CINXE.COM
Search results for: Arnab Nandi
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Arnab Nandi</title> <meta name="description" content="Search results for: Arnab Nandi"> <meta name="keywords" content="Arnab Nandi"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Arnab Nandi" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Arnab Nandi"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 39</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Arnab Nandi</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Designing a Cricket Team Selection Method Using Super-Efficient DEA and Semi Variance Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Adhikari">Arnab Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrija%20Majumdar"> Adrija Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Gupta"> Gaurav Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Bisi"> Arnab Bisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Team formation plays an instrumental role in the sports like cricket. Existing literature reveals that most of the works on player selection focus only on the players’ efficiency and ignore the consistency. It motivates us to design an improved player selection method based on both player’s efficiency and consistency. To measure the players’ efficiency measurement, we employ a modified data envelopment analysis (DEA) technique namely ‘super-efficient DEA model’. We design a modified consistency index based on semi variance approach. Here, we introduce a new parameter called ‘fitness index’ for consistency computation to assess a player’s fitness level. Finally, we devise a single performance score using both efficiency score and consistency score with the help of a linear programming model. To test the robustness of our method, we perform a rigorous numerical analysis to determine the all-time best One Day International (ODI) Cricket XI. Next, we conduct extensive comparative studies regarding efficiency scores, consistency scores, selected team between the existing methods and the proposed method and explain the rationale behind the improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20systems" title="decision support systems">decision support systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sports" title=" sports"> sports</a>, <a href="https://publications.waset.org/abstracts/search?q=super-efficient%20data%20envelopment%20analysis" title=" super-efficient data envelopment analysis"> super-efficient data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20variance%20approach" title=" semi variance approach"> semi variance approach</a> </p> <a href="https://publications.waset.org/abstracts/41756/designing-a-cricket-team-selection-method-using-super-efficient-dea-and-semi-variance-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> An Application of Bidirectional Option Contract to Coordinate a Dyadic Fashion Apparel Supply Chain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Adhikari">Arnab Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Bisi"> Arnab Bisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the inception, the fashion apparel supply chain is facing the problem of high demand uncertainty. Often the demand volatility compels the corresponding supply chain member to incur substantial holding cost and opportunity cost in case of the overproduction and the underproduction scenario, respectively. It leads to an uncoordinated fashion apparel supply chain. There exist several scholarly works to achieve coordination in the fashion apparel supply chain by employing the different contracts such as the buyback contract, the revenue sharing contract, the option contract, and so on. Specially, the application of option contract in the apparel industry becomes prevalent with the changing global scenario. Exploration of existing literature related to the option contract reveals that most of the research works concentrate on the one direction demand adjustment i.e. either to match the demand upwards or downwards. Here, we present a holistic approach to coordinate a dyadic fashion apparel supply chain comprising one manufacturer and one retailer with the help of bidirectional option contract. We show a combination of wholesale price contract and bidirectional option contract can coordinate the under expanded supply chain. We also propose a framework that captures the variation of the apparel retailer’s order quantity and the apparel manufacturer’s production quantity with the changing exercise price for the different ranges of the option price. We analytically explore that corresponding cost parameters of the supply chain members along with the nature of demand distribution play an instrumental role in the coordination as well as the retailer’s ordering decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fashion%20apparel%20supply%20chain" title="fashion apparel supply chain">fashion apparel supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20coordination" title=" supply chain coordination"> supply chain coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=wholesale%20price%20contract" title=" wholesale price contract"> wholesale price contract</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20option%20contract" title=" bidirectional option contract"> bidirectional option contract</a> </p> <a href="https://publications.waset.org/abstracts/38689/an-application-of-bidirectional-option-contract-to-coordinate-a-dyadic-fashion-apparel-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Effect of Clerodendrum Species on Oxidative Stress with Possible Implication in Alleviating Carcinogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somit%20Dutta">Somit Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallab%20Kar"> Pallab Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Kumar%20Chakraborty"> Arnab Kumar Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Sen"> Arnab Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Kumar%20Chaudhuri"> Tapas Kumar Chaudhuri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study three species of Clerodendrum; Clerodendrum indicum, Volkameria inermis and Clerodendrum colebrookianum were used to investigate the possible activity against oxidative stress. A detailed in-vivo and in-vitro antioxidant profiling, directly associated with inflammation-related carcinogenesis, has been executed with a motive to evaluate the free radical scavenging activity of Clerodendrum extract. Measurement of cell viability and ROS generation in HEK-293 (Human Embryonic Kidney Cell Line) cells was also estimated. The immune cell proliferative properties (MTT) and in-vitro assay for evaluation of their antioxidant activities including hydroxyl radical, nitric oxide, singlet oxygen, peroxinitrate and hydrogen peroxide, etc. were investigated. GC-MS and FTIR analyses have been performed to identify the active biological compounds. These active biological compounds were further studied to assess their potential medicinal properties, aided by molecular docking and interaction analysis between the active compounds and different proteins related to oxidative stress leading to progression of carcinogenesis. The research article clearly demonstrates the role of ROS in various phases of carcinogenesis. Therefore, the antioxidant and free radical scavenging capacity of all the Clerodendrum species might prove beneficial for the immune system. It might be concluded that this plant species offers great promise for cancer prevention and therapy due to the presence of several bioactive compounds and potent antioxidant capacity of C. colebrookianum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species%20%28ROS%29" title=" reactive oxygen species (ROS)"> reactive oxygen species (ROS)</a> </p> <a href="https://publications.waset.org/abstracts/73354/effect-of-clerodendrum-species-on-oxidative-stress-with-possible-implication-in-alleviating-carcinogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subham%20Ghosh">Subham Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Nandi"> Arnab Nandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title="activity recognition">activity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna" title=" antenna"> antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-learning" title=" deep-learning"> deep-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=time-frequency" title=" time-frequency"> time-frequency</a> </p> <a href="https://publications.waset.org/abstracts/194633/classification-of-coughing-and-breathing-activities-using-wearable-and-a-light-weight-dl-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Role of Women in Shaping and Sustaining the Zulu Monarchy in the Late 18th and 19th Centuries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hebert%20Sihle%20Ntuli">Hebert Sihle Ntuli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the beginning, women had a great contribution or share in shaping history by different means during different epochs. Africa in general and South Africa in particular, are replete with many examples of female dynasties, regents and rulers who took up positions of leadership through periods of nation-building and wars of resistance. Zulu culture is fraught with a plethora of women who contributed in shaping Zulu monarchy to what it became in the late 18th and 19th centuries. The aim of this paper is to discuss the contribution of women in shaping and sustaining Zulu monarchy during the period in question. This work adopted qualitative research method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulu%20monarchy" title="Zulu monarchy">Zulu monarchy</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women"> women</a>, <a href="https://publications.waset.org/abstracts/search?q=princess%20Mkabayi" title=" princess Mkabayi"> princess Mkabayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Queen%20Nandi" title=" Queen Nandi"> Queen Nandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Queen%20Monase" title=" Queen Monase"> Queen Monase</a> </p> <a href="https://publications.waset.org/abstracts/156681/the-role-of-women-in-shaping-and-sustaining-the-zulu-monarchy-in-the-late-18th-and-19th-centuries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bodhayan%20Nandi">Bodhayan Nandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhajit%20Roy%20Chowdhury"> Shubhajit Roy Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20invasive" title="non invasive">non invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20concentration" title=" blood glucose concentration"> blood glucose concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20server" title=" application server"> application server</a>, <a href="https://publications.waset.org/abstracts/search?q=database%20server" title=" database server"> database server</a> </p> <a href="https://publications.waset.org/abstracts/85488/a-non-invasive-blood-glucose-monitoring-system-using-near-infrared-spectroscopy-with-remote-data-logging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Non-Universality in Barkhausen Noise Signatures of Thin Iron Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Roy">Arnab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We discuss angle dependent changes to the Barkhausen noise signatures of thin epitaxial Fe films upon altering the angle of the applied field. We observe a sub-critical to critical phase transition in the hysteresis loop of the sample upon increasing the out-of-plane component of the applied field. The observations are discussed in the light of simulations of a 2D Gaussian Random Field Ising Model with references to a reducible form of the Random Anisotropy Ising Model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barkhausen%20noise" title="Barkhausen noise">Barkhausen noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Planar%20Hall%20effect" title=" Planar Hall effect"> Planar Hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Random%20Field%20Ising%20Model" title=" Random Field Ising Model"> Random Field Ising Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Random%20Anisotropy%20Ising%20Model" title=" Random Anisotropy Ising Model"> Random Anisotropy Ising Model</a> </p> <a href="https://publications.waset.org/abstracts/17529/non-universality-in-barkhausen-noise-signatures-of-thin-iron-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Impact of Urbanization on the Performance of Higher Education Institutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Jha">Chandan Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Sachan"> Amit Sachan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Adhikari"> Arnab Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayantan%20Kundu"> Sayantan Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to evaluate the performance of Higher Education Institutions (HEIs) of India and examine the impact of urbanization on the performance of HEIs. In this study, the Data Envelopment Analysis (DEA) has been used, and the authors have collected the required data related to performance measures from the National Institutional Ranking Framework web portal. In this study, the authors have evaluated the performance of HEIs by using two different DEA models. In the first model, geographic locations of the institutes have been categorized into two categories, i.e., Urban Vs. Non-Urban. However, in the second model, these geographic locations have been classified into three categories, i.e., Urban, Semi-Urban, Non-Urban. The findings of this study provide several insights related to the degree of urbanization and the performance of HEIs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/120160/impact-of-urbanization-on-the-performance-of-higher-education-institutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Roy">Arnab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20hall%20effect" title="planar hall effect">planar hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=permalloy" title=" permalloy"> permalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=NiFe" title=" NiFe"> NiFe</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20magnetic%20field%20sensor" title=" low magnetic field sensor"> low magnetic field sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20sensitivity%20magnetic%20field%20sensor" title=" high sensitivity magnetic field sensor"> high sensitivity magnetic field sensor</a> </p> <a href="https://publications.waset.org/abstracts/17435/development-of-a-very-high-sensitivity-magnetic-field-sensor-based-on-planar-hall-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Serious Gaming for Behaviour Change: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramy%20Hammady">Ramy Hammady</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvester%20Arnab"> Sylvester Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significant attention has been directed to adopt game interventions practically to change certain behaviours in many disciplines such as health, education, psychology through many years. That’s due to the intrinsic motivation that games can cause and the substantial impact the games can leave on the player. Many review papers were induced to highlight and measure the effectiveness of the game’s interventions on changing behaviours; however, most of these studies neglected the game design process itself and the game features and elements that can stimuli changing behaviours. Therefore, this paper aims to identify the most game design mechanics and features that are the most influencing on changing behaviour during or after games interventions. This paper also sheds light on the theories of changing behaviours that clearly can led the game design process. This study gives directions to game designers to spot the most influential game features and mechanics for changing behaviour games in order to exploit it on the same manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20change" title="behaviour change">behaviour change</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20design" title=" game design"> game design</a>, <a href="https://publications.waset.org/abstracts/search?q=serious%20gaming" title=" serious gaming"> serious gaming</a>, <a href="https://publications.waset.org/abstracts/search?q=gamification" title=" gamification"> gamification</a>, <a href="https://publications.waset.org/abstracts/search?q=review" title=" review"> review</a> </p> <a href="https://publications.waset.org/abstracts/139282/serious-gaming-for-behaviour-change-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Analysis of Moving Loads on Bridges Using Surrogate Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Panda">Susmita Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajinkya%20Baxy"> Ajinkya Baxy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20superposition%20method" title=" mode superposition method"> mode superposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load%20analysis" title=" moving load analysis"> moving load analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a> </p> <a href="https://publications.waset.org/abstracts/156677/analysis-of-moving-loads-on-bridges-using-surrogate-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Exploiting Non-Uniform Utility of Computing: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Sarkar">Arnab Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Huang"> Michael Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuang%20Ren"> Chuang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Li"> Jun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20computing" title="approximate computing">approximate computing</a>, <a href="https://publications.waset.org/abstracts/search?q=landau%20damping" title=" landau damping"> landau damping</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20utility%20computing" title=" non uniform utility computing"> non uniform utility computing</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-in-cell" title=" particle-in-cell"> particle-in-cell</a> </p> <a href="https://publications.waset.org/abstracts/86032/exploiting-non-uniform-utility-of-computing-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> A Study on the Factors Effecting Store Format Selection between SBOand MBOs for Sportswear and Sports Accessories in the Fashion Capital of India-Shillong, Tier III Indian City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee">Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20Sagar%20Verma"> Deep Sagar Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tier 3 cities of India is home to one of the fastest growing socio-economic powers in the world and hence is the focus of a lot of business activity as it is almost a blue ocean giving the first mover a huge strategic advantage. Among the various sectors, the retailing is perhaps one of the most promising sectors. The study caries out 129 successfully structured mall-intercept interviews in the town of Shillong, Meghalaya in an attempt to understand the SBO and MBO shoppers. Demographic variables itself does not show any store format preference although discounts do attract the lower income group more while clear difference is observed among genders when it comes to importance of ambience, and it is more pronounced for SBO patrons. SBO patrons are more focused while MBO patrons are more into leisure shopping. Price is the most important predictor of satisfaction especially for MBO shoppers. The market shows three basic segments i.e experiential, relationship and value shoppers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demographic%20variables" title="demographic variables">demographic variables</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20importance" title=" degree of importance"> degree of importance</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20satisfaction" title=" degree of satisfaction"> degree of satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=SBO%20and%20MBO" title=" SBO and MBO"> SBO and MBO</a> </p> <a href="https://publications.waset.org/abstracts/58211/a-study-on-the-factors-effecting-store-format-selection-between-sboand-mbos-for-sportswear-and-sports-accessories-in-the-fashion-capital-of-india-shillong-tier-iii-indian-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Majumdar">Arnab Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjoy%20Sadhukhan"> Sanjoy Sadhukhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gun%20barrel%20steels" title="gun barrel steels">gun barrel steels</a>, <a href="https://publications.waset.org/abstracts/search?q=IF%20grade" title=" IF grade"> IF grade</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20mechanical%20processing" title=" thermal and mechanical processing"> thermal and mechanical processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/44634/improvement-in-properties-of-ni-cr-mo-v-steel-through-process-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Majumdar">Arnab Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Srimani%20Sen"> Srimani Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p<sup>+</sup>pnn<sup>+</sup> DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5×10<sup>8</sup> A/m<sup>2</sup>. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06×10<sup>8</sup> A/m<sup>2</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubic%20ZnB-GaN" title="cubic ZnB-GaN">cubic ZnB-GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%204H-SiC" title=" hexagonal 4H-SiC"> hexagonal 4H-SiC</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20drift%20impatt%20diode" title=" double drift impatt diode"> double drift impatt diode</a>, <a href="https://publications.waset.org/abstracts/search?q=millimetre%20wave" title=" millimetre wave"> millimetre wave</a>, <a href="https://publications.waset.org/abstracts/search?q=optimised%20bias%20current%20density" title=" optimised bias current density"> optimised bias current density</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20band%20gap%20semiconductor" title=" wide band gap semiconductor"> wide band gap semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/44725/a-comparative-study-on-optimized-bias-current-density-performance-of-cubic-znb-gan-with-hexagonal-4h-sic-based-impatts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Linear Complementary Based Approach for Unilateral Frictional Contact between Wheel and Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muskaan%20Sethi">Muskaan Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper aims to investigate a suitable contact between a wheel rolling over a flexible beam. A Linear Complementary (LCP) based approach has been adopted to simulate the contact dynamics for a rigid wheel traversing over a flexible Euler Bernoulli simply supported beam. The adopted methodology is suitable to incorporate the effect of frictional force acting at the wheel-beam interface. Moreover, the possibility of the generation of a gap between the two bodies has also been considered. The present method is based on a unilateral contact assumption which assumes that no penetration would occur when the two bodies come in contact. This assumption helps to predict the contact between wheels and beams in a more practical sense. The proposed methodology is validated with the previously published results and is found to be in good agreement. Further, this method is applied to simulate the contact between wheels and beams for various railway configurations. Moreover, different parametric studies are conducted to study the contact dynamics between the wheel and beam more thoroughly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20dynamics" title="contact dynamics">contact dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complementary%20problem" title=" linear complementary problem"> linear complementary problem</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20dynamics" title=" railway dynamics"> railway dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unilateral%20contact" title=" unilateral contact"> unilateral contact</a> </p> <a href="https://publications.waset.org/abstracts/156705/linear-complementary-based-approach-for-unilateral-frictional-contact-between-wheel-and-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Dynamics of the Coupled Fitzhugh-Rinzel Neurons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Sharma">Sanjeev Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Mondal"> Arnab Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Kumar%20Upadhyay"> Ranjit Kumar Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excitable%20neuron%20model" title="excitable neuron model">excitable neuron model</a>, <a href="https://publications.waset.org/abstracts/search?q=spiking-bursting" title=" spiking-bursting"> spiking-bursting</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20and%20bifurcation" title=" stability and bifurcation"> stability and bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization%20networks" title=" synchronization networks"> synchronization networks</a> </p> <a href="https://publications.waset.org/abstracts/116729/dynamics-of-the-coupled-fitzhugh-rinzel-neurons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Comparative Study of Arch Bridges with Varying Rise to Span Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Kumar%20Sinha"> Arnab Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arch%20bridge" title="arch bridge">arch bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20study" title=" comparative study"> comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=rise%20to%20span%20ratio" title=" rise to span ratio"> rise to span ratio</a> </p> <a href="https://publications.waset.org/abstracts/26463/comparative-study-of-arch-bridges-with-varying-rise-to-span-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> An Attempt to Explore Occupational Stressors among West Bengal Police Officials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malini%20Nandi%20Majumdar">Malini Nandi Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Avijan%20Dutta"> Avijan Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The West Police (WBP) is restructured under provisions of the Police Act 1861 during the period of British domination. It is one of the two police forces of the Indian state of west Bengal and is headed by an officer designated as Director General of Police (DG) who directly reports to the State Government. It covers a jurisdiction with eighteen revenue districts of the state and a District Superintendent of Police (SP) controls each district. The purpose of this empirical study is to explore the causes and factors of occupational stress in West Bengal Police officers so that the incumbents can perform their assigned tasks more diligently and the society could be free from evils and devils at a large. Using a self-developed close ended questionnaire that covers 20 critical job-related stressors, the study captures 310 respondents across the organizational hierarchy ranging from Sub Inspectors to the Superintendant of police and covers 5 districts and one commision rate under the jurisdiction of West Bengal Police. The present research has successfully indicated four major occupational stressors such as Organizational Stressors, Hierarchical Stressors, Situational Stressors and Environmental Stressors with 64% of the variance. Further we have employed CFA to determine the goodness of fit indices in terms of i) Absolute Fit Measures like CMIN, FMIN, RMSEA, ECVI ii) Incremental Fit Measures like TLI, NFI, AGFI, CFI(Byne, 2010) demonstrate that value of the measure has passed the requirement criteria and thus fit the model. The major stressors of West Bengal Police have been explored and the ways to deal with these inevitable stressors have been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organizational%20stressors" title="organizational stressors">organizational stressors</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20stressors" title=" hierarchical stressors"> hierarchical stressors</a>, <a href="https://publications.waset.org/abstracts/search?q=situational%20stressors" title=" situational stressors"> situational stressors</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20stressors" title=" environmental stressors"> environmental stressors</a> </p> <a href="https://publications.waset.org/abstracts/22420/an-attempt-to-explore-occupational-stressors-among-west-bengal-police-officials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Diffusion Dynamics of Leech-Heart Inter-Neuron Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Mondal">Arnab Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Sharma"> Sanjeev Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Kumar%20Upadhyay"> Ranjit Kumar Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title="bifurcation">bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20formation" title=" pattern formation"> pattern formation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20dynamics" title=" spatio-temporal dynamics"> spatio-temporal dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/116739/diffusion-dynamics-of-leech-heart-inter-neuron-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhigna%20Bhatt">Abhigna Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mono%20coupled%20system" title="mono coupled system">mono coupled system</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20effective%20mass" title=" negative effective mass"> negative effective mass</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20effective%20stiffness" title=" negative effective stiffness"> negative effective stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20amplifier" title=" inertial amplifier"> inertial amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a> </p> <a href="https://publications.waset.org/abstracts/153352/visualization-of-wave-propagation-in-monocoupled-system-with-effective-negative-stiffness-effective-negative-mass-and-inertial-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Methods of Variance Estimation in Two-Phase Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghunath%20Arnab">Raghunath Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20information" title="auxiliary information">auxiliary information</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title=" two-phase sampling"> two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20probability%20sampling" title=" varying probability sampling"> varying probability sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimators" title=" unbiased estimators"> unbiased estimators</a> </p> <a href="https://publications.waset.org/abstracts/36087/methods-of-variance-estimation-in-two-phase-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Conservation Planning of Paris Polyphylla Smith, an Important Medicinal Herb of the Indian Himalayan Region Using Predictive Distribution Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tariq">Mohd Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyamal%20K.%20Nandi"> Shyamal K. Nandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Indra%20D.%20Bhatt"> Indra D. Bhatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paris polyphylla Smith (Family- Liliaceae; English name-Love apple: Local name- Satuwa) is an important folk medicinal herb of the Indian subcontinent, being a source of number of bioactive compounds for drug formulation. The rhizomes are widely used as antihelmintic, antispasmodic, digestive stomachic, expectorant and vermifuge, antimicrobial, anti-inflammatory, heart and vascular malady, anti-fertility and sedative. Keeping in view of this, the species is being constantly removed from nature for trade and various pharmaceuticals purpose, as a result, the availability of the species in its natural habitat is decreasing. In this context, it would be pertinent to conserve this species and reintroduce them in its natural habitat. Predictive distribution modelling of this species was performed in Western Himalayan Region. One such recent method is Ecological Niche Modelling, also popularly known as Species distribution modelling, which uses computer algorithms to generate predictive maps of species distributions in a geographic space by correlating the point distributional data with a set of environmental raster data. In case of P. polyphylla, and to understand its potential distribution zones and setting up of artificial introductions, or selecting conservation sites, and conservation and management of their native habitat. Among the different districts of Uttarakhand (28°05ˈ-31°25ˈ N and 77°45ˈ-81°45ˈ E) Uttarkashi, Rudraprayag, Chamoli, Pauri Garhwal and some parts of Bageshwar, 'Maximum Entropy' (Maxent) has predicted wider potential distribution of P. polyphylla Smith. Distribution of P. polyphylla is mainly governed by Precipitation of Driest Quarter and Mean Diurnal Range i.e., 27.08% and 18.99% respectively which indicates that humidity (27%) and average temperature (19°C) might be suitable for better growth of Paris polyphylla. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20conservation" title="biodiversity conservation">biodiversity conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Himalayan%20region" title=" Indian Himalayan region"> Indian Himalayan region</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20polyphylla" title=" Paris polyphylla"> Paris polyphylla</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20distribution%20modelling" title=" predictive distribution modelling"> predictive distribution modelling</a> </p> <a href="https://publications.waset.org/abstracts/49276/conservation-planning-of-paris-polyphylla-smith-an-important-medicinal-herb-of-the-indian-himalayan-region-using-predictive-distribution-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Realization of Hybrid Beams Inertial Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somya%20Ranjan%20Patro">Somya Ranjan Patro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhigna%20Bhatt"> Abhigna Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20amplifier" title="inertial amplifier">inertial amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title=" fast fourier transform"> fast fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorbers" title=" vibration absorbers"> vibration absorbers</a> </p> <a href="https://publications.waset.org/abstracts/153357/realization-of-hybrid-beams-inertial-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Optimization-Based Design Improvement of Synchronizer in Transmission System for Efficient Vehicle Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanyka%20Banerjee">Sanyka Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Saikat%20Nandi"> Saikat Nandi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Dan"> P. K. Dan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchronizers as an integral part of gearbox is a key element in the transmission system in automotive. The performance of synchronizer affects transmission efficiency and driving comfort. Synchronizing mechanism as a major component of transmission system must be capable of preventing vibration and noise in the gears. Gear shifting efficiency improvement with an aim to achieve smooth, quick and energy efficient power transmission remains a challenge for the automotive industry. Performance of the synchronizer is dependent on the features and characteristics of its sub-components and therefore analysis of the contribution of such characteristics is necessary. An important exercise involved is to identify all such characteristics or factors which are associated with the modeling and analysis and for this purpose the literature was reviewed, rather extensively, to study the mathematical models, formulated considering such. It has been observed that certain factors are rather common across models; however, there are few factors which have specifically been selected for individual models, as reported. In order to obtain a more realistic model, an attempt here has been made to identify and assimilate practically all possible factors which may be considered in formulating the model more comprehensively. A simulation study, formulated as a block model, for such analysis has been carried out in a reliable environment like MATLAB. Lower synchronization time is desirable and hence, it has been considered here as the output factors in the simulation modeling for evaluating transmission efficiency. An improved synchronizer model requires optimized values of sub-component design parameters. A parametric optimization utilizing Taguchi’s design of experiment based response data and their analysis has been carried out for this purpose. The effectiveness of the optimized parameters for the improved synchronizer performance has been validated by the simulation study of the synchronizer block model with improved parameter values as input parameters for better transmission efficiency and driver comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20optimization" title=" parametric optimization"> parametric optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronizer" title=" synchronizer"> synchronizer</a> </p> <a href="https://publications.waset.org/abstracts/87388/optimization-based-design-improvement-of-synchronizer-in-transmission-system-for-efficient-vehicle-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakraborty%20Sudipta">Chakraborty Sudipta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Kambekar"> A. R. Kambekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarma%20Arnab"> Sarma Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Coastal%20Vulnerability%20Index" title=" Coastal Vulnerability Index"> Coastal Vulnerability Index</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise" title=" sea level rise"> sea level rise</a> </p> <a href="https://publications.waset.org/abstracts/129256/impact-of-climate-change-on-sea-level-rise-along-the-coastline-of-mumbai-city-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Dynamic Analysis of Mono-Pile: Spectral Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishab%20Das">Rishab Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mono-pile" title="mono-pile">mono-pile</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-elastic" title=" visco-elastic"> visco-elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=LabView" title=" LabView"> LabView</a> </p> <a href="https://publications.waset.org/abstracts/157662/dynamic-analysis-of-mono-pile-spectral-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Experimental Investigation of Beams Having Spring Mass Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somya%20R.%20Patro">Somya R. Patro</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20V.%20Ramana"> G. V. Ramana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euler%20bernoulli%20beam%20theory" title="euler bernoulli beam theory">euler bernoulli beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title=" fast fourier transform"> fast fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorbers" title=" vibration absorbers"> vibration absorbers</a> </p> <a href="https://publications.waset.org/abstracts/153353/experimental-investigation-of-beams-having-spring-mass-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Kumar">Shashank Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansi%20Chandra"> Mansi Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujjawal%20Singh"> Ujjawal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Gupta"> Parth Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Ram"> Rishi Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Sarkar"> Arnab Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paper%20based%20microfluidic%20device" title="paper based microfluidic device">paper based microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20adulteration" title=" milk adulteration"> milk adulteration</a>, <a href="https://publications.waset.org/abstracts/search?q=urea%20detection" title=" urea detection"> urea detection</a>, <a href="https://publications.waset.org/abstracts/search?q=starch%20detection" title=" starch detection"> starch detection</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20application" title=" smartphone application"> smartphone application</a> </p> <a href="https://publications.waset.org/abstracts/182267/urea-and-starch-detection-on-a-paper-based-microfluidic-device-enabled-on-a-smartphone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Three Types of Mud-Huts with Courtyards in Composite Climate: Thermal Performance in Summer and Winter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janmejoy%20Gupta">Janmejoy Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Paul"> Arnab Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjari%20Chakraborty"> Manjari Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jharkhand is a state located in the eastern part of India. The Tropic of Cancer (23.5 degree North latitude line) passes through Ranchi district in Jharkhand. Mud huts with burnt clay tiled roofs in Jharkhand are an integral component of the state’s vernacular architecture. They come in various shapes, with a number of them having a courtyard type of plan. In general, it has been stated that designing dwellings with courtyards in them is a climate-responsive strategy in composite climate. The truth behind this hypothesis is investigated in this paper. In this paper, three types of mud huts with courtyards situated in Ranchi district in Jharkhand are taken as a study and through temperature measurements in the south-side rooms and courtyards, in addition to Autodesk Ecotect (Version 2011) software simulations, their thermal performance throughout the year are observed. Temperature measurements are specifically taken during the peak of summer and winter and the average temperatures in the rooms and courtyards during seven day-periods in peak of summer and peak of winter are plotted graphically. Thereafter, on the basis of the study and software simulations, the hypothesis is verified and the thermally better performing dwelling types in summer and winter identified among the three sub-types studied. Certain recommendations with respect to increasing thermal comfort in courtyard type mud huts in general are also made. It is found that all courtyard type dwellings do not necessarily show better thermal performance in summer and winter in composite climate. The U shaped dwelling with open courtyard on southern side offers maximum amount of thermal-comfort inside the rooms in the hotter part of the year and the square hut with a central courtyard, with the courtyard being closed from all sides, shows superior thermal performance in winter. The courtyards in all the three case-studies are found to get excessively heated up during summer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=courtyard" title="courtyard">courtyard</a>, <a href="https://publications.waset.org/abstracts/search?q=mud%20huts" title=" mud huts"> mud huts</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurements" title=" temperature measurements"> temperature measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a> </p> <a href="https://publications.waset.org/abstracts/40953/three-types-of-mud-huts-with-courtyards-in-composite-climate-thermal-performance-in-summer-and-winter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arnab%20Nandi&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arnab%20Nandi&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>