CINXE.COM

Search results for: vertical velocity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vertical velocity</title> <meta name="description" content="Search results for: vertical velocity"> <meta name="keywords" content="vertical velocity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vertical velocity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vertical velocity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2607</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vertical velocity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2607</span> The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Ayasha">Nadine Ayasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hail" title="hail">hail</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20weather" title=" extreme weather"> extreme weather</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20velocity" title=" vertical velocity"> vertical velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=streamline" title=" streamline"> streamline</a> </p> <a href="https://publications.waset.org/abstracts/144479/the-impact-of-vertical-velocity-parameter-conditions-and-its-relationship-with-weather-parameters-in-the-hail-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2606</span> Velocity Distribution in Open Channels with Sand: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Keramaris">E. Keramaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title="particle image velocimetry">particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20bed" title=" sand bed"> sand bed</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/46893/velocity-distribution-in-open-channels-with-sand-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2605</span> Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Dalakishvili">Giorgi Dalakishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Goderdzi%20G.%20Didebulidze"> Goderdzi G. Didebulidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Todua"> Maya Todua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-homogeneous" title="in-homogeneous">in-homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=sporadic%20E" title=" sporadic E"> sporadic E</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosphere" title=" thermosphere"> thermosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/128943/analytical-and-numerical-study-of-formation-of-sporadic-e-layer-with-taking-into-account-horizontal-and-vertical-in-homogeneity-of-the-horizontal-wind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2604</span> A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdusalam%20Sharf">Abdusalam Sharf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=SST%20k%E2%88%92%CF%89%20shear-stress%20transport%20%28k%E2%88%92%CF%89%20mode%20variant%29" title=" SST k−ω shear-stress transport (k−ω mode variant)"> SST k−ω shear-stress transport (k−ω mode variant)</a>, <a href="https://publications.waset.org/abstracts/search?q=RNG%20k%E2%80%93%CE%B5%20renormalisation%20group%20%28k%E2%88%92%CE%B5%20mode%20variant%29" title=" RNG k–ε renormalisation group (k−ε mode variant)"> RNG k–ε renormalisation group (k−ε mode variant)</a>, <a href="https://publications.waset.org/abstracts/search?q=y%2B%20dimensionless%20distance%20from%20wall" title=" y+ dimensionless distance from wall"> y+ dimensionless distance from wall</a> </p> <a href="https://publications.waset.org/abstracts/11778/a-comparison-of-computational-and-experimental-data-to-investigate-the-influence-of-the-tangential-velocity-of-inner-rotating-wall-on-axial-velocity-profile-of-flow-through-vertical-annular-pipe-with-rotating-inner-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2603</span> Use of Dendrochronology in Estimation of Creep Velocity and Its Dependence on the Bulk Density of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Amjad%20Sabir">Mohammad Amjad Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishtiaq%20Khan"> Ishtiaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Ali"> Shahid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Shabbir"> Umar Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneel%20Ahmad"> Aneel Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creep, being the main silt contributor to the rivers, is a slow, downhill flow of soils. The creep velocity is measured in millimeters to a couple of centimeters per year and is determined with the help of tilt caused by creep in the vertical objects and needs at least ten years to get a reliable creep velocity. This project was devised to calculate creep velocity using dendrochronology and looking for the difference of creep velocity registered by different trees on the same slope. It was concluded that dendrochronology provides a very reliable procedure of creep velocity estimation if ‘J’ shaped trees are studied for their horizontal movement and age. The age of these trees was measured using tree coring, and the horizontal movement was measured with a conventional tape. Using this procedure it does not require decades and additionally the data reveals the creep velocity for up to 150 years and even more instead of just a decade. It was also concluded that the creep velocity does not only depend on bulk density of soil hence no pronounced effect of bulk density was detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep%20velocity" title="creep velocity">creep velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=Galiyat" title=" Galiyat"> Galiyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagri%20Bala" title=" Nagri Bala"> Nagri Bala</a> </p> <a href="https://publications.waset.org/abstracts/100711/use-of-dendrochronology-in-estimation-of-creep-velocity-and-its-dependence-on-the-bulk-density-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2602</span> Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Singh">Kirti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesheo%20Prasad"> Kesheo Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence" title="turbulence">turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=logarithmic%20law" title=" logarithmic law"> logarithmic law</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20correlations" title=" shear stress correlations"> shear stress correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a> </p> <a href="https://publications.waset.org/abstracts/159300/turbulence-measurement-over-rough-and-smooth-bed-in-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2601</span> Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogan%20B.%20Saydam"> Dogan B. Saydam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20cylinder" title=" rectangular cylinder"> rectangular cylinder</a> </p> <a href="https://publications.waset.org/abstracts/130636/experimental-investigation-of-flow-structure-around-a-rectangular-cylinder-in-different-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2600</span> Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Samaila">Ahmad K. Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Basant%20K.%20Jha"> Basant K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transpiration" title="transpiration">transpiration</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20viscous%20fluid" title=" reactive viscous fluid"> reactive viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20plates" title=" porous plates"> porous plates</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%2Finjection" title=" suction/injection"> suction/injection</a> </p> <a href="https://publications.waset.org/abstracts/4015/numerical-analysis-of-the-effects-of-transpiration-on-transientsteady-natural-convection-flow-of-reactive-viscous-fluid-in-a-vertical-channel-formed-by-two-vertical-porous-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2599</span> Vision Aided INS for Soft Landing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sri%20Karthi%20Krishna">R. Sri Karthi Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saravana%20Kumar"> A. Saravana Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesava%20Brahmaji"> Kesava Brahmaji</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Vinoj"> V. S. Vinoj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vision%20aided%20INS" title="vision aided INS">vision aided INS</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20velocity%20estimation" title=" lateral velocity estimation"> lateral velocity estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/10147/vision-aided-ins-for-soft-landing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2598</span> Unsteady and Steady State in Natural Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syukri%20Himran">Syukri Himran</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Eka%20Putra"> Erwin Eka Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanang%20Roni"> Nanang Roni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20plate" title=" vertical plate"> vertical plate</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20and%20temperature%20profiles" title=" velocity and temperature profiles"> velocity and temperature profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20and%20unsteady" title=" steady and unsteady"> steady and unsteady</a> </p> <a href="https://publications.waset.org/abstracts/35967/unsteady-and-steady-state-in-natural-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2597</span> The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thochi%20Seb%20Rengma">Thochi Seb Rengma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Kumar%20Gupta"> Mahendra Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20V.%20Subbarao"> P. M. V. Subbarao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=savonius%20hydrokinetic%20turbine" title="savonius hydrokinetic turbine">savonius hydrokinetic turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20ratio" title=" blockage ratio"> blockage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20turbine" title=" vertical axis turbine"> vertical axis turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20coefficient" title=" power coefficient"> power coefficient</a> </p> <a href="https://publications.waset.org/abstracts/162783/the-effect-of-velocity-increment-by-blockage-factor-on-savonius-hydrokinetic-turbine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2596</span> Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Bodaghkhani">Armin Bodaghkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Colbourne"> Bruce Colbourne</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Muzychka"> Yuri S. Muzychka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spray%20charachteristics" title="spray charachteristics">spray charachteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20size%20and%20velocity" title=" droplet size and velocity"> droplet size and velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-body%20interactions" title=" wave-body interactions"> wave-body interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20image%20velocimetry" title=" bubble image velocimetry"> bubble image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/59908/experimental-modeling-of-spray-and-water-sheet-formation-due-to-wave-interactions-with-vertical-and-slant-bow-shaped-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2595</span> MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Yakubu%20Seini">Ibrahim Yakubu Seini</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Daniel%20Makinde"> Oluwole Daniel Makinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20slip" title=" surface slip"> surface slip</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title=" chemical reaction"> chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/36170/mhd-chemically-reacting-viscous-fluid-flow-towards-a-vertical-surface-with-slip-and-convective-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2594</span> Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Bykalyuk">Anna Bykalyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Kuznik"> Frédéric Kuznik</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%A9vyn%20Johannes"> Kévyn Johannes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductive%20plate" title=" thermal conductive plate"> thermal conductive plate</a>, <a href="https://publications.waset.org/abstracts/search?q=time-depending%20boundary%20conditions" title=" time-depending boundary conditions"> time-depending boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/1371/transient-free-laminar-convection-in-the-vicinity-of-a-thermal-conductive-vertical-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2593</span> Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Missina">Svetlana Missina</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoliy%20Shipilov"> Anatoliy Shipilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Vavaev"> Alexandr Vavaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agility" title="agility">agility</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20football%20players" title=" female football players"> female football players</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint%20performance" title=" sprint performance"> sprint performance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20jump%20height" title=" vertical jump height"> vertical jump height</a> </p> <a href="https://publications.waset.org/abstracts/59039/correlation-between-sprint-performance-and-vertical-jump-height-in-elite-female-football-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2592</span> Study of the Influence of Nozzle Length and Jet Angles on the Air Entrainment by Plunging Water Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Mu%C3%B1oz-Cobo%20Gonz%C3%A1lez">José Luis Muñoz-Cobo González</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Chiva%20Vicent"> Sergio Chiva Vicent</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Harby%20Mohamed"> Khaled Harby Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a vertical liquid jet plunges into a liquid surface, after passing through a surrounding gas phase, it entrains a large amount of gas bubbles into the receiving pool, and it forms a large submerged two-phase region with a considerable interfacial area. At the intersection of the plunging jet and the liquid surface, free-surface instabilities are developed, and gas entrainment may be observed. If the jet impact velocity exceeds an inception velocity that is a function of the plunging flow conditions, the gas entrainment takes place. The general goal of this work is to study the effect of nozzle parameters (length-to-diameter ratio (lN/dN), jet angle (α) with the free water surface) and the jet operating conditions (initial jet diameters dN, initial jet velocity VN, and jet length x1) on the flow characteristics such as: inception velocity of the gas entrainment Ve, bubble penetration depth Hp, gas entrainment rate, Qa, centerline jet velocity Vc, and the axial jet velocity distribution Vx below the free water surface in a plunging liquid jet system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclined%20plunging%20water%20jets" title="inclined plunging water jets">inclined plunging water jets</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20length" title=" nozzle length"> nozzle length</a> </p> <a href="https://publications.waset.org/abstracts/15058/study-of-the-influence-of-nozzle-length-and-jet-angles-on-the-air-entrainment-by-plunging-water-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2591</span> Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan-Ting%20Lin">Yan-Ting Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Nian%20Su"> Wei-Nian Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20wind%20turbine" title="vertical axis wind turbine">vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=DOE" title=" DOE"> DOE</a>, <a href="https://publications.waset.org/abstracts/search?q=VAWT" title=" VAWT"> VAWT</a> </p> <a href="https://publications.waset.org/abstracts/16847/numerical-study-of-5kw-vertical-axis-wind-turbine-using-doe-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2590</span> Analysis of Building Response from Vertical Ground Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Yao">George C. Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Yu%20Tu"> Chao-Yu Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chung%20Chen"> Wei-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Wen%20Kuo"> Fung-Wen Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Chang"> Yu-Shan Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motion" title="vertical ground motion">vertical ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20amplification%20factor" title=" vertical amplification factor"> vertical amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/73421/analysis-of-building-response-from-vertical-ground-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2589</span> Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolai%20Zhang">Xiaolai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fischer-Tropsch%20synthesis" title="Fischer-Tropsch synthesis">Fischer-Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fixed%20fluidized%20bed" title=" Fixed fluidized bed"> Fixed fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=LDV" title=" LDV"> LDV</a>, <a href="https://publications.waset.org/abstracts/search?q=Velocity" title=" Velocity"> Velocity</a> </p> <a href="https://publications.waset.org/abstracts/24993/measurements-of-radial-velocity-in-fixed-fluidized-bed-for-fischer-tropsch-synthesis-using-ldv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2588</span> Thermal Annealing Effects on Nonradiative Recombination Parameters of GaInAsSb/GaSb by Means of Photothermal Defection Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souha%20Bouagila">Souha Bouagila</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiene%20Ilahi"> Soufiene Ilahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used Photothermal deflection spectroscopy PTD to investigate the impact of thermal annealing on electronics properties of GaInAsSb/GaSb.GaInAsSb used as an active layer for Vertical Cavity Surface Emitting laser (VCSEL). We have remarked that surface recombination velocity (SRV) from 7963 m / s (± 6.3%) to 1450 m / s (± 3.6) for as grown to sample annealed for 60 min. Accordingly, Force Microscopy images analyses agree well with the measure of surface recombination velocity. We have found that Root-Mean-Square Roughness (RMS) decreases as respect of annealing time. In addition, we have that the diffusion length and minority carrier mobility have been enhanced according to annealing time. However, due to annealing effects, the interface recombination velocity (IRV) is increased from 1196 m / s (± 5) to 6000 m/s (5%) for GaInAsSb in respect of annealed times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonradiative%20lifetime" title="nonradiative lifetime">nonradiative lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20of%20minority%20carrier" title=" mobility of minority carrier"> mobility of minority carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20length" title=" diffusion length"> diffusion length</a>, <a href="https://publications.waset.org/abstracts/search?q=Surface%20and%20interface%20recombination%20velocity" title=" Surface and interface recombination velocity"> Surface and interface recombination velocity</a> </p> <a href="https://publications.waset.org/abstracts/165142/thermal-annealing-effects-on-nonradiative-recombination-parameters-of-gainassbgasb-by-means-of-photothermal-defection-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2587</span> Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdullah%20Al%20Faruque">M. Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title="open channel flow">open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20and%20rough%20bed" title=" smooth and rough bed"> smooth and rough bed</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/34228/variation-of-streamwise-and-vertical-turbulence-intensity-in-a-smooth-and-rough-bed-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2586</span> Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yomna%20Amr%20Ahmed%20Lotfi%20Koraim">Yomna Amr Ahmed Lotfi Koraim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Moati%20Rasmi%20Elkhateeb"> Dalia Moati Rasmi Elkhateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20landscape" title="vertical landscape">vertical landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20facades" title=" green facades"> green facades</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20greening" title=" vertical greening"> vertical greening</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20acceptance" title=" social acceptance"> social acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20development" title=" sustainable urban development"> sustainable urban development</a> </p> <a href="https://publications.waset.org/abstracts/72224/residents-perceptions-towards-the-application-of-vertical-landscape-in-cairo-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2585</span> Dynamical and Thermal Study of Twin Impinging Jets a Vertical Plate with Various Jet Velocities and Impinging Distance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louaifi%20Hamaili%20Samira">Louaifi Hamaili Samira</a>, <a href="https://publications.waset.org/abstracts/search?q=Mataoui%20Amina"> Mataoui Amina</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheraitia%20Tadjeddine"> Cheraitia Tadjeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation proposes a numerical analysis of two turbulent parallel jets impinging a heated plate. The heat transfer enhancement is carried out according of the main parameters of the jet-wall interaction. The numerical solution of the stationary equations (RANS) is performed by the finite volume method using the k - ε model. A parametric study is performed to evaluate simultaneously the effect of nozzle-plate distance and velocity ratios in the range 0≤λ≤1. It is found that good local cooling is obtained for λ= 0.25 when the impinging distance is between 4w and 8w than for velocity ratios λ=1 and λ= 0.75. On the other hand, for impinging distances exceeding 8w, the velocity ratio λ =0.75 is more appropriate for good local cooling of the plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two%20unequal%20jets" title="two unequal jets">two unequal jets</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/188280/dynamical-and-thermal-study-of-twin-impinging-jets-a-vertical-plate-with-various-jet-velocities-and-impinging-distance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2584</span> On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouzai">L. Mouzai</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning&rsquo;s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20resistance" title="flow resistance">flow resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20experiments" title=" laboratory experiments"> laboratory experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20simulator" title=" rainfall simulator"> rainfall simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20concentration" title=" sediment concentration"> sediment concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20velocity" title=" shear velocity"> shear velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/82400/on-the-fixed-rainfall-intensity-effects-on-overland-flow-resistance-shear-velocity-and-on-soil-erosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2583</span> Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Yaser%20Nabavi-Chashmi">Seyed-Yaser Nabavi-Chashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Asadi"> Davood Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Ahmadi"> Karim Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eren%20Demir"> Eren Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altitude%20estimation" title="altitude estimation">altitude estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title=" trajectory planning"> trajectory planning</a> </p> <a href="https://publications.waset.org/abstracts/147377/image-based-uav-vertical-distance-and-velocity-estimation-algorithm-during-the-vertical-landing-phase-using-low-resolution-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2582</span> Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okuyade%20Ighoroje%20Wilson%20Ata">Okuyade Ighoroje Wilson Ata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title="chemical reaction">chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20effect" title=" hall effect"> hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-hydrodynamic" title=" magneto-hydrodynamic"> magneto-hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20plates%20channel" title=" vertical plates channel"> vertical plates channel</a> </p> <a href="https://publications.waset.org/abstracts/161571/magneto-hydrodynamic-mixed-convective-fluid-flow-through-two-parallel-vertical-plates-channel-with-hall-chemical-reaction-and-thermal-radiation-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2581</span> Seamless Mobility in Heterogeneous Mobile Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohab%20Magdy%20Mostafa%20Mohamed">Mohab Magdy Mostafa Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20handover" title="vertical handover">vertical handover</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control%20theory" title=" fuzzy control theory"> fuzzy control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20level" title=" power level"> power level</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20cell%20load" title=" target cell load"> target cell load</a> </p> <a href="https://publications.waset.org/abstracts/6683/seamless-mobility-in-heterogeneous-mobile-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2580</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2579</span> Study of the Vertical Handoff in Heterogeneous Networks and Implement Based on Opnet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Benaatou">Wafa Benaatou</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Latif"> Adnane Latif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS and WiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20handoff" title="vertical handoff">vertical handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=UMTS" title=" UMTS"> UMTS</a>, <a href="https://publications.waset.org/abstracts/search?q=WIMAX" title=" WIMAX"> WIMAX</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title=" heterogeneous"> heterogeneous</a> </p> <a href="https://publications.waset.org/abstracts/12140/study-of-the-vertical-handoff-in-heterogeneous-networks-and-implement-based-on-opnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2578</span> Early Design Prediction of Submersible Maneuvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hernani%20Brinati">Hernani Brinati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardel%20de%20Conti"> Mardel de Conti</a>, <a href="https://publications.waset.org/abstracts/search?q=Moyses%20Szajnbok"> Moyses Szajnbok</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Domiciano"> Valentina Domiciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submarine%20maneuvers" title="submarine maneuvers">submarine maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine" title=" submarine"> submarine</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuvering" title=" maneuvering"> maneuvering</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/13769/early-design-prediction-of-submersible-maneuvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=87">87</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20velocity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10