CINXE.COM

Funktion (Mathematik) – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Funktion (Mathematik) – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"1ad608e3-0611-47d0-89b7-07c50531317e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Funktion_(Mathematik)","wgTitle":"Funktion (Mathematik)","wgCurRevisionId":250228594,"wgRevisionId":250228594,"wgArticleId":1653,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"], "wgCategories":["Mathematische Funktion","Mengenlehre","Mathematischer Grundbegriff"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Funktion_(Mathematik)","wgRelevantArticleId":1653,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":250228594,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true, "wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11348","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Funktion (Mathematik) – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Funktion_(Mathematik)"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Funktion_(Mathematik)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Funktion_Mathematik rootpage-Funktion_Mathematik skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Funktion (Mathematik)</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><p>In der <a href="/wiki/Mathematik" title="Mathematik">Mathematik</a> ist eine <b>Funktion</b> (<span style="font-style:normal;font-weight:normal"><a href="/wiki/Latein" title="Latein">lateinisch</a></span> <span lang="la-Latn" style="font-style:italic">functio</span>) oder <b>Abbildung</b> eine Beziehung (<a href="/wiki/Relation_(Mathematik)" title="Relation (Mathematik)">Relation</a>) zwischen zwei <a href="/wiki/Menge_(Mathematik)" title="Menge (Mathematik)">Mengen</a>, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Wert) zuordnet. Der Funktionsbegriff wird in der Literatur unterschiedlich definiert, jedoch geht man generell von der Vorstellung aus, dass Funktionen <a href="/wiki/Mathematisches_Objekt" title="Mathematisches Objekt">mathematischen Objekten</a> mathematische Objekte zuordnen, zum Beispiel jeder reellen Zahl deren Quadrat. Das Konzept der Funktion oder Abbildung nimmt in der modernen Mathematik eine zentrale Stellung ein; es enthält als Spezialfälle unter anderem <a href="/wiki/Parametrische_Kurve" class="mw-redirect" title="Parametrische Kurve">parametrische Kurven</a>, <a href="/wiki/Skalarfeld" title="Skalarfeld">Skalar-</a> und <a href="/wiki/Vektorfeld" title="Vektorfeld">Vektorfelder</a>, <a href="/wiki/Transformation_(Mathematik)" class="mw-redirect" title="Transformation (Mathematik)">Transformationen</a>, <a href="/wiki/Verkn%C3%BCpfung_(Mathematik)" title="Verknüpfung (Mathematik)">Operationen</a>, <a href="/wiki/Operator_(Mathematik)" title="Operator (Mathematik)">Operatoren</a> und vieles mehr. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Begriffsgeschichte"><span class="tocnumber">1</span> <span class="toctext">Begriffsgeschichte</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Definition"><span class="tocnumber">2</span> <span class="toctext">Definition</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Grundidee"><span class="tocnumber">2.1</span> <span class="toctext">Grundidee</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Mengentheoretische_Definition"><span class="tocnumber">2.2</span> <span class="toctext">Mengentheoretische Definition</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-5"><a href="#Notation"><span class="tocnumber">3</span> <span class="toctext">Notation</span></a> <ul> <li class="toclevel-2 tocsection-6"><a href="#Schreibweisen"><span class="tocnumber">3.1</span> <span class="toctext">Schreibweisen</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Sprechweisen"><span class="tocnumber">3.2</span> <span class="toctext">Sprechweisen</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-8"><a href="#Darstellung"><span class="tocnumber">4</span> <span class="toctext">Darstellung</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Grundeigenschaften"><span class="tocnumber">5</span> <span class="toctext">Grundeigenschaften</span></a> <ul> <li class="toclevel-2 tocsection-10"><a href="#Bild_und_Urbild"><span class="tocnumber">5.1</span> <span class="toctext">Bild und Urbild</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Injektivität,_Surjektivität,_Bijektivität"><span class="tocnumber">5.2</span> <span class="toctext">Injektivität, Surjektivität, Bijektivität</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Stelligkeit"><span class="tocnumber">5.3</span> <span class="toctext">Stelligkeit</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Menge_der_Funktionen"><span class="tocnumber">5.4</span> <span class="toctext">Menge der Funktionen</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-14"><a href="#Operationen"><span class="tocnumber">6</span> <span class="toctext">Operationen</span></a> <ul> <li class="toclevel-2 tocsection-15"><a href="#Einschränkung"><span class="tocnumber">6.1</span> <span class="toctext">Einschränkung</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#Umkehrfunktion"><span class="tocnumber">6.2</span> <span class="toctext">Umkehrfunktion</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Verkettung"><span class="tocnumber">6.3</span> <span class="toctext">Verkettung</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#Verknüpfung"><span class="tocnumber">6.4</span> <span class="toctext">Verknüpfung</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-19"><a href="#Weitere_Eigenschaften"><span class="tocnumber">7</span> <span class="toctext">Weitere Eigenschaften</span></a> <ul> <li class="toclevel-2 tocsection-20"><a href="#Algebraische_Eigenschaften"><span class="tocnumber">7.1</span> <span class="toctext">Algebraische Eigenschaften</span></a></li> <li class="toclevel-2 tocsection-21"><a href="#Analytische_Eigenschaften"><span class="tocnumber">7.2</span> <span class="toctext">Analytische Eigenschaften</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-22"><a href="#Spezielle_Funktionen"><span class="tocnumber">8</span> <span class="toctext">Spezielle Funktionen</span></a> <ul> <li class="toclevel-2 tocsection-23"><a href="#Funktionale"><span class="tocnumber">8.1</span> <span class="toctext">Funktionale</span></a></li> <li class="toclevel-2 tocsection-24"><a href="#Matrixfunktionen"><span class="tocnumber">8.2</span> <span class="toctext">Matrixfunktionen</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-25"><a href="#Verwendung"><span class="tocnumber">9</span> <span class="toctext">Verwendung</span></a></li> <li class="toclevel-1 tocsection-26"><a href="#Verallgemeinerungen"><span class="tocnumber">10</span> <span class="toctext">Verallgemeinerungen</span></a> <ul> <li class="toclevel-2 tocsection-27"><a href="#Multifunktionen"><span class="tocnumber">10.1</span> <span class="toctext">Multifunktionen</span></a></li> <li class="toclevel-2 tocsection-28"><a href="#Umkehrungen_von_Funktionen_als_Multifunktionen"><span class="tocnumber">10.2</span> <span class="toctext">Umkehrungen von Funktionen als Multifunktionen</span></a></li> <li class="toclevel-2 tocsection-29"><a href="#Partielle_Funktionen"><span class="tocnumber">10.3</span> <span class="toctext">Partielle Funktionen</span></a></li> <li class="toclevel-2 tocsection-30"><a href="#Funktionen_mit_Werten_in_einer_echten_Klasse"><span class="tocnumber">10.4</span> <span class="toctext">Funktionen mit Werten in einer echten Klasse</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-31"><a href="#Symbolik"><span class="tocnumber">11</span> <span class="toctext">Symbolik</span></a></li> <li class="toclevel-1 tocsection-32"><a href="#Literatur"><span class="tocnumber">12</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-33"><a href="#Weblinks"><span class="tocnumber">13</span> <span class="toctext">Weblinks</span></a></li> <li class="toclevel-1 tocsection-34"><a href="#Einzelnachweise_und_Anmerkungen"><span class="tocnumber">14</span> <span class="toctext">Einzelnachweise und Anmerkungen</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Begriffsgeschichte">Begriffsgeschichte</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=1" title="Abschnitt bearbeiten: Begriffsgeschichte" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=1" title="Quellcode des Abschnitts bearbeiten: Begriffsgeschichte"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Erste Ansätze zu einer impliziten Verwendung des Funktionsbegriffs in Tabellenform (Schattenlänge abhängig von der Tageszeit, Sehnenlängen abhängig vom Zentriwinkel etc.) sind bereits in der Antike zu erkennen. Den ersten Beleg einer expliziten Definition des Funktionsbegriffs findet man bei <a href="/wiki/Nikolaus_von_Oresme" title="Nikolaus von Oresme">Nikolaus von Oresme</a>, der im 14.&#160;Jahrhundert Abhängigkeiten sich ändernder Größen (Wärme, Bewegung etc.) graphisch durch senkrecht aufeinander stehende Strecken (longitudo, latitudo) darstellte.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Am Beginn des Prozesses zur Entwicklung des Funktionsbegriffs stehen <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes</a> und <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Fermat</a>, die mit Hilfe der von <a href="/wiki/Fran%C3%A7ois_Vi%C3%A8te" title="François Viète">Vieta</a> eingeführten <a href="/wiki/Variable_(Mathematik)" title="Variable (Mathematik)">Variablen</a> die analytische Methode der Einführung von Funktionen entwickelten.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Funktionale Abhängigkeiten sollten durch Gleichungen wie zum Beispiel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad1108c4c9ee8ac7de90b77f9bd27415b13b6bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.638ex; height:3.009ex;" alt="{\displaystyle y=x^{2}}"></span> dargestellt werden. In der Schulmathematik wurde dieser naive Funktionsbegriff bis weit in die zweite Hälfte des 20.&#160;Jahrhunderts beibehalten. Die erste Umschreibung des Funktionsbegriffs nach dieser Idee stammt von <a href="/wiki/James_Gregory_(Mathematiker)" title="James Gregory (Mathematiker)">Gregory</a> in seinem 1667 erschienenen Buch <i>Vera circuli et hyperbolae quadratura.</i> Der Begriff <i>Funktion</i> kommt wohl erstmals 1673 in einem Manuskript von <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Leibniz</a> vor, der in seiner Abhandlung von 1692 <i>De linea ex lineis numero infinitis ordinatim ductis</i> auch die Begriffe „Konstante“, „Variable“, „Ordinate“ und „Abszisse“ benutzt. Im Schriftwechsel zwischen Leibniz und <a href="/wiki/Johann_I_Bernoulli" title="Johann I Bernoulli">Johann&#160;I Bernoulli</a> wird der Funktionsbegriff von der Geometrie losgelöst und in die Algebra übertragen. In Beiträgen von 1706, 1708 und 1718 stellt Bernoulli diese Entwicklung dar. 1748 präzisiert <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>, ein Schüler Johann Bernoullis, in seinem Buch <i><a href="/wiki/Introductio_in_analysin_infinitorum" title="Introductio in analysin infinitorum">Introductio in analysin infinitorum</a></i> den Funktionsbegriff weiter.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Bei Euler findet man zwei verschiedene Erklärungen des Funktionsbegriffs: Zum einen stellt jeder „analytische Ausdruck“ in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> eine Funktion dar, zum anderen wird <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e871993bfd131a8b0c3591c26084cf8171a74dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.294ex; height:2.843ex;" alt="{\displaystyle y(x)}"></span> im Koordinatensystem durch eine freihändig gezeichnete Kurve definiert.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> 1755 formuliert er diese Vorstellungen ohne Verwendung des Terminus „analytischer Ausdruck“ um. Außerdem führte er bereits 1734 die Schreibweise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> ein. Er unterscheidet zwischen eindeutigen und mehrdeutigen Funktionen. Bei Euler ist damit auch die Umkehrung der <a href="/wiki/Normalparabel" title="Normalparabel">Normalparabel</a>, bei der jeder nicht-negativen reellen Zahl sowohl ihre positive als auch ihre negative Wurzel zugeordnet wird, als Funktion zugelassen. Für <a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Lagrange</a> sind nur Funktionen zulässig, die durch Potenzreihen definiert sind, wie er 1797 in seiner <i>Théorie des fonctions analytiques</i> festlegt. Eine fruchtbare Auseinandersetzung über das Bewegungsgesetz einer schwingenden Saite, zu dem <a href="/wiki/Jean-Baptiste_le_Rond_d%E2%80%99Alembert" title="Jean-Baptiste le Rond d’Alembert">d’Alembert</a> 1747, Euler 1748 und <a href="/wiki/Daniel_Bernoulli" title="Daniel Bernoulli">Daniel Bernoulli</a> 1753 unterschiedliche Lösungen vorstellten, führte zur Entdeckung der <i><a href="/wiki/Definitionsmenge" title="Definitionsmenge">Definitionsmenge</a></i> und einem weiter präzisierten Funktionsbegriff, in dem schon so etwas wie eindeutige Zuordnung umschrieben wird, durch <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier</a> in seinem 1822 erschienenen Buch <i>Théorie analytique de la chaleur.</i> Ähnliches formuliert <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Cauchy</a> 1823 in <i>Résumé des leçons&#160;… sur le calcul infinitésimal.</i> </p><p>Als die <a href="/wiki/Analysis" title="Analysis">Analysis</a> im 19.&#160;Jahrhundert mit einem exakten <a href="/wiki/Grenzwert_(Funktion)" title="Grenzwert (Funktion)">Grenzwertbegriff</a> auf eine neue Grundlage gestellt wurde, wurden Eigenschaften, die bisher als für Funktionen konstituierend aufgefasst wurden, in einem Exaktifizierungsprozess als selbständige Begriffe eingeführt und vom Funktionsbegriff losgelöst. <a href="/wiki/Peter_Gustav_Lejeune_Dirichlet" title="Peter Gustav Lejeune Dirichlet">Dirichlet</a>, ein Schüler Fouriers, formulierte diese neue Sicht: „Ideen an die Stelle von Rechnungen“ und stellte 1837 seine Ideen dar. <a href="/wiki/George_Gabriel_Stokes" title="George Gabriel Stokes">Stokes</a> führte in Arbeiten 1848 und 1849 ähnliche Ansichten aus. So verfuhr <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Riemann</a>, Schüler von Dirichlet, 1851 in <i>Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Größe</i> mit der Stetigkeit, später folgten Integrierbarkeit und Differenzierbarkeit. Eine Zusammenfassung dieser Entwicklung macht <a href="/wiki/Hermann_Hankel" title="Hermann Hankel">Hankel</a> 1870 in <i>Untersuchungen über die unendlich oft oscillierenden und unstetigen Functionen.</i> Auch hier wird noch nicht zwischen der Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> und dem Funktionswert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> an der Stelle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> unterschieden.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Weierstra%C3%9F" class="mw-redirect" title="Weierstraß">Weierstraß</a>, <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Dedekind</a> und andere entdeckten, dass Grenzwerte unendlicher Folgen „klassischer“ Funktionen sprunghaft sein können und sich nicht immer durch „geschlossene“ Formeln, d.&#160;h. mit endlich vielen Rechenoperationen, ausdrücken lassen. Das erzwang eine schrittweise Ausweitung des Funktionsbegriffs. </p><p>Davon unabhängig wurde im 19.&#160;Jahrhundert die <a href="/wiki/Gruppentheorie" title="Gruppentheorie">Gruppentheorie</a> begründet, mit der man systematisch untersuchen kann, wie sich <a href="/wiki/Algebraische_Gleichung" title="Algebraische Gleichung">algebraische Gleichungen</a> unter der Wirkung aufeinanderfolgender Transformationen verändern. Bei der Anwendung dieser Theorie auf geometrische Probleme wurden gleichbedeutend mit <i>Transformation</i> auch die Begriffe <i>Bewegung</i> und <i>Abbildung</i> gebraucht. </p><p>Als Anfang des 20.&#160;Jahrhunderts die Grundlagen der Mathematik einheitlich in der Sprache der <a href="/wiki/Mengenlehre" title="Mengenlehre">Mengenlehre</a> formuliert wurden, stellten sich die mathematischen Begriffe <i>Funktion</i> und <i>Abbildung</i> als deckungsgleich heraus. Im Sprachgebrauch wirken die unterschiedlichen Traditionen jedoch fort. In der Analysis spricht man heute häufig noch von Funktionen, während man in der Algebra und in der Geometrie von Abbildungen spricht. Einige Mathematiker unterscheiden auch heute noch streng zwischen einer Abbildung und einer Funktion. Diese verstehen unter einer Funktion eine Abbildung in den reellen oder komplexen <a href="/wiki/Zahlenk%C3%B6rper" class="mw-redirect" title="Zahlenkörper">Zahlenkörper</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>) oder auch <a href="/wiki/Kartesisches_Produkt#Produkt_endlich_vieler_Mengen" title="Kartesisches Produkt">Potenzen</a> davon (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span>), andererseits ist es in der <a href="/wiki/Boolesche_Algebra" title="Boolesche Algebra">Booleschen Algebra</a> gebräuchlich, von <a href="/wiki/Boolesche_Funktion" title="Boolesche Funktion">Booleschen Funktionen</a> zu sprechen. </p><p>Weitere Synonyme für <i>Funktion</i> in spezielleren Zusammenhängen sind unter anderem <a href="/wiki/Operator_(Mathematik)" title="Operator (Mathematik)">Operator</a> in der Analysis, Operation, <a href="/wiki/Verkn%C3%BCpfung_(Mathematik)" title="Verknüpfung (Mathematik)">Verknüpfung</a> und (etwas verallgemeinert) <a href="/wiki/Morphismus" title="Morphismus">Morphismus</a> in der Algebra. </p><p>Heute sehen manche Autoren den Funktionsbegriff (genauso wie den Relationsbegriff) nicht unbedingt als auf Mengen beschränkt an, sondern lassen jede aus <a href="/wiki/Geordnetes_Paar" title="Geordnetes Paar">geordneten Paaren</a> bestehende <a href="/wiki/Klasse_(Mengenlehre)" title="Klasse (Mengenlehre)">Klasse</a>, die keine verschiedenen Elemente mit gleicher linker Komponente enthält, als Funktion gelten.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Mengentheoretisch ausgedrückt werden Funktionen also als <i><a href="/wiki/Relation_(Mathematik)#Relationen_und_Funktionen" title="Relation (Mathematik)">rechtseindeutige Relationen</a></i> definiert. </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=2" title="Abschnitt bearbeiten: Definition" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=2" title="Quellcode des Abschnitts bearbeiten: Definition"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Grundidee">Grundidee</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=3" title="Abschnitt bearbeiten: Grundidee" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=3" title="Quellcode des Abschnitts bearbeiten: Grundidee"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ordnet <i>jedem</i> <a href="/wiki/Element_(Mathematik)" title="Element (Mathematik)">Element</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> einer <a href="/wiki/Definitionsmenge" title="Definitionsmenge">Definitionsmenge</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> <i>genau ein</i> Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> einer <a href="/wiki/Zielmenge" title="Zielmenge">Zielmenge</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> zu. </p><p>Schreibweise: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon D\to Z,\;x\mapsto y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>D</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon D\to Z,\;x\mapsto y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c66c2254878a5303b2d23c0d19df22c0fa836a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.31ex; height:2.509ex;" alt="{\displaystyle f\colon D\to Z,\;x\mapsto y}"></span> oder äquivalent auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon {\begin{cases}D\to Z\\x\mapsto y\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>D</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>y</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon {\begin{cases}D\to Z\\x\mapsto y\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54d205717990bc2dcb0b23e8263c2d7175f6874a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.026ex; height:6.176ex;" alt="{\displaystyle f\colon {\begin{cases}D\to Z\\x\mapsto y\end{cases}}}"></span></dd></dl> <p>Für das dem Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaf3e2c3607ccf1c1d7ee6620b44ef9d9e2e1f6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.095ex; height:2.176ex;" alt="{\displaystyle x\in D}"></span> zugeordnete Element der Zielmenge schreibt man im Allgemeinen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>. Man bezeichnet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> als den „Funktionswert der Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> an der Stelle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>“, häufig sprachlich stark verkürzt zu „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>“. </p><p>Anmerkungen: </p> <ul><li>Die Umkehrung gilt nicht: Ein Element der Zielmenge kann genau einem, mehreren, aber auch keinem Element der Definitionsmenge zugeordnet sein, in letzterem Fall gehört es nicht zur <a href="#Bild_und_Urbild">Bildmenge</a>.<span style="white-space:nowrap"><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></span><br />Beispiel: Die <a href="/wiki/Betragsfunktion" title="Betragsfunktion">Betragsfunktion</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=|x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=|x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/094ddc9667a7f47e36687c1d2a94d35c0c7d5c67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.139ex; height:2.843ex;" alt="{\displaystyle f(x)=|x|}"></span> ordnet den Zahlen +1 und −1 der Definitionsmenge die Zahl +1 der Zielmenge zu. Der Zahl +1 der Zielmenge sind also zwei Zahlen der Definitionsmenge zugeordnet. Andererseits ist der Zahl −2 keine Zahl der Definitionsmenge zugeordnet.</li> <li>Oft ist an Stelle der Definitionsmenge zunächst eine Quellmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> gegeben. Wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> als Rechenvorschrift gegeben ist, erhält man die Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b8420d715315c8e8b57f178a1b3a8512bd0959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.061ex; height:2.843ex;" alt="{\displaystyle D_{f}}"></span>, indem man von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> diejenigen Elemente ausschließt, für die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> nicht definiert ist. Siehe auch Abschnitt „<a href="#Partielle_Funktionen">Partielle Funktionen</a>“.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Mengentheoretische_Definition">Mengentheoretische Definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=4" title="Abschnitt bearbeiten: Mengentheoretische Definition" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=4" title="Quellcode des Abschnitts bearbeiten: Mengentheoretische Definition"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mengentheoretisch ist eine Funktion eine spezielle <a href="/wiki/Relation_(Mathematik)" title="Relation (Mathematik)">Relation</a>: </p> <dl><dd>Eine Funktion von der Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> in die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> ist eine Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, die die folgenden Eigenschaften hat:<sup id="cite_ref-Halmos_9-0" class="reference"><a href="#cite_note-Halmos-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ist eine Teilmenge des <a href="/wiki/Kartesisches_Produkt" title="Kartesisches Produkt">kartesischen Produkts</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\times Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>&#x00D7;<!-- × --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\times Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e97ac25da1139d5ecb173d4ab459d93709a8b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.445ex; height:2.176ex;" alt="{\displaystyle D\times Z}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, d.&#160;h., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ist eine <a href="/wiki/Relation_(Mathematik)" title="Relation (Mathematik)">Relation</a> zwischen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>.</li> <li>Für jedes Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> aus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> existiert mindestens ein Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, sodass das <a href="/wiki/Geordnetes_Paar" title="Geordnetes Paar">geordnete Paar</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> Element der Relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ist. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ist also <i>linkstotal.</i></li> <li>Zu jedem Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> gibt es höchstens ein Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, sodass das Paar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> liegt. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ist damit <i>rechtseindeutig</i> oder <i>funktional.</i></li></ul></dd></dl> <p>Die letzten beiden Eigenschaften lassen sich auch wie folgt zusammenfassen: </p> <dl><dd><ul><li>Zu jedem Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> gibt es genau ein Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, sodass das Paar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> Element der Relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> ist.</li></ul></dd></dl> <p>Manchmal möchte man alle möglichen Funktionen von beliebigen Mengen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> zu beliebigen Mengen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> in einer Klasse zusammenfassen. Um dann Aussagen über etwa <a href="/wiki/Surjektivit%C3%A4t" class="mw-redirect" title="Surjektivität">Surjektivität</a> zu treffen, muss der Kontext, also die Information, um welche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> es sich handelt, von den Objekten selbst mitgebracht werden. Der jeweilige Definitionsbereich lässt sich aus den Graphen rekonstruieren, der Zielbereich nicht. Eine minimale Kodierung wäre dann: </p> <dl><dd>Ein Paar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(G,Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(G,Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ef305093160eb033bdd244b158293d2d09c91c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.727ex; height:2.843ex;" alt="{\displaystyle f=(G,Z)}"></span>, bestehend aus einer Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> und einer Menge von Paaren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\subseteq D\times Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>D</mi> <mo>&#x00D7;<!-- × --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\subseteq D\times Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/687c033c75b864465978eac6ce661e7975af9954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.37ex; height:2.343ex;" alt="{\displaystyle G\subseteq D\times Z}"></span> mit einer weiteren Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>, heißt <b>Funktion</b> von der Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, wenn gilt: Zu jedem Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> gibt es genau ein Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> (geschrieben <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5080a8b0a963407ea74ffa50702563771518d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle f(x)=y}"></span>), sodass das Paar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> Element von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> ist.</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> wird dann auch der <a href="/wiki/Funktionsgraph" title="Funktionsgraph"><b>Graph</b></a> der Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> genannt. Die Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> der Funktion ist dabei durch ihren Graphen eindeutig bestimmt und besteht aus den ersten Komponenten aller Elemente des Graphen. Stimmen zwei Funktionen in ihren Graphen überein, so sagt man auch, sie seien im Wesentlichen gleich. Insbesondere ist jede Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(G,Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(G,Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ef305093160eb033bdd244b158293d2d09c91c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.727ex; height:2.843ex;" alt="{\displaystyle f=(G,Z)}"></span> im Wesentlichen gleich mit der surjektiven Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,W(f))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mi>W</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,W(f))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87e6afa1b1d9715be616e1a42f81b9785229d6af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.193ex; height:2.843ex;" alt="{\displaystyle (G,W(f))}"></span> mit der Bildmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W(f):=\{y\in {Z}|\exists x\in {D}\mid (x,y)\in G\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W(f):=\{y\in {Z}|\exists x\in {D}\mid (x,y)\in G\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c81d50e1d9b61b6f0fe0384969b2aede00a6012f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.237ex; height:2.843ex;" alt="{\displaystyle W(f):=\{y\in {Z}|\exists x\in {D}\mid (x,y)\in G\}}"></span>. </p><p>Findet man die Asymmetrie unschön, dass der Zielbereich angegeben wird, der Quellbereich aber nicht, definiert man die Objekte der Klasse als Tripel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(G,D,Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(G,D,Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/484fd284696f97e793bb69f90705a705e547f284" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.686ex; height:2.843ex;" alt="{\displaystyle f=(G,D,Z)}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=5" title="Abschnitt bearbeiten: Notation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=5" title="Quellcode des Abschnitts bearbeiten: Notation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Schreibweisen">Schreibweisen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=6" title="Abschnitt bearbeiten: Schreibweisen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=6" title="Quellcode des Abschnitts bearbeiten: Schreibweisen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Zuordnung kann unter anderem in einer der folgenden Formen beschrieben werden: </p> <ul><li>Funktionsgleichung mit Definitionsmenge</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{2},\qquad x\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="2em" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{2},\qquad x\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b341ca73c1e166e0ce7e31276fedf6d5ae8cc6cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.427ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{2},\qquad x\in \mathbb {N} }"></span></dd></dl></dd></dl> <ul><li>Eindeutige Zuordnungsvorschrift (englisch: <i>maplet</i>) mit Definitionsmenge</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x^{2},\qquad x\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="2em" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x^{2},\qquad x\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008d46982b4a7ae796cb376957be10f48c3355b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.855ex; height:3.009ex;" alt="{\displaystyle x\mapsto x^{2},\qquad x\in \mathbb {N} }"></span></dd></dl></dd></dl> <ul><li>Eindeutige Zuordnungsvorschrift mit Definitions- und Zielmenge</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon \mathbb {N} \rightarrow \mathbb {N} ,\;x\mapsto x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon \mathbb {N} \rightarrow \mathbb {N} ,\;x\mapsto x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a238691a9d015aa4cf01f76ab9722af90d2a16d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.29ex; height:3.009ex;" alt="{\displaystyle f\colon \mathbb {N} \rightarrow \mathbb {N} ,\;x\mapsto x^{2}}"></span> oder äquivalent <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon {\begin{cases}\mathbb {N} \to \mathbb {N} \\x\mapsto x^{2}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon {\begin{cases}\mathbb {N} \to \mathbb {N} \\x\mapsto x^{2}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8175c4fd2d9697c10c934f4db69b1e35462ba2df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.135ex; height:6.176ex;" alt="{\displaystyle f\colon {\begin{cases}\mathbb {N} \to \mathbb {N} \\x\mapsto x^{2}\end{cases}}}"></span></dd></dl></dd></dl> <ul><li><a href="/wiki/Familie_(Mathematik)" title="Familie (Mathematik)">Familienschreibweise</a> (mit der Bezeichnung <i>Indexmenge</i> für die Definitionsmenge)</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f_{x})_{x\in {\mathbb {N} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f_{x})_{x\in {\mathbb {N} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1944bafdd8379f645cf90af8a5237615dd37239e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.576ex; height:2.843ex;" alt="{\displaystyle (f_{x})_{x\in {\mathbb {N} }}}"></span><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup></dd></dl></dd></dl> <ul><li>Wertetabelle (für endliche, aber auch <a href="/wiki/Abz%C3%A4hlbare_Menge" title="Abzählbare Menge">abzählbar</a> unendliche Definitionsmengen)</li></ul> <dl><dd><table cellpadding="3" cellspacing="0" style="text-align:right; margin-left:2em;"> <tbody><tr> <td style="width:2ex; border-right:1px double black; border-bottom:1px solid black"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">1 </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">2 </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">3 </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">4 </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">5 </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">6 </td> <td style="width:2ex; border-right:1px solid black; border-bottom:1px solid black">7 </td> <td style="width:2ex; border-bottom:1px solid black">… </td></tr> <tr> <td style="border-right:1px double black;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> </td> <td style="border-right:1px solid black">1 </td> <td style="border-right:1px solid black">4 </td> <td style="border-right:1px solid black">9 </td> <td style="border-right:1px solid black">16 </td> <td style="border-right:1px solid black">25 </td> <td style="border-right:1px solid black">36 </td> <td style="border-right:1px solid black">49 </td> <td>… </td></tr></tbody></table></dd></dl> <ul><li>Relation, insbesondere auch als beschrieben oder aufgezählt dargestellte Menge</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\{(x,x^{2})\mid x\in \mathbb {N} \}=\{(1,1),(2,4),(3,9),(4,16),\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>9</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>16</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\{(x,x^{2})\mid x\in \mathbb {N} \}=\{(1,1),(2,4),(3,9),(4,16),\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e0784cda7f64269d9e0de4880465b229fe5019e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.162ex; height:3.176ex;" alt="{\displaystyle f=\{(x,x^{2})\mid x\in \mathbb {N} \}=\{(1,1),(2,4),(3,9),(4,16),\ldots \}}"></span></dd></dl></dd></dl> <ul><li>Ergebnis von Verknüpfungen und Operationen (zum Beispiel <a href="/wiki/Komposition_(Mathematik)" title="Komposition (Mathematik)">Komposition</a>, Bildung der Umkehrfunktion, Ableitung u.&#160;Ä.), die auf andere Funktionen angewendet werden</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(g^{\prime }\circ h)^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2218;<!-- ∘ --></mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(g^{\prime }\circ h)^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ded2f7442442273b4dd91870c780413cd6f50f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.856ex; height:3.176ex;" alt="{\displaystyle f=(g^{\prime }\circ h)^{-1}}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Sprechweisen">Sprechweisen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=7" title="Abschnitt bearbeiten: Sprechweisen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=7" title="Quellcode des Abschnitts bearbeiten: Sprechweisen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Für die Zuordnung eines Funktionswertes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> zu einem Argument <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> gibt es eine Reihe verschiedener Sprech- oder ausführlicher Schreibweisen, die alle mehr oder weniger gleichwertig sind und vor allem in Abhängigkeit von dem, was vordergründig ausgedrückt werden soll, vom jeweiligen Kontext, der benutzten Symbolik und auch vom Geschmack des Sprechers (Schreibers) gewählt werden. Hier einige Beispiele: </p> <dl><dd><i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> wird abgebildet auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>.</i></dd> <dd><i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> wird <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> eindeutig zugeordnet</i> (vornehmlich, wenn das <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mapsto }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mapsto }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc09de045e7d82eef9fe078e7e7606576640c11b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \mapsto }"></span>-Symbol in der Symbolik steht).</dd> <dd><i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> gleich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span></i> (vornehmlich, wenn ein Gleichheitszeichen in der Symbolik steht).</dd> <dd><i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> ist das Bild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> unter der Abbildung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>.</i></dd></dl> <p>Davon zu unterscheiden ist die Sprech- und Schreibweise: „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> ist eine Funktion von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>“, die vor allem in der Physik sehr nahestehenden Bereichen der Mathematik auftaucht. Sie ist die ältere und ursprüngliche Sprech- und Schreibweise und beschreibt die Abhängigkeit einer Variablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> von einer anderen Variablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, im Gegensatz dazu, dass mit Hilfe der Variablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> (stellvertretend) die Zuordnung bestimmter Elemente von Mengen beschrieben wird. Die „physikalische“ Sprechweise stammt von dem Vorgehen, zunächst zwei veränderlichen Größen (der physikalischen Realität) Symbole, nämlich die Variablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>, zuzuordnen und <i>danach</i> deren Abhängigkeit festzustellen. Steht beispielsweise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> für die Raumtemperatur und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> für die Zeit, so wird man feststellen können, dass sich die Raumtemperatur in Abhängigkeit von der Zeit ändert und somit „die Raumtemperatur eine Funktion der Zeit ist“ oder stellvertretend „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> eine Funktion von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> ist.“ </p><p>Statt <i>Definitionsmenge</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> wird auch <i>Definitionsbereich, Urbildmenge</i> oder schlicht <i>Urbild</i> gesagt. Die Elemente von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> heißen <i>Funktionsargumente, Funktionsstellen</i> oder <i>Urbilder,</i> salopp auch <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Werte.</i> Die Elemente der Zielmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> heißen <i>Zielwerte</i> oder <i>Zielelemente,</i> salopp auch <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Werte.</i> Diejenigen Elemente von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>, die tatsächlich auch als Bild eines Arguments auftreten, heißen <i>Funktionswerte, Bildelemente</i> oder schlicht <i>Bilder.</i> Sie bilden die <i>Wertemenge</i> oder den <i>Wertebereich,</i> der oft nur eine echte Teilmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> ist. </p> <div class="mw-heading mw-heading2"><h2 id="Darstellung">Darstellung</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=8" title="Abschnitt bearbeiten: Darstellung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=8" title="Quellcode des Abschnitts bearbeiten: Darstellung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon U\to \mathbb {R} ,\ U\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon U\to \mathbb {R} ,\ U\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/003f3499977bf2f05b2ea459533a8237fbdf314b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.561ex; height:2.509ex;" alt="{\displaystyle f\colon U\to \mathbb {R} ,\ U\subseteq \mathbb {R} }"></span>, kann man visualisieren, indem man ihren Graphen in ein (zweidimensionales) <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinatensystem</a> zeichnet. Der <a href="/wiki/Funktionsgraph" title="Funktionsgraph">Funktionsgraph</a> einer Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> kann mathematisch definiert werden als die Menge aller Elementepaare <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span>, für die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span> ist. Der Graph einer <a href="/wiki/Stetige_Funktion" title="Stetige Funktion">stetigen Funktion</a> auf einem zusammenhängenden Intervall bildet eine <a href="/wiki/Zusammenh%C3%A4ngender_Raum" title="Zusammenhängender Raum">zusammenhängende</a> <a href="/wiki/Kurve_(Mathematik)" title="Kurve (Mathematik)">Kurve</a> (genauer: Die Menge der Punkte der Kurve, aufgefasst als Unterraum des <a href="/wiki/Topologischer_Raum" title="Topologischer Raum">topologischen Raumes</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> ist zusammenhängend). </p><p>Analog kann man Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon U\to \mathbb {R} ^{2},\,U\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="thinmathspace" /> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon U\to \mathbb {R} ^{2},\,U\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2189b01e68be7c251f38b949152661f142af295b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.422ex; height:3.009ex;" alt="{\displaystyle f\colon U\to \mathbb {R} ^{2},\,U\subseteq \mathbb {R} }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\colon U\to \mathbb {R} ,\,U\subseteq \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x003A;<!-- : --></mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\colon U\to \mathbb {R} ,\,U\subseteq \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61ac4cfda8529e7c73e10f3aac583c2df8c5f751" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.259ex; height:3.009ex;" alt="{\displaystyle g\colon U\to \mathbb {R} ,\,U\subseteq \mathbb {R} ^{2}}"></span> visualisieren, indem man sie in ein dreidimensionales Koordinatensystem zeichnet. Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> stetig, so ergibt sich eine Kurve (die auch Ecken haben kann), die sich durch das Koordinatensystem „schlängelt“. Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> stetig, so ergibt sich eine Fläche als Bild, typischerweise in Form einer „Gebirgslandschaft“. </p><p>Computerprogramme zur Darstellung von Funktionen heißen <a href="/wiki/Funktionenplotter" title="Funktionenplotter">Funktionenplotter</a>. Funktionsprogramme gehören auch zum Funktionsumfang von <a href="/wiki/Computeralgebrasystem" title="Computeralgebrasystem">Computeralgebrasystemen</a> (CAS), matrizenfähigen Programmierumgebungen wie <a href="/wiki/MATLAB" class="mw-redirect" title="MATLAB">MATLAB</a>, <a href="/wiki/Scilab" title="Scilab">Scilab</a>, <a href="/wiki/GNU_Octave" title="GNU Octave">GNU Octave</a> und anderen Systemen. Die wesentlichen Fähigkeiten eines Funktionenplotters sind auch auf einem graphikfähigen <a href="/wiki/Taschenrechner" title="Taschenrechner">Taschenrechner</a> verfügbar. Es gibt auch Web-gestützte Angebote, die nur einen aktuellen Browser benötigen. </p> <ul class="gallery mw-gallery-traditional center"> <li class="gallerycaption">Beispiele einiger Funktionsgraphen</li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Datei:Graph_describing_a_linear_function.svg" class="mw-file-description" title="Lineare Funktion (genauer: Affine Abbildung)"><img alt="Lineare Funktion (genauer: Affine Abbildung)" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Graph_describing_a_linear_function.svg/120px-Graph_describing_a_linear_function.svg.png" decoding="async" width="120" height="87" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Graph_describing_a_linear_function.svg/180px-Graph_describing_a_linear_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Graph_describing_a_linear_function.svg/240px-Graph_describing_a_linear_function.svg.png 2x" data-file-width="549" data-file-height="396" /></a></span></div> <div class="gallerytext"><a href="/wiki/Lineare_Funktion" title="Lineare Funktion">Lineare Funktion</a> (genauer: <a href="/wiki/Affine_Abbildung" title="Affine Abbildung">Affine Abbildung</a>)</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Datei:Polynomialdeg5.svg" class="mw-file-description" title="Polynomfunktion 5.&#160;Grades"><img alt="Polynomfunktion 5.&#160;Grades" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Polynomialdeg5.svg/120px-Polynomialdeg5.svg.png" decoding="async" width="120" height="92" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Polynomialdeg5.svg/180px-Polynomialdeg5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Polynomialdeg5.svg/240px-Polynomialdeg5.svg.png 2x" data-file-width="233" data-file-height="179" /></a></span></div> <div class="gallerytext"><a href="/wiki/Polynom" title="Polynom">Polynomfunktion</a> 5.&#160;Grades</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Datei:Exp_re.png" class="mw-file-description" title="Realteil der komplexen Exponentialfunktion"><img alt="Realteil der komplexen Exponentialfunktion" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Exp_re.png/120px-Exp_re.png" decoding="async" width="120" height="95" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Exp_re.png/180px-Exp_re.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Exp_re.png/240px-Exp_re.png 2x" data-file-width="768" data-file-height="606" /></a></span></div> <div class="gallerytext">Realteil der komplexen <a href="/wiki/Exponentialfunktion" title="Exponentialfunktion">Exponentialfunktion</a></div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Datei:Sin.svg" class="mw-file-description" title="Sinusfunktion"><img alt="Sinusfunktion" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Sin.svg/120px-Sin.svg.png" decoding="async" width="120" height="82" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Sin.svg/180px-Sin.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Sin.svg/240px-Sin.svg.png 2x" data-file-width="1122" data-file-height="765" /></a></span></div> <div class="gallerytext"><a href="/wiki/Sinus_und_Kosinus" title="Sinus und Kosinus">Sinusfunktion</a></div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Datei:Normal_density-3.svg" class="mw-file-description" title="Gaußsche Glockenkurven"><img alt="Gaußsche Glockenkurven" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Normal_density-3.svg/120px-Normal_density-3.svg.png" decoding="async" width="120" height="92" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Normal_density-3.svg/180px-Normal_density-3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Normal_density-3.svg/240px-Normal_density-3.svg.png 2x" data-file-width="931" data-file-height="715" /></a></span></div> <div class="gallerytext"><a href="/wiki/Normalverteilung" title="Normalverteilung">Gaußsche Glockenkurven</a></div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="Grundeigenschaften">Grundeigenschaften</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=9" title="Abschnitt bearbeiten: Grundeigenschaften" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=9" title="Quellcode des Abschnitts bearbeiten: Grundeigenschaften"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Bild_und_Urbild">Bild und Urbild</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=10" title="Abschnitt bearbeiten: Bild und Urbild" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=10" title="Quellcode des Abschnitts bearbeiten: Bild und Urbild"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Bild_(Mathematik)" title="Bild (Mathematik)">Bild (Mathematik)</a>&#32;und <a href="/wiki/Urbild_(Mathematik)" title="Urbild (Mathematik)">Urbild (Mathematik)</a></i></div> <p>Das Bild eines Elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> der Definitionsmenge ist einfach der Funktionswert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>. Das Bild einer Funktion ist die Menge der Bilder aller Elemente der Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>, also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(D):=\{f(x)\mid x\in D\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(D):=\{f(x)\mid x\in D\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1514261761f3334d23e77d096329b9ab2a1001b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.532ex; height:2.843ex;" alt="{\displaystyle f(D):=\{f(x)\mid x\in D\}}"></span>.</dd></dl> <p>Das Bild einer Funktion ist folglich eine Teilmenge der Zielmenge und wird <i>Bild-</i> oder <i>Wertemenge</i> genannt. Ist allgemeiner <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> eine Teilmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>, dann ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(S)=\{f(x)\mid x\in S\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(S)=\{f(x)\mid x\in S\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96b4acf73df67c13c4d4c7c4b95cb3095a69ad40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.035ex; height:2.843ex;" alt="{\displaystyle f(S)=\{f(x)\mid x\in S\}}"></span></dd></dl> <p>das Bild von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> unter der Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p><p>Das Urbild eines Elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> der Zielmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> ist die Menge aller Elemente der Definitionsmenge, deren Bild <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> ist. Es ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f^{-1}}(y)=f^{-1}(\{y\})=\{x\in D\mid f(x)=y\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f^{-1}}(y)=f^{-1}(\{y\})=\{x\in D\mid f(x)=y\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df9534bc845814cb807469dc54fc5cd6f62838b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:41.507ex; height:3.676ex;" alt="{\displaystyle \kappa _{f^{-1}}(y)=f^{-1}(\{y\})=\{x\in D\mid f(x)=y\}}"></span>,</dd></dl> <p>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5cfa2f5c08d6fe7d046b73faa6e3f213acc802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.653ex; height:3.009ex;" alt="{\displaystyle f^{-1}}"></span> ist im Allgemeinen keine eindeutige Funktion, sondern eine <a href="#Multifunktionen">Multifunktion</a>, zur Schreibweise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f^{-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f^{-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f203c9468345068e6140b142edd097b0b40e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.375ex; height:2.676ex;" alt="{\displaystyle \kappa _{f^{-1}}}"></span> siehe dort sowie bei <a href="/wiki/Relation_(Mathematik)#Relationen_und_Funktionen" title="Relation (Mathematik)">Relation (Mathematik)#Relationen und Funktionen</a> und <a href="/wiki/Korrespondenz_(Mathematik)" title="Korrespondenz (Mathematik)">Korrespondenz (Mathematik)</a>). </p><p>Oft werden diese <i><a href="/wiki/Urbild_(Mathematik)#Definition" title="Urbild (Mathematik)">Fasern</a></i> einfach mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> bezeichnet, was aber im Fall (eindeutig) umkehrbarer Funktionen einerseits <i>x</i>, andererseits {<i>x</i>} bezeichnet. </p><p>Das Urbild einer Teilmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> der Zielmenge ist die Menge aller Elemente der Definitionsmenge, deren Bild Element dieser Teilmenge ist: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(T)=\{x\in D\mid f(x)\in T\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(T)=\{x\in D\mid f(x)\in T\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baef7eb6a07d07a28bb3751efd74dfaa28114ae4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.448ex; height:3.176ex;" alt="{\displaystyle f^{-1}(T)=\{x\in D\mid f(x)\in T\}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Injektivität,_Surjektivität,_Bijektivität"><span id="Injektivit.C3.A4t.2C_Surjektivit.C3.A4t.2C_Bijektivit.C3.A4t"></span>Injektivität, Surjektivität, Bijektivität</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=11" title="Abschnitt bearbeiten: Injektivität, Surjektivität, Bijektivität" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=11" title="Quellcode des Abschnitts bearbeiten: Injektivität, Surjektivität, Bijektivität"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Injektivit%C3%A4t" class="mw-redirect" title="Injektivität">Injektivität</a>, <a href="/wiki/Surjektivit%C3%A4t" class="mw-redirect" title="Surjektivität">Surjektivität</a> und <a href="/wiki/Bijektivit%C3%A4t" class="mw-redirect" title="Bijektivität">Bijektivität</a></i></div> <ul><li>Eine Funktion ist <a href="/wiki/Injektivit%C3%A4t" class="mw-redirect" title="Injektivität">injektiv</a>, wenn jedes Element der <a href="/wiki/Zielmenge" title="Zielmenge">Zielmenge</a> <i>höchstens ein</i> Urbild hat&#160;– d.&#160;h., wenn gilt: Aus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1})=f(x_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1})=f(x_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f10bca283601ed76d4517058b1d9e43eb65e35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.042ex; height:2.843ex;" alt="{\displaystyle f(x_{1})=f(x_{2})}"></span> folgt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}=x_{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}=x_{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52aef8706f105f6ddf5706388027b255cd4e1326" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.513ex; height:2.009ex;" alt="{\displaystyle x_{1}=x_{2}.}"></span></li> <li>Sie ist <a href="/wiki/Surjektivit%C3%A4t" class="mw-redirect" title="Surjektivität">surjektiv</a>, wenn jedes Element der <a href="/wiki/Zielmenge" title="Zielmenge">Zielmenge</a> <i>mindestens ein</i> Urbild hat&#160;– d.&#160;h., wenn gilt: Zu jedem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> gibt es ein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, sodass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de09d5f1e42dc957864c2d2321712e2e168c1298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.318ex; height:2.843ex;" alt="{\displaystyle f(x)=y.}"></span></li> <li>Sie ist <a href="/wiki/Bijektivit%C3%A4t" class="mw-redirect" title="Bijektivität">bijektiv</a>, wenn sie injektiv und surjektiv ist, wenn also jedes Element der Zielmenge <i>genau ein</i> Urbild hat.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Stelligkeit">Stelligkeit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=12" title="Abschnitt bearbeiten: Stelligkeit" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=12" title="Quellcode des Abschnitts bearbeiten: Stelligkeit"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Stelligkeit" title="Stelligkeit">Stelligkeit</a></i></div> <p>Eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon D\to Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>D</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon D\to Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e09385942a0cc64216ddecd3a1e8254dbacf81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.531ex; height:2.509ex;" alt="{\displaystyle f\colon D\to Z}"></span>, deren Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> eine <a href="/wiki/Produktmenge" class="mw-redirect" title="Produktmenge">Produktmenge</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de5cc94d566b3a4aa2e5b4af64a90798aba22491" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.37ex; height:2.176ex;" alt="{\displaystyle D=A\times B}"></span> ist, heißt oft <i><a href="/wiki/Zweistellige_Verkn%C3%BCpfung" title="Zweistellige Verknüpfung">zweistellig</a>.</i> Den Wert von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, der bei Anwendung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> auf das Paar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\in D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\in D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa12bb2bbf5a06e953857b247cb9f511c0bd542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.836ex; height:2.843ex;" alt="{\displaystyle (a,b)\in D}"></span> erhalten wird, schreibt man (unter Weglassung eines Klammernpaares) als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/408a449654fb6a8e6141ee6bbcb637efe3f9e4c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.349ex; height:2.843ex;" alt="{\displaystyle f(a,b)}"></span>. </p><p>Analoges gilt für höhere Stelligkeiten. Eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\times B\times C\to Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>B</mi> <mo>&#x00D7;<!-- × --></mo> <mi>C</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\times B\times C\to Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44ccbdce51c205addb530a1f55510879c7ca8531" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.561ex; height:2.509ex;" alt="{\displaystyle f\colon A\times B\times C\to Z}"></span> bezeichnet man üblicherweise als <i>dreistellig.</i> Eine Funktion, deren Definitionsmenge keine Produktmenge ist (oder bei der die innere Struktur der Definitionsmenge keine Rolle spielt), bezeichnet man als <i>einstellig.</i> Unter einer nullstelligen Funktion versteht man eine Funktion, deren Definitionsmenge das <a href="/wiki/Leeres_Produkt" title="Leeres Produkt">leere Produkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{()\}=\{\emptyset \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{()\}=\{\emptyset \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f978b29f8b2099755c455fba235fea0bc65ab646" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.72ex; height:2.843ex;" alt="{\displaystyle \{()\}=\{\emptyset \}}"></span> ist, bei einem beliebigen Funktionswert. Daher können nullstellige Funktionen als <a href="/wiki/Mathematische_Konstante" title="Mathematische Konstante">Konstanten</a> aufgefasst werden, was bei <a href="/wiki/Algebraische_Strukturen" class="mw-redirect" title="Algebraische Strukturen">algebraischen Strukturen</a> (wie auch bei <a href="/wiki/Heterogene_Algebra" title="Heterogene Algebra">heterogenen Algebren</a>) Anwendung findet. </p><p>Statt nullstellig, einstellig, zweistellig, dreistellig sagt man auch oft unär, binär, ternär; Stelligkeit wird daher auch als „Arität“ (englisch: arity) bezeichnet. </p> <div class="mw-heading mw-heading3"><h3 id="Menge_der_Funktionen">Menge der Funktionen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=13" title="Abschnitt bearbeiten: Menge der Funktionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=13" title="Quellcode des Abschnitts bearbeiten: Menge der Funktionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z^{D},\ {}^{D}Z,\ [D\to Z]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msup> <mi>Z</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">[</mo> <mi>D</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z^{D},\ {}^{D}Z,\ [D\to Z]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a3efbec5b42fa81ba2142e9a623bc670681851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.316ex; height:3.176ex;" alt="{\displaystyle Z^{D},\ {}^{D}Z,\ [D\to Z]}"></span><sup id="cite_ref-noekla_11-0" class="reference"><a href="#cite_note-noekla-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Abb} (D,Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Abb</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>D</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Abb} (D,Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d87ac6bfb86de62527427bab1d80e795ddfb9fc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.776ex; height:2.843ex;" alt="{\displaystyle \operatorname {Abb} (D,Z)}"></span> wird die Menge aller Abbildungen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> bezeichnet: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z^{D}:=\{f\mid f\colon D\to Z\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msup> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>D</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z^{D}:=\{f\mid f\colon D\to Z\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e81eea2b6c5e0b13ec12e003b315c0c7690f80a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.119ex; height:3.176ex;" alt="{\displaystyle Z^{D}:=\{f\mid f\colon D\to Z\}}"></span></dd></dl> <p>Für die <a href="/wiki/M%C3%A4chtigkeit_(Mathematik)" title="Mächtigkeit (Mathematik)">Mächtigkeit</a> gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|Z^{D}\right|=|Z|^{|D|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msup> <mo>|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|Z^{D}\right|=|Z|^{|D|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/812992d035c1f3eb398613c2105e06f76eff8059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.175ex; height:3.843ex;" alt="{\displaystyle \left|Z^{D}\right|=|Z|^{|D|}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Operationen">Operationen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=14" title="Abschnitt bearbeiten: Operationen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=14" title="Quellcode des Abschnitts bearbeiten: Operationen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Einschränkung"><span id="Einschr.C3.A4nkung"></span>Einschränkung</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=15" title="Abschnitt bearbeiten: Einschränkung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=15" title="Quellcode des Abschnitts bearbeiten: Einschränkung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Einschr%C3%A4nkung" title="Einschränkung">Einschränkung</a></i></div> <p>Die Einschränkung einer Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dec1893560fabff9fa9c17b83b71f7f97996119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\to B}"></span> auf eine Teilmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> der Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> ist die Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{C}\colon C\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi>C</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{C}\colon C\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c51131f81d0940b43b29b0eb9780faca792c3f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.585ex; height:3.009ex;" alt="{\displaystyle f|_{C}\colon C\to B}"></span>, deren Graph durch </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{f|_{C}}:=G_{f}\cap (C\times B)=\{(x,y)\in G_{f}\mid x\in C\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mrow> </msub> <mo>:=</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <mo stretchy="false">(</mo> <mi>C</mi> <mo>&#x00D7;<!-- × --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{f|_{C}}:=G_{f}\cap (C\times B)=\{(x,y)\in G_{f}\mid x\in C\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1abd81a91ddd6a0b7f64381bc3e3f9b7de15f2a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:46.499ex; height:3.176ex;" alt="{\displaystyle G_{f|_{C}}:=G_{f}\cap (C\times B)=\{(x,y)\in G_{f}\mid x\in C\}}"></span></dd></dl> <p>gegeben ist. </p> <div class="mw-heading mw-heading3"><h3 id="Umkehrfunktion">Umkehrfunktion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=16" title="Abschnitt bearbeiten: Umkehrfunktion" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=16" title="Quellcode des Abschnitts bearbeiten: Umkehrfunktion"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Umkehrfunktion" title="Umkehrfunktion">Umkehrfunktion</a></i></div> <p>Zu jeder bijektiven Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dec1893560fabff9fa9c17b83b71f7f97996119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\to B}"></span> gibt es eine Umkehrfunktion </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}\colon B\to A,\,y\mapsto f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x003A;<!-- : --></mo> <mi>B</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>y</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}\colon B\to A,\,y\mapsto f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067ca693a8ec26adf81b82de66a50d25f78e851f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.617ex; height:3.176ex;" alt="{\displaystyle f^{-1}\colon B\to A,\,y\mapsto f^{-1}(y)}"></span>,</dd></dl> <p>sodass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> das eindeutig bestimmte Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27bcc9b2afb295d4234bc294860cd0c63bcad2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle x\in A}"></span> ist, für das <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5080a8b0a963407ea74ffa50702563771518d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle f(x)=y}"></span> gilt. Die Umkehrfunktion erfüllt damit für alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27bcc9b2afb295d4234bc294860cd0c63bcad2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle x\in A}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(f(x))=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(f(x))=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3935ccdf5e235ae36eec389d8b5a155c5159716c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.308ex; height:3.176ex;" alt="{\displaystyle f^{-1}(f(x))=x}"></span>.</dd></dl> <p>Bijektive Funktionen werden daher auch als eindeutig umkehrbare Funktionen bezeichnet. </p> <div class="mw-heading mw-heading3"><h3 id="Verkettung">Verkettung</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=17" title="Abschnitt bearbeiten: Verkettung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=17" title="Quellcode des Abschnitts bearbeiten: Verkettung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Komposition_(Mathematik)" title="Komposition (Mathematik)">Komposition (Mathematik)</a></i></div> <p>Zwei Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dec1893560fabff9fa9c17b83b71f7f97996119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\to B}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\colon B\to C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x003A;<!-- : --></mo> <mi>B</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\colon B\to C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02572d111e174b9ad0bf94d95d47c8e4f7d9649d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.294ex; height:2.509ex;" alt="{\displaystyle g\colon B\to C}"></span>, bei denen der Wertebereich der ersten Funktion mit dem Definitionsbereich der zweiten Funktion übereinstimmt (oder als Teilmenge enthalten ist), können verkettet werden. Die Verkettung oder Hintereinanderausführung dieser beiden Funktionen ist dann eine neue Funktion, die durch </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f\colon A\to C,\,x\mapsto (g\circ f)(x):=g(f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>C</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f\colon A\to C,\,x\mapsto (g\circ f)(x):=g(f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aad9280ec34f5a7e3504b41a309cb08ac0ff3a77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.737ex; height:2.843ex;" alt="{\displaystyle g\circ f\colon A\to C,\,x\mapsto (g\circ f)(x):=g(f(x))}"></span></dd></dl> <p>gegeben ist. In dieser Notation steht meist die zuerst angewandte Abbildung rechts, das heißt, bei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b5ad4985af48d0fb7efa3c8afa5ad7d42bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g\circ f}"></span> wird zuerst die Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> angewandt und dann die Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> („g <i>nach</i> f“). Gelegentlich wird in der Literatur allerdings auch die umgekehrte Reihung verwendet und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\circ f)(x):=f(g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\circ f)(x):=f(g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684b0164afb94c363eb6c5caea69f2cf515ce0a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.626ex; height:2.843ex;" alt="{\displaystyle (g\circ f)(x):=f(g(x))}"></span> geschrieben („g <i>vor</i> f“). </p> <div class="mw-heading mw-heading3"><h3 id="Verknüpfung"><span id="Verkn.C3.BCpfung"></span>Verknüpfung</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=18" title="Abschnitt bearbeiten: Verknüpfung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=18" title="Quellcode des Abschnitts bearbeiten: Verknüpfung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Binary_operations_as_black_box.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Binary_operations_as_black_box.svg/220px-Binary_operations_as_black_box.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Binary_operations_as_black_box.svg/330px-Binary_operations_as_black_box.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/Binary_operations_as_black_box.svg/440px-Binary_operations_as_black_box.svg.png 2x" data-file-width="142" data-file-height="142" /></a><figcaption>Eine zweistellige Verknüpfung ist eine Abbildung, die jedem Paar von Argumenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> das mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\circ y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\circ y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ba86902ee98c41deb1275ddb8693977f27e1da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.68ex; height:2.009ex;" alt="{\displaystyle x\circ y}"></span> bezeichnete „Rechen“-Ergebnis zuordnet</figcaption></figure> <p>Ist auf der Zielmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> eine <a href="/wiki/Innere_zweistellige_Verkn%C3%BCpfung" class="mw-redirect" title="Innere zweistellige Verknüpfung">innere zweistellige Verknüpfung</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *\colon B\times B\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> <mo>&#x003A;<!-- : --></mo> <mi>B</mi> <mo>&#x00D7;<!-- × --></mo> <mi>B</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *\colon B\times B\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af1a75be51fe3e460b9ca5d83677cfb4b23f4d14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.943ex; height:2.176ex;" alt="{\displaystyle *\colon B\times B\to B}"></span> gegeben, so lässt sich auch für Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g\in B^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g\in B^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f32ae9dae990ffbaf86207bb6b88bbd30aa2dd8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.498ex; height:3.009ex;" alt="{\displaystyle f,g\in B^{A}}"></span> eine innere zweistellige Verknüpfung definieren: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g\colon A\to B,\,x\mapsto (f*g)(x):=f(x)*g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g\colon A\to B,\,x\mapsto (f*g)(x):=f(x)*g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5579feaf496b38a625e97e8a3fec477511592388" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.259ex; height:2.843ex;" alt="{\displaystyle f*g\colon A\to B,\,x\mapsto (f*g)(x):=f(x)*g(x)}"></span>.</dd></dl> <p>Beispiele hierfür sind die punktweise Addition und <a href="/wiki/Punktweises_Produkt" title="Punktweises Produkt">Multiplikation von Funktionen</a>. Weiter lässt sich mit Hilfe einer <a href="/wiki/%C3%84u%C3%9Fere_zweistellige_Verkn%C3%BCpfung" class="mw-redirect" title="Äußere zweistellige Verknüpfung">äußeren zweistelligen Verknüpfung</a> der Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *\colon C\times B\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> <mo>&#x003A;<!-- : --></mo> <mi>C</mi> <mo>&#x00D7;<!-- × --></mo> <mi>B</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *\colon C\times B\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eafef32c22203076579362d31fdb99c144a7c15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.945ex; height:2.176ex;" alt="{\displaystyle *\colon C\times B\to B}"></span> auch die Verknüpfung einer Funktion mit einem Element aus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> definieren: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c*f\colon A\to B,\,x\mapsto (c*f)(x):=c*f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>c</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c*f\colon A\to B,\,x\mapsto (c*f)(x):=c*f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9841fe6d87e8c5d17b70fe507a96026a1ee2ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.793ex; height:2.843ex;" alt="{\displaystyle c*f\colon A\to B,\,x\mapsto (c*f)(x):=c*f(x)}"></span></dd></dl> <p>Beispiel hierfür ist die punktweise Multiplikation einer Funktion mit einem <a href="/wiki/Skalar_(Mathematik)" title="Skalar (Mathematik)">Skalar</a>. Analog lässt sich so auch eine äußere Verknüpfung der Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c953606fb3a56bbd891d409650688402da33bad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.48ex; height:2.509ex;" alt="{\displaystyle f*c}"></span> definieren. Sind Verknüpfungen der gleichen Art sowohl auf der Definitionsmenge als auch auf der Zielmenge gegeben, dann heißt eine Funktion <a href="/wiki/Vertr%C3%A4glichkeit_(Mathematik)" title="Verträglichkeit (Mathematik)">verträglich</a> mit diesen Verknüpfungen, wenn sich die Bilder bezüglich der einen Verknüpfung genauso verhalten wie die Urbilder bezüglich der anderen Verknüpfung. </p> <div class="mw-heading mw-heading2"><h2 id="Weitere_Eigenschaften">Weitere Eigenschaften</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=19" title="Abschnitt bearbeiten: Weitere Eigenschaften" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=19" title="Quellcode des Abschnitts bearbeiten: Weitere Eigenschaften"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Algebraische_Eigenschaften">Algebraische Eigenschaften</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=20" title="Abschnitt bearbeiten: Algebraische Eigenschaften" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=20" title="Quellcode des Abschnitts bearbeiten: Algebraische Eigenschaften"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Eine Funktion ist <a href="/wiki/Idempotenz" title="Idempotenz">idempotent</a>, wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ f=f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ f=f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9172b7a50fccab6c28706005b1a6b8c5b16e9f0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.129ex; height:2.509ex;" alt="{\displaystyle f\circ f=f}"></span>&#160;– d.&#160;h., wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(f(x))=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(f(x))=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38659935ace510e86dba5dcd12812ce033fb3d74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.021ex; height:2.843ex;" alt="{\displaystyle f(f(x))=f(x)}"></span> für alle Elemente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> der Definitionsmenge gilt.</li> <li>Sie ist eine <a href="/wiki/Involution_(Mathematik)" title="Involution (Mathematik)">Involution</a>, wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ f=\operatorname {id} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <mi>id</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ f=\operatorname {id} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da9cba4bf623c30fda44fb6ac74d3fa4ed1b894c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.79ex; height:2.509ex;" alt="{\displaystyle f\circ f=\operatorname {id} }"></span>&#160;– d.&#160;h., wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(f(x))=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(f(x))=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04c2f87b1313815142f4089bddf9881977e4bdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.934ex; height:2.843ex;" alt="{\displaystyle f(f(x))=x}"></span> für alle Elemente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> der Definitionsmenge gilt. <ul><li>Die <a href="/wiki/Identische_Abbildung" title="Identische Abbildung">Identität</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/033c0ae81eaf4c65cbb0759d7aa2c4f434c00f02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.273ex; height:1.843ex;" alt="{\displaystyle x\mapsto x}"></span> erfüllt natürlich diese Bedingung, wird aber in seltenen Fällen dennoch nicht als Involution angesehen.</li></ul></li> <li>Ein <i><a href="/wiki/Fixpunkt_(Mathematik)" title="Fixpunkt (Mathematik)">Fixpunkt</a></i> ist ein Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> der Definitionsmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, für das <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70ea63e918d829b0f0b20efc54b2b6d739af5143" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.646ex; height:2.843ex;" alt="{\displaystyle f(a)=a}"></span> gilt.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Analytische_Eigenschaften">Analytische Eigenschaften</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=21" title="Abschnitt bearbeiten: Analytische Eigenschaften" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=21" title="Quellcode des Abschnitts bearbeiten: Analytische Eigenschaften"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Beschr%C3%A4nktheit" class="mw-redirect" title="Beschränktheit">Beschränktheit</a></li> <li><a href="/wiki/Periodische_Funktion" title="Periodische Funktion">Periodizität</a></li> <li><a href="/wiki/Monotone_Abbildung" title="Monotone Abbildung">Monotonie</a></li> <li><a href="/wiki/Gerade_und_ungerade_Funktionen" title="Gerade und ungerade Funktionen">Symmetrie</a></li> <li><a href="/wiki/Stetige_Funktion" title="Stetige Funktion">Stetigkeit</a></li> <li><a href="/wiki/Differenzierbarkeit" title="Differenzierbarkeit">Differenzierbarkeit</a></li> <li><a href="/wiki/Glatte_Funktion" title="Glatte Funktion">Glattheit</a></li> <li><a href="/wiki/Holomorphie" class="mw-redirect" title="Holomorphie">Holomorphie</a></li> <li><a href="/wiki/Homogene_Funktion" title="Homogene Funktion">Homogenität</a></li> <li><a href="/wiki/Messbare_Funktion" title="Messbare Funktion">Messbarkeit</a></li> <li><a href="/wiki/Integralrechnung" title="Integralrechnung">Integrierbarkeit</a></li> <li><a href="/wiki/Konvexe_Funktion" class="mw-redirect" title="Konvexe Funktion">Konvexität</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Spezielle_Funktionen">Spezielle Funktionen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=22" title="Abschnitt bearbeiten: Spezielle Funktionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=22" title="Quellcode des Abschnitts bearbeiten: Spezielle Funktionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Reellwertige_Funktion" title="Reellwertige Funktion">Reellwertige Funktion</a>, die sich dadurch auszeichnet, dass ihre Zielmenge <a href="/wiki/Teilmenge" title="Teilmenge">innerhalb</a> der <a href="/wiki/Reelle_Zahl" title="Reelle Zahl">reellen Zahlen</a> liegt</li> <li><a href="/wiki/Komplexwertige_Funktion" title="Komplexwertige Funktion">Komplexwertige Funktion</a>, die sich dadurch auszeichnet, dass ihre Zielmenge <a href="/wiki/Teilmenge" title="Teilmenge">innerhalb</a> der <a href="/wiki/Komplexe_Zahl" title="Komplexe Zahl">komplexen Zahlen</a> liegt</li> <li>Homogene <a href="/wiki/Lineare_Funktion" title="Lineare Funktion">lineare Funktion</a> (auch: <a href="/wiki/Proportional" class="mw-redirect" title="Proportional">Proportionalität</a>): allgemein beschrieben durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=mx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>m</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=mx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f0d3e110d8da960bf9300287df68165a7286b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.886ex; height:2.843ex;" alt="{\displaystyle f(x)=mx}"></span>; ist ein <a href="/wiki/Homomorphismus" title="Homomorphismus">Homomorphismus</a> bezüglich der Addition</li> <li>Allgemeine <a href="/wiki/Lineare_Funktion" title="Lineare Funktion">lineare Funktion</a> (oder <i>affine Funktion</i>): allgemein beschrieben durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ax+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ax+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c655df4be41082c4bba924beab2c1dc27d019c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.913ex; height:2.843ex;" alt="{\displaystyle f(x)=ax+b}"></span>; siehe auch <a href="/wiki/Affine_Abbildung" title="Affine Abbildung">affine Abbildung</a></li> <li><a href="/wiki/Quadratische_Funktion" title="Quadratische Funktion">Quadratische Funktion</a>: allgemein beschrieben durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ax^{2}+bx+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ax^{2}+bx+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fca4dfe28e7b4a4a336578daaab18c87397073" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.145ex; height:3.176ex;" alt="{\displaystyle f(x)=ax^{2}+bx+c}"></span> (s. <a href="/wiki/Quadratische_Gleichung" title="Quadratische Gleichung">Quadratische Gleichung</a>)</li> <li><a href="/wiki/Potenzfunktion" title="Potenzfunktion">Potenzfunktion</a></li> <li><a href="/wiki/Polynomfunktion" class="mw-redirect" title="Polynomfunktion">Polynomfunktion</a>, auch ganzrationale Funktion: allg. beschrieben durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\dotsb +a_{1}x+a_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\dotsb +a_{1}x+a_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a8df67ee0fb103d19e0109c17c77bba1a7a15af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.693ex; height:3.176ex;" alt="{\displaystyle f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\dotsb +a_{1}x+a_{0}}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\textstyle \sum _{i=0}^{n}a_{i}x^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\textstyle \sum _{i=0}^{n}a_{i}x^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c48bc598fb0e653461fb32c277433bd96cf114e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.416ex; height:3.176ex;" alt="{\displaystyle f(x)=\textstyle \sum _{i=0}^{n}a_{i}x^{i}}"></span></li> <li><a href="/wiki/Rationale_Funktion" title="Rationale Funktion">Rationale Funktion</a>, insbesondere gebrochen-rationale Funktion: Quotient zweier Polynomfunktionen, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=g(x)/h(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=g(x)/h(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63c0734ea3e4a16316fe9449c5af40b7e13ff957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.411ex; height:2.843ex;" alt="{\displaystyle f(x)=g(x)/h(x)}"></span></li> <li><a href="/wiki/Wurzelfunktion" class="mw-redirect" title="Wurzelfunktion">Wurzelfunktion</a>: Umkehrung der Potenzfunktionen und selbst Potenzfunktion</li> <li><a href="/wiki/Exponentialfunktion" title="Exponentialfunktion">Exponentialfunktion</a></li> <li><a href="/wiki/Logarithmus" title="Logarithmus">Logarithmus</a></li> <li><a href="/wiki/Trigonometrische_Funktion" title="Trigonometrische Funktion">Trigonometrische Funktion</a>: <a href="/wiki/Sinus_und_Kosinus" title="Sinus und Kosinus">sin</a>, <a href="/wiki/Sinus_und_Kosinus" title="Sinus und Kosinus">cos</a>, <a href="/wiki/Tangens" class="mw-redirect" title="Tangens">tan</a>, <a href="/wiki/Kotangens" class="mw-redirect" title="Kotangens">cot</a>, <a href="/wiki/Sekans" class="mw-redirect" title="Sekans">sec</a>, <a href="/wiki/Kosekans" class="mw-redirect" title="Kosekans">csc</a></li> <li><a href="/wiki/Absoluter_Betrag" class="mw-redirect" title="Absoluter Betrag">Betragsfunktion</a></li> <li><a href="/wiki/Maximumsfunktion" class="mw-redirect" title="Maximumsfunktion">Maximumsfunktion</a> und <a href="/wiki/Minimumsfunktion" class="mw-redirect" title="Minimumsfunktion">Minimumsfunktion</a></li> <li><a href="/wiki/Gau%C3%9Fklammer" class="mw-redirect" title="Gaußklammer">Gaußsche Ganzzahlfunktion</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Funktionale">Funktionale</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=23" title="Abschnitt bearbeiten: Funktionale" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=23" title="Quellcode des Abschnitts bearbeiten: Funktionale"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Vor allem in der <a href="/wiki/Funktionalanalysis" title="Funktionalanalysis">Funktionalanalysis</a> finden Funktionale große Anwendung. Als <a href="/wiki/Funktional" title="Funktional">Funktional</a> bezeichnet man eine Funktion, deren <a href="/wiki/Definitionsmenge" title="Definitionsmenge">Definitionsmenge</a> als Teilmenge in einem <a href="/wiki/Vektorraum" title="Vektorraum">Vektorraum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> enthalten ist, während ihre <a href="/wiki/Zielmenge" title="Zielmenge">Zielmenge</a> in dem zugehörigen <a href="/wiki/Skalark%C3%B6rper" class="mw-redirect" title="Skalarkörper">Skalarkörper</a> liegt. </p><p>Sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> ein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1848c435e64864e9ad4efa7e46bd6bc900c35c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {K} }"></span>-<a href="/wiki/Vektorraum" title="Vektorraum">Vektorraum</a> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} \in \{\mathbb {R} ,\mathbb {C} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} \in \{\mathbb {R} ,\mathbb {C} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d1dfbdbc9f282a890a4539ce701c2029c1e1820" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.364ex; height:2.843ex;" alt="{\displaystyle \mathbb {K} \in \{\mathbb {R} ,\mathbb {C} \}}"></span>. Ein Funktional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> ist eine Abbildung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\colon V\to \mathbb {K} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>&#x003A;<!-- : --></mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\colon V\to \mathbb {K} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88808df568f889369a969a354c3a115d31c5b0c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.526ex; height:2.176ex;" alt="{\displaystyle T\colon V\to \mathbb {K} .}"></span> Funktionale können somit als Argumente selbst Funktionen haben. </p><p>Ein lineares Funktional auf dem Vektorraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}(\mathbb {R} ,\mathbb {K} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}(\mathbb {R} ,\mathbb {K} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb97cbbbd6bd3e112869c84b913216e2815fc45e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.256ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}(\mathbb {R} ,\mathbb {K} )}"></span>, der Funktionen auf der reellen Achse, ist bspw. das Auswertungsfunktional an der Stelle Null </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \colon {\mathcal {F}}(\mathbb {R} ,\mathbb {K} )\to \mathbb {K} ,\quad f\mapsto \delta [f]:=f(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>:=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \colon {\mathcal {F}}(\mathbb {R} ,\mathbb {K} )\to \mathbb {K} ,\quad f\mapsto \delta [f]:=f(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea421cc54fb02979ec7207087a73c3a0fdcfc817" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.273ex; height:2.843ex;" alt="{\displaystyle \delta \colon {\mathcal {F}}(\mathbb {R} ,\mathbb {K} )\to \mathbb {K} ,\quad f\mapsto \delta [f]:=f(0).}"></span></dd></dl> <p>Dieses Funktional heißt <a href="/wiki/Delta-Distribution" title="Delta-Distribution">Delta-Distribution</a> oder Dirac-Delta. </p><p>Ein anderes Beispiel ist das Funktional </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{u}\colon L_{2}(-1,1)\to \mathbb {K} ,\quad f_{u}:=\langle u,\cdot \rangle _{L_{2}(-1,1)},\quad u\in L_{2}(-1,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>:=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>u</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{u}\colon L_{2}(-1,1)\to \mathbb {K} ,\quad f_{u}:=\langle u,\cdot \rangle _{L_{2}(-1,1)},\quad u\in L_{2}(-1,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b2a8a7d2a2838668638e357b5255dda68a59b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:56.597ex; height:3.176ex;" alt="{\displaystyle f_{u}\colon L_{2}(-1,1)\to \mathbb {K} ,\quad f_{u}:=\langle u,\cdot \rangle _{L_{2}(-1,1)},\quad u\in L_{2}(-1,1)}"></span>,</dd></dl> <p>das jeder <a href="/wiki/Lp-Raum" title="Lp-Raum">quadratintegrierbaren Funktion</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\in L_{2}(-1,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\in L_{2}(-1,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f13e71f751660187b61754e09adc53b81c8e727" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.118ex; height:2.843ex;" alt="{\displaystyle w\in L_{2}(-1,1)}"></span> den Wert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{u}(w)=\langle u,w\rangle _{L_{2}(-1,1)}\in \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>w</mi> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{u}(w)=\langle u,w\rangle _{L_{2}(-1,1)}\in \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68d6a2ecf11e92a36d78e033b9832b4fafc1d104" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:26.212ex; height:3.176ex;" alt="{\displaystyle f_{u}(w)=\langle u,w\rangle _{L_{2}(-1,1)}\in \mathbb {K} }"></span> zuordnet. </p> <div class="mw-heading mw-heading3"><h3 id="Matrixfunktionen">Matrixfunktionen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=24" title="Abschnitt bearbeiten: Matrixfunktionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=24" title="Quellcode des Abschnitts bearbeiten: Matrixfunktionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Matrixfunktion" title="Matrixfunktion">Matrixfunktion</a></i></div> <p>Matrixfunktionen sind Funktionen, welche als Funktionsargument eine <a href="/wiki/Matrix_(Mathematik)" title="Matrix (Mathematik)">Matrix</a> besitzen, das heißt für eine Matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> kann <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/838e63aefd54118a54c25fd9f0ef22528a69e36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.53ex; height:2.843ex;" alt="{\displaystyle f(M)}"></span> gebildet werden. In der Regel beschränkt man solche Funktionen auf <a href="/wiki/Quadratische_Matrix" class="mw-redirect" title="Quadratische Matrix">quadratische Matrizen</a>. Im einfachen Fall ist der Funktionswert ein Skalar, dieser Fall ist oft selbsterklärend. Häufig meint man aber mit Matrixfunktion explizit den Fall, wenn der Funktionswert wieder eine Matrix ist, das heißt </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {C} ^{n\times n}\to \mathbb {C} ^{n\times n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {C} ^{n\times n}\to \mathbb {C} ^{n\times n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0f3da8a723603766a44c8850206a9a40cdb5f27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.799ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {C} ^{n\times n}\to \mathbb {C} ^{n\times n}.}"></span></dd></dl> <p>Klassische Funktionen können auf solche Matrixfunktionen verallgemeinert werden. Es gibt dafür unterschiedliche Ansätze, solche Funktionen zu definieren. In der Mathematik spielen aber nur die Ansätze eine wesentliche Rolle, bei denen die Regeln der <a href="/wiki/Algebra_%C3%BCber_einem_K%C3%B6rper" title="Algebra über einem Körper">Matrizen-Algebra</a> weiterhin gelten. Dies schließt insbesondere den Fall aus, wo man die Funktion auf jedes Element der Matrix anwendet, da dies die Regeln der Matrix-Algebra bricht.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Verwendung">Verwendung</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=25" title="Abschnitt bearbeiten: Verwendung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=25" title="Quellcode des Abschnitts bearbeiten: Verwendung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ein fundamentales Konzept in der Mathematik stellen <a href="/wiki/Mathematische_Struktur" title="Mathematische Struktur">Strukturen</a> dar, die dadurch entstehen, dass Mengen in Verbindung mit dazugehörigen Abbildungen gesehen werden. Derartige Strukturen bilden die Grundlage praktisch aller mathematischen Disziplinen, sobald sie über elementare Mengenlehre, kombinatorische Probleme oder grundlegende mathematisch-philosophische Fragestellungen hinausgehen. </p><p>Mengen können beispielsweise durch sogenannte <a href="/wiki/Verkn%C3%BCpfung_(Mathematik)" title="Verknüpfung (Mathematik)">Verknüpfungen</a> strukturiert werden. Der wichtigste Spezialfall ist die innere <a href="/wiki/Zweistellige_Verkn%C3%BCpfung" title="Zweistellige Verknüpfung">zweistellige Verknüpfung</a>, dabei handelt es sich um eine Abbildung der Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\times A\rightarrow A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\times A\rightarrow A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09f422b92ecaac92613e8eb863151e2c6d6ad7bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.996ex; height:2.509ex;" alt="{\displaystyle f\colon A\times A\rightarrow A}"></span>. Beispiele für innere zweistellige Verknüpfungen sind Rechenoperationen wie die Addition oder Multiplikation auf Zahlenmengen. Dementsprechend wird das Bild <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fded5aa3d04d29cbb61aaea05a8f8287129ed844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.491ex; height:2.843ex;" alt="{\displaystyle *(x,y)}"></span> eines Paares <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> unter einer Verknüpfung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9972f426d9e07855984f73ee195a21dbc21755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.079ex; margin-bottom: -0.25ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle *}"></span> üblicherweise in der Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x*y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x*y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa45646c7b928fea01251f5fd07ed3e5838900a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.68ex; height:2.009ex;" alt="{\displaystyle x*y}"></span> geschrieben. </p><p>Weitere wichtige Beispiele solcher Strukturen sind <a href="/wiki/Algebraische_Struktur" title="Algebraische Struktur">algebraische</a>, <a href="/wiki/Geometrie" title="Geometrie">geometrische</a> und <a href="/wiki/Topologie_(Mathematik)" title="Topologie (Mathematik)">topologische</a> Strukturen, wie beispielsweise <a href="/wiki/Skalarprodukt" title="Skalarprodukt">Skalarprodukte</a>, <a href="/wiki/Norm_(Mathematik)" title="Norm (Mathematik)">Normen</a> und <a href="/wiki/Metrik_(Mathematik)" class="mw-redirect" title="Metrik (Mathematik)">Metriken</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Verallgemeinerungen">Verallgemeinerungen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=26" title="Abschnitt bearbeiten: Verallgemeinerungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=26" title="Quellcode des Abschnitts bearbeiten: Verallgemeinerungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Multifunktionen">Multifunktionen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=27" title="Abschnitt bearbeiten: Multifunktionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=27" title="Quellcode des Abschnitts bearbeiten: Multifunktionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine <a href="/wiki/Korrespondenz_(Mathematik)" title="Korrespondenz (Mathematik)">Multifunktion</a> (auch mehrwertige Funktion oder Korrespondenz genannt) ist eine linkstotale Relation. Das heißt, die Elemente der Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> können auf mehrere Elemente der Zielmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> abgebildet werden. Man schreibt auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon X\multimap Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>X</mi> <mo>&#x22B8;<!-- ⊸ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon X\multimap Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d921e13601ddf5df45642f4bde576139a46b5f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.938ex; height:2.509ex;" alt="{\displaystyle f\colon X\multimap Y}"></span>. </p><p>Wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> eine Menge ist, dann kann man jede Multifunktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon X\multimap Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>X</mi> <mo>&#x22B8;<!-- ⊸ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon X\multimap Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d921e13601ddf5df45642f4bde576139a46b5f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.938ex; height:2.509ex;" alt="{\displaystyle f\colon X\multimap Y}"></span> auch als eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc7d361fdfc25e18a91c1ad098cbafed86a8e06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.475ex; height:2.343ex;" alt="{\displaystyle \kappa _{f}}"></span> darstellen, die in die Potenzmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> geht:<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f}\colon X\rightarrow {\mathcal {P}}(Y),\ x\mapsto \{y\in {Y}\mid (x,y)\in G_{f}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f}\colon X\rightarrow {\mathcal {P}}(Y),\ x\mapsto \{y\in {Y}\mid (x,y)\in G_{f}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eee8dff507b290dbb974691f6bf662d0c7a4168e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.112ex; height:3.009ex;" alt="{\displaystyle \kappa _{f}\colon X\rightarrow {\mathcal {P}}(Y),\ x\mapsto \{y\in {Y}\mid (x,y)\in G_{f}\}}"></span></dd></dl> <p>Im Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/213f9e0bf2b88042d7d90cf9e765ae8201743d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.852ex; height:2.176ex;" alt="{\displaystyle Y=X}"></span> stellt eine mehrwertige Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> eine <a href="/wiki/Transitionsrelation" title="Transitionsrelation">Transitionsrelation</a> dar, und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc7d361fdfc25e18a91c1ad098cbafed86a8e06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.475ex; height:2.343ex;" alt="{\displaystyle \kappa _{f}}"></span> ist die zugehörige Transitionsfunktion. </p><p>Die Verkettung von Multifunktionen lässt sich genauso definieren wie für (eindeutige) Funktionen, mengentheoretisch ist dies äquivalent einer <a href="/wiki/Relation_(Mathematik)#Verkettung_von_Relationen" title="Relation (Mathematik)">Verkettung zweier zweistelliger Relationen</a>.<sup id="cite_ref-HKönig_S21_14-0" class="reference"><a href="#cite_note-HKönig_S21-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Umkehrungen_von_Funktionen_als_Multifunktionen">Umkehrungen von Funktionen als Multifunktionen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=28" title="Abschnitt bearbeiten: Umkehrungen von Funktionen als Multifunktionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=28" title="Quellcode des Abschnitts bearbeiten: Umkehrungen von Funktionen als Multifunktionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ein Beispiel für Multifunktionen sind die Umkehrfunktionen (Umkehrungen) von nicht injektiven Funktionen. Wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon X\rightarrow Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon X\rightarrow Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f986e95e93b70de25a0084daf075cb02c3ccae8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.68ex; height:2.509ex;" alt="{\displaystyle f\colon X\rightarrow Y}"></span> surjektiv ist, gilt automatisch: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}\colon Y\multimap X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x003A;<!-- : --></mo> <mi>Y</mi> <mo>&#x22B8;<!-- ⊸ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}\colon Y\multimap X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97c4347cf77505dd53fcf8a14f6fdefed15c0575" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.312ex; height:3.009ex;" alt="{\displaystyle f^{-1}\colon Y\multimap X}"></span> ist eine Multifunktion. Die Darstellung der Umkehrfunktion in die Potenzmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> liefert mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f^{-1}}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f^{-1}}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0812c230b7f80a1270c14b5cc3ea0c57c6327bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.339ex; height:3.343ex;" alt="{\displaystyle \kappa _{f^{-1}}(y)}"></span> die Fasern von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> (<a href="#Bild_und_Urbild">siehe oben</a>). </p><p>Die Verkettung einer Funktion mit ihrer (im Allgemeinen nicht eindeutigen) Umkehrung in der Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c92786c86f48b86694c9ddf911857e56164e323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.127ex; height:3.009ex;" alt="{\displaystyle f^{-1}\circ f}"></span> ist eine Äquivalenzrelation,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> die durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> <i>induzierte Äquivalenzrelation.</i> Zwei Elemente aus dem Definitionsbereich sind genau dann äquivalent, wenn sie denselben Funktionswert haben.<sup id="cite_ref-HKönig_S21_14-1" class="reference"><a href="#cite_note-HKönig_S21-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Partielle_Funktionen">Partielle Funktionen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=29" title="Abschnitt bearbeiten: Partielle Funktionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=29" title="Quellcode des Abschnitts bearbeiten: Partielle Funktionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Types_of_relation_ti.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Types_of_relation_ti.svg/300px-Types_of_relation_ti.svg.png" decoding="async" width="300" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Types_of_relation_ti.svg/450px-Types_of_relation_ti.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Types_of_relation_ti.svg/600px-Types_of_relation_ti.svg.png 2x" data-file-width="512" data-file-height="310" /></a><figcaption>Die partielle Funktion und ihre Untermenge, die Funktion, als spezielle <a href="/wiki/Relation_(Mathematik)" title="Relation (Mathematik)">Relationen</a></figcaption></figure> <p>Wohl zu unterscheiden vom Begriff der Funktion ist der Begriff der <a href="/wiki/Partielle_Funktion" title="Partielle Funktion">partiellen Funktion</a>, man spricht auch von einer „nicht überall definierten Funktion“ oder „<a href="/wiki/Relation_(Mathematik)#Eigenschaften_zweistelliger_Relationen" title="Relation (Mathematik)">funktionalen Relation</a>“. Hier darf es Elemente der Quellmenge (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Werte) geben, denen kein Wert der Zielmenge (kein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Wert) zugeordnet ist. Hier ist dann die Nennung der Quellmenge in der obigen Tripelschreibweise tatsächlich notwendig. Allerdings darf es auch dort für einen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-Wert nicht mehr als einen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-Wert geben. Um partielle Funktionen von Funktionen zu unterscheiden, bezeichnet man Letztere auch als totale oder überall definierte Funktionen. </p><p>Die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [D\rightharpoonup Z]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>D</mi> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> <mi>Z</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [D\rightharpoonup Z]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad0c804a555ba1b55160981ae0e4384eaa84c3c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.512ex; height:2.843ex;" alt="{\displaystyle [D\rightharpoonup Z]}"></span><sup id="cite_ref-noekla_11-1" class="reference"><a href="#cite_note-noekla-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> der partiellen Abbildungen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> ist die Vereinigung der totalen Abbildungen von Teilmengen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [D\rightharpoonup Z]=\bigcup \limits _{X\subseteq {D}}[X\to Z]=\bigcup \limits _{X\subseteq {D}}Z^{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>D</mi> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> <mi>Z</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo movablelimits="false">&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </mrow> </munder> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo movablelimits="false">&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </mrow> </munder> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [D\rightharpoonup Z]=\bigcup \limits _{X\subseteq {D}}[X\to Z]=\bigcup \limits _{X\subseteq {D}}Z^{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49acf8342679017f23cf89d4e5e218788a8d7154" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:35.084ex; height:5.843ex;" alt="{\displaystyle [D\rightharpoonup Z]=\bigcup \limits _{X\subseteq {D}}[X\to Z]=\bigcup \limits _{X\subseteq {D}}Z^{X}}"></span></dd></dl> <p>Sind die Mengen endlich, so gilt für ihre Kardinalzahlen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|[D\rightharpoonup Z]\right|=(|Z|+1)^{|D|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">[</mo> <mi>D</mi> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> <mi>Z</mi> <mo stretchy="false">]</mo> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|[D\rightharpoonup Z]\right|=(|Z|+1)^{|D|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e63327c2efce22d696c88445af6e9d7183f615c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.198ex; height:3.343ex;" alt="{\displaystyle \left|[D\rightharpoonup Z]\right|=(|Z|+1)^{|D|}}"></span>,</dd></dl> <p>schließlich kann man jede partielle Abbildung auf D umkehrbar eindeutig zu einer totalen Abbildung fortsetzen, indem man einen beliebigen festen Funktionswert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> festschreibt, der nicht in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> enthalten ist; und diese Operation stellt eine bijektive Abbildung auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Z\cup \{c\})^{D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>Z</mi> <mo>&#x222A;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>c</mi> <mo fence="false" stretchy="false">}</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Z\cup \{c\})^{D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e2e4ed921e9a9d7f82eee4cc85ee1f301b6d168" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.997ex; height:3.176ex;" alt="{\displaystyle (Z\cup \{c\})^{D}}"></span> dar. </p><p>Jede partielle Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(G_{f},X,Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mi>X</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(G_{f},X,Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5399be7ac46b7ca49d57e267c5958db5b4affdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.878ex; height:3.009ex;" alt="{\displaystyle f=(G_{f},X,Z)}"></span> ist im Wesentlichen gleich mit der (totalen) Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G_{f},Db(f),Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mi>D</mi> <mi>b</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G_{f},Db(f),Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75381defe3c70e34b95a5ba3c59cc11b547e16bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.53ex; height:3.009ex;" alt="{\displaystyle (G_{f},Db(f),Z)}"></span> mit der Urbildmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Db(f):=\{x\in {X}\mid \exists y\in Z\colon (x,y)\in G_{f}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>b</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Z</mi> <mo>&#x003A;<!-- : --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Db(f):=\{x\in {X}\mid \exists y\in Z\colon (x,y)\in G_{f}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5526318c83cf3daecbbce9d69bf3bdbbf1bdbfe0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.303ex; height:3.009ex;" alt="{\displaystyle Db(f):=\{x\in {X}\mid \exists y\in Z\colon (x,y)\in G_{f}\}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Funktionen_mit_Werten_in_einer_echten_Klasse">Funktionen mit Werten in einer echten Klasse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=30" title="Abschnitt bearbeiten: Funktionen mit Werten in einer echten Klasse" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=30" title="Quellcode des Abschnitts bearbeiten: Funktionen mit Werten in einer echten Klasse"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Häufig liegen die Werte einer Funktion nicht in einer Zielmenge, sondern lediglich in einer <a href="/wiki/Echte_Klasse" class="mw-redirect" title="Echte Klasse">echten Klasse</a>, beispielsweise sind <a href="/wiki/Mengenfolge" title="Mengenfolge">Mengenfolgen</a> „Funktionen“ mit Definitionsmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span> und Werten in der <a href="/wiki/Allklasse" title="Allklasse">Allklasse</a>. Um die mengentheoretischen Probleme, die sich daraus ergeben, zu vermeiden, betrachtet man nur noch den Graph der entsprechenden Funktion, genauer: Ein <i>funktionsartiger Graph</i> ist eine <i>Menge</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> von <a href="/wiki/Geordnetes_Paar" title="Geordnetes Paar">Paaren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span>, sodass keine zwei Paare im ersten Eintrag übereinstimmen:<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x,y_{1},y_{2}\colon (x,y_{1}),(x,y_{2})\in G\implies y_{1}=y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x,y_{1},y_{2}\colon (x,y_{1}),(x,y_{2})\in G\implies y_{1}=y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c15c5877d0c7833142903433a645d005240955e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.417ex; height:2.843ex;" alt="{\displaystyle \forall x,y_{1},y_{2}\colon (x,y_{1}),(x,y_{2})\in G\implies y_{1}=y_{2}}"></span></dd></dl> <p>Definitions- und Wertemenge sind tatsächlich Mengen, aber es ist nicht nötig, sich von vornherein auf eine Ziel<i>menge</i> festzulegen, solange die Funktionen im Wesentlichen gleich sind. </p><p>Bei partiellen Funktionen gilt Gleiches für den Ziel- <i>und</i> Quellbereich. Beide können einzeln oder zusammen echte Klassen sein; mengentheoretische Probleme entstehen nicht, solange der Graph eine Menge bleibt. </p> <div class="mw-heading mw-heading2"><h2 id="Symbolik">Symbolik</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=31" title="Abschnitt bearbeiten: Symbolik" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=31" title="Quellcode des Abschnitts bearbeiten: Symbolik"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Für Funktionen gibt es etliche symbolische Schreibweisen, die jeweils einige spezielle Eigenschaften der Funktion ausdrücken. Im Folgenden werden einige wichtige genannt. </p> <table class="wikitable"> <tbody><tr class="hintergrundfarbe6"> <th>Symbol </th> <th>Erklärung </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\to B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\to B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dec1893560fabff9fa9c17b83b71f7f97996119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\to B}"></span></td> <td>Funktion von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon a\mapsto b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon a\mapsto b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca204dfc3b1a444074d2cb30fa89cc3455d9102f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.154ex; height:2.509ex;" alt="{\displaystyle f\colon a\mapsto b}"></span><br /> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed79484c7845e9abd1b1e8a32959e7e2a9d25fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.414ex; height:2.843ex;" alt="{\displaystyle f(a)=b}"></span> </p> </td> <td>Funktion, die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> abbildet; statt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> kann auch ein Term o.&#160;Ä. stehen </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\in f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\in f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee8f33a5f38ac7e0c68be7d9f263b8a1a33c54ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.19ex; height:2.843ex;" alt="{\displaystyle (a,b)\in f}"></span><br /> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\in G_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\in G_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d696a5bfb1f79df4eb31a5ece4bd7ca31566b363" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.874ex; height:3.009ex;" alt="{\displaystyle (a,b)\in G_{f}}"></span> </p> </td> <td>Funktion, die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> abbildet; statt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> kann auch eine Formel o.&#160;Ä. stehen (mengentheoretische Schreibweise) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon a\mapsto f(a):=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon a\mapsto f(a):=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc09091433661198d4f6ec6604328829e9c88864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.217ex; height:2.843ex;" alt="{\displaystyle f\colon a\mapsto f(a):=b}"></span></td> <td>Funktion, die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> abbildet, die die elementweise Zuordnung mit Beschreibung der Funktionssymbolik (statt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/368cb4b81ba5754d7a354a4ce49c2f1084bdaace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.318ex; height:2.843ex;" alt="{\displaystyle f(a)}"></span> stehen oft Dinge wie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{{-}1},\;{\overline {a}},\;a\cdot c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{{-}1},\;{\overline {a}},\;a\cdot c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4198c4d1f31305a9f078a011912a8f38972704" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.181ex; height:3.009ex;" alt="{\displaystyle a^{{-}1},\;{\overline {a}},\;a\cdot c}"></span> u.&#160;Ä.) und der Formel o.&#160;Ä. (an der Stelle von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>) zur Berechnung des Bildes angibt </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\to B,\,a\mapsto f(a):=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\to B,\,a\mapsto f(a):=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42891d2b430f4d5077f6f35c66cffc62a7730a97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.759ex; height:2.843ex;" alt="{\displaystyle f\colon A\to B,\,a\mapsto f(a):=b}"></span></td> <td>Ausführlichste Notation, die alle beteiligten Mengen und die elementweise Zuordnung mit Beschreibung der Funktionssymbolik und der Formel o.&#160;Ä. zur Berechnung des Bildes angibt </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\twoheadrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x21A0;<!-- ↠ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\twoheadrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4464cc69dafcbc42e295746adc690685d118afe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\twoheadrightarrow B}"></span></td> <td><a href="/wiki/Surjektivit%C3%A4t" class="mw-redirect" title="Surjektivität">surjektive</a> Funktion <i>(Surjektion)</i> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\rightarrowtail B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x21A3;<!-- ↣ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\rightarrowtail B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb8dff8b68095224bc9c0d420f449b008361db89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.692ex; height:2.509ex;" alt="{\displaystyle f\colon A\rightarrowtail B}"></span></td> <td><a href="/wiki/Injektivit%C3%A4t" class="mw-redirect" title="Injektivität">injektive</a> Funktion <i>(Injektion)</i> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\leftrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\leftrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aeb2cf139de69e366f9b2fac5a2b863e38577df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\leftrightarrow B}"></span><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\rightleftarrows B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x21C4;<!-- ⇄ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\rightleftarrows B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f90785f4d0b02b241ff8236d8fe615f3e2b22be9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\rightleftarrows B}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\;{\!\;\twoheadrightarrow \;\!\!\!\!\!\!\!\!\!\!\;\rightarrowtail }\;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21A0;<!-- ↠ --></mo> <mspace width="thickmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21A3;<!-- ↣ --></mo> </mrow> <mspace width="thickmathspace" /> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\;{\!\;\twoheadrightarrow \;\!\!\!\!\!\!\!\!\!\!\;\rightarrowtail }\;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ba090d7e7fc4937b4ddb13929dccbe26ac0ab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.693ex; height:2.509ex;" alt="{\displaystyle f\colon A\;{\!\;\twoheadrightarrow \;\!\!\!\!\!\!\!\!\!\!\;\rightarrowtail }\;B}"></span> </p> </td> <td><a href="/wiki/Bijektivit%C3%A4t" class="mw-redirect" title="Bijektivität">bijektive</a> Funktion (<i>Bijektion</i>) von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\hookrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x21AA;<!-- ↪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\hookrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18aeca0433bb531379c0d4a27b8efbb1a371518c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.726ex; height:2.509ex;" alt="{\displaystyle f\colon A\hookrightarrow B}"></span></td> <td><a href="/wiki/Inklusionsabbildung" title="Inklusionsabbildung">Inklusionsabbildung</a>, natürliche Inklusion, natürliche Einbettung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span><br />(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> ist Untermenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, und die Funktion bildet jedes Element von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> auf sich ab) </td></tr> <tr> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\operatorname {id} _{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\operatorname {id} _{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cd195850367f4b303adaf9169a1971b111f9ea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.781ex; height:2.509ex;" alt="{\displaystyle f=\operatorname {id} _{A}}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\to A,\,a\mapsto a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>A</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\to A,\,a\mapsto a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/268d9568abee0e3562b2d5ddd517fa31422e4483" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.908ex; height:2.509ex;" alt="{\displaystyle f\colon A\to A,\,a\mapsto a}"></span> </p> </td> <td>Identität, <a href="/wiki/Identische_Abbildung" title="Identische Abbildung">identische Abbildung</a> auf A oder von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> (die Funktion bildet jedes Element auf sich ab) </td></tr> <tr> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\;{\stackrel {\cong }{\to }}\;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2245;<!-- ≅ --></mo> </mrow> </mover> </mrow> </mrow> <mspace width="thickmathspace" /> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\;{\stackrel {\cong }{\to }}\;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4079de2e8a8e9c9820bc6d7eb2b5236a97bea88f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:3.676ex;" alt="{\displaystyle f\colon A\;{\stackrel {\cong }{\to }}\;B}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\cong B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\cong B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf4c9c52da01aee387bafcbe45d03172fd61e173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.918ex; height:2.509ex;" alt="{\displaystyle f\colon A\cong B}"></span> </p> </td> <td><a href="/wiki/Isomorphismus" title="Isomorphismus">Isomorphismus</a> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\rightharpoonup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\rightharpoonup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4debbfa8e1ea4d423b63e34d2181449868d4bf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\rightharpoonup B}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\rightsquigarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo stretchy="false">&#x21DD;<!-- ⇝ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\rightsquigarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4aa4accb5c32cabb753dcc6f74c62faa2b2c53a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.434ex; height:2.509ex;" alt="{\displaystyle f\colon A\rightsquigarrow B}"></span></td> <td><i>partielle Funktion</i> (s.&#160;o.) von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon A\multimap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mi>A</mi> <mo>&#x22B8;<!-- ⊸ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon A\multimap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87c2fa6fad85a8a8ec46d80bac3b429101a3d089" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.692ex; height:2.509ex;" alt="{\displaystyle f\colon A\multimap B}"></span></td> <td><i>mehrwertige Funktion, Multifunktion, <a href="/wiki/Korrespondenz_(Mathematik)" title="Korrespondenz (Mathematik)">Korrespondenz</a></i> (s.&#160;o.) von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [A\to B]=B^{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [A\to B]=B^{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd84487e3ecce4319bfbc282ef2adb22713f616a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.742ex; height:3.176ex;" alt="{\displaystyle [A\to B]=B^{A}}"></span><br />(bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [A\rightharpoonup B]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>A</mi> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> <mi>B</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [A\rightharpoonup B]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cf08908d7847e96631a3b47862b405584be38fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle [A\rightharpoonup B]}"></span> …)</td> <td>Menge der Funktionen (bzw. partiellen Funktionen), … von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span><sup id="cite_ref-noekla_11-2" class="reference"><a href="#cite_note-noekla-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <p>Die Symbole können auch, wo sinnvoll, miteinander kombiniert werden. </p> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=32" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=32" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Heinz-Dieter_Ebbinghaus" title="Heinz-Dieter Ebbinghaus">Heinz-Dieter Ebbinghaus</a>: <i>Einführung in die Mengenlehre.</i> 4. Auflage. Spektrum, Akademischer Verlag, Heidelberg u.&#160;a. 2003, <a href="/wiki/Spezial:ISBN-Suche/3827414113" class="internal mw-magiclink-isbn">ISBN 3-8274-1411-3</a>.</li> <li><a href="/wiki/Paul_R._Halmos" class="mw-redirect" title="Paul R. Halmos">Paul R. Halmos</a>: <i>Naive Mengenlehre</i> (= <i>Moderne Mathematik in elementarer Darstellung.</i> Bd. 6). Übersetzt von Manfred Armbrust und Fritz Ostermann. 5. Auflage. Vandenhoeck &amp; Ruprecht, Göttingen 1994, <a href="/wiki/Spezial:ISBN-Suche/3525405278" class="internal mw-magiclink-isbn">ISBN 3-525-40527-8</a>.</li> <li><a href="/wiki/Arnold_Oberschelp" title="Arnold Oberschelp">Arnold Oberschelp</a>: <i>Allgemeine Mengenlehre.</i> BI-Wissenschafts-Verlag, Mannheim u.&#160;a. 1994, <a href="/wiki/Spezial:ISBN-Suche/3411172711" class="internal mw-magiclink-isbn">ISBN 3-411-17271-1</a>.</li> <li>Adolf P. Youschkevitch: <i>The Concept of Function up to the Middle of the 19th Century.</i> In: <i>Archive of the History of Exact Sciences.</i> 16 Springer Verlag, Berlin 1976.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=33" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=33" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wikibooks"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></div><b><a href="https://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_Abbildung,_Funktion" class="extiw" title="b:Mathe für Nicht-Freaks: Abbildung, Funktion">Wikibooks: Mathe für Nicht-Freaks: Abbildung, Funktion</a></b>&#160;– Lern- und Lehrmaterialien</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><span class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wiktionary"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/16px-Wiktfavicon_en.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/24px-Wiktfavicon_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/32px-Wiktfavicon_en.svg.png 2x" data-file-width="16" data-file-height="16" /></span></span></span><b><a href="https://de.wiktionary.org/wiki/Funktion" class="extiw" title="wikt:Funktion">Wiktionary: Funktion</a></b>&#160;– Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noresize noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div><b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Functions_(mathematics)?uselang=de"><span lang="en">Commons</span>: Funktionen</a></span></b>&#160;– Sammlung von Bildern, Videos und Audiodateien</div> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise_und_Anmerkungen">Einzelnachweise und Anmerkungen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit&amp;section=34" title="Abschnitt bearbeiten: Einzelnachweise und Anmerkungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit&amp;section=34" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise und Anmerkungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">M. Kronfellner: <i>Historische Aspekte im Mathematikunterricht.</i> Verlag Hölder-Pichler-Tempsky, Wien 1998, S.&#160;67.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Adolf P. Youschkevitch: <i>The Concept of Function up to the Middle of the 19th Century.</i> In: <i>Archive of the History of Exakt Sciences.</i> 16, Springer Verlag, Berlin 1976, S.&#160;52.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">D. Rüthing: <i>Einige historische Stationen zum Funktionsbegriff.</i> In: <i>Der Mathematikunterricht.</i> Heft 6/1986, Friedrich Verlag Velber, S.&#160;5–6.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">H.-J. Vollrath: <i>Algebra in der Sekundarstufe.</i> BI Wissenschaftsverlag, Mannheim 1994, S. &#160;118.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Rüthing, S.&#160;6–12.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text">Arnold Oberschelp: <i>Allgemeine Mengenlehre.</i> 1994.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text"><i>Klassenfunktion</i> genannt, siehe Claudius Röhl: <a rel="nofollow" class="external text" href="https://ul.qucosa.de/api/qucosa%3A16622/attachment/ATT-0/"><i>Das Auswahlaxiom.</i></a> Diplomarbeit Univ. Leipzig, Fakultät für Mathematik, 6.&#160;Oktober 2016, S.&#160;18.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Funktionen, deren Zielmengen sich nur in diesen (wertlosen) Nichtbild-Elementen unterscheiden, werden gelegentlich als gleich angesehen, insbesondere dann, wenn keine von ihnen <a href="#Injektivität,_Surjektivität,_Bijektivität">surjektiv</a> ist. Also: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;f_{1}\colon {\begin{cases}D_{1}\to Z_{1}\\x\mapsto y\end{cases}}\;=\;f_{2}\colon \,{\begin{cases}D_{2}\to Z_{2}\\x\mapsto y\end{cases}}\qquad :\Longleftrightarrow \\&amp;(D_{1}=D_{2}=:D)\land {\bigl (}\forall x\in D\colon f_{1}(x)=f_{2}(x){\bigr )}\land {\bigl (}Z_{1}\supset f_{1}(D)=f_{2}(D)\subset Z_{2}{\bigr )}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>y</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>y</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mspace width="2em" /> <mo>:&#x27FA;<!-- ⟺ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=:</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> <mo>&#x003A;<!-- : --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2283;<!-- ⊃ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;f_{1}\colon {\begin{cases}D_{1}\to Z_{1}\\x\mapsto y\end{cases}}\;=\;f_{2}\colon \,{\begin{cases}D_{2}\to Z_{2}\\x\mapsto y\end{cases}}\qquad :\Longleftrightarrow \\&amp;(D_{1}=D_{2}=:D)\land {\bigl (}\forall x\in D\colon f_{1}(x)=f_{2}(x){\bigr )}\land {\bigl (}Z_{1}\supset f_{1}(D)=f_{2}(D)\subset Z_{2}{\bigr )}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35e58a5667c9033b60d27ace30fc7589a4621812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:75.328ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;f_{1}\colon {\begin{cases}D_{1}\to Z_{1}\\x\mapsto y\end{cases}}\;=\;f_{2}\colon \,{\begin{cases}D_{2}\to Z_{2}\\x\mapsto y\end{cases}}\qquad :\Longleftrightarrow \\&amp;(D_{1}=D_{2}=:D)\land {\bigl (}\forall x\in D\colon f_{1}(x)=f_{2}(x){\bigr )}\land {\bigl (}Z_{1}\supset f_{1}(D)=f_{2}(D)\subset Z_{2}{\bigr )}\end{aligned}}}"></span></dd></dl> </span></li> <li id="cite_note-Halmos-9"><span class="mw-cite-backlink"><a href="#cite_ref-Halmos_9-0">↑</a></span> <span class="reference-text">Paul R. Halmos&#58; <cite style="font-style:italic">Naive Mengenlehre</cite>. 1994, Kapitel 8, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>43</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Funktion+%28Mathematik%29&amp;rft.atitle=Kapitel+8&amp;rft.au=Paul+R.+Halmos&amp;rft.btitle=Naive+Mengenlehre&amp;rft.date=1994&amp;rft.genre=bookitem&amp;rft.pages=43" style="display:none">&#160;</span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Seltener in Anlehnung an die Mengenschreibweise äquivalent <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f(x)\mid x\in N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f(x)\mid x\in N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/338377987794b4e50f4cba117719bc4bb5c229c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.398ex; height:2.843ex;" alt="{\displaystyle (f(x)\mid x\in N)}"></span>.</span> </li> <li id="cite_note-noekla-11"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-noekla_11-0">a</a></sup> <sup><a href="#cite_ref-noekla_11-1">b</a></sup> <sup><a href="#cite_ref-noekla_11-2">c</a></sup></span> <span class="reference-text">Teilweise auch ohne die eckigen Klammern notiert.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text">Nicholas Higham&#58; <cite style="font-style:italic">Functions of Matrices: Theory and Computation</cite>. Hrsg.: SIAM, Philadelphia (=&#160;<cite style="font-style:italic">Other Titles in Applied Mathematics</cite>). 2008, <a href="/wiki/Spezial:ISBN-Suche/9780898716467" class="internal mw-magiclink-isbn">ISBN 978-0-89871-646-7</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Funktion+%28Mathematik%29&amp;rft.au=Nicholas+Higham&amp;rft.btitle=Functions+of+Matrices%3A+Theory+and+Computation&amp;rft.date=2008&amp;rft.genre=book&amp;rft.isbn=9780898716467&amp;rft.series=Other+Titles+in+Applied+Mathematics" style="display:none">&#160;</span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text">Oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto \{y\in {Y}\mid (x,y)\in f\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto \{y\in {Y}\mid (x,y)\in f\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbe38fc87733daa94f751adc1340a5fb466e1c19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.423ex; height:2.843ex;" alt="{\displaystyle x\mapsto \{y\in {Y}\mid (x,y)\in f\}}"></span> entsprechend der vereinfachten Funktionsdefinition mit Funktion&#160;= Graph. Alternative Bezeichnungsweisen: <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed80a2011a3912b028ba32a52dfa57165455f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Phi }"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6cb99679a4b79cb5ca3c242811bd91220c91f2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.009ex;" alt="{\displaystyle {\tilde {f}}}"></span> für die Korrespondenz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc7d361fdfc25e18a91c1ad098cbafed86a8e06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.475ex; height:2.343ex;" alt="{\displaystyle \kappa _{f}}"></span> zur Multifunktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, im Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/213f9e0bf2b88042d7d90cf9e765ae8201743d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.852ex; height:2.176ex;" alt="{\displaystyle Y=X}"></span> (<a href="/wiki/Transitionsrelation" title="Transitionsrelation">Transitionsfunktion</a>) auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wp (Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2118;<!-- ℘ --></mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wp (Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f256cd99f93dee663da2c3cc164f7b033f168ef6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.061ex; height:2.843ex;" alt="{\displaystyle \wp (Y)}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {(}}Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="fraktur" stretchy="false">(</mo> </mrow> </mrow> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {(}}Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8b33c19be3763e089a83a531378e0d16d9a9804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.583ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {(}}Y)}"></span> für die Potenzmenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b078ac221848d7425500f94408b89c9de2251a7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.286ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(Y)}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span></li></ul> </span></li> <li id="cite_note-HKönig_S21-14"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-HKönig_S21_14-0">a</a></sup> <sup><a href="#cite_ref-HKönig_S21_14-1">b</a></sup></span> <span class="reference-text">H. König&#58; <cite style="font-style:italic">Entwurf und Strukturtheorie von Steuerungen für Fertigungseinrichtungen</cite> (=&#160;<cite style="font-style:italic">ISW Forschung und Praxis</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>13</span>). Springer-Verlag, Berlin/Heidelberg 1976, <a href="/wiki/Spezial:ISBN-Suche/3540076697" class="internal mw-magiclink-isbn">ISBN 3-540-07669-7</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>15–17</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-642-81027-5_1">10.1007/978-3-642-81027-5_1</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Funktion+%28Mathematik%29&amp;rft.au=H.+K%C3%B6nig&amp;rft.btitle=Entwurf+und+Strukturtheorie+von+Steuerungen+f%C3%BCr+Fertigungseinrichtungen&amp;rft.date=1976&amp;rft.doi=10.1007%2F978-3-642-81027-5_1&amp;rft.genre=book&amp;rft.isbn=3540076697&amp;rft.pages=15-17&amp;rft.place=Berlin%2FHeidelberg&amp;rft.pub=Springer-Verlag&amp;rft.series=ISW+Forschung+und+Praxis" style="display:none">&#160;</span> Hier: <a rel="nofollow" class="external text" href="https://books.google.de/books?hl=de&amp;id=LXigBgAAQBAJ&amp;q=%22sind%20dann%20gleichm%C3%A4chtig%22#v=onepage&amp;f=false"><i>Seite 21 f.</i></a></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text">Wie immer für zweistellige Relationen; wir fassen die Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> als zweistellige Relation auf, erst recht ihre Umkehrung.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Nicolas Bourbaki</a>: <i>Éléments de mathématiques. Théorie des Ensembles.</i> II.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text">Die Notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\leftrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\leftrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/936ab098710910e69e56ec2734dd89063ce21efa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\leftrightarrow B}"></span> wird manchmal abweichend für (beliebige) Relationen gebraucht.</span> </li> </ol></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Funktion_(Mathematik)&amp;oldid=250228594">https://de.wikipedia.org/w/index.php?title=Funktion_(Mathematik)&amp;oldid=250228594</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Mathematische_Funktion" title="Kategorie:Mathematische Funktion">Mathematische Funktion</a></li><li><a href="/wiki/Kategorie:Mengenlehre" title="Kategorie:Mengenlehre">Mengenlehre</a></li><li><a href="/wiki/Kategorie:Mathematischer_Grundbegriff" title="Kategorie:Mathematischer Grundbegriff">Mathematischer Grundbegriff</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Funktion+%28Mathematik%29" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Funktion+%28Mathematik%29" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Funktion_(Mathematik)" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Funktion_(Mathematik)" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Funktion_(Mathematik)"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Funktion_(Mathematik)&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_de.wikipedia.org&amp;uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Funktion_(Mathematik)" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Funktion_(Mathematik)" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Funktion_(Mathematik)&amp;oldid=250228594" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Funktion_(Mathematik)&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Funktion_%28Mathematik%29&amp;id=250228594&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FFunktion_%28Mathematik%29"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FFunktion_%28Mathematik%29"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/​exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Funktion_%28Mathematik%29&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Funktion_(Mathematik)&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Functions_(mathematics)" hreflang="en"><span>Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_Abbildung,_Funktion" hreflang="de"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11348" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Funksie" title="Funksie – Afrikaans" lang="af" hreflang="af" data-title="Funksie" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik) – Schweizerdeutsch" lang="gsw" hreflang="gsw" data-title="Funktion (Mathematik)" data-language-autonym="Alemannisch" data-language-local-name="Schweizerdeutsch" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8A%A0%E1%88%B5%E1%88%A8%E1%8A%AB%E1%89%A2" title="አስረካቢ – Amharisch" lang="am" hreflang="am" data-title="አስረካቢ" data-language-autonym="አማርኛ" data-language-local-name="Amharisch" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Funci%C3%B3n_matematica" title="Función matematica – Aragonesisch" lang="an" hreflang="an" data-title="Función matematica" data-language-autonym="Aragonés" data-language-local-name="Aragonesisch" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9" title="دالة – Arabisch" lang="ar" hreflang="ar" data-title="دالة" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9" title="دالة – Marokkanisches Arabisch" lang="ary" hreflang="ary" data-title="دالة" data-language-autonym="الدارجة" data-language-local-name="Marokkanisches Arabisch" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Funci%C3%B3n_matem%C3%A1tica" title="Función matemática – Asturisch" lang="ast" hreflang="ast" data-title="Función matemática" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Funksiya_(riyaziyyat)" title="Funksiya (riyaziyyat) – Aserbaidschanisch" lang="az" hreflang="az" data-title="Funksiya (riyaziyyat)" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Baschkirisch" lang="ba" hreflang="ba" data-title="Функция (математика)" data-language-autonym="Башҡортса" data-language-local-name="Baschkirisch" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Funkc%C4%97j%C4%97" title="Funkcėjė – Samogitisch" lang="sgs" hreflang="sgs" data-title="Funkcėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitisch" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Функцыя (матэматыка) – Belarussisch" lang="be" hreflang="be" data-title="Функцыя (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Функцыя (матэматыка) – Weißrussisch (Taraschkewiza)" lang="be-tarask" hreflang="be-tarask" data-title="Функцыя (матэматыка)" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Weißrussisch (Taraschkewiza)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Функция – Bulgarisch" lang="bg" hreflang="bg" data-title="Функция" data-language-autonym="Български" data-language-local-name="Bulgarisch" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AB%E0%A4%82%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%A8_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="फंक्शन (गणित) – Bhojpuri" lang="bh" hreflang="bh" data-title="फंक्शन (गणित)" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%95_(%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4)" title="অপেক্ষক (গণিত) – Bengalisch" lang="bn" hreflang="bn" data-title="অপেক্ষক (গণিত)" data-language-autonym="বাংলা" data-language-local-name="Bengalisch" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Bosnisch" lang="bs" hreflang="bs" data-title="Funkcija (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnisch" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3" title="Funció – Katalanisch" lang="ca" hreflang="ca" data-title="Funció" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%D9%86%DA%A9%D8%B4%D9%86_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="فانکشن (ماتماتیک) – Zentralkurdisch" lang="ckb" hreflang="ckb" data-title="فانکشن (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="Zentralkurdisch" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Funkce_(matematika)" title="Funkce (matematika) – Tschechisch" lang="cs" hreflang="cs" data-title="Funkce (matematika)" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функци (математика) – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Функци (математика)" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Ffwythiant" title="Ffwythiant – Walisisch" lang="cy" hreflang="cy" data-title="Ffwythiant" data-language-autonym="Cymraeg" data-language-local-name="Walisisch" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Funktion_(matematik)" title="Funktion (matematik) – Dänisch" lang="da" hreflang="da" data-title="Funktion (matematik)" data-language-autonym="Dansk" data-language-local-name="Dänisch" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7" title="Συνάρτηση – Griechisch" lang="el" hreflang="el" data-title="Συνάρτηση" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – Englisch" lang="en" hreflang="en" data-title="Function (mathematics)" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Funkcio_(matematiko)" title="Funkcio (matematiko) – Esperanto" lang="eo" hreflang="eo" data-title="Funkcio (matematiko)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_(matem%C3%A1tica)" title="Función (matemática) – Spanisch" lang="es" hreflang="es" data-title="Función (matemática)" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Funktsioon_(matemaatika)" title="Funktsioon (matemaatika) – Estnisch" lang="et" hreflang="et" data-title="Funktsioon (matemaatika)" data-language-autonym="Eesti" data-language-local-name="Estnisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Funtzio_(matematika)" title="Funtzio (matematika) – Baskisch" lang="eu" hreflang="eu" data-title="Funtzio (matematika)" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9" title="تابع – Persisch" lang="fa" hreflang="fa" data-title="تابع" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Funktio" title="Funktio – Finnisch" lang="fi" hreflang="fi" data-title="Funktio" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Cakacaka_(fika)" title="Cakacaka (fika) – Fidschi" lang="fj" hreflang="fj" data-title="Cakacaka (fika)" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fidschi" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Funksj%C3%B3n" title="Funksjón – Färöisch" lang="fo" hreflang="fo" data-title="Funksjón" data-language-autonym="Føroyskt" data-language-local-name="Färöisch" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fonction_(math%C3%A9matiques)" title="Fonction (mathématiques) – Französisch" lang="fr" hreflang="fr" data-title="Fonction (mathématiques)" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Funksion" title="Funksion – Nordfriesisch" lang="frr" hreflang="frr" data-title="Funksion" data-language-autonym="Nordfriisk" data-language-local-name="Nordfriesisch" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Feidhm_(matamaitic)" title="Feidhm (matamaitic) – Irisch" lang="ga" hreflang="ga" data-title="Feidhm (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="Irisch" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%87%BD%E6%95%B8" title="函數 – Gan" lang="gan" hreflang="gan" data-title="函數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Fonksyon_(mat%C3%A9matik)" title="Fonksyon (matématik) – Französisch-Guayana Kreolisch" lang="gcr" hreflang="gcr" data-title="Fonksyon (matématik)" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Französisch-Guayana Kreolisch" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n" title="Función – Galicisch" lang="gl" hreflang="gl" data-title="Función" data-language-autonym="Galego" data-language-local-name="Galicisch" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94" title="פונקציה – Hebräisch" lang="he" hreflang="he" data-title="פונקציה" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="फलन – Hindi" lang="hi" hreflang="hi" data-title="फलन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Function" title="Function – Fidschi-Hindi" lang="hif" hreflang="hif" data-title="Function" data-language-autonym="Fiji Hindi" data-language-local-name="Fidschi-Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Kroatisch" lang="hr" hreflang="hr" data-title="Funkcija (matematika)" data-language-autonym="Hrvatski" data-language-local-name="Kroatisch" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/F%C3%BCggv%C3%A9ny_(matematika)" title="Függvény (matematika) – Ungarisch" lang="hu" hreflang="hu" data-title="Függvény (matematika)" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Ֆունկցիա (մաթեմատիկա) – Armenisch" lang="hy" hreflang="hy" data-title="Ֆունկցիա (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="Armenisch" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Function_(mathematica)" title="Function (mathematica) – Interlingua" lang="ia" hreflang="ia" data-title="Function (mathematica)" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_(matematika)" title="Fungsi (matematika) – Indonesisch" lang="id" hreflang="id" data-title="Fungsi (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Funciono" title="Funciono – Ido" lang="io" hreflang="io" data-title="Funciono" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fall_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Fall (stærðfræði) – Isländisch" lang="is" hreflang="is" data-title="Fall (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="Isländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_(matematica)" title="Funzione (matematica) – Italienisch" lang="it" hreflang="it" data-title="Funzione (matematica)" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%96%A2%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="関数 (数学) – Japanisch" lang="ja" hreflang="ja" data-title="関数 (数学)" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Fongshan_(matimatix)" title="Fongshan (matimatix) – Jamaikanisch-Kreolisch" lang="jam" hreflang="jam" data-title="Fongshan (matimatix)" data-language-autonym="Patois" data-language-local-name="Jamaikanisch-Kreolisch" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/fancu" title="fancu – Lojban" lang="jbo" hreflang="jbo" data-title="fancu" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%A3%E1%83%9C%E1%83%A5%E1%83%AA%E1%83%98%E1%83%90_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="ფუნქცია (მათემატიკა) – Georgisch" lang="ka" hreflang="ka" data-title="ფუნქცია (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tas%C9%A3ent_(tusnakt)" title="Tasɣent (tusnakt) – Kabylisch" lang="kab" hreflang="kab" data-title="Tasɣent (tusnakt)" data-language-autonym="Taqbaylit" data-language-local-name="Kabylisch" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/K%C9%A9lab%C9%A9m" title="Kɩlabɩm – Kabiyé" lang="kbp" hreflang="kbp" data-title="Kɩlabɩm" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiyé" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Kasachisch" lang="kk" hreflang="kk" data-title="Функция (математика)" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%95%A8%EC%88%98" title="함수 – Koreanisch" lang="ko" hreflang="ko" data-title="함수" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Functio" title="Functio – Latein" lang="la" hreflang="la" data-title="Functio" data-language-autonym="Latina" data-language-local-name="Latein" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Funktioun_(Mathematik)" title="Funktioun (Mathematik) – Luxemburgisch" lang="lb" hreflang="lb" data-title="Funktioun (Mathematik)" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxemburgisch" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Fonzion_(matematega)" title="Fonzion (matematega) – Lombardisch" lang="lmo" hreflang="lmo" data-title="Fonzion (matematega)" data-language-autonym="Lombard" data-language-local-name="Lombardisch" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%95%E0%BA%B3%E0%BA%A5%E0%BA%B2_(%E0%BA%84%E0%BA%B0%E0%BA%99%E0%BA%B4%E0%BA%94%E0%BA%AA%E0%BA%B2%E0%BA%94)" title="ຕຳລາ (ຄະນິດສາດ) – Laotisch" lang="lo" hreflang="lo" data-title="ຕຳລາ (ຄະນິດສາດ)" data-language-autonym="ລາວ" data-language-local-name="Laotisch" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Litauisch" lang="lt" hreflang="lt" data-title="Funkcija (matematika)" data-language-autonym="Lietuvių" data-language-local-name="Litauisch" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Funkcija" title="Funkcija – Lettisch" lang="lv" hreflang="lv" data-title="Funkcija" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функција (математика) – Mazedonisch" lang="mk" hreflang="mk" data-title="Функција (математика)" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AB%E0%B4%99%E0%B5%8D%E0%B4%B7%E0%B5%BB" title="ഫങ്ഷൻ – Malayalam" lang="ml" hreflang="ml" data-title="ഫങ്ഷൻ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA)" title="Функц (математик) – Mongolisch" lang="mn" hreflang="mn" data-title="Функц (математик)" data-language-autonym="Монгол" data-language-local-name="Mongolisch" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AB%E0%A4%B2_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="फल (गणित) – Marathi" lang="mr" hreflang="mr" data-title="फल (गणित)" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Fungsi" title="Fungsi – Malaiisch" lang="ms" hreflang="ms" data-title="Fungsi" data-language-autonym="Bahasa Melayu" data-language-local-name="Malaiisch" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Funzjonijiet_(matematika)" title="Funzjonijiet (matematika) – Maltesisch" lang="mt" hreflang="mt" data-title="Funzjonijiet (matematika)" data-language-autonym="Malti" data-language-local-name="Maltesisch" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%96%E1%80%94%E1%80%BA%E1%80%9B%E1%80%BE%E1%80%84%E1%80%BA" title="ဖန်ရှင် – Birmanisch" lang="my" hreflang="my" data-title="ဖန်ရှင်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Birmanisch" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Afbillen_(Mathematik)" title="Afbillen (Mathematik) – Niederdeutsch" lang="nds" hreflang="nds" data-title="Afbillen (Mathematik)" data-language-autonym="Plattdüütsch" data-language-local-name="Niederdeutsch" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Functie_(wiskunde)" title="Functie (wiskunde) – Niederländisch" lang="nl" hreflang="nl" data-title="Functie (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matematisk_funksjon" title="Matematisk funksjon – Norwegisch (Nynorsk)" lang="nn" hreflang="nn" data-title="Matematisk funksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Funksjon_(matematikk)" title="Funksjon (matematikk) – Norwegisch (Bokmål)" lang="nb" hreflang="nb" data-title="Funksjon (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch (Bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Aplicacion_(matematicas)" title="Aplicacion (matematicas) – Okzitanisch" lang="oc" hreflang="oc" data-title="Aplicacion (matematicas)" data-language-autonym="Occitan" data-language-local-name="Okzitanisch" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Warroomii_(faankishinii)" title="Warroomii (faankishinii) – Oromo" lang="om" hreflang="om" data-title="Warroomii (faankishinii)" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AB%E0%A9%B0%E0%A8%95%E0%A8%B8%E0%A8%BC%E0%A8%A8_(%E0%A8%B9%E0%A8%BF%E0%A8%B8%E0%A8%BE%E0%A8%AC)" title="ਫੰਕਸ਼ਨ (ਹਿਸਾਬ) – Punjabi" lang="pa" hreflang="pa" data-title="ਫੰਕਸ਼ਨ (ਹਿਸਾਬ)" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja" title="Funkcja – Polnisch" lang="pl" hreflang="pl" data-title="Funkcja" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Fonsion" title="Fonsion – Piemontesisch" lang="pms" hreflang="pms" data-title="Fonsion" data-language-autonym="Piemontèis" data-language-local-name="Piemontesisch" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%81%D9%86%DA%A9%D8%B4%D9%86" title="فنکشن – Westliches Panjabi" lang="pnb" hreflang="pnb" data-title="فنکشن" data-language-autonym="پنجابی" data-language-local-name="Westliches Panjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_(matem%C3%A1tica)" title="Função (matemática) – Portugiesisch" lang="pt" hreflang="pt" data-title="Função (matemática)" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Kinraysuyu" title="Kinraysuyu – Quechua" lang="qu" hreflang="qu" data-title="Kinraysuyu" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bie" title="Funcție – Rumänisch" lang="ro" hreflang="ro" data-title="Funcție" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Russisch" lang="ru" hreflang="ru" data-title="Функция (математика)" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F._%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D1%87%D1%8D%D1%80%D1%87%D0%B8%D1%82%D1%8D,_%D1%81%D1%83%D0%BE%D0%BB%D1%82%D0%B0%D0%BB%D0%B0%D1%80%D1%8B%D0%BD_%D1%82%D2%AF%D0%BC%D1%81%D1%8D%D1%8D%D0%BD%D1%8D" title="Функция. Функция чэрчитэ, суолталарын түмсээнэ – Jakutisch" lang="sah" hreflang="sah" data-title="Функция. Функция чэрчитэ, суолталарын түмсээнэ" data-language-autonym="Саха тыла" data-language-local-name="Jakutisch" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Funzioni_(matim%C3%A0tica)" title="Funzioni (matimàtica) – Sizilianisch" lang="scn" hreflang="scn" data-title="Funzioni (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="Sizilianisch" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – Schottisch" lang="sco" hreflang="sco" data-title="Function (mathematics)" data-language-autonym="Scots" data-language-local-name="Schottisch" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Funkcija" title="Funkcija – Serbokroatisch" lang="sh" hreflang="sh" data-title="Funkcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbokroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Function (mathematics)" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Zobrazenie_(matematika)" title="Zobrazenie (matematika) – Slowakisch" lang="sk" hreflang="sk" data-title="Zobrazenie (matematika)" data-language-autonym="Slovenčina" data-language-local-name="Slowakisch" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Slowenisch" lang="sl" hreflang="sl" data-title="Funkcija (matematika)" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Funktio" title="Funktio – Inari-Samisch" lang="smn" hreflang="smn" data-title="Funktio" data-language-autonym="Anarâškielâ" data-language-local-name="Inari-Samisch" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Murimo_(Masvomhu)" title="Murimo (Masvomhu) – Shona" lang="sn" hreflang="sn" data-title="Murimo (Masvomhu)" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Shaqada_(xisaabta)" title="Shaqada (xisaabta) – Somali" lang="so" hreflang="so" data-title="Shaqada (xisaabta)" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Funksioni" title="Funksioni – Albanisch" lang="sq" hreflang="sq" data-title="Funksioni" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функција (математика) – Serbisch" lang="sr" hreflang="sr" data-title="Функција (математика)" data-language-autonym="Српски / srpski" data-language-local-name="Serbisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Fungsi_(matematika)" title="Fungsi (matematika) – Sundanesisch" lang="su" hreflang="su" data-title="Fungsi (matematika)" data-language-autonym="Sunda" data-language-local-name="Sundanesisch" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Funktion" title="Funktion – Schwedisch" lang="sv" hreflang="sv" data-title="Funktion" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Funkcyjo" title="Funkcyjo – Schlesisch (Wasserpolnisch)" lang="szl" hreflang="szl" data-title="Funkcyjo" data-language-autonym="Ślůnski" data-language-local-name="Schlesisch (Wasserpolnisch)" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81" title="சார்பு – Tamil" lang="ta" hreflang="ta" data-title="சார்பு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="ฟังก์ชัน (คณิตศาสตร์) – Thailändisch" lang="th" hreflang="th" data-title="ฟังก์ชัน (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Punsiyon_(matematika)" title="Punsiyon (matematika) – Tagalog" lang="tl" hreflang="tl" data-title="Punsiyon (matematika)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Fonksiyon" title="Fonksiyon – Türkisch" lang="tr" hreflang="tr" data-title="Fonksiyon" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Tatarisch" lang="tt" hreflang="tt" data-title="Функция (математика)" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatarisch" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-udm mw-list-item"><a href="https://udm.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Udmurtisch" lang="udm" hreflang="udm" data-title="Функция (математика)" data-language-autonym="Удмурт" data-language-local-name="Udmurtisch" class="interlanguage-link-target"><span>Удмурт</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D9%81%DB%87%D9%86%D9%83%D8%B3%D9%89%D9%8A%DB%95" title="فۇنكسىيە – Uigurisch" lang="ug" hreflang="ug" data-title="فۇنكسىيە" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="Uigurisch" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функція (математика) – Ukrainisch" lang="uk" hreflang="uk" data-title="Функція (математика)" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D8%B9%D9%84_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="تفاعل (ریاضیات) – Urdu" lang="ur" hreflang="ur" data-title="تفاعل (ریاضیات)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Funksiya_(matematika)" title="Funksiya (matematika) – Usbekisch" lang="uz" hreflang="uz" data-title="Funksiya (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Usbekisch" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Funkcii_(matematik)" title="Funkcii (matematik) – Wepsisch" lang="vep" hreflang="vep" data-title="Funkcii (matematik)" data-language-autonym="Vepsän kel’" data-language-local-name="Wepsisch" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_s%E1%BB%91" title="Hàm số – Vietnamesisch" lang="vi" hreflang="vi" data-title="Hàm số" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Funsiyon_(matematika)" title="Funsiyon (matematika) – Waray" lang="war" hreflang="war" data-title="Funsiyon (matematika)" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%87%BD%E6%95%B0" title="函数 – Wu" lang="wuu" hreflang="wuu" data-title="函数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Функция – Kalmückisch" lang="xal" hreflang="xal" data-title="Функция" data-language-autonym="Хальмг" data-language-local-name="Kalmückisch" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%A2" title="פונקציע – Jiddisch" lang="yi" hreflang="yi" data-title="פונקציע" data-language-autonym="ייִדיש" data-language-local-name="Jiddisch" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B5%9C%E2%B4%B0%E2%B5%99%E2%B5%96%E2%B5%8F%E2%B5%9C_(%E2%B5%9C%E2%B5%93%E2%B5%99%E2%B5%8F%E2%B4%B0%E2%B4%BD%E2%B5%9C)" title="ⵜⴰⵙⵖⵏⵜ (ⵜⵓⵙⵏⴰⴽⵜ) – Tamazight" lang="zgh" hreflang="zgh" data-title="ⵜⴰⵙⵖⵏⵜ (ⵜⵓⵙⵏⴰⴽⵜ)" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Tamazight" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0" title="函数 – Chinesisch" lang="zh" hreflang="zh" data-title="函数" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%98%A0%E5%B0%84" title="映射 – Klassisches Chinesisch" lang="lzh" hreflang="lzh" data-title="映射" data-language-autonym="文言" data-language-local-name="Klassisches Chinesisch" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C3%A2m-s%C3%B2%CD%98" title="Hâm-sò͘ – Min Nan" lang="nan" hreflang="nan" data-title="Hâm-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Min Nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%87%BD%E6%95%B8" title="函數 – Kantonesisch" lang="yue" hreflang="yue" data-title="函數" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11348#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 10. November 2024 um 22:43 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Funktion_(Mathematik)&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Funktion_(Mathematik)?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Funktion_(Mathematik)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-qlbh6","wgBackendResponseTime":163,"wgPageParseReport":{"limitreport":{"cputime":"0.390","walltime":"0.667","ppvisitednodes":{"value":2713,"limit":1000000},"postexpandincludesize":{"value":12121,"limit":2097152},"templateargumentsize":{"value":993,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":27774,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 190.025 1 -total"," 28.32% 53.817 3 Vorlage:Literatur"," 22.34% 42.455 1 Vorlage:Commonscat"," 17.66% 33.551 1 Vorlage:Wikidata-Registrierung"," 16.57% 31.482 1 Vorlage:LaS"," 7.56% 14.374 8 Vorlage:Hauptartikel"," 5.52% 10.489 1 Vorlage:Wikibooks"," 2.95% 5.608 1 Vorlage:Str_left"," 1.83% 3.481 1 Vorlage:Wiktionary"," 1.53% 2.907 1 Vorlage:Nowrap"]},"scribunto":{"limitreport-timeusage":{"value":"0.058","limit":"10.000"},"limitreport-memusage":{"value":3476472,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-8cb5f4d85-vdpfn","timestamp":"20241126194424","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Funktion (Mathematik)","url":"https:\/\/de.wikipedia.org\/wiki\/Funktion_(Mathematik)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11348","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11348","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-04-25T14:04:26Z","headline":"Abbildung, die jedem Element ihres Definitionsbereichs genau ein Element des Bildbereichs zuordnet"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10