CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 349 results for author: <span class="mathjax">Guo, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Guo%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Guo, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Guo%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Guo, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14138">arXiv:2502.14138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Moir茅-Tunable Localization of Simultaneous Type I and Type II Band Alignment in a MoSe2/WS2 Heterobilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiaxuan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Withers%2C+Z+H">Zachary H. Withers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Ziling Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+B">Bowen Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adler%2C+A">Alexander Adler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jianwei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+V+C">Victor Chang Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+R+K">Roland K. Kawakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6nhense%2C+G">Gerd Sch枚nhense</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunin%2C+A">Alice Kunin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allison%2C+T+K">Thomas K. Allison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+D+Y">Diana Y. Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14138v1-abstract-short" style="display: inline;"> Moir茅 heterobilayers exhibiting spatially varying band alignment and electron and hole localization that can be precisely controlled through the twist angle have emerged as exciting platforms for studying complex quantum phenomena. While most heterobilayers of transition metal dichalcogenides (TMDs) have a type II band alignment, the introduction of type I band alignment could enable stronger ligh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14138v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14138v1-abstract-full" style="display: none;"> Moir茅 heterobilayers exhibiting spatially varying band alignment and electron and hole localization that can be precisely controlled through the twist angle have emerged as exciting platforms for studying complex quantum phenomena. While most heterobilayers of transition metal dichalcogenides (TMDs) have a type II band alignment, the introduction of type I band alignment could enable stronger light-matter coupling and enhanced radiative emission. Here, we show through a combination of first-principles GW plus Bethe Salpeter equation (GW-BSE) calculations and time- and angle-resolved photoemission spectroscopy (tr-ARPES) measurements that contrary to previous understanding, the MoSe2/WS2 heterobilayer has a type I band alignment at large twist angles and simultaneous regions of type I and type II band alignment due to the structural reconstruction in different high symmetry regions at small twist angles. In tr-ARPES, consistent with our calculations, a long-lived electron population is only observed in MoSe2 for samples with large twist angles, while in samples with small twist angles, signals from two distinct long-lived excitons are observed. Moreover, despite the near degeneracy of the conduction bands of the two layers, no excitonic hybridization occurs, suggesting that previously observed absorption peaks in this material arise from lattice reconstruction. Our findings clarify the complex energy landscape in MoSe2/WS2 heterostructures, where the coexistence of type I and type II band alignment opens the door to moir茅-tunable optoelectronic devices with intrinsic lateral heterojunctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14138v1-abstract-full').style.display = 'none'; document.getElementById('2502.14138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11035">arXiv:2502.11035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.11035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Organometallic-Inorganic Hybrid MXenes with Tunable Superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Q">Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%2C+T">Tao Bo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+W">Wei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Minghua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Q">Qing Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yicong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Ke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+F">Fangfang Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jialu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+S">Sicong Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Changda Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+L">Li Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Lijing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jinghua Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naguib%2C+M">Michael Naguib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Z">Zhifang Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dun%2C+C">Chaochao Dun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+N">Ning Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gogotsi%2C+Y">Yury Gogotsi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+K">Kun Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11035v1-abstract-short" style="display: inline;"> Ti-based two-dimensional transition-metal carbides (MXenes) have attracted attention due to their superior properties and are being explored across various applications1,2. Despite their versatile properties, superconductivity has never been demonstrated, not even predicted, for this important group of 2D materials. In this work, we have introduced an electrochemical intercalation protocol to cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11035v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11035v1-abstract-full" style="display: none;"> Ti-based two-dimensional transition-metal carbides (MXenes) have attracted attention due to their superior properties and are being explored across various applications1,2. Despite their versatile properties, superconductivity has never been demonstrated, not even predicted, for this important group of 2D materials. In this work, we have introduced an electrochemical intercalation protocol to construct versatile organometallic-inorganic hybrid MXenes and achieved tunable superconductivity in the metallocene-modified layered crystals. Through structural editing of MXene matrix at atomic scale and meticulously modulated intercalation route, Ti3C2Tx intercalated with metallocene species exhibits a superconductive transition temperature (Tc) of 10.2 K. Guest intercalation induced electron filling and strain engineering are responsible for the emerging superconductivity in this intrinsically non-superconducting material. Theoretically, simulated electron-phonon interaction effects further elucidate the nature of the changes in Tc. Furthermore, the Tc of crafted artificial superlattices beyond Ti-based MXenes have been predicted, offering a general strategy for engineering superconductivity and magnetism in layered hybrid materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11035v1-abstract-full').style.display = 'none'; document.getElementById('2502.11035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09423">arXiv:2502.09423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09423">pdf</a>, <a href="https://arxiv.org/format/2502.09423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Ziyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+S">Siming Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jialong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+S">Sihan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yangang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zongguo Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09423v1-abstract-short" style="display: inline;"> Crystal structure forms the foundation for understanding the physical and chemical properties of materials. Generative models have emerged as a new paradigm in crystal structure prediction(CSP), however, accurately capturing key characteristics of crystal structures, such as periodicity and symmetry, remains a significant challenge. In this paper, we propose a Transformer-Enhanced Variational Auto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09423v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09423v1-abstract-full" style="display: none;"> Crystal structure forms the foundation for understanding the physical and chemical properties of materials. Generative models have emerged as a new paradigm in crystal structure prediction(CSP), however, accurately capturing key characteristics of crystal structures, such as periodicity and symmetry, remains a significant challenge. In this paper, we propose a Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction (TransVAE-CSP), who learns the characteristic distribution space of stable materials, enabling both the reconstruction and generation of crystal structures. TransVAE-CSP integrates adaptive distance expansion with irreducible representation to effectively capture the periodicity and symmetry of crystal structures, and the encoder is a transformer network based on an equivariant dot product attention mechanism. Experimental results on the carbon_24, perov_5, and mp_20 datasets demonstrate that TransVAE-CSP outperforms existing methods in structure reconstruction and generation tasks under various modeling metrics, offering a powerful tool for crystal structure design and optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09423v1-abstract-full').style.display = 'none'; document.getElementById('2502.09423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08184">arXiv:2502.08184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08184">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.201903498">10.1002/adma.201903498 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong and Tunable Electrical-Anisotropy in Type-II Weyl Semimetal Candidate WP2 with Broken Inversion Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yanpeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Y">Yanhui Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yongchang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhi-Guo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08184v1-abstract-short" style="display: inline;"> A transition metal diphosphide WP2 is a candidate for type-II Weyl semimetals (WSMs) in which spatial inversion symmetry is broken and Lorentz invariance is violated. As one of the key prerequisites for the presence of the WSM state in WP2, spatial inversion symmetry breaking in this compound has rarely been investigated by experiments. Furthermore, how much anisotropy the electrical properties of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08184v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08184v1-abstract-full" style="display: none;"> A transition metal diphosphide WP2 is a candidate for type-II Weyl semimetals (WSMs) in which spatial inversion symmetry is broken and Lorentz invariance is violated. As one of the key prerequisites for the presence of the WSM state in WP2, spatial inversion symmetry breaking in this compound has rarely been investigated by experiments. Furthermore, how much anisotropy the electrical properties of WP2 have and whether its electrical anisotropy can be tuned remain elusive. Here, we report angle-resolved polarized Raman spectroscopy, electrical transport, optical spectroscopy and first-principle studies of WP2. The energies of the observed Raman-active phonons and the angle dependences of the phonon intensities are well consistent with the results obtained by first-principle calculations and the analysis of the proposed crystal symmetry without spatial inversion, providing evidence that spatial inversion symmetry is broken in WP2. Moreover, the measured ratio (Rc/Ra) between the crystalline c-axis and a-axis electrical resistivities exhibits a weak dependence on temperature from 100 to 250 K, but increases abruptly below 100 K, and then reaches the value of 8.0 at 10 K, which is by far the strongest in-plane electrical resistivity anisotropy among the reported type-II WSM candidates with comparable carrier concentrations. Our optical-spectroscopy and calculation studies reveal that the abrupt enhancement of the Rc/Ra below 100 K mainly arises from a sharp increase in the scattering rate anisotropy at low temperatures. More interestingly, the Rc/Ra at 10 K can be tuned from 8.0 to 10.6 as the magnetic field increases from 0 to 9 T. The stronge and tunable electrical resistivity anisotropy found in WP2 can serve as a degree of freedom for tuning the electrical properties of type-II WSMs, which paves the way for developing novel electronic applications based on type-II WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08184v1-abstract-full').style.display = 'none'; document.getElementById('2502.08184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Advanced Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 31, 1903498 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17140">arXiv:2501.17140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17140">pdf</a>, <a href="https://arxiv.org/format/2501.17140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.075126">10.1103/PhysRevB.111.075126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interlayer Hopping between Surface Mott Insulator and Bulk Band Insulator in layered 1T-TaS_{2} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zijian Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+X">Xiaodong Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jingjing Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xuan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuetao Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17140v1-abstract-short" style="display: inline;"> In condensed matter physics, various mechanisms give rise to distinct insulating phases. The competition and interplay between these phases remain elusive, even for the seemingly most distinguishable band and Mott insulators. In multilayer systems, such interplay is mediated by interlayer hopping, which competes with the Coulomb repulsion to determine the nature of insulators. The layered compound&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17140v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17140v1-abstract-full" style="display: none;"> In condensed matter physics, various mechanisms give rise to distinct insulating phases. The competition and interplay between these phases remain elusive, even for the seemingly most distinguishable band and Mott insulators. In multilayer systems, such interplay is mediated by interlayer hopping, which competes with the Coulomb repulsion to determine the nature of insulators. The layered compound 1T-TaS_{2} provides an ideal platform for investigating this phenomenon, as it naturally hosts coexisting Mott and band insulating states. However, distinguishing these distinct insulating states and characterizing the evolution remain challenging. In this study, we employ a dual approach utilizing surface-sensitive High-Resolution Electron Energy Loss Spectroscopy (HREELS) and bulk-sensitive Fourier-transform Infrared Spectroscopy (FTIR) to investigate the electronic excitation spectrum of 1T-TaS_{2}. Our methodology effectively identifies the features originating from the Mott and band insulators by analyzing the differences in their bulk and surface spectral weights, along with their energy distinctions. Based on the previous identification, we further investigate the evolution of insulating state features in the homostructure as they are modulated by temperature. The measurements and Dynamical Mean-Field Theory (DMFT) calculations suggest that the softening and broadening of Hubbard excitations in the Mott state with increasing temperature result from enhanced interlayer hopping between the Mott and band insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17140v1-abstract-full').style.display = 'none'; document.getElementById('2501.17140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18343">arXiv:2412.18343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18343">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Low-temperature mean valence of nickel ions in pressurized La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nataf%2C+L">Lucie Nataf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Q">Qingyu Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18343v1-abstract-short" style="display: inline;"> The discovery of high critical temperature (Tc) superconductivity in pressurized La$_3$Ni$_2$O$_7$ has ignited renewed excitement in the search of novel high-Tc superconducting compounds with 3d transition metals. Compared to other ambient-pressure superconductors, such as copper-oxide and iron-oxypnictides, unraveling the mechanisms of the pressure-induced superconductivity poses significant and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18343v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18343v1-abstract-full" style="display: none;"> The discovery of high critical temperature (Tc) superconductivity in pressurized La$_3$Ni$_2$O$_7$ has ignited renewed excitement in the search of novel high-Tc superconducting compounds with 3d transition metals. Compared to other ambient-pressure superconductors, such as copper-oxide and iron-oxypnictides, unraveling the mechanisms of the pressure-induced superconductivity poses significant and unique challenges. A critical factor in this phenomenon seems to be related to the electronic configuration of 3d orbitals, which may play a fundamental role in driving high-Tc superconductivity. However, the pressure effects on the mixed-valence states of 3d-orbital cations and their influence on the emergence of high-Tc superconductivity remain poorly understood. Here, we use high-pressure (P) and low-temperature synchrotron X-ray absorption spectroscopy to investigate the influence of pressure on the mean valence change of Ni ions in La$_3$Ni$_2$O$_7$. Our results demonstrate that at a low-temperature of 20 K, the mean valence remains relatively stable across the pressures range from 1 atm to 40 GPa. Based on analyzing the absorption data, we find that, at a critical pressure, the ambient-pressure ordered phases disappear and both the structural and the superconducting phase transition occur. The pressure-induced structural phase transition revealed by our absorption results is consistent with that determined by X-ray diffraction, offering new information for a comprehensive understanding on the pressure-induced superconductivity in La$_3$Ni$_2$O$_7$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18343v1-abstract-full').style.display = 'none'; document.getElementById('2412.18343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15842">arXiv:2411.15842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15842">pdf</a>, <a href="https://arxiv.org/format/2411.15842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Fourfold Anisotropic Magnetoresistance and Unconventional Critical Exponents in Twinned FePd$_2$Te$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhaoxu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jian-gang Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15842v1-abstract-short" style="display: inline;"> As a special material symmetry operation, crystal twins usually influence physical properties. Here, detailed electrical transport and magnetic measurements were performed to reveal twinning effect on properties of van der Waals ferromagnet FePd$_2$Te$_2$. Orthorhombic crystal domains were observed in polarized optical microscopy and fixed $蟺$/2 angle between adjacent domains suggests a phase tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15842v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15842v1-abstract-full" style="display: none;"> As a special material symmetry operation, crystal twins usually influence physical properties. Here, detailed electrical transport and magnetic measurements were performed to reveal twinning effect on properties of van der Waals ferromagnet FePd$_2$Te$_2$. Orthorhombic crystal domains were observed in polarized optical microscopy and fixed $蟺$/2 angle between adjacent domains suggests a phase transition origin of the twins. FePd$_2$Te$_2$ exhibits fourfold in-plane anisotropic magnetoresistance. It is attributed to antiferromagnetic coupling component near atomically flat twin boundary and pseudo four-fold symmetry from perpendicular Fe chains. Intense magnetic domain motion is suggested by Hopkinson effect observed in magnetic susceptibility. A set of unusual critical exponents $尾$ = 0.866, $纬$ = 1.043, $未$ = 2.20 cannot be classified in any universal class predicted by renormalized group. Deviation from standard model reflects the non-saturating magnetization and slow growth of spontaneous magnetization resulting from crystal domain walls. These results show that additional symmetry from twins and twin boundary have a significant effect on electrical transport and magnetic properties of FePd$_2$Te$_2$. There is much room to modulate physical properties of twinned van der Waals ferromagnets through twins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15842v1-abstract-full').style.display = 'none'; document.getElementById('2411.15842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11555">arXiv:2411.11555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11555">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Strongly Magnetically Tuned Exciton-Polaritons in van der Waals CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xuekai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+N">Nai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiepeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+K+K">Kwok Kwan Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+X">Xinyi Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiaqi Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinfeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11555v1-abstract-short" style="display: inline;"> 2D van der Waals (vdW) magnetic semiconductors offer an ideal platform to achieve exciton-polaritons correlated with magnetic orders for developing solid-state quantum, spintronic, and photonic devices. However, in the as-demonstrated systems, the coupling strength, light velocity, and effective mass of exciton-polaritons are almost inert to the external magnetic field. Here, we report the experim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11555v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11555v1-abstract-full" style="display: none;"> 2D van der Waals (vdW) magnetic semiconductors offer an ideal platform to achieve exciton-polaritons correlated with magnetic orders for developing solid-state quantum, spintronic, and photonic devices. However, in the as-demonstrated systems, the coupling strength, light velocity, and effective mass of exciton-polaritons are almost inert to the external magnetic field. Here, we report the experimental observation of giant magnetic tuning of B exciton-polaritons in vdW magnet CrSBr crystals. The Rabi splitting energy is tuned up to 100 meV within a moderate 0.45 T in-plane magnetic field due to changes in excitonic states during the spin transitions. Besides, the light velocity and effective mass of exciton-polaritons are tuned by 10.3% and 26.1% below 100 meV of exciton energy. Further, the strong coupling persists at room temperature, controlled by temperature-tailored exciton-magnon and exciton-phonon coupling. These results advance the development of on-demand strong coupling systems for spin-correlated quantum optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11555v1-abstract-full').style.display = 'none'; document.getElementById('2411.11555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08667">arXiv:2411.08667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08667">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Cavity-enhanced circular dichroism in a van der Waals antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+S">Shu-Liang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+S">Simin Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Shan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yu-Jia Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tian-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+N">Nai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiaqi Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hou-Zhi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun-Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P">Ping-Heng Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08667v1-abstract-short" style="display: inline;"> Broken symmetry plays a pivotal role in determining the macroscopic electrical, optical, magnetic, and topological properties of materials. Circular dichroism (CD) has been widely employed to probe broken symmetry in various systems, from small molecules to bulk crystals, but designing CD responses on demand remains a challenge, especially for antiferromagnetic materials. Here, we develop a cavity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08667v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08667v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08667v1-abstract-full" style="display: none;"> Broken symmetry plays a pivotal role in determining the macroscopic electrical, optical, magnetic, and topological properties of materials. Circular dichroism (CD) has been widely employed to probe broken symmetry in various systems, from small molecules to bulk crystals, but designing CD responses on demand remains a challenge, especially for antiferromagnetic materials. Here, we develop a cavity-enhanced CD technique to sensitively probe the magnetic order and broken symmetry in the van der Waals antiferromagnet FePS3. By introducing interfacial inversion asymmetry in cavity-coupled FePS3 crystals, we demonstrate that the induced CD is strongly coupled with the zig-zag antiferromagnetic order of FePS3 and can be tuned both spectrally and in magnitude by varying the cavity length and FePS3 thickness. Our findings open new avenues for using cavity-modulated CD as a sensitive diagnostic probe to detect weak broken symmetries, particularly at hidden interfaces, and in systems exhibiting hidden spin polarization or strong correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08667v1-abstract-full').style.display = 'none'; document.getElementById('2411.08667v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05551">arXiv:2411.05551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05551">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Collective Pinning and Vortex Dynamics in type 2 superconducting thin films with Varying Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+L">Liangliang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Renfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiawei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaobo Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05551v2-abstract-short" style="display: inline;"> A perpendicular magnetic field penetrating a thin type-II superconductor slab produces vortices, with one vortex per flux quantum, h/2e. The vortices interact repulsively and form an ordered array (Abrikosov lattice) in clean systems, while strong disorder changes the lattice into a vortex glass. Here we investigate type-II superconducting films (PdBi2 and NbSe2) with surface acoustic waves (SAWs)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05551v2-abstract-full').style.display = 'inline'; document.getElementById('2411.05551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05551v2-abstract-full" style="display: none;"> A perpendicular magnetic field penetrating a thin type-II superconductor slab produces vortices, with one vortex per flux quantum, h/2e. The vortices interact repulsively and form an ordered array (Abrikosov lattice) in clean systems, while strong disorder changes the lattice into a vortex glass. Here we investigate type-II superconducting films (PdBi2 and NbSe2) with surface acoustic waves (SAWs) at mK temperature. When sweeping the magnetic field at an extremely slow rate, we observe a series of spikes in the attenuation and velocity of the SAW, on average separated in field by approximately Hc1. We suspect the following scenario: The vortex-free region at the edges of the film produces an edge barrier across which the vortices can enter or leave. When the applied field changes, the induced supercurrents flowing along this edge region lowers this barrier until there is an instability. At that point, vortices avalanche into (or out of) the bulk and change the vortex crystal, suggested by the sharp jump in each such spike. The vortices then gradually relax to a new stable pinned configuration, leading to a ~30s relaxation after the jump. Our observation enriches the limited experimental evidence on the important topic of real-time vortex dynamics in superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05551v2-abstract-full').style.display = 'none'; document.getElementById('2411.05551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14196">arXiv:2410.14196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01542">10.1021/acs.nanolett.4c01542 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Confined Tunable Ferromagnetism on the Surface of a van der Waals Antiferromagnet NaCrTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Runzhe Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yiheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicolas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+S">Sailong Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14196v1-abstract-short" style="display: inline;"> The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab-initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agree&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14196v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14196v1-abstract-full" style="display: none;"> The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab-initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe an unexpected exchange splitting of the band dispersions, persisting well above the N茅el temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting a feasible tunability of the surface ferromagnetism. Our work not only presents a simple platform to explore tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14196v1-abstract-full').style.display = 'none'; document.getElementById('2410.14196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 24, 9832-9838 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03956">arXiv:2410.03956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03956">pdf</a>, <a href="https://arxiv.org/format/2410.03956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Charge Density Fluctuations with Enhanced Superconductivity at the Proposed Nematic Quantum Critical Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Youzhe Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giles-Donovan%2C+N">Nathan Giles-Donovan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiayu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruihan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fukui%2C+H">Hiroshi Fukui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manjo%2C+T">Taishun Manjo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikawa%2C+D">Daisuke Ishikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baron%2C+A+Q+R">Alfred Q. R. Baron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J Birgeneau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03956v1-abstract-short" style="display: inline;"> A quantum critical point (QCP) represents a continuous phase transition at absolute zero. At the QCP of an unconventional superconductor, enhanced superconducting transition temperature and magnetic fluctuations strength are often observed together, indicating magnetism-mediated superconductivity. This raises the question of whether quantum fluctuations in other degrees of freedom, such as charge,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03956v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03956v1-abstract-full" style="display: none;"> A quantum critical point (QCP) represents a continuous phase transition at absolute zero. At the QCP of an unconventional superconductor, enhanced superconducting transition temperature and magnetic fluctuations strength are often observed together, indicating magnetism-mediated superconductivity. This raises the question of whether quantum fluctuations in other degrees of freedom, such as charge, could similarly boost superconductivity. However, because charge is frequently intertwined with magnetism, isolating and understanding its specific role in Cooper pair formation poses a significant challenge. Here, we report persistent charge density fluctuations (CDF) down to 15 K in the non-magnetic superconductor Sr$_{0.77}$Ba$_{0.23}$Ni$_{2}$As$_{2}$, which lies near a proposed nematic QCP associated with a six-fold enhancement of superconductivity. Our results show that the quasi-elastic CDF does not condense into resolution-limited Bragg peaks and displays non-saturated strength. The CDF completely softens at 25 K, with its critical behavior described by the same mathematical framework as the antiferromagnetic Fermi liquid model, yielding a fitted Curie-Weiss temperature of $胃\approx 0$ K. Additionally, we find that the nematic fluctuations are not lattice-driven, as evidenced by the absence of softening in nematic-coupled in-plane transverse acoustic phonons. Our discovery positions Sr$_{x}$Ba$_{1-x}$Ni$_{2}$As$_{2}$ as a promising candidate for charge-fluctuation-driven nematicity and superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03956v1-abstract-full').style.display = 'none'; document.getElementById('2410.03956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06144">arXiv:2409.06144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06144">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51366-x">10.1038/s41467-024-51366-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cooperative dynamic polaronic picture of diamond color centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ichikawa%2C+T">Takuto Ichikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Junjie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fons%2C+P">Paul Fons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prananto%2C+D">Dwi Prananto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+T">Toshu An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hase%2C+M">Muneaki Hase</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06144v1-abstract-short" style="display: inline;"> Polarons can control carrier mobility and can also be used in the design of quantum devices. Although much effort has been directed into investigating the nature of polarons, observation of defect-related polarons is challenging due to electron-defect scattering. Here we explore the polaronic behavior of nitrogen-vacancy (NV) centers in a diamond crystal using an ultrafast pump-probe technique. A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06144v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06144v1-abstract-full" style="display: none;"> Polarons can control carrier mobility and can also be used in the design of quantum devices. Although much effort has been directed into investigating the nature of polarons, observation of defect-related polarons is challenging due to electron-defect scattering. Here we explore the polaronic behavior of nitrogen-vacancy (NV) centers in a diamond crystal using an ultrafast pump-probe technique. A 10-fs optical pulse acts as a source of high electric field exceeding the dielectric breakdown threshold, in turn exerting a force on the NV charge distribution and polar optical phonons. The electronic and phononic responses are enhanced by an order of magnitude for a low density of NV centers, which we attribute to a combination of cooperative polaronic effects and scattering by defects. First-principles calculations support the presence of dipolar Fr枚hlich interaction via non-zero Born effective charges. Our findings provide insights into the physics of color centers in diamonds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06144v1-abstract-full').style.display = 'none'; document.getElementById('2409.06144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 15, 7174 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01741">arXiv:2409.01741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01741">pdf</a>, <a href="https://arxiv.org/format/2409.01741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Consecutive Flat Chern Bands and Correlated States in Monolayer ReAg$_2$Cl$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+K">Kejie Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiaxuan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01741v2-abstract-short" style="display: inline;"> We theoretically propose that van der Waals monolayer ReAg$_2$Cl$_6$ have four consecutive flat Chern bands in the 120$^\circ$ spiral antiferromagnetic ground state. The nontrivial topology of these Chern bands emerges from the synergy between Re $t_{2g}$ band folding with non-collinear spin configuration and spin-orbit coupling. By constructing maximally localized Wannier functions directly from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01741v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01741v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01741v2-abstract-full" style="display: none;"> We theoretically propose that van der Waals monolayer ReAg$_2$Cl$_6$ have four consecutive flat Chern bands in the 120$^\circ$ spiral antiferromagnetic ground state. The nontrivial topology of these Chern bands emerges from the synergy between Re $t_{2g}$ band folding with non-collinear spin configuration and spin-orbit coupling. By constructing maximally localized Wannier functions directly from first-principles calculations, the tight-binding model is developed to describe the consecutive Chern bands. Interestingly, many-body exact diagonalization and entanglement spectrum analysis suggest that correlated states such as fractional Chern insulator and charge density wave may appear in these Chern bands with $1/3$ filling. Furthermore, the spin configurations and band topology of Chern bands are tunable by external magnetic field. The general physics from the $d$ orbitals here applies to a large class of materials such as ReAg$_2$Br$_6$, ReAu$_2$I$_6$ and ReCu$_2X_6$ ($X$=Cl, Br, I). These notable predictions in pristine 2D materials, if realized experimentally, could offer a new playground for exploring correlated topological states at elevated temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01741v2-abstract-full').style.display = 'none'; document.getElementById('2409.01741v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05799">arXiv:2408.05799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Boosting the quality factor of Tamm structures to millions by quantum inspired classical annealer with factorization machine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitai%2C+K">Koki Kitai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jippo%2C+H">Hideyuki Jippo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiomi%2C+J">Junichiro Shiomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05799v1-abstract-short" style="display: inline;"> The Tamm structures show high quality (Q) factor property with simple photonic Bragg reflectors composed of alternative high/low refractive index layers and metal reflectors. However, the Q-factor of Tamm structures is inherently limited by the periodic constraints and fixed thicknesses of the Bragg reflector pairs. Removing periodic constraints and adopting aperiodic designs can lead to significa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05799v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05799v1-abstract-full" style="display: none;"> The Tamm structures show high quality (Q) factor property with simple photonic Bragg reflectors composed of alternative high/low refractive index layers and metal reflectors. However, the Q-factor of Tamm structures is inherently limited by the periodic constraints and fixed thicknesses of the Bragg reflector pairs. Removing periodic constraints and adopting aperiodic designs can lead to significantly higher Q-factors. Nevertheless, to fully exploit the potential of Tamm structures, it is essential to thoroughly explore the extensive search space introduced by these aperiodic designs. Herein, we introduce a novel approach that utilizes the quantum-inspired classical annealer combined with a factorization machine to facilitate the design of photonic Bragg reflectors with the aim of achieving ultrahigh Q-factor properties. Our investigation begins by establishing the effectiveness of global optimization in a 15-bit problem setting, showcasing a remarkable efficiency improvement of nearly one order of magnitude compared to random search strategies. Subsequently, we expand our analysis to a 20-bit problem, demonstrating comparable efficiency to state-of-the-art Bayesian optimization methods. Moreover, the proposed method proves its capability in handling extremely large search spaces, exemplified by a 40-bit problem, where we successfully uncover a Tamm structure design exhibiting an extraordinary ultrahigh Q-factor surpassing millions. The designed aperiodic Tamm structure exhibits exceptional high localization and enhancement of electric field, and the power loss is concentrated in the low loss dielectric layer. Hence, the decay rate of power dissipation significantly decreases and light-matter interaction time increases, resulting in ultrahigh Q-factor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05799v1-abstract-full').style.display = 'none'; document.getElementById('2408.05799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16924">arXiv:2407.16924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16924">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space topology-engineering of skyrmionic spin textures in a van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+G">Guojing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guangcheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zizhao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shuaizhao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+F">Fei Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16924v1-abstract-short" style="display: inline;"> Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16924v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16924v1-abstract-full" style="display: none;"> Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM). The skyrmion lattice is realized by specific field-cooling process, and can be further controllably erased and painted via delicate manipulation of tip stray field. The skyrmion lattice with opposite topological charges (S = +1 or -1) can be tailored at the target regions to form topological skyrmion junctions (TSJs) with specific configurations. The delicate interplay of TSJs and spin-polarized device current were finally investigated via the in-situ transport measurements, alongside the topological stability of TSJs. Our results demonstrate that Fe3GaTe2 not only serves as a potential building block for room-temperature skyrmion-based spintronic devices, but also presents promising prospects for Fe3GaTe2-based heterostructures with the engineered topological spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16924v1-abstract-full').style.display = 'none'; document.getElementById('2407.16924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09880">arXiv:2407.09880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09880">pdf</a>, <a href="https://arxiv.org/format/2407.09880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01612">10.1021/acs.nanolett.4c01612 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferior interfacial superconductivity in 1 UC FeSe/SrVO$_3$/SrTiO$_3$ with screened interfacial electron-phonon coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+N">Nan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaoyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+M">Minyinan Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuetao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Haichao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">Rui Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09880v1-abstract-short" style="display: inline;"> Monolayer FeSe/TiO$_x$ and FeSe/FeO$_x$ interfaces exhibit significant superconductivity enhancement compared to bulk FeSe, with interfacial electron-phonon coupling (EPC) playing a crucial role. However, the reduced dimensionality in monolayer FeSe, which may drive superconducting fluctuations, complicates the understanding of the enhancement mechanisms. Here we construct a new superconducting in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09880v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09880v1-abstract-full" style="display: none;"> Monolayer FeSe/TiO$_x$ and FeSe/FeO$_x$ interfaces exhibit significant superconductivity enhancement compared to bulk FeSe, with interfacial electron-phonon coupling (EPC) playing a crucial role. However, the reduced dimensionality in monolayer FeSe, which may drive superconducting fluctuations, complicates the understanding of the enhancement mechanisms. Here we construct a new superconducting interface: monolayer FeSe/SrVO$_3$/SrTiO$_3$, in which the itinerant electrons of highly metallic SrVO$_3$ films can screen all the high-energy Fuchs-Kliewer phonons, including those of SrTiO$_3$, making it the first FeSe/oxide system with screened interfacial EPC while maintaining the monolayer FeSe thickness. Despite comparable doping levels, the heavily electron-doped monolayer FeSe/SrVO$_3$ exhibits a lower pairing temperature ($T_\mathrm{g}$ $\sim$ 48 K) than FeSe/SrTiO$_3$ and FeSe/LaFeO$_3$. Our findings disentangle the contributions of interfacial EPC from dimensionality on enhancing $T_\mathrm{g}$ in FeSe/oxide interfaces, underscoring the importance of interfacial EPC in $T_\mathrm{g}$ enhancement. This FeSe/VO$_x$ interface also provides a platform for studying the interfacial superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09880v1-abstract-full').style.display = 'none'; document.getElementById('2407.09880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nano Letters, 11 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02715">arXiv:2407.02715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02715">pdf</a>, <a href="https://arxiv.org/format/2407.02715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Revealing the Electronic Structure of NiPS$_3$ through Synchrotron-Based ARPES and Alkali Metal Dosing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yifeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Q">Qishuo Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vieira%2C+C+G">Cl贸vis Guerim Vieira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzon%2C+M+S+C">M谩rio S. C. Mazzon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laverock%2C+J">Jude Laverock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Russo%2C+N">Nicholas Russo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hongze Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jinghua Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matos%2C+M+J+S">Matheus J. S. Matos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+X">Xi Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+K+E">Kevin E. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02715v1-abstract-short" style="display: inline;"> This study presents a comprehensive analysis of the band structure in NiPS$_3$, a van der Waals layered antiferromagnet, utilizing high-resolution synchrotron-based angle-resolved photoemission spectroscopy (ARPES) and corroborative density functional theory (DFT) calculations. By tuning the parameters of the light source, we obtained a very clear and wide energy range band structure of NiPS$_3$.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02715v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02715v1-abstract-full" style="display: none;"> This study presents a comprehensive analysis of the band structure in NiPS$_3$, a van der Waals layered antiferromagnet, utilizing high-resolution synchrotron-based angle-resolved photoemission spectroscopy (ARPES) and corroborative density functional theory (DFT) calculations. By tuning the parameters of the light source, we obtained a very clear and wide energy range band structure of NiPS$_3$. Comparison with DFT calculations allows for the identification of the orbital character of the observed bands. Our DFT calculations perfectly match the experimental results, and no adaptations were made to the calculations based on the experimental outcomes. The appearance of novel electronic structure upon alkali metal dosing (AMD) were also obtained in this ARPES study. Above valence band maximum, structure of conduction bands and bands from defect states were firstly observed in NiPS$_3$. We provide the direct determination of the band gap of NiPS$_3$ as 1.3 eV from the band structure by AMD. In addition, detailed temperature dependent ARPES spectra were obtained across a range that spans both below and above the N茅el transition temperature of NiPS$_3$. We found that the paramagnetic and antiferromagnetic states have almost identical spectra, indicating the highly localized nature of Ni $d$ states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02715v1-abstract-full').style.display = 'none'; document.getElementById('2407.02715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01881">arXiv:2407.01881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01881">pdf</a>, <a href="https://arxiv.org/format/2407.01881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Spectral evidence for NiPS3 as a Mott-Hubbard insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yifeng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Russo%2C+N">Nicholas Russo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Q">Qishuo Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ling%2C+X">Xi Ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jinghua Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-de Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+K+E">Kevin E. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01881v1-abstract-short" style="display: inline;"> The layered van der Waals trichalcogenide NiPS3 has attracted widespread attention due to its unique optical, magnetic, and electronic properties. The complexity of NiPS3 itself, however, has also led to ongoing debates regarding its characteristics such as the existence of self-doped ligand holes. In this study, X-ray absorption spectroscopy and resonant inelastic X-ray scattering have been appli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01881v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01881v1-abstract-full" style="display: none;"> The layered van der Waals trichalcogenide NiPS3 has attracted widespread attention due to its unique optical, magnetic, and electronic properties. The complexity of NiPS3 itself, however, has also led to ongoing debates regarding its characteristics such as the existence of self-doped ligand holes. In this study, X-ray absorption spectroscopy and resonant inelastic X-ray scattering have been applied to investigate the electronic structure of NiPS3. With the aid of theoretical calculations using the charge-transfer multiplet model, we provide experimental evidence for NiPS3 being a Mott-Hubbard insulator rather than a charge-transfer insulator. Moreover, we explain why some previous XAS studies have concluded that NiPS3 is a charge-transfer insulator by comparing surface and bulk sensitive spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01881v1-abstract-full').style.display = 'none'; document.getElementById('2407.01881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06104">arXiv:2406.06104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06104">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlated electrons of the flat band in charge density wave state of 4Hb-TaSexS2-x </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Y">Yanyan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanyu Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Manyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+F">Fei Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shancai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Weichang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06104v1-abstract-short" style="display: inline;"> Many intriguing quantum states of matter, such as unconventional superconductivity, magnetic phases and fractional quantum Hall physics, emergent from the spatially-correlated localized electrons in the flat band of solid materials. By using scanning tunneling microscopy and spectroscopy (STM/STS), we report the real-space investigation of correlated electrons in the flat band of superlattice 4Hb-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06104v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06104v1-abstract-full" style="display: none;"> Many intriguing quantum states of matter, such as unconventional superconductivity, magnetic phases and fractional quantum Hall physics, emergent from the spatially-correlated localized electrons in the flat band of solid materials. By using scanning tunneling microscopy and spectroscopy (STM/STS), we report the real-space investigation of correlated electrons in the flat band of superlattice 4Hb-TaSexS2-x. In contrast with the pristine 4Hb-TaS2, the selenium (Se) substitutions significantly affect the interfacial transfer of correlated electrons between the CDW states of 1T- and 1H-TaS2 layers, and contribute a real-space fractional electron-filling configurations with the distributed electron-filled and -void SoD clusters of 1T-layer. The site-specific STS spectra directly reveal their respective prominent spectra weight above EF and symmetric Mott-like spectra. In addition, the spatial distributions of these electron-filled SoDs in the 1T-layer of 4Hb-TaSe0.7S1.3 demonstrate different local short-range patterning, clearly indicating the complex neighboring interactions among the localized electrons in the flat band of 1T-layer. Our results not only provide an in-depth insight of correlated electrons in the flat CDW band, and provide a simple platform to manipulate the electron-correlation-related quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06104v1-abstract-full').style.display = 'none'; document.getElementById('2406.06104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19853">arXiv:2405.19853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Correlated Electronic Structure and Density-Wave Gap in Trilayer Nickelate La4Ni3O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19853v1-abstract-short" style="display: inline;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popular&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19853v1-abstract-full" style="display: none;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popularity of nickelates in the Ruddlesden-Popper phase. In this study, combining high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La4Ni3O10 at ambient pressure. We reveal a high resemblance of La4Ni3O10 with La3Ni2O7 in the orbital-dependent fermiology and electronic structure, suggesting a similar electronic correlation between the two compounds. The temperature-dependent measurements imply an orbital-dependent energy gap related to the density-wave transition in La4Ni3O10. By comparing the theoretical pressure-dependent electronic structure, clues about the superconducting high-pressure phase can be deduced from the ambient measurements, providing crucial information for deciphering the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'none'; document.getElementById('2405.19853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15210">arXiv:2405.15210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15210">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin chirality engineering induced giant topological Hall effect in a kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jian Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yurui Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haonan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Hong Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangteng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z">Zicheng Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+K">Ke Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xuerong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xuewen Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhenzhong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15210v1-abstract-short" style="display: inline;"> The ferrimagnet TbMn6Sn6 has attracted vast attention, because its pristine Mn kagome lattice with strong spin-orbit coupling and out-of-plane Tb-Mn exchange supports quantum-limit Chern topological magnetism which can be described by the simple spinless Haldane model. We unveil herein that engineering the pristine kagome lattice through partial replacement of Mn by nonmagnetic Cr which tends to c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15210v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15210v1-abstract-full" style="display: none;"> The ferrimagnet TbMn6Sn6 has attracted vast attention, because its pristine Mn kagome lattice with strong spin-orbit coupling and out-of-plane Tb-Mn exchange supports quantum-limit Chern topological magnetism which can be described by the simple spinless Haldane model. We unveil herein that engineering the pristine kagome lattice through partial replacement of Mn by nonmagnetic Cr which tends to concentrate into the single Mn1 layer in a unit cell breaks the collinear configuration of Mn spins and reduces the D6h point group symmetry to the C2 one. The nearly isolated Tb networks result in easily polarized Tb spins even under a weak magnetic field, and simultaneously, different spin chirality of the Tb-Mn1-Mn1 and Mn1-Mn1-Mn1. Such a peculiar spin structure leads to a plateau-like topological Hall effect with a record resistivity of 19.1 渭Ohm cm among bulk systems. Our direct visualization of the domain-wall structure and its evolution under external magnetic field fully support the picture, thus highlighting the pivotal role of broken kagome lattice symmetry in generating the peculiar spin chirality in real space. Our results set a paradigm for exploration of exotic properties in kagome topological magnets and would be a proof-of-principle strategy for investigating the correlation between magnetism and exotic topological properties in kagome lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15210v1-abstract-full').style.display = 'none'; document.getElementById('2405.15210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages,4 main figures and 16 SI figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07156">arXiv:2405.07156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07156">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct visualization of the impurity occupancy roadmap in Ni-substituted van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jian Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haonan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xiaofei Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Binshuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yurui Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangteng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Lu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhenhai Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhikai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xuerong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xuewen Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+K">Ke Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhenzhong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07156v1-abstract-short" style="display: inline;"> Impurity substitution is a general strategy to study the intrinsic properties of a quantum material. However, when the target element has more than one Wyckoff position in the lattice, it is a big challenge but with extreme necessity to know the exact position and order of the occupancy of impurity atoms. Via comprehensive experimental and theoretical investigations, we establish herein the roadma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07156v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07156v1-abstract-full" style="display: none;"> Impurity substitution is a general strategy to study the intrinsic properties of a quantum material. However, when the target element has more than one Wyckoff position in the lattice, it is a big challenge but with extreme necessity to know the exact position and order of the occupancy of impurity atoms. Via comprehensive experimental and theoretical investigations, we establish herein the roadmap for Ni substitution in Fe3GaTe2, a van der Waals ferromagnet with the Curie temperature TC even reaching ~ 380 K. The results unambiguously reveal that in (Fe1-xNix)3GaTe2, Ni atoms initially form an van der Waals interlayer gap Ni3 sites when x &lt; 0.1, and then gradually occupy the Fe2 sites. After replacing the Fe2 sites at x of ~ 0.75, they start to substitute for the Fe1 sites and eventually realize a full occupation at x = 1.0. Accordingly, TC and saturation magnetic moments of (Fe1-xNix)3GaTe2 both show nonlinear decrease, which is tightly tied to the Ni occupancy order as well as the different roles of Ni3, Fe1 and Fe2 sites in the spin Hamiltonian. The results not only yield fruitful insights into the essential roles of different Fe sites in producing the above room temperature high TC, but also set a paradigm for future impurity substitution study on other quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07156v1-abstract-full').style.display = 'none'; document.getElementById('2405.07156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages,5 main figures+4 SI figures+2 SI tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17738">arXiv:2404.17738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17738">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c05512">10.1021/acsnano.4c05512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultimate charge transport regimes in doping-controlled graphene laminates: phonon-assisted processes revealed by the linear magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gudarzi%2C+M+M">Mohsen Moazzami Gudarzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slizovskiy%2C+S">Sergey Slizovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+B">Boyang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=T%C3%B3v%C3%A1ri%2C+E">Endre T贸v谩ri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pinter%2C+G">Gergo Pinter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanderson%2C+D">David Sanderson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asaad%2C+M">Maryana Asaad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Y">Ying Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianqiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spencer%2C+B+F">Ben F. Spencer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+A">Alexandra A. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fal%27ko%2C+V+I">Vladimir I. Fal&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kretinin%2C+A+V">Andrey V. Kretinin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17738v1-abstract-short" style="display: inline;"> Understanding and controlling the electrical properties of solution-processed 2D materials is key to further printed electronics progress. Here we demonstrate that the thermolysis of the aromatic intercalants utilized in nanosheet exfoliation for graphene laminates opens the route to achieving high intrinsic mobility and simultaneously controlling doping type ($n$- and $p$-) and concentration over&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17738v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17738v1-abstract-full" style="display: none;"> Understanding and controlling the electrical properties of solution-processed 2D materials is key to further printed electronics progress. Here we demonstrate that the thermolysis of the aromatic intercalants utilized in nanosheet exfoliation for graphene laminates opens the route to achieving high intrinsic mobility and simultaneously controlling doping type ($n$- and $p$-) and concentration over a wide range. We establish that the intra-flake mobility is high by observing a linear magnetoresistance of such solution-processed graphene laminates and using it to devolve the inter-flake tunneling and intra-layer magnetotransport. Consequently, we determine the temperature dependences of the inter- and intra-layer characteristics, which both appear to be dominated by phonon-assisted processes at temperature $T&gt;$20 Kelvin. In particular, we identify the efficiency of phonon-assisted tunneling as the main limiting factor for electrical conductivity in graphene laminates at room temperature. We also demonstrate a thermoelectric sensitivity of around 50 $渭$V K$^{-1}$ in a solution-processed metal-free graphene-based thermocouple. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17738v1-abstract-full').style.display = 'none'; document.getElementById('2404.17738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14538">arXiv:2404.14538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14538">pdf</a>, <a href="https://arxiv.org/format/2404.14538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2025-01-28-1612">10.22331/q-2025-01-28-1612 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designing open quantum systems with known steady states: Davies generators and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jinkang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hart%2C+O">Oliver Hart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chi-Fang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friedman%2C+A+J">Aaron J. Friedman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lucas%2C+A">Andrew Lucas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14538v2-abstract-short" style="display: inline;"> We provide a systematic framework for constructing generic models of nonequilibrium quantum dynamics with a target stationary (mixed) state. Our framework identifies (almost) all combinations of Hamiltonian and dissipative dynamics that relax to a steady state of interest, generalizing the Davies&#39; generator for dissipative relaxation at finite temperature to nonequilibrium dynamics targeting arbit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14538v2-abstract-full').style.display = 'inline'; document.getElementById('2404.14538v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14538v2-abstract-full" style="display: none;"> We provide a systematic framework for constructing generic models of nonequilibrium quantum dynamics with a target stationary (mixed) state. Our framework identifies (almost) all combinations of Hamiltonian and dissipative dynamics that relax to a steady state of interest, generalizing the Davies&#39; generator for dissipative relaxation at finite temperature to nonequilibrium dynamics targeting arbitrary stationary states. We focus on Gibbs states of stabilizer Hamiltonians, identifying local Lindbladians compatible therewith by constraining the rates of dissipative and unitary processes. Moreover, given terms in the Lindbladian not compatible with the target state, our formalism identifies the operations -- including syndrome measurements and local feedback -- one must apply to correct these errors. Our methods also reveal new models of quantum dynamics: for example, we provide a &#34;measurement-induced phase transition&#34; in which measurable two-point functions exhibit critical (power-law) scaling with distance at a critical ratio of the transverse field and rate of measurement and feedback. Time-reversal symmetry -- defined naturally within our formalism -- can be broken both in effectively classical and intrinsically quantum ways. Our framework provides a systematic starting point for exploring the landscape of dynamical universality classes in open quantum systems, as well as identifying new protocols for quantum error correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14538v2-abstract-full').style.display = 'none'; document.getElementById('2404.14538v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 9, 1612 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12374">arXiv:2404.12374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Realization of Kagome Kondo lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Boqin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei-Jian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jian-gang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tianping Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12374v2-abstract-short" style="display: inline;"> The Kondo lattice, describing a grid of the local magnetic moments coupling to itinerant electrons, is a fertile ground of strongly correlated states in condensed matter physics. While the Kagome lattice has long been predicted to host Kondo physics with exotic magnetism and nontrivial topology, no experimental realization has been achieved. Here, we report the discovery of CsCr6Sb6, a van der Waa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12374v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12374v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12374v2-abstract-full" style="display: none;"> The Kondo lattice, describing a grid of the local magnetic moments coupling to itinerant electrons, is a fertile ground of strongly correlated states in condensed matter physics. While the Kagome lattice has long been predicted to host Kondo physics with exotic magnetism and nontrivial topology, no experimental realization has been achieved. Here, we report the discovery of CsCr6Sb6, a van der Waals-like Kagome Kondo lattice featuring extremely flat, isolated bands at the Fermi level (EF) that composed entirely of Cr-3d electrons. We observe heavy fermions with the effective mass over 100 times greater than those of its vanadium counterpart. We also observe Kondo insulating behavior in an ultra-low carrier density of 1019 cm-3 and dimensionality-induced Kondo breakdown. More interestingly, the frustrated magnetism observed in the bulk give way to a hidden A-type antiferromagnetic ordering in few layers, in sharp contrast to the common sense of weakened magnetism with thinning. The realization of Kondo physics in Kagome lattice opens avenues for exploring diverse quantum criticalities in a strongly-correlated frustrated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12374v2-abstract-full').style.display = 'none'; document.getElementById('2404.12374v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04851">arXiv:2404.04851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04851">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Site-ordering/disordering-induced magnetic textures in a vdW ferromagnet by competing global and broken inversion-symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haoyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Cong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+L">Le Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+C">Congkuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hanxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shiyu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+F">Fei Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04851v1-abstract-short" style="display: inline;"> Fe5GeTe2 single crystals can be divided into nonquenched (NQ) and quench-cooled (QC) phases with different magnetic properties. A comprehensive understanding of the magnetic property variations in the NQ and QC phases is imperative for guiding Fe5GeTe2 towards spintronics applications; however, it remains elusive. Here, we report a real-space study on the structural and magnetic properties of thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04851v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04851v1-abstract-full" style="display: none;"> Fe5GeTe2 single crystals can be divided into nonquenched (NQ) and quench-cooled (QC) phases with different magnetic properties. A comprehensive understanding of the magnetic property variations in the NQ and QC phases is imperative for guiding Fe5GeTe2 towards spintronics applications; however, it remains elusive. Here, we report a real-space study on the structural and magnetic properties of these two magnetic phases using cryogenic magnetic force microscopy and scanning tunneling microscopy. The thermal history introduces disorder and order to the Fe(1) sites, resulting in the NQ and QC phases exhibiting global and broken inversion symmetry, respectively. The observed magnetic domain transitions (branching to labyrinthine) in the spin reorientation process and the distinct 3D spin textures stabilized by magnetic dipolar interaction observed in field-dependent studies allow the NQ phase to exhibit a more resilient global magnetic state. In contrast, the QC phase exhibits enhanced magnetic anisotropy, resulting in a higher TC. Meanwhile, the Dzyaloshinskii-Moriya interaction (DMI) introduced by the broken inversion symmetry causes the QC phase to exhibit a localized magnetic state: no domain transformation occurs during spin reorientation, and irregular domain states are observed in field-related studies. Our work provides an important reference for understanding the complex magnetic properties in Fe5GeTe2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04851v1-abstract-full').style.display = 'none'; document.getElementById('2404.04851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11416">arXiv:2403.11416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11416">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.115415">10.1103/PhysRevB.109.115415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface region band enhancement in noble gas adsorption assisted ARPES on kagome superconductor RbV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Shenghao Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zewen Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chunlong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Q">Qiang Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+K">Keming Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Renzhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Shangkun Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+D">Dingkun Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shuming Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Hao Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Shengjun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">Nan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11416v1-abstract-short" style="display: inline;"> Electronic states near surface regions can be distinct from bulk states, which are paramount in understanding various physical phenomena occurring at surfaces and in applications in semiconductors, energy, and catalysis. Here, we report an abnormal surface region band enhancement effect in angle-resolved photoemission spectroscopy on kagome superconductor RbV3Sb5, by depositing noble gases with fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11416v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11416v1-abstract-full" style="display: none;"> Electronic states near surface regions can be distinct from bulk states, which are paramount in understanding various physical phenomena occurring at surfaces and in applications in semiconductors, energy, and catalysis. Here, we report an abnormal surface region band enhancement effect in angle-resolved photoemission spectroscopy on kagome superconductor RbV3Sb5, by depositing noble gases with fine control. In contrast to conventional surface contamination, the intensity of surface region Sb band can be enhanced more than three times with noble gas adsorption. In the meantime, a hole-dope effect is observed for the enhanced surface region band, with other bands hardly changing. The doping effect is more pronounced with heavier noble gases. We propose that noble gas atoms selectively fill into alkali metal vacancy sites on the surface, which improves the surface condition, boosts surface region bands, and effectively dopes it with the Pauli repulsion mechanism. Our results provide a novel and reversible way to improve surface conditions and tune surface region bands by controlled surface noble gas deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11416v1-abstract-full').style.display = 'none'; document.getElementById('2403.11416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 115415 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10599">arXiv:2403.10599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10599">pdf</a>, <a href="https://arxiv.org/format/2403.10599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-55570-7">10.1038/s41467-024-55570-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum memory at nonzero temperature in a thermodynamically trivial system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Y">Yifan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jinkang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lucas%2C+A">Andrew Lucas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10599v2-abstract-short" style="display: inline;"> Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10599v2-abstract-full').style.display = 'inline'; document.getElementById('2403.10599v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10599v2-abstract-full" style="display: none;"> Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order. Here, in contrast, we show that certain families of constant-rate classical and quantum low-density parity check codes have no thermodynamic phase transitions at nonzero temperature, but nonetheless exhibit ergodicity-breaking dynamical transitions: below a critical nonzero temperature, the mixing time of local Gibbs sampling diverges in the thermodynamic limit. Slow Gibbs sampling of such codes enables fault-tolerant passive quantum error correction using finite-depth circuits. This strategy is well suited to measurement-free quantum error correction and may present a desirable experimental alternative to conventional quantum error correction based on syndrome measurements and active feedback. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10599v2-abstract-full').style.display = 'none'; document.getElementById('2403.10599v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 9 figures, 1 table; v2 changes: added section on tree-codes, fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07551">arXiv:2403.07551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07551">pdf</a>, <a href="https://arxiv.org/format/2403.07551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Isolated nearly flat higher Chern band in monolayer transition metal trihalides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+K">Kejie Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiaxuan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yadong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Haosheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07551v2-abstract-short" style="display: inline;"> The interplay between non-trivial topology and strong electron interaction can generate a variety of exotic quantum matter. Here we theoretically propose that monolayer transition metal trihalides MoF$_3$ and W$X_3$ ($X$= Cl, Br, I) have isolated nearly flat band near the Fermi level with higher Chern number $\mathcal{C}=+3$ and $\mathcal{C}=-2$, respectively. The nontrivial topology of these flat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07551v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07551v2-abstract-full" style="display: none;"> The interplay between non-trivial topology and strong electron interaction can generate a variety of exotic quantum matter. Here we theoretically propose that monolayer transition metal trihalides MoF$_3$ and W$X_3$ ($X$= Cl, Br, I) have isolated nearly flat band near the Fermi level with higher Chern number $\mathcal{C}=+3$ and $\mathcal{C}=-2$, respectively. The nontrivial topology of these flat Chern bands originates from the effective $sd^2$ hybridization of transition metal atom, which transform the apparent atomic $d$ orbitals on a hexagonal lattice into $(s, p_+, p_-)$ orbitals on a triangular lattice. Interestingly, the quantum geometry of flat Chern bands in these materials are comparable with those in moir茅 systems exhibiting fractional Chern insulator state. The Hofstadter butterfly of such flat Chern bands are further studied. These natural materials, if realized experimentally, could offer new platforms to explore correlated phenomena driven by flat Chern band with higher Chern number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07551v2-abstract-full').style.display = 'none'; document.getElementById('2403.07551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06170">arXiv:2403.06170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06170">pdf</a>, <a href="https://arxiv.org/format/2403.06170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Chiral Spin-Liquid-Like State in Pyrochlore Iridate Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jong-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terilli%2C+M">Michael Terilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xun Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kareev%2C+M">Mikhail Kareev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+S">Shiyu Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+F">Fangdi Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tsung-Chi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Huyongqing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wanzheng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">Mary H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jungho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yongseong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haskel%2C+D">Daniel Haskel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakhalian%2C+J">Jak Chakhalian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06170v1-abstract-short" style="display: inline;"> The pyrochlore iridates have become ideal platforms to unravel fascinating correlated and topolog?ical phenomena that stem from the intricate interplay among strong spin-orbit coupling, electronic correlations, lattice with geometric frustration, and itinerancy of the 5d electrons. The all-in-all?out antiferromagnetic state, commonly considered as the magnetic ground state, can be dramatically alt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06170v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06170v1-abstract-full" style="display: none;"> The pyrochlore iridates have become ideal platforms to unravel fascinating correlated and topolog?ical phenomena that stem from the intricate interplay among strong spin-orbit coupling, electronic correlations, lattice with geometric frustration, and itinerancy of the 5d electrons. The all-in-all?out antiferromagnetic state, commonly considered as the magnetic ground state, can be dramatically altered in reduced dimensionality, leading to exotic or hidden quantum states inaccessible in bulk. Here, by means of magnetotransport, resonant elastic and inelastic x-ray scattering experiments, we discover an emergent quantum disordered state in (111) Y2Ir2O7 thin films (thickness less than 30 nm) per?sisting down to 5 K, characterized by dispersionless magnetic excitations. The anomalous Hall effect observed below an onset temperature near 135 K corroborates the presence of chiral short-range spin configurations expressed in non-zero scalar spin chirality, breaking the macroscopic time-reversal symmetry. The origin of this chiral state is ascribed to the restoration of magnetic frustration on the pyrochlore lattice in lower dimensionality, where the competing exchange interactions together with enhanced quantum fluctuations suppress any long-range order and trigger spin-liquid-like behavior with degenerate ground-state manifold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06170v1-abstract-full').style.display = 'none'; document.getElementById('2403.06170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05012">arXiv:2403.05012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05012">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Dynamics of Bilayer and Trilayer Nickelate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L+Y">L. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+P">P. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">H. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M+-">M. -L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P+H">P. H. Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05012v1-abstract-short" style="display: inline;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05012v1-abstract-full" style="display: none;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. Firstly, we observe a coherent phonon mode in La4Ni3O10 involving the collective vibration of La, Ni, and O atoms, which is absent in La3Ni2O7. Secondly, the temperature-dependent relaxation time diverges near the density-wave transition temperature of La4Ni3O10, in drastic contrast to kink-like changes in La3Ni2O7. Moreover, we estimate the electron-phonon coupling constants to be 0.05~0.07 and 0.12~0.16 for La3Ni2O7 and La4Ni3O10, respectively, suggesting a relatively minor role of electron-phonon coupling in the electronic properties of Lan+1NinO3n+1. Our work not only sheds light on the relevant microscopic interaction but also establishes a foundation for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'none'; document.getElementById('2403.05012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00359">arXiv:2403.00359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity and metallic behavior in heavily doped bulk single crystal diamond and graphene/diamond heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shisheng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xutao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Minhui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Huikai Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiarui Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00359v1-abstract-short" style="display: inline;"> Owing to extremely large band gap of 5.5 eV and high thermal conductivity, diamond is recognized as the most important semiconductor. The superconductivity of polycrystalline diamond has always been reported, but there are also many controversies over the existence of superconductivity in bulk single crystal diamond and it remains a question whether a metallic state exists for such a large band ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00359v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00359v1-abstract-full" style="display: none;"> Owing to extremely large band gap of 5.5 eV and high thermal conductivity, diamond is recognized as the most important semiconductor. The superconductivity of polycrystalline diamond has always been reported, but there are also many controversies over the existence of superconductivity in bulk single crystal diamond and it remains a question whether a metallic state exists for such a large band gap semiconductor. Herein, we realize a single crystal superconducting diamond with a Hall carrier concentration larger than 3*1020 cm-3 by co-doped of boron and nitrogen. Furthermore, we show that diamond can transform from superconducting to metallic state under similar carrier concentration with tuned carrier mobility degrading from 9.10 cm2 V-1 s-1 or 5.30 cm2 V-1 s-1 to 2.66 cm2 V-1 s-1 or 1.34 cm2 V-1 s-1. Through integrating graphene on a nitrogen and boron heavily co-doped diamond, the monolayer graphene can be superconducting through combining Andreev reflection and exciton mediated superconductivity, which may intrigue more interesting superconducting behavior of diamond heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00359v1-abstract-full').style.display = 'none'; document.getElementById('2403.00359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17451">arXiv:2402.17451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17451">pdf</a>, <a href="https://arxiv.org/format/2402.17451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetism in NiSi and antiferromagnetic candidate materials with non-collinear spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+D+K">Deepak K. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiasen Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17451v2-abstract-short" style="display: inline;"> Recently, a new class of magnetic phenomenon, called altermagnetism, was proposed where the underlying spin configuration resembles antiferromagnetic structure, but the system violates \textbf{PT} (PT: Parity times Time reversal) symmetry due to the alternation of crystalline symmetry across magnetic ions. Although the original idea was proposed for the collinear spin structure, a recent report by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17451v2-abstract-full').style.display = 'inline'; document.getElementById('2402.17451v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17451v2-abstract-full" style="display: none;"> Recently, a new class of magnetic phenomenon, called altermagnetism, was proposed where the underlying spin configuration resembles antiferromagnetic structure, but the system violates \textbf{PT} (PT: Parity times Time reversal) symmetry due to the alternation of crystalline symmetry across magnetic ions. Although the original idea was proposed for the collinear spin structure, a recent report by Cheong et al. has suggested that antiferromagnetic materials with non-collinear spin structure and local alternation of crystalline arrangement can also manifest altermagnetism. Besides breaking the \textbf{PT} symmetry, altermagnetic compounds are also expected to exhibit anomalous Hall effects of odd orders. Here, we discuss possible candidates in this regard. One example is nickel monosilicide, which was recently shown to exhibit high temperature antiferromagnetism with non-collinear spin structure. It fulfills both criteria of breaking the \textbf{PT} symmetry and manifesting nonlinear anomalous Hall effect. In addition to NiSi, we also discuss other potential antiferromagnetic materials with non-collinear spin configuration for the exploration of altermagnetic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17451v2-abstract-full').style.display = 'none'; document.getElementById('2402.17451v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures, perspective</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17315">arXiv:2402.17315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17315">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting-transition-temperature dependence of superfluid density and conductivity in pressurized cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanchun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhian Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17315v3-abstract-short" style="display: inline;"> What factors fundamentally determine the value of superconducting transition temperature (Tc) in high temperature superconductors has been the subject of intense debate. Following the establishment of an empirical law known as Homes&#39;law, there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to its superfluid density and conductivity. Howev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17315v3-abstract-full').style.display = 'inline'; document.getElementById('2402.17315v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17315v3-abstract-full" style="display: none;"> What factors fundamentally determine the value of superconducting transition temperature (Tc) in high temperature superconductors has been the subject of intense debate. Following the establishment of an empirical law known as Homes&#39;law, there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to its superfluid density and conductivity. However, all the data supporting this empirical law have been obtained from the ambient-pressure superconductors. In this study, we present the first high-pressure results about the connection of these two quantities with Tc, through the studies on the Bi1.74Pb0.38Sr1.88CuO6+delta and Bi2Sr2CaCu2O8+delta, in which the value of their high-pressure resistivity (the reciprocal of conductivity) is achieved by adopting our newly established method, while the value of superfluid density is extracted using the Homes&#39;law. We highlight that the Tc values are strongly linked the two joint response factors of magnetic field and electric field, i.e. superfluid density and conductivity, respectively, implying that the physics governing the determination of Tc is influenced by the intrinsic electromagnetic fields of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17315v3-abstract-full').style.display = 'none'; document.getElementById('2402.17315v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. Lett. 41(2024)047401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13770">arXiv:2402.13770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13770">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45310-2">10.1038/s41467-024-45310-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature sub-100 nm N茅el-type skyrmions in non-stoichiometric van der Waals ferromagnet $\rm Fe_{3-x}GaTe_{2}$ with ultrafast laser writability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zefang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guanqi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangteng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qingping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Ying Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yue Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xuange Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Can Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Minghui Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xi Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Richeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xingsen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhimin Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Z">Zhipeng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xuewen Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13770v1-abstract-short" style="display: inline;"> Realizing room-temperature magnetic skyrmions in two-dimensional van der Waals ferromagnets offers unparalleled prospects for future spintronic applications. However, due to the intrinsic spin fluctuations that suppress atomic long-range magnetic order and the inherent inversion crystal symmetry that excludes the presence of the Dzyaloshinskii-Moriya interaction, achieving room-temperature skyrmio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13770v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13770v1-abstract-full" style="display: none;"> Realizing room-temperature magnetic skyrmions in two-dimensional van der Waals ferromagnets offers unparalleled prospects for future spintronic applications. However, due to the intrinsic spin fluctuations that suppress atomic long-range magnetic order and the inherent inversion crystal symmetry that excludes the presence of the Dzyaloshinskii-Moriya interaction, achieving room-temperature skyrmions in 2D magnets remains a formidable challenge. In this study, we target room-temperature 2D magnet $\rm Fe_3GaTe_2$ and unveil that the introduction of iron-deficient into this compound enables spatial inversion symmetry breaking, thus inducing a significant Dzyaloshinskii-Moriya interaction that brings about room-temperature N茅el-type skyrmions with unprecedentedly small size. To further enhance the practical applications of this finding, we employ a homemade in-situ optical Lorentz transmission electron microscopy to demonstrate ultrafast writing of skyrmions in $\rm Fe_{3-x}GaTe_2$ using a single femtosecond laser pulse. Our results manifest the $\rm Fe_{3-x}GaTe_2$ as a promising building block for realizing skyrmion-based magneto-optical functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13770v1-abstract-full').style.display = 'none'; document.getElementById('2402.13770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10143">arXiv:2402.10143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10143">pdf</a>, <a href="https://arxiv.org/format/2402.10143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043144">10.1103/PhysRevResearch.6.043144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent topological quasiparticle kinetics in constricted nanomagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">J. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+D">D. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lauter%2C+V">V. Lauter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stingaciu%2C+L">L. Stingaciu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zolnierczuk%2C+P">P. Zolnierczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ullrich%2C+C+A">C. A. Ullrich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+D+K">D. K. Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10143v2-abstract-short" style="display: inline;"> The ubiquitous domain wall kinetics under magnetic field or current application describes the dynamic properties in nanostructured magnets. However, when the geometrical size of a nanomagnetic system is constricted to the limiting domain wall length scale, the competing energetics between anisotropy, exchange and dipolar interactions can cause emergent kinetics due to quasiparticle relaxation, sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10143v2-abstract-full').style.display = 'inline'; document.getElementById('2402.10143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10143v2-abstract-full" style="display: none;"> The ubiquitous domain wall kinetics under magnetic field or current application describes the dynamic properties in nanostructured magnets. However, when the geometrical size of a nanomagnetic system is constricted to the limiting domain wall length scale, the competing energetics between anisotropy, exchange and dipolar interactions can cause emergent kinetics due to quasiparticle relaxation, similar to bulk magnets of atomic origin. Here, we present a joint experimental and theoretical study to support this argument -- constricted nanomagnets, made of antiferromagnetic and paramagnetic neodymium thin film with honeycomb motif, reveal fast kinetic events at ps time scales due to the relaxation of chiral vortex loop-shaped topological quasiparticles that persist to low temperature in the absence of any external stimuli. Such phenomena are typically found in macroscopic magnetic materials. Our discovery is especially important considering the fact that paramagnets or antiferromagnets have no net magnetization. Yet, the kinetics in neodymium nanostructures is quantitatively similar to that found in ferromagnetic counterparts and only varies with the thickness of the specimen. This suggests that a universal, topological quasiparticle mediated dynamical behavior can be prevalent in nanoscopic magnets, irrespective of the nature of underlying magnetic material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10143v2-abstract-full').style.display = 'none'; document.getElementById('2402.10143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 11 figures (main text 9 pages, 4 figures; supplementary material 17 pages, 7 figures). arXiv admin note: text overlap with arXiv:2305.00093</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04719">arXiv:2401.04719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04719">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Inelastic electron scattering at large angles: the phonon polariton contribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongbin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeiger%2C+P">Paul Zeiger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kone%C4%8Dn%C3%A1%2C+A">Andrea Kone膷n谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+G">Guangyao Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yinong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xingxu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weihua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Yuefeng Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusz%2C+J">Jan Rusz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xiaoqing Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04719v2-abstract-short" style="display: inline;"> We explore the inelastic electron scattering in SrTiO3, PbTiO3, and SiC in their phonon energy range, challenging the assumption that phonon polaritons are excluded at large angles in high-resolution transmission electron energy-loss spectroscopy. We demonstrate that through multiple scattering, the electron beam can excite both phonons and phonon polaritons, and the relative proportion of each va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04719v2-abstract-full').style.display = 'inline'; document.getElementById('2401.04719v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04719v2-abstract-full" style="display: none;"> We explore the inelastic electron scattering in SrTiO3, PbTiO3, and SiC in their phonon energy range, challenging the assumption that phonon polaritons are excluded at large angles in high-resolution transmission electron energy-loss spectroscopy. We demonstrate that through multiple scattering, the electron beam can excite both phonons and phonon polaritons, and the relative proportion of each varies depending on the structure factor and scattering angle. Integrating dielectric theory, density functional theory, and multi-slice simulations, we provide a comprehensive framework for understanding these interactions in materials with polar optical phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04719v2-abstract-full').style.display = 'none'; document.getElementById('2401.04719v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04644">arXiv:2401.04644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04644">pdf</a>, <a href="https://arxiv.org/format/2401.04644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0189226">10.1063/5.0189226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak antilocalization and localization in Eu$_2$Ir$_2$O$_7$ (111) thin films by reactive solid phase epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaofeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zhaoqing Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zeguo Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mingyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+M">Minghui Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+M">Meng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04644v1-abstract-short" style="display: inline;"> Thin films of the pyrochlore iridates along the [111] direction have drawn significant attention to investigate exotic correlated topological phenomena. Here, we report the fabrication of Eu$_2$Ir$_2$O$_7$ thin films via reactive solid phase epitaxy using the pulsed laser deposition technique. We mainly focus on the transport properties of the films below the magnetic phase transition at 105 K. An&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04644v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04644v1-abstract-full" style="display: none;"> Thin films of the pyrochlore iridates along the [111] direction have drawn significant attention to investigate exotic correlated topological phenomena. Here, we report the fabrication of Eu$_2$Ir$_2$O$_7$ thin films via reactive solid phase epitaxy using the pulsed laser deposition technique. We mainly focus on the transport properties of the films below the magnetic phase transition at 105 K. Analyses on the temperature and the field dependences of resistivity unveil the presence of weak antilocalization, a characteristic signature of the Weyl semimetallic state that has been &#34;buried&#34; by magnetism. Moreover, it is noteworthy that the contribution from many-body interactions in Eu2Ir2O7 thin films is enhanced at lower temperatures and competes with the weak antilocalization effect, and eventually drives the crossover to weak localization at 2 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04644v1-abstract-full').style.display = 'none'; document.getElementById('2401.04644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01507">arXiv:2401.01507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01507">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Filling-dependent intertwined electronic and atomic orders in the flat-band state of 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Y">Yanyan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Haoyu Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Renhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+L">Le Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+F">Fei Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Weichang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01507v4-abstract-short" style="display: inline;"> The delicate interplay among the complex intra-/inter-layer electron-electron and electron-lattice interactions is the fundamental prerequisite of these exotic quantum states, such as superconductivity, nematic order, and checkerboard charge order. Here we explore the filling-dependent multiple stable intertwined electronic and atomic orders of flat-band state of 1T-TaS2 encompassing hole order, p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01507v4-abstract-full').style.display = 'inline'; document.getElementById('2401.01507v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01507v4-abstract-full" style="display: none;"> The delicate interplay among the complex intra-/inter-layer electron-electron and electron-lattice interactions is the fundamental prerequisite of these exotic quantum states, such as superconductivity, nematic order, and checkerboard charge order. Here we explore the filling-dependent multiple stable intertwined electronic and atomic orders of flat-band state of 1T-TaS2 encompassing hole order, phase orders, coexisting left- and right-chiral orders and mixed phase/chiral orders via scanning tunneling microscopy (STM). Combining first-principles calculations, the emergent electronic/atomic orders can be attributed to the weakening of electron-electron correlations and stacking-dependent interlayer interactions. Moreover, achiral intermediate ring-like clusters and nematic charge density wave (CDW) states are successfully realized in intralayer chiral domain wall and interlayer heterochiral stacking regions through chiral overlap configurations. Our study not only deepens the understanding of filling-dependent electronic/atomic orders in flat-band systems, but also offers perspectives for exploring exotic quantum states in correlated electronic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01507v4-abstract-full').style.display = 'none'; document.getElementById('2401.01507v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14944">arXiv:2312.14944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14944">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Surface termination effect of SrTiO3 substrate on ultrathin SrRuO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huiyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+Z">Zeeshan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+E">Enling Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saghayezhian%2C+M">Mohammad Saghayezhian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+J">Jing Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiandi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14944v1-abstract-short" style="display: inline;"> A uniform one-unit-cell-high step on the SrTiO3 substrate is a prerequisite for growing high-quality epitaxial oxide heterostructures. However, it is inevitable that defects induced by mixed substrate surface termination exist at the interface, significantly impacting the properties of ultrathin films. In this study, we microscopically identify the origin for the lateral inhomogeneity in the growt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14944v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14944v1-abstract-full" style="display: none;"> A uniform one-unit-cell-high step on the SrTiO3 substrate is a prerequisite for growing high-quality epitaxial oxide heterostructures. However, it is inevitable that defects induced by mixed substrate surface termination exist at the interface, significantly impacting the properties of ultrathin films. In this study, we microscopically identify the origin for the lateral inhomogeneity in the growth of ultrathin SrRuO3 films due to the step effects of SrTiO3(001). By using atomic-resolved scanning transmission electron microscopy, we observe two distinct types of step propagation along the [011] and [0-11]crystallographic direction in SrTiO3-SrRuO3 heterostructures, respectively. In particular, the type-II [0-11] step results in lateral discontinuity of monolayer SrRuO3 and originates from the SrO-terminated regions along the TiO2-terminated step edge. Such an induced lateral discontinuity should be responsible for the distinct electronic and magnetic properties of monolayer SrRuO3. Our findings underscore the critical importance of using single termination STO substrate to achieve high-quality termination selective films and to unveil the intrinsic properties of epitaxial films in the atomic limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14944v1-abstract-full').style.display = 'none'; document.getElementById('2312.14944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures, 30 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04894">arXiv:2312.04894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04894">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coordination Engineering in Zirconium-Nitrogen-Functionalized Materials for N2 Reduction: A First-Principles Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianpeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hao Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Qinfu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suo%2C+B">Bingbing Suo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Bo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Haiyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhiyong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Qi Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04894v1-abstract-short" style="display: inline;"> Coordination engineering was employed to optimize the coordination environment of the Zr atom anchored on the porphyrins (PP). Five promising ZrPP-A candidates as electrocatalysts for nitrogen reduction reaction (NRR) were identified through a four-step screening strategy. First-principles calculations were utilized to evaluate the performance of the candidate electrocatalysts for NRR. A comprehen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04894v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04894v1-abstract-full" style="display: none;"> Coordination engineering was employed to optimize the coordination environment of the Zr atom anchored on the porphyrins (PP). Five promising ZrPP-A candidates as electrocatalysts for nitrogen reduction reaction (NRR) were identified through a four-step screening strategy. First-principles calculations were utilized to evaluate the performance of the candidate electrocatalysts for NRR. A comprehensive search for reaction pathways revealed that NRR reactions with these selected catalysts tend to follow a hybrid pathway. It is found that orbital hybridization and charge transfer between Zr and its coordination atoms, as well as between ZrPP-A and the adsorbed N2 ensured the stability and high catalytic activity of these selected ZrPP-A. Zr plays a crucial role in coordinating charge transfer during the NRR process. Simultaneously, the coordinating atoms and the PP moiety jointly provide additional charge transfers to or from the adsorbate. An asymmetric coordination environment results in an asymmetric charge distribution of the substrate, causing the adsorbed polarized N2 molecule oriented toward the asymmetric charge aggregation region. Our work underscores the importance of considering not only the single-atom catalyst itself but also its coordination environment for the rational design of efficient catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04894v1-abstract-full').style.display = 'none'; document.getElementById('2312.04894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04202">arXiv:2312.04202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04202">pdf</a>, <a href="https://arxiv.org/format/2312.04202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2024.116780">10.1016/j.nuclphysb.2024.116780 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing levitodynamics with multi-stochastic forces and the simple applications on the dark matter detection in optical levitation experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xi Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Ji-Heng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04202v3-abstract-short" style="display: inline;"> If the terrestrial environment is permeated by dark matter, the levitation experiences damping forces and fluctuations attributed to dark matter. This paper investigates levitodynamics with multiple stochastic forces, including thermal drag, photon recoil, feedback, etc., assuming that all of these forces adhere to the fluctuation-dissipation theorem. The ratio of total damping to the stochastic d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04202v3-abstract-full').style.display = 'inline'; document.getElementById('2312.04202v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04202v3-abstract-full" style="display: none;"> If the terrestrial environment is permeated by dark matter, the levitation experiences damping forces and fluctuations attributed to dark matter. This paper investigates levitodynamics with multiple stochastic forces, including thermal drag, photon recoil, feedback, etc., assuming that all of these forces adhere to the fluctuation-dissipation theorem. The ratio of total damping to the stochastic damping coefficient distinguishes the levitodynamics from cases involving only one single stochastic force. The heating and cooling processes are formulated to determine the limits of temperature change. All sources of stochastic forces are comprehensively examined, revealing that dark matter collisions cannot be treated analogously to fluid dynamics. Additionally, a meticulous analysis is presented, elucidating the intricate relationship between the fundamental transfer cross-section and the macroscopic transfer cross-section. While the dark damping coefficient is suppressed by the mass of the levitated particle, scattering can be coherently enhanced based on the scale of the component microscopic particle, the atomic form factor, and the static structure factor. Hence, dark damping holds the potential to provide valuable insights into the detection of the macroscopic strength of fundamental particles. We propose experimental procedures for levitation and employ linear estimation to extract the dark damping coefficient. Utilizing current levitation results, we demonstrate that the fundamental transfer cross section of dark matter can be of the order $蟽^{\rm D}_{T}\lsim {\cal O}(10^{-26})\rm cm^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04202v3-abstract-full').style.display = 'none'; document.getElementById('2312.04202v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures. We have updated the clear images, made minor modifications, and added references;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. B 1010 (2025) 116780 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13086">arXiv:2311.13086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13086">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanistic Insights into the Hydrazine-induced Chemical Reduction Pathway of Graphene Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianqiang Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13086v1-abstract-short" style="display: inline;"> Hydrazine stands out as the most generally used chemical-reducing agent for reducing graphene oxide. Despite numerous experimental and theoretical investigations into the reduction reaction, the reduction mechanism remains unclear. In this study, we propose that, in aqueous hydrazine solutions, both hydrazine and hydroxide ions could initiate the reduction of graphene oxide. We introduce a chemica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13086v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13086v1-abstract-full" style="display: none;"> Hydrazine stands out as the most generally used chemical-reducing agent for reducing graphene oxide. Despite numerous experimental and theoretical investigations into the reduction reaction, the reduction mechanism remains unclear. In this study, we propose that, in aqueous hydrazine solutions, both hydrazine and hydroxide ions could initiate the reduction of graphene oxide. We introduce a chemical reaction pathway involving C-H cleavage and a dehydroxylation process for the reduction of graphene oxide. By utilizing density functional theory calculations, the reduction reactions mediated by hydrazine and hydroxide ions are separately investigated. The reaction routes on the basal plane and edge regions of graphene oxide are discussed independently. The density functional theory calculations demonstrate that the proposed mechanism is both thermodynamically and dynamically feasible. This work might contribute to an atomic-level comprehension of a longstanding challenge in the field of graphene oxide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13086v1-abstract-full').style.display = 'none'; document.getElementById('2311.13086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12361">arXiv:2311.12361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.12361">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xintian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yongjin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12361v4-abstract-short" style="display: inline;"> Recently, the signatures of superconductivity near 80 K have been discovered in the single crystal of La3Ni2O7 under pressure, which makes it a new candidate of the high-temperature superconductors dominated by 3d transition elements after the cuprate and iron-pnictide superconductors. However, there are several critical questions that have been perplexing the scientific community. These questions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12361v4-abstract-full').style.display = 'inline'; document.getElementById('2311.12361v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12361v4-abstract-full" style="display: none;"> Recently, the signatures of superconductivity near 80 K have been discovered in the single crystal of La3Ni2O7 under pressure, which makes it a new candidate of the high-temperature superconductors dominated by 3d transition elements after the cuprate and iron-pnictide superconductors. However, there are several critical questions that have been perplexing the scientific community. These questions include (1) what factors contribute to the inconsistent reproducibility of the experimental results? (2) what is the fundamental nature of pressure-induced superconductivity: bulk or non-bulk (filamentary-like)? (3) where does the superconducting phase locate within the sample if it is filamentary-like? (4) is the oxygen content important for developing and stabilizing its superconductivity? In this study, we employ comprehensive high-pressure techniques to address these crucial issues. Through our modulated ac susceptibility measurements, we are the first to find that the superconductivity in this nickelate is filamentary-like. Our scanning transmission electron microscopy (STEM) investigations suggest that the filamentary-like superconductivity most likely emerges at the interface between the La3Ni2O7 and La4Ni3O10 phases. By tuning the oxygen content on the polycrystalline La3Ni2O7, we also find that the oxygen content plays vital role for developing and stabilizing its superconductivity. The upper and lower bounds of the oxygen content are 7.35 and 6.89, respectively. Our results provide not only new insights into understanding the puzzling issues in this material, but also significant information for achieving a better understanding on the superconductivity of this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12361v4-abstract-full').style.display = 'none'; document.getElementById('2311.12361v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Matter and Radiation at Extremes 10, 027801(2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07353">arXiv:2311.07353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07353">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07553-3">10.1038/s41586-024-07553-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in pressurized trilayer La$_4$Ni$_3$O$_{10-未}$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yinghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+D">Di Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enkang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+B">Bingying Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lixing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Huifen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feiyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yiqing Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Nana Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Z">Zhenfang Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+F">Fujun Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jiyuan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+D">Donghan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wo%2C+H">Hongliang Wo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yiqing Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yimeng Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+L">Li Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gou%2C+H">Huiyang Gou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tianping Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07353v3-abstract-short" style="display: inline;"> The pursuit of discovering new high-temperature superconductors that diverge from the copper-based paradigm1-3 carries profound implications for elucidating mechanisms behind superconductivity and may also enable new applications4-8. Here, our investigation reveals that application of pressure effectively suppresses the spin and charge order in trilayer nickelate La4Ni3O10-未 single crystals, leadi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07353v3-abstract-full').style.display = 'inline'; document.getElementById('2311.07353v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07353v3-abstract-full" style="display: none;"> The pursuit of discovering new high-temperature superconductors that diverge from the copper-based paradigm1-3 carries profound implications for elucidating mechanisms behind superconductivity and may also enable new applications4-8. Here, our investigation reveals that application of pressure effectively suppresses the spin and charge order in trilayer nickelate La4Ni3O10-未 single crystals, leading to the emergence of superconductivity with a maximum critical temperature (Tc) of around 30 K at 69.0 GPa. The DC susceptibility measurements confirm a substantial diamagnetic response below Tc, indicating the presence of bulk superconductivity with a volume fraction exceeding 80%. In the normal state, we observe a &#34;strange metal&#34; behavior, characterized by a linear temperature-dependent resistance extending up to 300 K. Furthermore, the layer-dependent superconductivity observed hints at a unique interlayer coupling mechanism specific to nickelates, setting them apart from cuprates in this regard. Our findings provide crucial insights into the fundamental mechanisms underpinning superconductivity, while also introducing a new material platform to explore the intricate interplay between the spin/charge order, flat band structures, interlayer coupling, strange metal behavior and high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07353v3-abstract-full').style.display = 'none'; document.getElementById('2311.07353v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 631, 531-536 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.20128">arXiv:2310.20128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.20128">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Deconfined quantum critical point lost in pressurized SrCu2(BO3)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Cheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin-Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xintian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.20128v1-abstract-short" style="display: inline;"> In the field of correlated electron materials, the relation between the resonating spin singlet and antiferromagnetic states has long been an attractive topic for understanding of the interesting macroscopic quantum phenomena, such as the ones emerging from magnetic frustrated materials, antiferromagnets and high-temperature superconductors. SrCu2(BO3)2 is a well-known quantum magnet, and it is th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20128v1-abstract-full').style.display = 'inline'; document.getElementById('2310.20128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.20128v1-abstract-full" style="display: none;"> In the field of correlated electron materials, the relation between the resonating spin singlet and antiferromagnetic states has long been an attractive topic for understanding of the interesting macroscopic quantum phenomena, such as the ones emerging from magnetic frustrated materials, antiferromagnets and high-temperature superconductors. SrCu2(BO3)2 is a well-known quantum magnet, and it is theoretically expected to be the candidate of correlated electron material for clarifying the existence of a pressure-induced deconfined quantum critical point (DQCP), featured by a continuous quantum phase transition, between the plaquette-singlet (PS) valence bond solid phase and the antiferromagnetic (AF) phase. However, the real nature of the transition is yet to be identified experimentally due to the technical challenge. Here we show the experimental results for the first time, through the state-of-the-art high-pressure heat capacity measurement, that the PS-AF phase transition of the pressurized SrCu2(BO3)2 at zero field is clearly a first-order one. Our result clarifies the more than two-decade long debates about this key issue, and resonates nicely with the recent quantum entanglement understanding that the theoretically predicted DQCPs in representative lattice models are actually a first-order transition. Intriguingly, we also find that the transition temperatures of the PS and AF phase meet at the same pressure-temperature point, which signifies a bi-critical point as those observed in Fe-based superconductor and heavy-fermion compound, and constitutes the first experimental discovery of the pressure-induced bi-critical point in frustrated magnets. Our results provide fresh information for understanding the evolution among different spin states of correlated electron materials under pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20128v1-abstract-full').style.display = 'none'; document.getElementById('2310.20128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07232">arXiv:2310.07232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07232">pdf</a>, <a href="https://arxiv.org/format/2310.07232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.165146">10.1103/PhysRevB.108.165146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-Dependent Collective Excitations in a Three-Dimensional Dirac System ZrTe$_{5}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zijian Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Cuixiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Daqiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuetao Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07232v2-abstract-short" style="display: inline;"> Zirconium pentatelluride (ZrTe$_{5}$), a system with a Dirac linear band across the Fermi level and anomalous transport features, has attracted considerable research interest for it is predicted to be located at the boundary between strong and weak topological insulators separated by a topological semimetal phase. However, the experimental verification of the topological phase transition and the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07232v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07232v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07232v2-abstract-full" style="display: none;"> Zirconium pentatelluride (ZrTe$_{5}$), a system with a Dirac linear band across the Fermi level and anomalous transport features, has attracted considerable research interest for it is predicted to be located at the boundary between strong and weak topological insulators separated by a topological semimetal phase. However, the experimental verification of the topological phase transition and the topological ground state in ZrTe$_{5}$ is full of controversies, mostly due to the difficulty of precisely capturing the small gap evolution with single-particle band structure measurements. Alternatively, the collective excitations of electric charges, known as plasmons, in Dirac systems exhibiting unique behavior, can well reflect the topological nature of the band structure. Here, using reflective high-resolution electron energy loss spectroscopy (HREELS), we investigate the temperature-dependent collective excitations of ZrTe$_{5}$, and discover that the plasmon energy in ZrTe$_{5}$ is proportional to the $1/3$ power of the carrier density $n$, which is a unique feature of plasmons in three-dimensional Dirac systems. Based on this conclusion, the origin of the resistivity anomaly of ZrTe$_{5}$ can be attributed to the temperature-dependent chemical potential shift in extrinsic Dirac semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07232v2-abstract-full').style.display = 'none'; document.getElementById('2310.07232v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108, 165146 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04754">arXiv:2310.04754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04754">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> ScaleLat: A chemical structure matching algorithm for mapping atomic structure of multi-phase system and high entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Junming Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sateng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haoliang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qianwu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+F">Fangjie Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yefei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+B">Bing Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04754v1-abstract-short" style="display: inline;"> ScaleLat (Scale Lattice) is a computer program written in C for performing the atomic structure analysis of multi-phase system or high entropy alloys (HEAs). The program implements an atomic cluster extraction algorithm to obtain all independent and symmetry-reduced characteristic chemical structures for the complex atomic configurations which are usually obtained from molecular dynamics or kineti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04754v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04754v1-abstract-full" style="display: none;"> ScaleLat (Scale Lattice) is a computer program written in C for performing the atomic structure analysis of multi-phase system or high entropy alloys (HEAs). The program implements an atomic cluster extraction algorithm to obtain all independent and symmetry-reduced characteristic chemical structures for the complex atomic configurations which are usually obtained from molecular dynamics or kinetic Monte-Carlo simulations for supercell containing more than 104 atoms. ScaleLat employes an efficient and unique chemical structure matching algorithm to map all extracted atomic clusters from a large supercell (&gt;10^4 atoms) to a representative small one (~ 10^3 or less), providing the possibility to directly use the highly accurate quantum mechanical methods to study the electronic, magnetic, and mechanical properties of multi-component alloys with complex microstructures. We demonstrate the capability of ScaleLat code by conducting both the atomic structure analysis and chemical structure matching procedure for Fe-12.8 at.% Cr binary alloy and equiatomic CrFeCoNiCu high entropy alloy, and by successfully obtaining the representatively supercells containing 10^2~10^3 atoms of the two alloys. Overall, ScaleLat program provides a universal platform to efficiently project all essential chemical structures of large complex atomic structures to a relatively easy-handling small supercell for quantum mechanical calculations of various user interested properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04754v1-abstract-full').style.display = 'none'; document.getElementById('2310.04754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.16982">arXiv:2309.16982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.16982">pdf</a>, <a href="https://arxiv.org/format/2309.16982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Superconducting Properties of La$_2$(Cu$_{1-x}$Ni_x)$_5$As$_3$O$_2$: A $\rm 渭$SR Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kaiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zihao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+C">Cheng Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yanxing Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiroka%2C+T">Toni Shiroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+L">Lei Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.16982v1-abstract-short" style="display: inline;"> We report the results of muon spin rotation and relaxation ($\rm 渭$SR) measurements on the recently discovered layered Cu-based superconducting material La$_{2}($Cu$_{1-x}$Ni$_{x}$)$_{5}$As$_{3}$O$_{2}$ ($x =$ 0.40, 0.45). Transverse-field $\rm 渭$SR experiments on both samples show that the temperature dependence of superfluid density is best described by a two-band model. The absolute values of z&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16982v1-abstract-full').style.display = 'inline'; document.getElementById('2309.16982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.16982v1-abstract-full" style="display: none;"> We report the results of muon spin rotation and relaxation ($\rm 渭$SR) measurements on the recently discovered layered Cu-based superconducting material La$_{2}($Cu$_{1-x}$Ni$_{x}$)$_{5}$As$_{3}$O$_{2}$ ($x =$ 0.40, 0.45). Transverse-field $\rm 渭$SR experiments on both samples show that the temperature dependence of superfluid density is best described by a two-band model. The absolute values of zero-temperature magnetic penetration depth $位_{\rm ab}(0)$ were found to be 427(1.7) nm and 422(1.5) nm for $x =$ 0.40 and 0.45, respectively. Both compounds are located between the unconventional and the standard BCS superconductors in the Uemura plot. No evidence of time-reversal symmetry (TRS) breaking in the superconducting state is suggested by zero-field $\rm 渭$SR measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16982v1-abstract-full').style.display = 'none'; document.getElementById('2309.16982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 214502 (2003) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Guo%2C+J&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10