CINXE.COM
Search results for: identification model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: identification model</title> <meta name="description" content="Search results for: identification model"> <meta name="keywords" content="identification model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="identification model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="identification model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19119</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: identification model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19119</span> Identification of Dynamic Friction Model for High-Precision Motion Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Goubej">Martin Goubej</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Popule"> Tomas Popule</a>, <a href="https://publications.waset.org/abstracts/search?q=Alois%20Krejci"> Alois Krejci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20friction" title="mechanical friction">mechanical friction</a>, <a href="https://publications.waset.org/abstracts/search?q=LuGre%20model" title=" LuGre model"> LuGre model</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20identification" title=" friction identification"> friction identification</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20control" title=" motion control"> motion control</a> </p> <a href="https://publications.waset.org/abstracts/51897/identification-of-dynamic-friction-model-for-high-precision-motion-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19118</span> Linear MIMO Model Identification Using an Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20C.%20Best">Matthew C. Best</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20model" title=" linear model"> linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20order%20reduction" title=" model order reduction"> model order reduction</a> </p> <a href="https://publications.waset.org/abstracts/24532/linear-mimo-model-identification-using-an-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19117</span> Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didier%20Auroux">Didier Auroux</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Groza"> Vladimir Groza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrasive%20Waterjet%20Milling" title="Abrasive Waterjet Milling">Abrasive Waterjet Milling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20parameters%20identification" title=" model parameters identification"> model parameters identification</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a> </p> <a href="https://publications.waset.org/abstracts/46293/parameters-identification-and-sensitivity-study-for-abrasive-waterjet-milling-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19116</span> Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mansouri">A. Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Krim"> F. Krim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARMAX%20model" title="ARMAX model">ARMAX model</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20motor" title=" DC motor"> DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=AERLS" title=" AERLS"> AERLS</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title=" parameter identification"> parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20speed%20regulation" title=" PID speed regulation"> PID speed regulation</a> </p> <a href="https://publications.waset.org/abstracts/9107/genetic-algorithms-for-parameter-identification-of-dc-motor-armax-model-and-optimal-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19115</span> Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Jinesh">N. Jinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shankar"> K. Shankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title="inverse problem">inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT%20patches" title=" PZT patches"> PZT patches</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20identification" title=" structural identification"> structural identification</a> </p> <a href="https://publications.waset.org/abstracts/54524/estimation-of-structural-parameters-in-time-domain-using-one-dimensional-piezo-zirconium-titanium-patch-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19114</span> System Identification and Quantitative Feedback Theory Design of a Lathe Spindle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khairudin">M. Khairudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lathe%20spindle" title="lathe spindle">lathe spindle</a>, <a href="https://publications.waset.org/abstracts/search?q=QFT" title=" QFT"> QFT</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/20793/system-identification-and-quantitative-feedback-theory-design-of-a-lathe-spindle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19113</span> Forensic Challenges in Source Device Identification for Digital Videos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Aminu%20Bagiwa">Mustapha Aminu Bagiwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainuddin%20Wahid%20Abdul%20Wahab"> Ainuddin Wahid Abdul Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yamani%20Idna%20Idris"> Mohd Yamani Idna Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleman%20Khan"> Suleman Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20forgery" title="video forgery">video forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20camcorder" title=" source camcorder"> source camcorder</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20identification" title=" device identification"> device identification</a>, <a href="https://publications.waset.org/abstracts/search?q=forgery%20detection" title=" forgery detection "> forgery detection </a> </p> <a href="https://publications.waset.org/abstracts/21641/forensic-challenges-in-source-device-identification-for-digital-videos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">631</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19112</span> Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brouri">A. Brouri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Giri"> F. Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mkhida"> A. Mkhida</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elkarkri"> A. Elkarkri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Chhibat"> M. L. Chhibat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system%20identification" title="nonlinear system identification">nonlinear system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammerstein-Wiener%20systems" title=" Hammerstein-Wiener systems"> Hammerstein-Wiener systems</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20identification" title=" frequency identification"> frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20decomposition" title=" polynomial decomposition"> polynomial decomposition</a> </p> <a href="https://publications.waset.org/abstracts/7969/identification-of-nonlinear-systems-structured-by-hammerstein-wiener-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19111</span> Modeling of a UAV Longitudinal Dynamics through System Identification Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadullah%20I.%20Qazi">Asadullah I. Qazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Ahsan"> Mansoor Ahsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahir%20Ashraf"> Zahir Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzair%20Ahmad"> Uzair Ahmad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixed%20wing%20UAV" title="fixed wing UAV">fixed wing UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20box%20modeling" title=" black box modeling"> black box modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20dynamics" title=" longitudinal dynamics"> longitudinal dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20error" title=" least square error"> least square error</a> </p> <a href="https://publications.waset.org/abstracts/70091/modeling-of-a-uav-longitudinal-dynamics-through-system-identification-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19110</span> Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tharini%20N.%20de%20Silva">Tharini N. de Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Zhibo"> Xiao Zhibo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Rui"> Zhao Rui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mao%20Kezhi"> Mao Kezhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction" title="causal realtion extraction">causal realtion extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=relation%20extracton" title=" relation extracton"> relation extracton</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20representation" title=" text representation"> text representation</a> </p> <a href="https://publications.waset.org/abstracts/61573/causal-relation-identification-using-convolutional-neural-networks-and-knowledge-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19109</span> Model-Free Distributed Control of Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Khazaei">Javad Khazaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Rick%20Blum"> Rick Blum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consensus%20tracking" title="consensus tracking">consensus tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20control" title=" distributed control"> distributed control</a>, <a href="https://publications.waset.org/abstracts/search?q=model-free%20control" title=" model-free control"> model-free control</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20identification%20of%20dynamical%20systems" title=" sparse identification of dynamical systems"> sparse identification of dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/144452/model-free-distributed-control-of-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19108</span> Self-Tuning Robot Control Based on Subspace Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Marquardt">Mathias Marquardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20D%C3%BCnow"> Peter Dünow</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Ba%C3%9Fler"> Sandra Baßler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20tuning" title="auto tuning">auto tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=balanced%20robot" title=" balanced robot"> balanced robot</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20loop%20identification" title=" closed loop identification"> closed loop identification</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace%20identification" title=" subspace identification"> subspace identification</a> </p> <a href="https://publications.waset.org/abstracts/49108/self-tuning-robot-control-based-on-subspace-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19107</span> Damage Identification Using Experimental Modal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niladri%20Sekhar%20Barma">Niladri Sekhar Barma</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Dhandole"> Satish Dhandole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20identification" title="damage identification">damage identification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20quantification" title=" damage quantification"> damage quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection%20using%20modal%20analysis" title=" damage detection using modal analysis"> damage detection using modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20identification" title=" structural damage identification"> structural damage identification</a> </p> <a href="https://publications.waset.org/abstracts/150078/damage-identification-using-experimental-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19106</span> A Data-Mining Model for Protection of FACTS-Based Transmission Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kalagura">Ashok Kalagura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distance%20relaying" title="distance relaying">distance relaying</a>, <a href="https://publications.waset.org/abstracts/search?q=fault-zone%20identification" title=" fault-zone identification"> fault-zone identification</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forests" title=" random forests"> random forests</a>, <a href="https://publications.waset.org/abstracts/search?q=RFs" title=" RFs"> RFs</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=thyristor-controlled%20series%20compensator" title=" thyristor-controlled series compensator"> thyristor-controlled series compensator</a>, <a href="https://publications.waset.org/abstracts/search?q=TCSC" title=" TCSC"> TCSC</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20power-%EF%AC%82ow%20controller" title=" unified power-flow controller"> unified power-flow controller</a>, <a href="https://publications.waset.org/abstracts/search?q=UPFC" title=" UPFC "> UPFC </a> </p> <a href="https://publications.waset.org/abstracts/32579/a-data-mining-model-for-protection-of-facts-based-transmission-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19105</span> Parameters Estimation of Multidimensional Possibility Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Sorokin">Sergey Sorokin</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Sorokina"> Irina Sorokina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Yazenin"> Alexander Yazenin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=possibility%20distribution" title="possibility distribution">possibility distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20estimation" title=" parameters estimation"> parameters estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxmin%20u%5CE%20estimator" title=" Maxmin u\E estimator"> Maxmin u\E estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20model%20identification" title=" fuzzy model identification"> fuzzy model identification</a> </p> <a href="https://publications.waset.org/abstracts/16751/parameters-estimation-of-multidimensional-possibility-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19104</span> UEMSD Risk Identification: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sekulov%C3%A1">K. Sekulová</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%A0imon"> M. Šimon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20study" title="case study">case study</a>, <a href="https://publications.waset.org/abstracts/search?q=upper-extremity%20musculoskeletal%20disorders" title=" upper-extremity musculoskeletal disorders"> upper-extremity musculoskeletal disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title=" ergonomics"> ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20identification" title=" risk identification"> risk identification</a> </p> <a href="https://publications.waset.org/abstracts/14518/uemsd-risk-identification-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19103</span> Identification of Wiener Model Using Iterative Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Saini">Vikram Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20non-linearity" title="hard non-linearity">hard non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square" title=" least square"> least square</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20approximation%20gradient" title=" stochastic approximation gradient"> stochastic approximation gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20model" title=" Wiener model"> Wiener model</a> </p> <a href="https://publications.waset.org/abstracts/70632/identification-of-wiener-model-using-iterative-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19102</span> Heart Failure Identification and Progression by Classifying Cardiac Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saqlain">Muhammad Saqlain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazar%20Abbas%20Saqib"> Nazar Abbas Saqib</a>, <a href="https://publications.waset.org/abstracts/search?q=Muazzam%20A.%20Khan"> Muazzam A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20model" title=" classification model"> classification model</a> </p> <a href="https://publications.waset.org/abstracts/62215/heart-failure-identification-and-progression-by-classifying-cardiac-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19101</span> Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20O.%20Gargab">Lotfi O. Gargab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruichong%20R.%20Zhang"> Ruichong R. Zhang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous-discrete%20mass%20modeling" title=" continuous-discrete mass modeling"> continuous-discrete mass modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=post-earthquake" title=" post-earthquake"> post-earthquake</a> </p> <a href="https://publications.waset.org/abstracts/7612/post-earthquake-damage-detection-using-system-identification-with-a-pair-of-seismic-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19100</span> Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Mohibulla%20Baig">Mirza Mohibulla Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Imil%20Hamda%20Imran"> Imil Hamda Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tri%20Bagus%20Susilo"> Tri Bagus Susilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20El%20Ferik"> Sami El Ferik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20vehicle" title=" underwater vehicle"> underwater vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20method" title=" integral method"> integral method</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20least%20square" title=" recursive least square"> recursive least square</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20recursive%20least%20square" title=" weighted recursive least square"> weighted recursive least square</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20linearization" title=" feedback linearization"> feedback linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20error" title=" integral error"> integral error</a> </p> <a href="https://publications.waset.org/abstracts/21830/identification-and-control-the-yaw-motion-dynamics-of-open-frame-underwater-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19099</span> An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghasem%20Sharifi">Ghasem Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Shahmohamadi%20Ousaloo"> Hamed Shahmohamadi Ousaloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Azimi"> Milad Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Mirshams"> Mehran Mirshams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20modeling" title="experimental modeling">experimental modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20parameters" title=" friction parameters"> friction parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20identification" title=" model identification"> model identification</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20wheel" title=" reaction wheel"> reaction wheel</a> </p> <a href="https://publications.waset.org/abstracts/105328/an-optimal-approach-for-full-detailed-friction-model-identification-of-reaction-wheel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19098</span> Identification of Shocks from Unconventional Monetary Policy Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Grushanina">Margarita Grushanina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After several prominent central banks including European Central Bank (ECB), Federal Reserve System (Fed), Bank of Japan and Bank of England employed unconventional monetary policies in the aftermath of the financial crisis of 2008-2009 the problem of identification of the effects from such policies became of great interest. One of the main difficulties in identification of shocks from unconventional monetary policy measures in structural VAR analysis is that they often are anticipated, which leads to a non-fundamental MA representation of the VAR model. Moreover, the unconventional monetary policy actions may indirectly transmit to markets information about the future stance of the interest rate, which raises a question of the plausibility of the assumption of orthogonality between shocks from unconventional and conventional policy measures. This paper offers a method of identification that takes into account the abovementioned issues. The author uses factor-augmented VARs to increase the information set and identification through heteroskedasticity of error terms and rank restrictions on the errors’ second moments’ matrix to deal with the cross-correlation of the structural shocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor-augmented%20VARs" title="factor-augmented VARs">factor-augmented VARs</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20through%20heteroskedasticity" title=" identification through heteroskedasticity"> identification through heteroskedasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20policy" title=" monetary policy"> monetary policy</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20VARs" title=" structural VARs"> structural VARs</a> </p> <a href="https://publications.waset.org/abstracts/81250/identification-of-shocks-from-unconventional-monetary-policy-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19097</span> Disability, Stigma and In-Group Identification: An Exploration across Different Disability Subgroups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Rathee">Sharmila Rathee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with disability/ies often face negative attitudes, discrimination, exclusion, and inequality of treatment due to stigmatization and stigmatized treatment. While a significant number of studies in field of stigma suggest that group-identification has positive consequences for stigmatized individuals, ironically very miniscule empirical work in sight has attempted to investigate in-group identification as a coping measure against stigma, humiliation and related experiences among disability group. In view of death of empirical research on in-group identification among disability group, through present work, an attempt has been made to examine the experiences of stigma, humiliation, and in-group identification among disability group. Results of the study suggest that use of in-group identification as a coping strategy is not uniform across members of disability group and degree of in-group identification differs across different sub-groups of disability groups. Further, in-group identification among members of disability group depends on variables like degree and impact of disability, factors like onset of disability, nature, and visibility of disability, educational experiences and resources available to deal with disabling conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disability" title="disability">disability</a>, <a href="https://publications.waset.org/abstracts/search?q=stigma" title=" stigma"> stigma</a>, <a href="https://publications.waset.org/abstracts/search?q=in-group%20identification" title=" in-group identification"> in-group identification</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20identity" title=" social identity"> social identity</a> </p> <a href="https://publications.waset.org/abstracts/48888/disability-stigma-and-in-group-identification-an-exploration-across-different-disability-subgroups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19096</span> Impact of VARK Learning Model at Tertiary Level Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munazza%20A.%20Mirza">Munazza A. Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Khawar%20Khurshid"> Khawar Khurshid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20style" title="learning style">learning style</a>, <a href="https://publications.waset.org/abstracts/search?q=VARK" title=" VARK"> VARK</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20preferences" title=" sensory preferences"> sensory preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20model" title=" identification model"> identification model</a>, <a href="https://publications.waset.org/abstracts/search?q=didactic%20practices" title=" didactic practices"> didactic practices</a> </p> <a href="https://publications.waset.org/abstracts/110251/impact-of-vark-learning-model-at-tertiary-level-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19095</span> Leveraging SHAP Values for Effective Feature Selection in Peptide Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Li">Sharon Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhonghang%20Xia"> Zhonghang Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peptide%20identification" title="peptide identification">peptide identification</a>, <a href="https://publications.waset.org/abstracts/search?q=SHAP%20value" title=" SHAP value"> SHAP value</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20tree" title=" random forest tree"> random forest tree</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/192174/leveraging-shap-values-for-effective-feature-selection-in-peptide-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19094</span> Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R<sup>2</sup>). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20processes" title=" stochastic processes"> stochastic processes</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20river" title=" Karkheh river"> Karkheh river</a> </p> <a href="https://publications.waset.org/abstracts/76660/flood-predicting-in-karkheh-river-basin-using-stochastic-arima-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19093</span> Implementation and Validation of a Damage-Friction Constitutive Model for Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Madouni">L. Madouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ould%20Ouali"> M. Ould Ouali</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20Hannachi"> N. E. Hannachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two constitutive models for concrete are available in ABAQUS/Explicit, the Brittle Cracking Model and the Concrete Damaged Plasticity Model, and their suitability and limitations are well known. The aim of the present paper is to implement a damage-friction concrete constitutive model and to evaluate the performance of this model by comparing the predicted response with experimental data. The constitutive formulation of this material model is reviewed. In order to have consistent results, the parameter identification and calibration for the model have been performed. Several numerical simulations are presented in this paper, whose results allow for validating the capability of the proposed model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic load conditions. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title="Abaqus">Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title=" constitutive model"> constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/77318/implementation-and-validation-of-a-damage-friction-constitutive-model-for-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19092</span> USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kilari%20Nikhil">Kilari Nikhil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Tibrewal"> Ankur Tibrewal</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Kruthiventi%20S.%20S."> Srinivas Kruthiventi S. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20feature%20extraction" title="multi-scale feature extraction">multi-scale feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20and%20excitation" title=" squeeze and excitation"> squeeze and excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=VoxCeleb1%20speaker%20identification" title=" VoxCeleb1 speaker identification"> VoxCeleb1 speaker identification</a>, <a href="https://publications.waset.org/abstracts/search?q=mel-spectrograms" title=" mel-spectrograms"> mel-spectrograms</a>, <a href="https://publications.waset.org/abstracts/search?q=USENet" title=" USENet"> USENet</a> </p> <a href="https://publications.waset.org/abstracts/170441/use-net-se-block-enhanced-u-net-architecture-for-robust-speaker-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19091</span> Person Re-Identification using Siamese Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sello%20Mokwena">Sello Mokwena</a>, <a href="https://publications.waset.org/abstracts/search?q=Monyepao%20Thabang"> Monyepao Thabang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20network" title="camera network">camera network</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network%20topology" title=" convolutional neural network topology"> convolutional neural network topology</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20tracking" title=" person tracking"> person tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20re-identification" title=" person re-identification"> person re-identification</a>, <a href="https://publications.waset.org/abstracts/search?q=siamese" title=" siamese"> siamese</a> </p> <a href="https://publications.waset.org/abstracts/171989/person-re-identification-using-siamese-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19090</span> Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Pfeffel">Florian Pfeffel</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Nickolai"> Valentin Nickolai</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Louis%20K%C3%BChner"> Christian Louis Kühner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=home-office" title="home-office">home-office</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20with%20work" title=" identification with work"> identification with work</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20satisfaction" title=" job satisfaction"> job satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20work" title=" new work"> new work</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20work" title=" remote work"> remote work</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/162074/using-structural-equation-modeling-to-analyze-the-impact-of-remote-work-on-job-satisfaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=637">637</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=638">638</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=identification%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>