CINXE.COM
Search results for: Galerkin technique
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Galerkin technique</title> <meta name="description" content="Search results for: Galerkin technique"> <meta name="keywords" content="Galerkin technique"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Galerkin technique" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Galerkin technique"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6632</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Galerkin technique</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6632</span> A Review on Higher-Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Khazaei%20Pool">Maryam Khazaei Pool</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20Lewis"> Lori Lewis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method, Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper, we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions, including Burgers equation, spline functions, and B-spline functions, are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided, and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burgers%E2%80%99%20equation" title="Burgers’ equation">Burgers’ equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Septic%20B-spline" title=" Septic B-spline"> Septic B-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20cubic%20B-spline%20differential%20quadrature%20method" title=" modified cubic B-spline differential quadrature method"> modified cubic B-spline differential quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20cubic%20B-spline%20technique" title=" exponential cubic B-spline technique"> exponential cubic B-spline technique</a>, <a href="https://publications.waset.org/abstracts/search?q=B-spline%20Galerkin%20method" title=" B-spline Galerkin method"> B-spline Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=quintic%20B-spline%20Galerkin%20method" title=" quintic B-spline Galerkin method"> quintic B-spline Galerkin method</a> </p> <a href="https://publications.waset.org/abstracts/152585/a-review-on-higher-order-spline-techniques-for-solving-burgers-equation-using-b-spline-methods-and-variation-of-b-spline-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6631</span> Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payel%20Das">Payel Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Gnaneshwar%20Nelakanti"> Gnaneshwar Nelakanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hammerstein%20integral%20equations" title="hammerstein integral equations">hammerstein integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20galerkin" title=" discrete galerkin"> discrete galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%0D%0Aquadrature" title=" numerical quadrature"> numerical quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=superconvergence" title=" superconvergence"> superconvergence</a> </p> <a href="https://publications.waset.org/abstracts/22260/superconvergence-of-the-iterated-discrete-legendre-galerkin-method-for-fredholm-hammerstein-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6630</span> Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helmi%20Temimi">Helmi Temimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discontinuous" title="discontinuous">discontinuous</a>, <a href="https://publications.waset.org/abstracts/search?q=galerkin" title=" galerkin"> galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=superconvergence" title=" superconvergence"> superconvergence</a>, <a href="https://publications.waset.org/abstracts/search?q=higherorder" title=" higherorder"> higherorder</a>, <a href="https://publications.waset.org/abstracts/search?q=error" title=" error"> error</a>, <a href="https://publications.waset.org/abstracts/search?q=estimates" title=" estimates"> estimates</a> </p> <a href="https://publications.waset.org/abstracts/25062/discontinuous-galerkin-method-for-higher-order-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6629</span> The Improved Element Free Galerkin Method for 2D Heat Transfer Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Debbabi">Imen Debbabi</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9di%20BelHadjSalah"> Hédi BelHadjSalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Improved Element Free Galerkin (IEFG) method is presented to treat the steady states and the transient heat transfer problems. As a result of a combination between the Improved Moving Least Square (IMLS) approximation and the Element Free Galerkin (EFG) method, the IEFG's shape functions don't have the Kronecker delta property and the penalty method is used to impose the Dirichlet boundary conditions. In this paper, two heat transfer problems, transient and steady states, are studied to improve the efficiency of this meshfree method for 2D heat transfer problems. The performance of the IEFG method is shown using the comparison between numerical and analytic results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meshfree%20methods" title="meshfree methods">meshfree methods</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Improved%20Moving%20Least%20Square%20approximation%20%28IMLS%29" title=" the Improved Moving Least Square approximation (IMLS)"> the Improved Moving Least Square approximation (IMLS)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Improved%20Element%20Free%20Galerkin%20method%20%28IEFG%29" title=" the Improved Element Free Galerkin method (IEFG)"> the Improved Element Free Galerkin method (IEFG)</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20problems" title=" heat transfer problems"> heat transfer problems</a> </p> <a href="https://publications.waset.org/abstracts/47458/the-improved-element-free-galerkin-method-for-2d-heat-transfer-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6628</span> Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassen%20M.%20Ouakad">Hassen M. Ouakad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=NEMS" title=" NEMS"> NEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=fringing-fields" title=" fringing-fields"> fringing-fields</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-plane%20stretching" title=" mid-plane stretching"> mid-plane stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin" title=" Galerkin"> Galerkin</a> </p> <a href="https://publications.waset.org/abstracts/40199/nonlinear-structural-behavior-of-micro-and-nano-actuators-using-the-galerkin-discretization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6627</span> The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20W.%20Molo%20Chin">Pius W. Molo Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huxley%20equations" title="Huxley equations">Huxley equations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-standard%20finite%20difference%20method" title=" non-standard finite difference method"> non-standard finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20rate%20of%20convergence" title=" optimal rate of convergence"> optimal rate of convergence</a> </p> <a href="https://publications.waset.org/abstracts/155210/the-analysis-of-the-two-dimensional-huxley-equation-using-the-galerkin-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6626</span> Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Leukauf">Alexandra Leukauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Schirrer"> Alexander Schirrer</a>, <a href="https://publications.waset.org/abstracts/search?q=Emir%20Talic"> Emir Talic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbing%20boundary%20conditions" title="absorbing boundary conditions">absorbing boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20control" title=" boundary control"> boundary control</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20Galerkin%20approach" title=" Fourier Galerkin approach"> Fourier Galerkin approach</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20approach" title=" modal approach"> modal approach</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20equation" title=" wave equation"> wave equation</a> </p> <a href="https://publications.waset.org/abstracts/65648/fourier-galerkin-approach-to-wave-equation-with-absorbing-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6625</span> Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azher%20Jameel">Azher Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Ashraf%20Harmain"> Ghulam Ashraf Harmain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XFEM" title="XFEM">XFEM</a>, <a href="https://publications.waset.org/abstracts/search?q=EFGM" title=" EFGM"> EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20FE-EFGM" title=" coupled FE-EFGM"> coupled FE-EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20sets" title=" level sets"> level sets</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation"> large deformation</a> </p> <a href="https://publications.waset.org/abstracts/62784/modeling-of-large-elasto-plastic-deformations-by-the-coupled-fe-efgm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6624</span> Wavelet Method for Numerical Solution of Fourth Order Wave Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Choudhury">A. H. Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20problem" title="hyperbolic problem">hyperbolic problem</a>, <a href="https://publications.waset.org/abstracts/search?q=semidiscrete%20approximations" title=" semidiscrete approximations"> semidiscrete approximations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Wavelet-Galerkin%20Method" title=" Wavelet-Galerkin Method"> Wavelet-Galerkin Method</a> </p> <a href="https://publications.waset.org/abstracts/76873/wavelet-method-for-numerical-solution-of-fourth-order-wave-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6623</span> Numerical Investigation of Multiphase Flow in Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gozel%20Judakova">Gozel Judakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Bause"> Markus Bause</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20Galerkin%20method" title="discontinuous Galerkin method">discontinuous Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler%20system" title=" Euler system"> Euler system</a>, <a href="https://publications.waset.org/abstracts/search?q=inviscid%20two-fluid%20model" title=" inviscid two-fluid model"> inviscid two-fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=streamline%20upwind%20Petrov-Galerkin%20method" title=" streamline upwind Petrov-Galerkin method"> streamline upwind Petrov-Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=twophase%20flow" title=" twophase flow"> twophase flow</a> </p> <a href="https://publications.waset.org/abstracts/61998/numerical-investigation-of-multiphase-flow-in-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6622</span> The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melusi%20Khumalo">Melusi Khumalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastacia%20Dlamini"> Anastacia Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20approach" title=" Galerkin approach"> Galerkin approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equations" title=" Fredholm integral equations"> Fredholm integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20integral%20equations" title=" nonlinear integral equations"> nonlinear integral equations</a> </p> <a href="https://publications.waset.org/abstracts/140832/the-finite-element-method-for-nonlinear-fredholm-integral-equation-of-the-second-kind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6621</span> Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Tavousi%20Tehrani">Behrang Tavousi Tehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Zaman%20Kabir"> Mohammad-Zaman Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation<em> shell theory (FSDT),</em> the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airy%20stress%20function" title="airy stress function">airy stress function</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20shell" title=" cylindrical shell"> cylindrical shell</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique" title=" Galerkin technique"> Galerkin technique</a>, <a href="https://publications.waset.org/abstracts/search?q=load-deflection%20curve" title=" load-deflection curve"> load-deflection curve</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20stress" title=" recovery stress"> recovery stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/96718/non-linear-load-deflection-response-of-shape-memory-alloys-reinforced-composite-cylindrical-shells-under-uniform-radial-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6620</span> Applying Element Free Galerkin Method on Beam and Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdad%20M%E2%80%99hamed">Mahdad M’hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaidi%20Idir"> Belaidi Idir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20computation" title="numerical computation">numerical computation</a>, <a href="https://publications.waset.org/abstracts/search?q=element-free%20Galerkin%20%28EFG%29" title=" element-free Galerkin (EFG)"> element-free Galerkin (EFG)</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20least%20squares%20%28MLS%29" title=" moving least squares (MLS)"> moving least squares (MLS)</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20methods" title=" meshless methods"> meshless methods</a> </p> <a href="https://publications.waset.org/abstracts/50344/applying-element-free-galerkin-method-on-beam-and-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6619</span> Effect of Inclusions on the Shape and Size of Crack Tip Plastic Zones by Element Free Galerkin Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jameel">A. Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Harmain"> G. A. Harmain</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Anand"> Y. Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Masoodi"> J. H. Masoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Najar"> F. A. Najar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the effect of inclusions on the shape and size of crack tip plastic zones in engineering materials subjected to static loads by employing the element free Galerkin method (EFGM). The modeling of the discontinuities produced by cracks and inclusions becomes independent of the grid chosen for analysis. The standard displacement approximation is modified by adding additional enrichment functions, which introduce the effects of different discontinuities into the formulation. The level set method has been used to represent different discontinuities present in the domain. The effect of inclusions on the extent of crack tip plastic zones is investigated by solving some numerical problems by the EFGM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EFGM" title="EFGM">EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title=" stress intensity factors"> stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20tip%20plastic%20zones" title=" crack tip plastic zones"> crack tip plastic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusions" title=" inclusions"> inclusions</a> </p> <a href="https://publications.waset.org/abstracts/63649/effect-of-inclusions-on-the-shape-and-size-of-crack-tip-plastic-zones-by-element-free-galerkin-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6618</span> Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Daryabor">Pejman Daryabor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Mohammadi"> Kamal Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title="natural frequency">natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20cylinder" title=" thick cylinder"> thick cylinder</a> </p> <a href="https://publications.waset.org/abstracts/44724/vibration-characteristics-of-functionally-graded-thick-hollow-cylinders-using-galerkin-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6617</span> A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xijun%20Yu">Xijun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenzhen%20Li"> Zhenzhen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zupeng%20Jia"> Zupeng Jia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-centered%20Lagrangian%20scheme" title="cell-centered Lagrangian scheme">cell-centered Lagrangian scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=compressible%20Euler%20equations" title=" compressible Euler equations"> compressible Euler equations</a>, <a href="https://publications.waset.org/abstracts/search?q=RKDG%20method" title=" RKDG method"> RKDG method</a> </p> <a href="https://publications.waset.org/abstracts/3584/a-runge-kutta-discontinuous-galerkin-method-for-lagrangian-compressible-euler-equations-in-two-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6616</span> Bernstein Type Polynomials for Solving Differential Equations and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yilmaz%20Simsek">Yilmaz Simsek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generating%20functions" title="generating functions">generating functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernstein%20basis%20functions" title=" Bernstein basis functions"> Bernstein basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernstein%20polynomials" title=" Bernstein polynomials"> Bernstein polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curves" title=" Bezier curves"> Bezier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title=" differential equations"> differential equations</a> </p> <a href="https://publications.waset.org/abstracts/67937/bernstein-type-polynomials-for-solving-differential-equations-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6615</span> Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabih%20Ghostine">Rabih Ghostine</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Kapfer"> Craig Kapfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Viswanathan%20Kannan"> Viswanathan Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Hoteit"> Ibrahim Hoteit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam-break" title="dam-break">dam-break</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20Galerkin%20scheme" title=" discontinuous Galerkin scheme"> discontinuous Galerkin scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title=" flood modeling"> flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a> </p> <a href="https://publications.waset.org/abstracts/99241/flood-modeling-in-urban-area-using-a-well-balanced-discontinuous-galerkin-scheme-on-unstructured-triangular-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6614</span> Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azam%20Zare">Azam Zare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title="flow control">flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=POD" title=" POD"> POD</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20projection" title=" Galerkin projection"> Galerkin projection</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/95962/numerical-investigation-of-turbulent-flow-control-by-suction-and-injection-on-a-subsonic-naca23012-airfoil-by-proper-orthogonal-decomposition-analysis-and-perturbed-reynolds-averaged-navierstokes-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6613</span> Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Al-Khaled">Kamel Al-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinc-Collocation" title="Sinc-Collocation">Sinc-Collocation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20PDEs" title=" nonlinear PDEs"> nonlinear PDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-point" title=" fixed-point"> fixed-point</a> </p> <a href="https://publications.waset.org/abstracts/9717/convergence-of-sinc-methods-applied-to-kuramoto-sivashinsky-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6612</span> Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafi">M. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bab"> S. Bab</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan"> F. Rahimi Dehgolan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20harmonic%20resonances" title="super harmonic resonances">super harmonic resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20vibration" title=" non-linear vibration"> non-linear vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=axially%20moving%20beam" title=" axially moving beam"> axially moving beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a> </p> <a href="https://publications.waset.org/abstracts/67098/super-harmonic-nonlinear-lateral-vibration-of-an-axially-moving-beam-with-rotating-prismatic-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6611</span> Generation of Numerical Data for the Facilitation of the Personalized Hyperthermic Treatment of Cancer with An Interstital Antenna Array Using the Method of Symmetrical Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prodromos%20E.%20Atlamazoglou">Prodromos E. Atlamazoglou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of moments combined with the method of symmetrical components is used for the analysis of interstitial hyperthermia applicators. The basis and testing functions are both piecewise sinusoids, qualifying our technique as a Galerkin one. The dielectric coatings are modeled by equivalent volume polarization currents, which are simply related to the conduction current distribution, avoiding in that way the introduction of additional unknowns or numerical integrations. The results of our method for a four dipole circular array, are in agreement with those already published in literature for a same hyperthermia configuration. Apart from being accurate, our approach is more general, more computationally efficient and takes into account the coupling between the antennas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title="hyperthermia">hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equations" title=" integral equations"> integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=insulated%20antennas" title=" insulated antennas"> insulated antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20symmetrical%20components" title=" method of symmetrical components"> method of symmetrical components</a> </p> <a href="https://publications.waset.org/abstracts/94040/generation-of-numerical-data-for-the-facilitation-of-the-personalized-hyperthermic-treatment-of-cancer-with-an-interstital-antenna-array-using-the-method-of-symmetrical-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6610</span> Towards a Rigorous Analysis for a Supercritical Particulate Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Bakhbakhi">Yousef Bakhbakhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20formation" title="particle formation">particle formation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20and%20size%20distribution" title=" particle size and size distribution"> particle size and size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/89209/towards-a-rigorous-analysis-for-a-supercritical-particulate-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6609</span> Numerical Analysis of Gas-Particle Mixtures through Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Judakova">G. Judakova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bause"> M. Bause</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to model and simulate numerically natural gas flow in pipelines has become of high importance for the design of pipeline systems. The understanding of the formation of hydrate particles and their dynamical behavior is of particular interest, since these processes govern the operation properties of the systems and are responsible for system failures by clogging of the pipelines under certain conditions. Mathematically, natural gas flow can be described by multiphase flow models. Using the two-fluid modeling approach, the gas phase is modeled by the compressible Euler equations and the particle phase is modeled by the pressureless Euler equations. The numerical simulation of compressible multiphase flows is an important research topic. It is well known that for nonlinear fluxes, even for smooth initial data, discontinuities in the solution are likely to occur in finite time. They are called shock waves or contact discontinuities. For hyperbolic and singularly perturbed parabolic equations the standard application of the Galerkin finite element method (FEM) leads to spurious oscillations (e.g. Gibb's phenomenon). In our approach, we use stabilized FEM, the streamline upwind Petrov-Galerkin (SUPG) method, where artificial diffusion acting only in the direction of the streamlines and using a special treatment of the boundary conditions in inviscid convective terms, is added. Numerical experiments show that the numerical solution obtained and stabilized by SUPG captures discontinuities or steep gradients of the exact solution in layers. However, within this layer the approximate solution may still exhibit overshoots or undershoots. To suitably reduce these artifacts we add a discontinuity capturing or shock capturing term. The performance properties of our numerical scheme are illustrated for two-phase flow problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title="two-phase flow">two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-particle%20mixture" title=" gas-particle mixture"> gas-particle mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=inviscid%20two-fluid%20model" title=" inviscid two-fluid model"> inviscid two-fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=euler%20equation" title=" euler equation"> euler equation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=streamline%20upwind%20petrov-galerkin" title=" streamline upwind petrov-galerkin"> streamline upwind petrov-galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20capturing" title=" shock capturing"> shock capturing</a> </p> <a href="https://publications.waset.org/abstracts/41971/numerical-analysis-of-gas-particle-mixtures-through-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6608</span> Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nandal">S. Nandal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bhargava"> R. Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=meshfree%20methods" title=" meshfree methods"> meshfree methods</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20enclosure" title=" trapezoidal enclosure"> trapezoidal enclosure</a> </p> <a href="https://publications.waset.org/abstracts/63284/numerical-simulation-of-unsteady-natural-convective-nanofluid-flow-within-a-trapezoidal-enclosure-using-meshfree-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6607</span> Large Amplitude Free Vibration of a Very Sag Marine Cable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Punjarat">O. Punjarat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Phanyasahachart"> T. Phanyasahachart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20deformation" title="axial deformation">axial deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20finite%20element%20method" title=" Galerkin finite element method"> Galerkin finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude" title=" large amplitude"> large amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a> </p> <a href="https://publications.waset.org/abstracts/114132/large-amplitude-free-vibration-of-a-very-sag-marine-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6606</span> Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghanbari">M. Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hossainpour"> S. Hossainpour</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rezazadeh"> G. Rezazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model<strong>,</strong> the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-polar%20theory" title="micro-polar theory">micro-polar theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-fluid" title=" micro-fluid"> micro-fluid</a> </p> <a href="https://publications.waset.org/abstracts/83933/longitudinal-vibration-of-a-micro-beam-in-a-micro-scale-fluid-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6605</span> Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Parvin">Salma Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alim"> M. A. Alim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al<sub>2</sub>O<sub>3</sub>-waternanofluid, TiO<sub>2</sub>-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of <em>m</em> up to a certain range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DASC" title="DASC">DASC</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rate" title=" mass flow rate"> mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/66116/influence-of-mass-flow-rate-on-forced-convective-heat-transfer-through-a-nanofluid-filled-direct-absorption-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6604</span> Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foad%20Nazari">Foad Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahmood%20Hosseini"> Seyed Mahmood Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Abolbashari"> Mohammad Hossein Abolbashari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Abolbashari"> Mohammad Hassan Abolbashari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title="optimal design">optimal design</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=FG%20plate" title=" FG plate"> FG plate</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meshless%20method" title=" hybrid meshless method"> hybrid meshless method</a>, <a href="https://publications.waset.org/abstracts/search?q=MLPG%20method" title=" MLPG method"> MLPG method</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN%20approach" title=" ANN approach"> ANN approach</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/55056/parametric-analysis-and-optimal-design-of-functionally-graded-plates-using-particle-swarm-optimization-algorithm-and-a-hybrid-meshless-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6603</span> Development of Energy Management System Based on Internet of Things Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Jye%20Shyr">Wen-Jye Shyr</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ming%20Lin"> Chia-Ming Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Yun%20Feng">Hung-Yun Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title="energy management">energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT%20technique" title=" IoT technique"> IoT technique</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=WebAccess" title=" WebAccess"> WebAccess</a> </p> <a href="https://publications.waset.org/abstracts/56513/development-of-energy-management-system-based-on-internet-of-things-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=221">221</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=222">222</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Galerkin%20technique&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>