strategy rooted in saturated soil mechanics (SSM), often disregarding the impact of unsaturated soil behavior. This oversight within the design procedure leads to the omission of the enhancement in shear strength exhibited by unsaturated soils, resulting in a more cautious outcome in design results. This research endeavors to present a methodology for fine-tuning the GRF used for axially loaded driven piles in Winnipeg, Canada. This is achieved through the application of a well-established probabilistic approach known as the first-order second moment (FOSM) method while also accounting for the influence of unsaturated soil behavior. The findings of this study demonstrate that incorporating the influence of unsaturated conditions yields an elevation in projected bearing capacity and recommends higher GRF values in accordance with established codes. Additionally, a novel factor referred to as phy has been introduced to encompass the impact of saturation conditions in the calculation of pile bearing capacity, as guided by prevalent static analysis techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soils" title="unsaturated soils">unsaturated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=LRFD" title=" LRFD"> LRFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FOSM" title=" FOSM"> FOSM</a>, <a href="https://publications.waset.org/abstracts/search?q=GRF" title=" GRF"> GRF</a> </p> <a href="https://publications.waset.org/abstracts/171224/calibration-of-resistance-factors-for-reliability-based-design-of-driven-piles-considering-unsaturated-soil-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4366</span> Adhesive Based upon Polyvinyl Alcohol And Chemical Modified Oca (Oxalis tuberosa) Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Borja">Samantha Borja</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Valle"> Vladimir Valle</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Molina"> Pamela Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of adhesives from renewable raw materials attracts the attention of the scientific community, due to it promises the reduction of the dependence with materials derived from oil. This work proposes the use of modified 'oca (Oxalis tuberosa)' starch and polyvinyl alcohol (PVA) in the elaboration of adhesives for lignocellulosic substrates. The investigation focused on the formulation of adhesives with 3 different PVA:starch (modified and native) ratios (of 1,0:0,33; 1,0:1,0; 1,0:1,67). The first step to perform it was the chemical modification of starch through acid hydrolysis and a subsequent urea treatment to get carbamate starch. Then, the adhesive obtained was characterized in terms of instantaneous viscosity, Fourier-transform infrared spectroscopy (FTIR) and shear strength. The results showed that viscosity and mechanical tests exhibit data with the same tendency in relation to the native and modified starch concentration. It was observed that the data started to reduce its values to a certain concentration, where the values began to grow. On the other hand, two relevant bands were found in the FTIR spectrogram. The first in 3300 cm⁻¹ of OH group with the same intensity for all the essays and the other one in 2900 cm⁻¹, belonging to the group of alkanes with a different intensity for each adhesive. On the whole, the ratio PVA:starch (1:1) will not favor crosslinking in the adhesive structure and causes the viscosity reduction, whereas, in the others ones, the viscosity is higher. It was also observed that adhesives made with modified starch had better characteristics, but the adhesives with high concentrations of native starch could equal the properties of the adhesives made with low concentrations of modified starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol" title="polyvinyl alcohol">polyvinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20modification" title=" chemical modification"> chemical modification</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/114442/adhesive-based-upon-polyvinyl-alcohol-and-chemical-modified-oca-oxalis-tuberosa-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4365</span> Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebaili%20Bachir">Kebaili Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive" title="compressive">compressive</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled" title=" recycled"> recycled</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/86475/effect-of-concrete-waste-quality-on-the-compressive-strength-of-recycled-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4364</span> Investigation on the Behavior of Conventional Reinforced Coupling Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akash%20K.%20Walunj">Akash K. Walunj</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipendu%20Bhunia"> Dipendu Bhunia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Gupta"> Samarth Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhat%20Gupta"> Prabhat Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20studies" title="design studies">design studies</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20model%28s%29" title=" computational model(s)"> computational model(s)</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study%2Fstudies" title=" case study/studies"> case study/studies</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20beam" title=" coupling beam"> coupling beam</a> </p> <a href="https://publications.waset.org/abstracts/3310/investigation-on-the-behavior-of-conventional-reinforced-coupling-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4363</span> Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Soni">D. K. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20rocks" title="sedimentary rocks">sedimentary rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20test" title=" split tensile test"> split tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20rate" title=" deformation rate"> deformation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20rate" title=" saturation rate"> saturation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20stone" title=" sand stone"> sand stone</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20stone" title=" lime stone"> lime stone</a> </p> <a href="https://publications.waset.org/abstracts/7251/effect-of-saturation-and-deformation-rate-on-split-tensile-strength-for-various-sedimentary-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4362</span> Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punit%20Kumar">Punit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Kumar"> Niraj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EHL" title="EHL">EHL</a>, <a href="https://publications.waset.org/abstracts/search?q=Carreau" title=" Carreau"> Carreau</a>, <a href="https://publications.waset.org/abstracts/search?q=shear-thinning" title=" shear-thinning"> shear-thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude" title=" amplitude"> amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelength" title=" wavelength"> wavelength</a> </p> <a href="https://publications.waset.org/abstracts/6356/surface-roughness-effects-in-pure-sliding-ehl-line-contacts-with-carreau-type-shear-thinning-lubricants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">731</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4361</span> Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mohammadi%20Khujin">Hassan Mohammadi Khujin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highly%20porous%20scaffolds" title="highly porous scaffolds">highly porous scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements%20analysis" title=" finite elements analysis"> finite elements analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/159662/effective-stiffness-permeability-and-reduced-wall-shear-stress-of-highly-porous-tissue-engineering-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4360</span> Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Abbas%20Mojtabavi">Seyyed Abbas Mojtabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Fatzaneh%20Moghadam"> Mojtaba Fatzaneh Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mahdavi"> Masoud Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5&times;3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20plate%20shear%20wall" title="steel plate shear wall">steel plate shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=abacus%20software" title=" abacus software"> abacus software</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element" title=" boundary element"> boundary element</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20structural%20improvement" title=" seismic structural improvement"> seismic structural improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=von%20misses%20stress" title=" von misses stress"> von misses stress</a> </p> <a href="https://publications.waset.org/abstracts/126768/limited-component-evaluation-of-the-effect-of-regular-cavities-on-the-sheet-metal-element-of-the-steel-plate-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4359</span> Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20I.%20Arafa">Alaa I. Arafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemdan%20O.%20A.%20Said.%20Marwa%20A.%20M.%20Ali"> Hemdan O. A. Said. Marwa A. M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm<sup>2</sup>); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 <sup>o</sup>C); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete%20beams" title=" high strength concrete beams"> high strength concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20loading" title=" monotonic loading"> monotonic loading</a> </p> <a href="https://publications.waset.org/abstracts/54480/effect-of-fire-on-structural-behavior-of-normal-and-high-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4358</span> A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duy%20Cuong%20Nguyen">Duy Cuong Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Makke"> Ali Makke</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Montay"> Guillaume Montay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp" title=" hemp"> hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out" title=" pull-out"> pull-out</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/29372/a-pull-out-fibermatrix-interface-characterization-of-vegetal-fibers-reinforced-thermoplastic-polymer-composites-the-influence-of-the-processing-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4357</span> Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuechao%20Lei">Yuechao Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang"> Lei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interlayer%20contact" title="interlayer contact">interlayer contact</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20relative%20displacement" title=" effective relative displacement"> effective relative displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation%20technology" title=" digital image correlation technology"> digital image correlation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20pavement%20structure" title=" composite pavement structure"> composite pavement structure</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20overlay" title=" asphalt overlay"> asphalt overlay</a> </p> <a href="https://publications.waset.org/abstracts/184003/investigation-of-interlayer-shear-effects-in-asphalt-overlay-on-existing-rigid-airfield-pavement-using-digital-image-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4356</span> Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumia%20Merat">Soumia Merat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Djerbal"> Lynda Djerbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Bahar"> Ramdane Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Amin%20Benbouras"> Mohammed Amin Benbouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title="empirical models">empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title=" standard penetration test"> standard penetration test</a> </p> <a href="https://publications.waset.org/abstracts/77386/use-of-statistical-correlations-for-the-estimation-of-shear-wave-velocity-from-standard-penetration-test-n-values-case-study-of-algiers-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4355</span> Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Alexander%20Eder">Martin Alexander Eder</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Semenov"> Sergei Semenov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial%20stress" title=" multiaxial stress"> multiaxial stress</a> </p> <a href="https://publications.waset.org/abstracts/100342/multiaxial-stress-based-high-cycle-fatigue-model-for-adhesive-joint-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4354</span> Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aldossari">K. M. Aldossari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shannag"> M. J. Shannag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/2834/effect-of-steel-fibers-on-flexural-behavior-of-normal-and-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4353</span> Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Mu%C3%B1oz">Rafael Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Melchor"> Juan Melchor</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicia%20Valera"> Alicia Valera</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Peralta"> Laura Peralta</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Rus"> Guillermo Rus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cervix%20ripening" title="cervix ripening">cervix ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=preterm%20birth" title=" preterm birth"> preterm birth</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography" title=" shear wave elastography"> shear wave elastography</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue" title=" soft tissue"> soft tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20wave" title=" torsional wave"> torsional wave</a> </p> <a href="https://publications.waset.org/abstracts/41021/computational-feasibility-study-of-a-torsional-wave-transducer-for-tissue-stiffness-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=155">155</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=156">156</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10