CINXE.COM
Search results for: Zorica M. Branković
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Zorica M. Branković</title> <meta name="description" content="Search results for: Zorica M. Branković"> <meta name="keywords" content="Zorica M. Branković"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Zorica M. Branković" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Zorica M. Branković"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Zorica M. Branković</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Antifeedant Activity of Plant Extracts on the Spongy Moth (Lymantria dispar) Larvae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20M.%20%C4%86irkovi%C4%87">Jovana M. Ćirković</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20M.%20Radojkovi%C4%87"> Aleksandar M. Radojković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Z.%20Pera%C4%87"> Sanja Z. Perać</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20N.%20Jovanovi%C4%87"> Jelena N. Jovanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20M.%20Brankovi%C4%87"> Zorica M. Branković</a>, <a href="https://publications.waset.org/abstracts/search?q=Slobodan%20D.%20Milanovi%C4%87"> Slobodan D. Milanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Lj.%20Milenkovi%C4%87"> Ivan Lj. Milenković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovan%20N.%20Dobrosavljevi%C4%87"> Jovan N. Dobrosavljević</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20V.%20Simovi%C4%87"> Nemanja V. Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanja%20M.%20Tadi%C4%87"> Vanja M. Tadić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20R.%20%C5%BDugi%C4%87"> Ana R. Žugić</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20O.%20Brankovi%C4%87"> Goran O. Branković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protection of forests is a national interest and of strategic importance in every country. The spongy moth (Lymantria dispar) is a damaging invasive pest that can weaken and destroy trees by defoliating them. Chemical pesticides commonly used to protect forests against spongy moths not only have a negative impact on terrestrial and aquatic organisms/ecosystems but also often fail to provide significant protection. Therefore, many eco-friendly alternatives have been considered. Within this research, a new biopesticide was developed based on the method of nanoencapsulation of plant extracts in a biopolymer matrix, which provides a slow release of the active components during a substantial time period. The antifeedant activity of plant extracts of common (Fraxinus excelsior L.), manna (F. ornus L.) ash tree, and the tree of heaven Ailanthus altissima (Mill.) was tested on the spongy moth (Lymantria dispar L, 1758) larvae. To test the antifeedant activity of these compounds, the choice and non-choice tests in laboratory conditions for different plant extract concentrations (0.01, 0.1, 0.5, and 1 % v/v) were carried out. In both cases, the best results showed formulations based on the tree of heaven and common ash for the concentration of 1%, with deterioration indices of 163 and 132, respectively. The main benefit of these formulations is their versatility, effectiveness, prolonged effect, and because they are completely environmentally acceptable. Therefore, they can be considered for suppression of the spongy moth in forest ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ailanthus%20altissima%20%28Mill.%29" title="Ailanthus altissima (Mill.)">Ailanthus altissima (Mill.)</a>, <a href="https://publications.waset.org/abstracts/search?q=Fraxinus%20excelsior%20L." title=" Fraxinus excelsior L."> Fraxinus excelsior L.</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lymantria%20dispar" title=" Lymantria dispar"> Lymantria dispar</a> </p> <a href="https://publications.waset.org/abstracts/171972/antifeedant-activity-of-plant-extracts-on-the-spongy-moth-lymantria-dispar-larvae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Encapsulated Western Red Cedar (Thuja Plicata) Essential Oil as a Prospective Biopesticide against Phytophthora Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20M.%20Radojkovi%C4%87">Aleksandar M. Radojković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20M.%20%C4%86irkovi%C4%87"> Jovana M. Ćirković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Z.%20Pera%C4%87"> Sanja Z. Perać</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20N.%20Jovanovi%C4%87"> Jelena N. Jovanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20M.%20Brankovi%C4%87"> Zorica M. Branković</a>, <a href="https://publications.waset.org/abstracts/search?q=Slobodan%20D.%20Milanovi%C4%87"> Slobodan D. Milanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Lj.%20Milenkovi%C4%87"> Ivan Lj. Milenković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovan%20N.%20Dobrosavljevi%C4%87"> Jovan N. Dobrosavljević</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20V.%20Simovi%C4%87"> Nemanja V. Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanja%20M.%20Tadi%C4%87"> Vanja M. Tadić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20R.%20%C5%BDugi%C4%87"> Ana R. Žugić</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20O.%20Brankovi%C4%87"> Goran O. Branković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many parts of the world, various Phytophthora species pose a serious threat to forests and crops. With the rapidly growing international trade in plants and the ongoing impacts of climate change, the harmful effects of plant pathogens of the genus Phytophthora are increasing, damaging the biodiversity and sustainability of forest ecosystems. This genus is one of the most destructive plant pathogens, causing the majority of fine root (66%) and collar rot diseases (90%) of woody plant species worldwide. Eco-friendly biopesticides, based on plant-derived products, such as essential oils (EOs), are one of the promising solutions to this problem. In this study, among three different EOs investigated (Chamaecyparis lawsoniana (A. Murr.) Parl., Thuja plicata Donn ex D.Don and Juniperus communis L.), western red cedar (Thuja plicata) essential oil almost completely inhibited the growth of three Phytophthora species (P. plurivora Jung and Burgess, P. quercina Jung, and P. ×cambivora (Petri) Buisman) during seven days of exposure for the EO concentrations of 0.1% and 0.5% (v/v). To prolong the inhibiting effect, Thuja plicata EO was encapsulated into a biopolymer matrix consisting of a chitosan-gelatin mixture to form a water-in-oil emulsion. This approach allowed the prolonged effect of the essential oil by its slow release from the biopolymer matrix and protection of the active components from atmospheric influences. Thus, it was demonstrated that encapsulated Thuja plicata EO consisting of sustainable bioproducts is efficient in controlling of Phytophthora species and can be considered a means of protection in natural and semi-natural ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsions" title="emulsions">emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=phytophthora" title=" phytophthora"> phytophthora</a>, <a href="https://publications.waset.org/abstracts/search?q=thuja%20plicata" title=" thuja plicata"> thuja plicata</a> </p> <a href="https://publications.waset.org/abstracts/171742/encapsulated-western-red-cedar-thuja-plicata-essential-oil-as-a-prospective-biopesticide-against-phytophthora-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%A0pela%20Hajduk">Špela Hajduk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20P.%20Berglund"> Sean P. Berglund</a>, <a href="https://publications.waset.org/abstracts/search?q=Matejka%20Podlogar"> Matejka Podlogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20Dra%C5%BEi%C4%87"> Goran Dražić</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatwa%20F.%20Abdi"> Fatwa F. Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20C.%20Orel"> Zorica C. Orel</a>, <a href="https://publications.waset.org/abstracts/search?q=Menny%20Shalom"> Menny Shalom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nitride" title="carbon nitride">carbon nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=photoanode" title=" photoanode"> photoanode</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20splitting" title=" solar water splitting"> solar water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/71217/carbon-nitride-growth-on-zno-architectures-for-enhanced-photoelectrochemical-water-splitting-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Genetic Advance versus Environmental Impact toward Sustainable Protein, Wet Gluten and Zeleny Sedimentation in Bread and Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gordana%20Brankovi%C4%87">Gordana Branković</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Dodig"> Dejan Dodig</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Paji%C4%87"> Vesna Pajić</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Kandi%C4%87"> Vesna Kandić</a>, <a href="https://publications.waset.org/abstracts/search?q=Desimir%20Kne%C5%BEevi%C4%87"> Desimir Knežević</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenad%20%C4%90uri%C4%87"> Nenad Đurić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wheat grain quality properties are influenced by genotype, environmental conditions and genotype × environment interaction (GEI). The increasing request of more nutritious wheat products will direct future breeding programmes. Therefore, the aim of investigation was to determine: i) variability of the protein content (PC), wet gluten content (WG) and Zeleny sedimentation volume (ZS); ii) components of variance, heritability in a broad sense (hb2), and expected genetic advance as percent of mean (GAM) for PC, WG, and ZS; iii) correlations between PC, WG, ZS, and most important agronomic traits; in order to assess expected breeding success versus environmental impact for these quality traits. The plant material consisted of 30 genotypes of bread wheat (Triticum aestivum L. ssp. aestivum) and durum wheat (Triticum durum Desf.). The trials were sown at the three test locations in Serbia: Rimski Šančevi, Zemun Polje and Padinska Skela during 2010-2011 and 2011-2012. The experiments were set as randomized complete block design with four replications. The plot consisted of five rows of 1 m2 (5 × 0.2 m × 1 m). PC, WG and ZS were determined by the use of Near infrared spectrometry (NIRS) with the Infraneo analyser (Chopin Technologies, France). PC, WG and ZS, in bread wheat, were in the range 13.4-16.4%, 22.8-30.3%, and 39.4-67.1 mL, respectively, and in durum wheat, in the range 15.3-18.1%, 28.9-36.3%, 37.4-48.3 mL, respectively. The dominant component of variance for PC, WG, and ZS, in bread wheat, was genotype with the genetic variance/GEI variance (VG/VG × E) relation of 3.2, 2.9 and 1.0, respectively, and in durum wheat was GEI with the VG/VG × E relation of 0.70, 0.69 and 0.49, respectively. hb2 and GAM values for PC, WG and ZS, in bread wheat, were 94.9% and 12.6%, 93.7% and 18.4%, and 86.2% and 28.1%, respectively, and in durum wheat, 80.7% and 7.6%, 79.7% and 10.2%, and 74% and 11.2%, respectively. The most consistent through six environments, statistically significant correlations, for bread wheat, were between PC and spike length (-0.312 to -0.637); PC, WG, ZS and grain number per spike (-0.320 to -0.620; -0.369 to -0.567; -0.301 to -0.378, respectively); PC and grain thickness (0.338 to 0.566), and for durum wheat, were between PC, WG, ZS and yield (-0.290 to -0.690; -0.433 to -0.753; -0.297 to -0.660, respectively); PC and plant height (-0.314 to -0.521); PC, WG and spike length (-0.298 to -0.597; -0.293 to -0.627, respectively); PC, WG and grain thickness (0.260 to 0.575; 0.269 to 0.498, respectively); PC, WG and grain vitreousness (0.278 to 0.665; 0.357 to 0.690, respectively). Breeding success can be anticipated for ZS in bread wheat due to coupled high values for hb2 and GAM, suggesting existence of additive genetic effects, and also for WG in bread wheat, due to very high hb2 and medium high GAM. The small, and medium, negative correlations between PC, WG, ZS, and yield or yield components, indicate difficulties to select simultaneously for high quality and yield, depending on linkage for particular genetic arrangements to be broken by recombination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20and%20durum%20wheat" title="bread and durum wheat">bread and durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20advance" title=" genetic advance"> genetic advance</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20and%20wet%20gluten%20content" title=" protein and wet gluten content"> protein and wet gluten content</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeleny%20sedimentation%20volume" title=" Zeleny sedimentation volume"> Zeleny sedimentation volume</a> </p> <a href="https://publications.waset.org/abstracts/68812/genetic-advance-versus-environmental-impact-toward-sustainable-protein-wet-gluten-and-zeleny-sedimentation-in-bread-and-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Variability and Stability of Bread and Durum Wheat for Phytic Acid Content </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gordana%20Brankovi%C4%87">Gordana Branković</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Dragi%C4%8Devi%C4%87"> Vesna Dragičević</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Dodig"> Dejan Dodig</a>, <a href="https://publications.waset.org/abstracts/search?q=Desimir%20Kne%C5%BEevi%C4%87"> Desimir Knežević</a>, <a href="https://publications.waset.org/abstracts/search?q=Srbislav%20Den%C4%8Di%C4%87"> Srbislav Denčić</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C5%A0urlan-Momirovi%C4%87"> Gordana Šurlan-Momirović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytic acid is a major pool in the flux of phosphorus through agroecosystems and represents a sum equivalent to > 50% of all phosphorus fertilizer used annually. Nutrition rich in phytic acid can substantially decrease micronutrients apsorption as calcium, zink, iron, manganese, copper due to phytate salts excretion by human and non-ruminant animals as poultry, swine and fish, having in common very scarce phytase activity, and consequently the ability to digest and utilize phytic acid, thus phytic acid derived phosphorus in animal waste contributes to water pollution. The tested accessions consisted of 15 genotypes of bread wheat (Triticum aestivum L. ssp. vulgare) and of 15 genotypes of durum wheat (Triticum durum Desf.). The trials were sown at the three test sites in Serbia: Rimski Šančevi (RS) (45º19´51´´N; 19º50´59´´E), Zemun Polje (ZP) (44º52´N; 20º19´E) and Padinska Skela (PS) (44º57´N 20º26´E) during two vegetation seasons 2010-2011 and 2011-2012. The experimental design was randomized complete block design with four replications. The elementary plot consisted of 3 internal rows of 0.6 m2 area (3 × 0.2 m × 1 m). Grains were grinded with Laboratory Mill 120 Perten (“Perten”, Sweden) (particles size < 500 μm) and flour was used for the analysis. Phytic acid grain content was determined spectrophotometrically with the Shimadzu UV-1601 spectrophotometer (Shimadzu Corporation, Japan). Objectives of this study were to determine: i) variability and stability of the phytic acid content among selected genotypes of bread and durum wheat, ii) predominant source of variation regarding genotype (G), environment (E) and genotype × environment interaction (GEI) from the multi-environment trial, iii) influence of climatic variables on the GEI for the phytic acid content. Based on the analysis of variance it had been determined that the variation of phytic acid content was predominantly influenced by environment in durum wheat, while the GEI prevailed for the variation of the phytic acid content in bread wheat. Phytic acid content expressed on the dry mass basis was in the range 14.21-17.86 mg g-1 with the average of 16.05 mg g-1 for bread wheat and 14.63-16.78 mg g-1 with the average of 15.91 mg g-1 for durum wheat. Average-environment coordination view of the genotype by environment (GGE) biplot was used for the selection of the most desirable genotypes for breeding for low phytic acid content in the sense of good stability and lower level of phytic acid content. The most desirable genotypes of bread and durum wheat for breeding for phytic acid were Apache and 37EDUYT /07 No. 7849. Models of climatic factors in the highest percentage (> 91%) were useful in interpreting GEI for phytic acid content, and included relative humidity in June, sunshine hours in April, mean temperature in April and winter moisture reserves for genotypes of bread wheat, as well as precipitation in June and April, maximum temperature in April and mean temperature in June for genotypes of durum wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotype%20%C3%97%20environment%20interaction" title="genotype × environment interaction">genotype × environment interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytic%20acid" title=" phytic acid"> phytic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a> </p> <a href="https://publications.waset.org/abstracts/24404/variability-and-stability-of-bread-and-durum-wheat-for-phytic-acid-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Antagonistic/Synergistic Effect of Probiotic Yeast Saccharomyces boulardii on Candida glabrata Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zorica%20Tomi%C4%8Di%C4%87">Zorica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru%C5%BEica%20Tomi%C4%8Di%C4%87"> Ružica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Raspor"> Peter Raspor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing resistance of pathogenic yeast Candida glabrata to many classes of antifungal drugs has stimulated efforts to discover new agents to combat a rising number of invasive C. glabrata infections, which deserves a great deal of concern due to the high mortality rate in immunocompromised populations. One promising strategy is the use of probiotic microorganisms, which, when administered in adequate amounts, confers a health benefit. A selected number of probiotic organisms, Saccharomyces boulardii among them, have been tested as potential biotherapeutic agents. The aim of this study was to investigate the effect of the probiotic yeast S. boulardii on the adhesion of clinical isolates of C. glabrata at different temperatures, pH values, and in the presence of three clinically important antifungal drugs, such as fluconazole, itraconazole and amphotericin B. The method used to assess adhesion was crystal violet staining. The selection of antimycotics concentrations used in the adhesion assay was based on minimum inhibitory concentrations (MICs) obtained by the preliminarily performed microdilution modification of the Reference method for broth dilution antifungal susceptibility testing of yeast (Clinical and Laboratory Standards Institute (CLSI), standard M27-A2). the results showed that despite the nonadhesiveness of S. boulardii cells, probiotic yeast significantly suppressed the adhesion of C. glabrata strains. Besides, at specific strain ratios, a slight stimulatory effect was observed in some C. glabrata strains, which highlights the importance of strain specificity and opens up further research interests. When environmental conditions are considered, temperature and pH significantly influenced co-culture adhesion of C. glabrata and S. boulardii. The adhesion of C. glabrata strains was relatively equally reduced over all tested temperature range (28°C, 37°C, 39°C and 42°C) in the presence of S. boulardii cells, while the adhesion of a few C. glabrata strains were significantly stimulated at 28°C and suppressed at 42°C. Further, the adhesion was highly dependent on pH, with the highest adherence at pH 4 and lowest at pH 8.5. It was observed that S. boulardii did not manage to suppress the adhesion of C. glabrata strains at high pH. Antimycotics on the other hand showed a greater impact, since S. boulardii failed to affect co-culture adhesion at higher antimycotics concentrations. As expected, exposure to various concentrations of amphotericin B significantly reduced the adherence ability of C.glabrata strains both in a single culture and co-culture with S. boulardii. Therefore, it can be speculated that S. boulardii could substitute the effect of antimycotics in a range concentrations and with specific type of strains. This would certainly change the view on the treatment of yeast infections in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=antimycotics" title=" antimycotics"> antimycotics</a>, <a href="https://publications.waset.org/abstracts/search?q=candida%20glabrata" title=" candida glabrata"> candida glabrata</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii" title=" saccharomyces boulardii"> saccharomyces boulardii</a> </p> <a href="https://publications.waset.org/abstracts/171716/the-antagonisticsynergistic-effect-of-probiotic-yeast-saccharomyces-boulardii-on-candida-glabrata-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Effects of Culture Conditions on the Adhesion of Yeast Candida spp. and Pichia spp. to Stainless Steel with Different Polishing and Their Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ru%C5%BEica%20Tomi%C4%8Di%C4%87">Ružica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20Tomi%C4%8Di%C4%87"> Zorica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Raspor"> Peter Raspor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An abundant growth of unwanted yeasts in food processing plants can lead to problems in quality and safety with significant financial losses. Candida and Pichia are the genera mainly involved in spoilage of products in the food and beverage industry. These contaminating microorganisms can form biofilms on food contact surfaces, being difficult to eradicate, increasing the probability of microbial survival and further dissemination during food processing. It is well known that biofilms are more resistant to antimicrobial agents compared to planktonic cells and this makes them difficult to eliminate. Among the strategies used to overcome resistance to antifungal drugs and preservatives, the use of natural substances such as plant extracts has shown particular promise, and many natural substances have been found to exhibit antifungal properties. This study aimed to investigated the impact of growth medium (Malt Extract broth (MEB) or Yeast Peptone Dextrose (YPD) broth) and temperatures (7°C, 37°C, 43°C for Candida strains and 7°C, 27°C, 32°C for Pichia strains) on the adhesion of Candida spp. and Pichia spp. to stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20 – 961.9 nm), a material commonly used in the food industry. We also evaluated the antifungal and antiadhesion activity of plant extracts such as Humulus lupulus, Alpinia katsumadai and Evodia rutaecarpa against C. albicans, C glabrata and P. membranifaciens and investigated whether these plant extracts can interfere with biofilm formation. The adhesion was assessed by the crystal violet staining method, while the broth microdilution method CLSI M27-A3 was used to determine the minimum inhibitory concentration (MIC) of plant extracts. Our results indicated that the nutrient content of the medium significantly influenced the amount of adhered cells of the tested yeasts. The growth medium which resulted in a higher adhesion of C. albicans and C. glabrata was MEB, while for C. parapsilosis and C. krusei was YPD. In the case of P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. Regarding the effect of temperature, C. albicans strain adhered to stainless steel surfaces in significantly higher level at a temperature of 43°C, while on the other hand C. glabrata, C. parapsilosis and C. krusei showed a different behavior with significantly higher adhesion at 37°C than at 7°C and 43°C. Further, the adherence ability of Pichia strains was highest at 27°C. Based on the MIC values, all plant extracts exerted significant antifungal effects with MIC values ranged from 100 to 400 μg/mL. It was observed that biofilm of C. glabrata were more resistance to plant extracts as compared to C. albicans. However, extracts of A. katsumadai and E. rutaecarpa promoted the growth and development of the preformed biofilm of P. membranifaciens. Thus, the knowledge of how these microorganisms adhere and which factors affect this phenomenon is of great importance in order to avoid their colonization on food contact surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=Candida%20spp." title=" Candida spp."> Candida spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichia%20spp." title=" Pichia spp."> Pichia spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a> </p> <a href="https://publications.waset.org/abstracts/171715/effects-of-culture-conditions-on-the-adhesion-of-yeast-candida-spp-and-pichia-spp-to-stainless-steel-with-different-polishing-and-their-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Effectiveness of Essential Oils as Inhibitors of Quorum Sensing Activity Using Biomonitor Strain Chromobacterium Violaceum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Cabarkapa">Ivana Cabarkapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20Tomicic"> Zorica Tomicic</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivera%20Duragic"> Olivera Duragic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimicrobial resistance represents one of the major challenges facing humanity in the last decades. Increasing antibiotic-resistant pathogens indicates the need for the development of alternative antibacterial drugs and new treatment strategies. One of the innovative emerging treatments in overcoming multidrug-resistant pathogens certainly represents the inhibition anti-quorum sensing system. For most of the food-borne pathogens, the expression of the virulence depends on their capability communication with other members of the population by means of quorum sensing (QS). QS represents a specific way of bacterial intercellular communication, which enabled owing to their ability to detect and to respond to cell population density by gene regulation. QS mechanisms are responsible for controls the pathogenesis, virulence luminescence, motility, sporulation and biofilm formation of many organisms by regulating gene expression. Therefore, research in this field is being an attractive target for the development of new natural antibacterial agents. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Considering the importance of quorum sensing during bacterial pathogenesis, this research has been focused on evaluation anti - QS properties of four essential oils (EOs) Origanum heracleoticum, Origanum vulgare, Thymus vulgare, and Thymus serpyllum, using biomonitor strain of Chromobacterium violaceum CV026. Tests conducted on Luria Bertani agar supplemented with N hexanol DL homoserine lacton (HHL) 10µl/50ml of agar. The anti-QS potential of the EOs was assayed in a range of concentrations of 200 – 0.39 µl/ml using the disc diffusion method. EOs of Th. vulgaris and T. serpyllum were exhibited anti-QS activity indicated by a non- pigmented ring with a dilution-dependent manner. The lowest dilution of EOs T. vulgaris and T. serpyllum in which they exhibited visually detectable inhibition of violacein synthesis was 6.25 µl/ml for both tested EOs. EOs of O. heracleoticum and O. vulgare were displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by the outer non-pigmented ring, in a concentration-dependent manner. The lowest dilution of EOs of O. heracleoticum and O. vulgare in which exhibited visually detectable inhibition of violacein synthesis was 1.56 and 3.25 µl/ml, respectively. Considering that, the main constituents of the tested EOs represented by monoterpenes (carvacrol, thymol, γ-terpinene, and p-cymene), anti - QS properties of tested EOs can be mainly attributed to their activity. In particular, from the scientific literature, carvacrol and thymol show a sub-inhibitory effect against foodborne pathogens. Previous studies indicated that sub-lethal concentrations of carvacrol reduced the mobility of bacteria due to the ability of interference using QS mechanism between the bacterial cells, and thereby reducing the ability of biofilm formation The precise mechanism by which carvacrol inhibits biofilm formation is still not fully understood. Our results indicated that EOs displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by an outer non- pigmented ring with visually detectable inhibition of violacein. Preliminary results suggest that EOs represent a promising alternative for effective control of the emergence and spread of resistant pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-quorum%20sensing%20activity" title="anti-quorum sensing activity">anti-quorum sensing activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromobacterium%20violaceum" title=" Chromobacterium violaceum"> Chromobacterium violaceum</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=violacein" title=" violacein"> violacein</a> </p> <a href="https://publications.waset.org/abstracts/118341/effectiveness-of-essential-oils-as-inhibitors-of-quorum-sensing-activity-using-biomonitor-strain-chromobacterium-violaceum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>