CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 63 results for author: <span class="mathjax">Danzmann, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Danzmann, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Danzmann%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Danzmann, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07379">arXiv:2411.07379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07379">pdf</a>, <a href="https://arxiv.org/format/2411.07379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.110801">10.1103/PhysRevLett.117.110801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">Henning Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Mehmet%2C+M">Moritz Mehmet</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07379v1-abstract-short" style="display: inline;"> Squeezed states of light belong to the most prominent nonclassical resources. They have compelling applications in metrology, which has been demonstrated by their routine exploitation for improving the sensitivity of a gravitational-wave detector since 2010. Here, we report on the direct measurement of 15 dB squeezed vacuum states of light and their application to calibrate the quantum efficiency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07379v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07379v1-abstract-full" style="display: none;"> Squeezed states of light belong to the most prominent nonclassical resources. They have compelling applications in metrology, which has been demonstrated by their routine exploitation for improving the sensitivity of a gravitational-wave detector since 2010. Here, we report on the direct measurement of 15 dB squeezed vacuum states of light and their application to calibrate the quantum efficiency of photoelectric detection. The object of calibration is a customized InGaAs positive intrinsic negative (p-i-n) photodiode optimized for high external quantum efficiency. The calibration yields a value of 99.5% with a 0.5% (k = 2) uncertainty for a photon flux of the order 10^17/s at a wavelength of 1064 nm. The calibration neither requires any standard nor knowledge of the incident light power and thus represents a valuable application of squeezed states of light in quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07379v1-abstract-full').style.display = 'none'; document.getElementById('2411.07379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 110801 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02804">arXiv:2408.02804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02804">pdf</a>, <a href="https://arxiv.org/format/2408.02804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> GEO600 beam splitter thermal compensation system: new design and commissioning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nadji%2C+S">S茅verin Nadji</a>, <a href="/search/physics?searchtype=author&amp;query=Wittel%2C+H">Holger Wittel</a>, <a href="/search/physics?searchtype=author&amp;query=Mukund%2C+N">Nikhil Mukund</a>, <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">James Lough</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Bergamin%2C+F">Fabio Bergamin</a>, <a href="/search/physics?searchtype=author&amp;query=Brinkmann%2C+M">Marc Brinkmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kringel%2C+V">Volker Kringel</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Weinert%2C+M">Michael Weinert</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02804v1-abstract-short" style="display: inline;"> Gravitational waves have revolutionised the field of astronomy by providing scientists with a new way to observe the universe and gain a better understanding of exotic objects like black holes. Several large-scale laser interferometric gravitational wave detectors (GWDs) have been constructed worldwide, with a focus on achieving the best sensitivity possible. However, in order for a detector to op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02804v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02804v1-abstract-full" style="display: none;"> Gravitational waves have revolutionised the field of astronomy by providing scientists with a new way to observe the universe and gain a better understanding of exotic objects like black holes. Several large-scale laser interferometric gravitational wave detectors (GWDs) have been constructed worldwide, with a focus on achieving the best sensitivity possible. However, in order for a detector to operate at its intended sensitivity, its optics must be free from imperfections such as thermal lensing effects. In the GEO\,600 gravitational wave detector, the beam splitter (BS) experiences a significant thermal lensing effect due to the high power build-up in the Power Recycling Cavity (PRC) combined with a very small beam waist. This causes the fundamental mode to be converted into higher order modes (HOMs), subsequently impacting the detector&#39;s performance. To address this issue, the GEO\,600 detector is equipped with a thermal compensation system (TCS) applied to the BS. This involves projecting a spatially tunable heating pattern through an optical system onto the beam splitter. The main objective of the TCS is to counteract the thermal lens at the BS and restore the detector to its ideal operating condition. This paper presents the new beam splitter TCS in GEO\,600, its commissioning, and its effect on strain sensitivity. It also outlines the planned upgrade to further enhance the performance of the TCS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02804v1-abstract-full').style.display = 'none'; document.getElementById('2408.02804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11325">arXiv:2308.11325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11325">pdf</a>, <a href="https://arxiv.org/format/2308.11325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.20.024078">10.1103/PhysRevApplied.20.024078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $2\cdot 10^{-13}$ fractional laser frequency stability with a 7-cm unequal-arm Mach-Zehnder interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huarcaya%2C+V">Victor Huarcaya</a>, <a href="/search/physics?searchtype=author&amp;query=%C3%81lvarez%2C+M+D">Miguel Dovale 脕lvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Penkert%2C+D">Daniel Penkert</a>, <a href="/search/physics?searchtype=author&amp;query=Gozzo%2C+S">Stefano Gozzo</a>, <a href="/search/physics?searchtype=author&amp;query=Cano%2C+P+M">Pablo Mart铆nez Cano</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+K">Kohei Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+J+J+E">Juan Jos茅 Esteban Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Mehmet%2C+M">Moritz Mehmet</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11325v2-abstract-short" style="display: inline;"> To achieve sub-picometer sensitivities in the millihertz band, laser interferometric inertial sensors rely on some form of reduction of the laser frequency noise, typically by locking the laser to a stable frequency reference, such as the narrow-linewidth resonance of an ultra-stable optical cavity or an atomic or molecular transition. In this paper we report on a compact laser frequency stabiliza&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11325v2-abstract-full').style.display = 'inline'; document.getElementById('2308.11325v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11325v2-abstract-full" style="display: none;"> To achieve sub-picometer sensitivities in the millihertz band, laser interferometric inertial sensors rely on some form of reduction of the laser frequency noise, typically by locking the laser to a stable frequency reference, such as the narrow-linewidth resonance of an ultra-stable optical cavity or an atomic or molecular transition. In this paper we report on a compact laser frequency stabilization technique based on an unequal-arm Mach-Zehnder interferometer that is sub-nanometer stable at $10\,渭$Hz, sub-picometer at $0.5\,$mHz, and reaches a noise floor of $7\,\mathrm{fm}/\!\sqrt{\mathrm{Hz}}$ at 1 Hz. The interferometer is used in conjunction with a DC servo to stabilize the frequency of a laser down to a fractional instability below $4 \times 10^{-13}$ at averaging times from 0.1 to 100 seconds. The technique offers a wide operating range, does not rely on complex lock acquisition procedures, and can be readily integrated as part of the optical bench in future gravity missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11325v2-abstract-full').style.display = 'none'; document.getElementById('2308.11325v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 20, 024078 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18284">arXiv:2305.18284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18284">pdf</a>, <a href="https://arxiv.org/format/2305.18284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Characterization and evasion of backscattered light in the squeezed-light enhanced gravitational wave interferometer GEO 600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bergamin%2C+F">Fabio Bergamin</a>, <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">James Lough</a>, <a href="/search/physics?searchtype=author&amp;query=Schreiber%2C+E">Emil Schreiber</a>, <a href="/search/physics?searchtype=author&amp;query=Grote%2C+H">Hartmut Grote</a>, <a href="/search/physics?searchtype=author&amp;query=Mehmet%2C+M">Moritz Mehmet</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">Henning Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Andric%2C+T">Tomislav Andric</a>, <a href="/search/physics?searchtype=author&amp;query=Bisht%2C+A">Aparna Bisht</a>, <a href="/search/physics?searchtype=author&amp;query=Bringmann%2C+M">Marc Bringmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kringel%2C+V">Volker Kringel</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Mukund%2C+N">Nikhil Mukund</a>, <a href="/search/physics?searchtype=author&amp;query=Nadji%2C+S">Severin Nadji</a>, <a href="/search/physics?searchtype=author&amp;query=Sorazu%2C+B">Borja Sorazu</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K">Kenneth Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Weinert%2C+M">Michael Weinert</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18284v1-abstract-short" style="display: inline;"> Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional measurement noise. We present a theoretical descripti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18284v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18284v1-abstract-full" style="display: none;"> Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional measurement noise. We present a theoretical description of the noise coupling mechanism. We propose a control scheme to achieve a de-amplification of the backscattered light inside the OPO with a consequent reduction of the noise caused by it. The scheme was implemented at the GEO 600 detector and has proven to be crucial in maintaining a good level of quantum noise reduction of the interferometer for high parametric gain of the OPO. In particular, the mitigation of the backscattered light noise helped in reaching 6dB of quantum noise reduction [Phys. Rev. Lett. 126, 041102 (2021)]. The impact of backscattered-light-induced noise on the squeezing performance is phenomenologically equivalent to increased phase noise of the squeezing angle control. The results discussed in this paper provide a way for a more accurate estimation of the residual phase noise of the squeezed light field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18284v1-abstract-full').style.display = 'none'; document.getElementById('2305.18284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06221">arXiv:2301.06221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06221">pdf</a>, <a href="https://arxiv.org/format/2301.06221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> First demonstration of neural sensing and control in a kilometer-scale gravitational wave observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mukund%2C+N">Nikhil Mukund</a>, <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">James Lough</a>, <a href="/search/physics?searchtype=author&amp;query=Bisht%2C+A">Aparna Bisht</a>, <a href="/search/physics?searchtype=author&amp;query=Wittel%2C+H">Holger Wittel</a>, <a href="/search/physics?searchtype=author&amp;query=Nadji%2C+S+L">S茅verin Landry Nadji</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Bergamin%2C+F">Fabio Bergamin</a>, <a href="/search/physics?searchtype=author&amp;query=Brinkmann%2C+M">Marc Brinkmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kringel%2C+V">Volker Kringel</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Weinert%2C+M">Michael Weinert</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06221v2-abstract-short" style="display: inline;"> Suspended optics in gravitational wave (GW) observatories are susceptible to alignment perturbations, particularly slow drifts over time, due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both circulating power and optomechanical photon squeezing and thus decrease the astrophysical sensitivity t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06221v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06221v2-abstract-full" style="display: none;"> Suspended optics in gravitational wave (GW) observatories are susceptible to alignment perturbations, particularly slow drifts over time, due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both circulating power and optomechanical photon squeezing and thus decrease the astrophysical sensitivity to merging binaries. Traditional alignment techniques involve differential wavefront sensing using multiple quadrant photodiodes but are often restricted in bandwidth and are limited by the sensing noise. We present the first-ever successful implementation of neural network-based sensing and control at a gravitational wave observatory and demonstrate low-frequency control of the signal recycling mirror at the GEO 600 detector. Alignment information for three critical optics is simultaneously extracted from the interferometric dark port camera images via a CNN-LSTM network architecture and is then used for MIMO control using soft actor-critic-based deep reinforcement learning. Overall sensitivity improvement achieved using our scheme demonstrates deep learning&#39;s capabilities as a viable tool for real-time sensing and control for current and next-generation GW interferometers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06221v2-abstract-full').style.display = 'none'; document.getElementById('2301.06221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10292">arXiv:2005.10292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.10292">pdf</a>, <a href="https://arxiv.org/format/2005.10292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.041102">10.1103/PhysRevLett.126.041102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">James Lough</a>, <a href="/search/physics?searchtype=author&amp;query=Schreiber%2C+E">Emil Schreiber</a>, <a href="/search/physics?searchtype=author&amp;query=Bergamin%2C+F">Fabio Bergamin</a>, <a href="/search/physics?searchtype=author&amp;query=Grote%2C+H">Hartmut Grote</a>, <a href="/search/physics?searchtype=author&amp;query=Mehmet%2C+M">Moritz Mehmet</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">Henning Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Brinkmann%2C+M">Marc Brinkmann</a>, <a href="/search/physics?searchtype=author&amp;query=Bisht%2C+A">Aparna Bisht</a>, <a href="/search/physics?searchtype=author&amp;query=Kringel%2C+V">Volker Kringel</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Mukund%2C+N">Nikhil Mukund</a>, <a href="/search/physics?searchtype=author&amp;query=Nadji%2C+S">S茅verin Nadji</a>, <a href="/search/physics?searchtype=author&amp;query=Sorazu%2C+B">Borja Sorazu</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K">Kenneth Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Weinert%2C+M">Michael Weinert</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10292v1-abstract-short" style="display: inline;"> Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO\,600 observatory and demonstrate for the first time a reduction of quantum noise up to $6.03 \pm 0.02$ dB in a kilometer-scale int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10292v1-abstract-full').style.display = 'inline'; document.getElementById('2005.10292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10292v1-abstract-full" style="display: none;"> Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO\,600 observatory and demonstrate for the first time a reduction of quantum noise up to $6.03 \pm 0.02$ dB in a kilometer-scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of four. Achieving this milestone, a key goal for the upgrades of the advanced detectors, required a better understanding of the noise sources and losses, and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight towards the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10292v1-abstract-full').style.display = 'none'; document.getElementById('2005.10292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 041102 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05669">arXiv:2002.05669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.05669">pdf</a>, <a href="https://arxiv.org/format/2002.05669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.14.014030">10.1103/PhysRevApplied.14.014030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chwalla%2C+M">M Chwalla</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=%C3%81lvarez%2C+M+D">M Dovale 脕lvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+J+J+E">J J Esteban Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Barranco%2C+G+F">G Fern谩ndez Barranco</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E">E Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">O Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">G Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Killow%2C+C+J">C J Killow</a>, <a href="/search/physics?searchtype=author&amp;query=Lieser%2C+M">M Lieser</a>, <a href="/search/physics?searchtype=author&amp;query=Perreur-Lloyd%2C+M">M Perreur-Lloyd</a>, <a href="/search/physics?searchtype=author&amp;query=Robertson%2C+D+I">D I Robertson</a>, <a href="/search/physics?searchtype=author&amp;query=Rohr%2C+J+M">J M Rohr</a>, <a href="/search/physics?searchtype=author&amp;query=Schuster%2C+S">S Schuster</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarze%2C+T+S">T S Schwarze</a>, <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">M Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Wanner%2C+G">G Wanner</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+H">H Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05669v2-abstract-short" style="display: inline;"> The arm length and the isolation in space enable LISA to probe for signals unattainable on ground, opening a window to the sub-Hz gravitational-wave universe. The coupling of unavoidable angular spacecraft jitter into the longitudinal displacement measurement, an effect known as tilt-to-length (TTL) coupling, is critical for realizing the required sensitivity of picometer$/\sqrt{\rm{Hz}}$. An ultr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05669v2-abstract-full').style.display = 'inline'; document.getElementById('2002.05669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05669v2-abstract-full" style="display: none;"> The arm length and the isolation in space enable LISA to probe for signals unattainable on ground, opening a window to the sub-Hz gravitational-wave universe. The coupling of unavoidable angular spacecraft jitter into the longitudinal displacement measurement, an effect known as tilt-to-length (TTL) coupling, is critical for realizing the required sensitivity of picometer$/\sqrt{\rm{Hz}}$. An ultra-stable interferometer testbed has been developed in order to investigate this issue and validate mitigation strategies in a setup representative of LISA, and in this paper it is operated in the long-arm interferometer configuration. The testbed is fitted with a flat-top beam generator to simulate the beam received by a LISA spacecraft. We demonstrate a reduction of TTL coupling between this flat-top beam and a Gaussian reference beam via introducing two- and four-lens imaging systems. TTL coupling factors below $\pm 25\,渭$m/rad for beam tilts within $\pm 300\,渭$rad are obtained by careful optimization of the system. Moreover we show that the additional TTL coupling due to lateral alignment errors of elements of the imaging system can be compensated by introducing lateral shifts of the detector, and vice versa. These findings help validate the suitability of this noise-reduction technique for the LISA long-arm interferometer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05669v2-abstract-full').style.display = 'none'; document.getElementById('2002.05669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 14, 014030 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00242">arXiv:2001.00242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00242">pdf</a>, <a href="https://arxiv.org/format/2001.00242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.102006">10.1103/PhysRevD.101.102006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bilinear noise subtraction at the GEO 600 observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mukund%2C+N">Nikhil Mukund</a>, <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">James Lough</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Bergamin%2C+F">Fabio Bergamin</a>, <a href="/search/physics?searchtype=author&amp;query=Bisht%2C+A">Aparna Bisht</a>, <a href="/search/physics?searchtype=author&amp;query=Brinkmann%2C+M">Marc Brinkmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kringel%2C+V">Volker Kringel</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Nadji%2C+S+L">S茅verin Landry Nadji</a>, <a href="/search/physics?searchtype=author&amp;query=Weinert%2C+M">Michael Weinert</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00242v2-abstract-short" style="display: inline;"> Longitudinal control signals used to keep gravitational wave detectors at a stable operating point are often affected by modulations from test mass misalignments leading to an elevated noise floor ranging from 50 to 500 Hz. Nonstationary noise of this kind results in modulation sidebands and increases the number of glitches observed in the calibrated strain data. These artifacts ultimately affect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00242v2-abstract-full').style.display = 'inline'; document.getElementById('2001.00242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00242v2-abstract-full" style="display: none;"> Longitudinal control signals used to keep gravitational wave detectors at a stable operating point are often affected by modulations from test mass misalignments leading to an elevated noise floor ranging from 50 to 500 Hz. Nonstationary noise of this kind results in modulation sidebands and increases the number of glitches observed in the calibrated strain data. These artifacts ultimately affect the data quality and decrease the efficiency of the data analysis pipelines looking for astrophysical signals from continuous waves as well as the transient events. In this work, we develop a scheme to subtract one such bilinear noise from the gravitational wave strain data and demonstrate it at the GEO 600 observatory. We estimate the coupling by making use of narrow-band signal injections that are already in place for noise projection purposes and construct a coherent bilinear signal by a two-stage system identification process. We improve upon the existing filter design techniques by employing a Bayesian adaptive directed search strategy that optimizes across the several key parameters that affect the accuracy of the estimated model. The scheme takes into account the possible nonstationarities in the coupling by periodically updating the involved filter coefficients. The resulting postoffline subtraction leads to a suppression of modulation sidebands around the calibration lines along with a broadband reduction of the midfrequency noise floor. The observed increase in the astrophysical range and a reduction in the occurrence of nonastrophysical transients suggest that the above method is a viable data cleaning technique for current and future generation gravitational wave observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00242v2-abstract-full').style.display = 'none'; document.getElementById('2001.00242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 102006 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.11584">arXiv:1908.11584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.11584">pdf</a>, <a href="https://arxiv.org/format/1908.11584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.111101">10.1103/PhysRevLett.123.111101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LISA Pathfinder Performance Confirmed in an Open-Loop Configuration: Results from the Free-Fall Actuation Mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armano%2C+M">M. Armano</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H. Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Baird%2C+J">J. Baird</a>, <a href="/search/physics?searchtype=author&amp;query=Binetruy%2C+P">P. Binetruy</a>, <a href="/search/physics?searchtype=author&amp;query=Born%2C+M">M. Born</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoluzzi%2C+D">D. Bortoluzzi</a>, <a href="/search/physics?searchtype=author&amp;query=Castelli%2C+E">E. Castelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A. Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cesarini%2C+A">A. Cesarini</a>, <a href="/search/physics?searchtype=author&amp;query=Cruise%2C+A+M">A. M. Cruise</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+M+d+D">M. de Deus Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Diepholz%2C+I">I. Diepholz</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+G">G. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dolesi%2C+R">R. Dolesi</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L. Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+V">V. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E+D">E. D. Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Freschi%2C+M">M. Freschi</a>, <a href="/search/physics?searchtype=author&amp;query=Gesa%2C+L">L. Gesa</a>, <a href="/search/physics?searchtype=author&amp;query=Gibert%2C+F">F. Gibert</a>, <a href="/search/physics?searchtype=author&amp;query=Giardini%2C+D">D. Giardini</a>, <a href="/search/physics?searchtype=author&amp;query=Giusteri%2C+R">R. Giusteri</a>, <a href="/search/physics?searchtype=author&amp;query=Grimani%2C+C">C. Grimani</a>, <a href="/search/physics?searchtype=author&amp;query=Grzymisch%2C+J">J. Grzymisch</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.11584v1-abstract-short" style="display: inline;"> We report on the results of the LISA Pathfinder (LPF) free-fall mode experiment, in which the control force needed to compensate the quasistatic differential force acting on two test masses is applied intermittently as a series of &#34;impulse&#34; forces lasting a few seconds and separated by roughly 350 s periods of true free fall. This represents an alternative to the normal LPF mode of operation in wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11584v1-abstract-full').style.display = 'inline'; document.getElementById('1908.11584v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.11584v1-abstract-full" style="display: none;"> We report on the results of the LISA Pathfinder (LPF) free-fall mode experiment, in which the control force needed to compensate the quasistatic differential force acting on two test masses is applied intermittently as a series of &#34;impulse&#34; forces lasting a few seconds and separated by roughly 350 s periods of true free fall. This represents an alternative to the normal LPF mode of operation in which this balancing force is applied continuously, with the advantage that the acceleration noise during free fall is measured in the absence of the actuation force, thus eliminating associated noise and force calibration errors. The differential acceleration noise measurement presented here with the free-fall mode agrees with noise measured with the continuous actuation scheme, representing an important and independent confirmation of the LPF result. An additional measurement with larger actuation forces also shows that the technique can be used to eliminate actuation noise when this is a dominant factor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11584v1-abstract-full').style.display = 'none'; document.getElementById('1908.11584v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.00104">arXiv:1907.00104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.00104">pdf</a>, <a href="https://arxiv.org/format/1907.00104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.031101">10.1103/PhysRevLett.123.031101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On orbit performance of the GRACE Follow-On Laser Ranging Interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abich%2C+K">Klaus Abich</a>, <a href="/search/physics?searchtype=author&amp;query=Braxmaier%2C+C">Claus Braxmaier</a>, <a href="/search/physics?searchtype=author&amp;query=Gohlke%2C+M">Martin Gohlke</a>, <a href="/search/physics?searchtype=author&amp;query=Sanjuan%2C+J">Josep Sanjuan</a>, <a href="/search/physics?searchtype=author&amp;query=Abramovici%2C+A">Alexander Abramovici</a>, <a href="/search/physics?searchtype=author&amp;query=Okihiro%2C+B+B">Brian Bachman Okihiro</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+D+C">David C. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bize%2C+M+P">Maxime P. Bize</a>, <a href="/search/physics?searchtype=author&amp;query=Burke%2C+M+J">Michael J. Burke</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+K+C">Ken C. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=de+Vine%2C+G">Glenn de Vine</a>, <a href="/search/physics?searchtype=author&amp;query=Dickson%2C+J+A">Jeffrey A. Dickson</a>, <a href="/search/physics?searchtype=author&amp;query=Dubovitsky%2C+S">Serge Dubovitsky</a>, <a href="/search/physics?searchtype=author&amp;query=Folkner%2C+W+M">William M. Folkner</a>, <a href="/search/physics?searchtype=author&amp;query=Francis%2C+S">Samuel Francis</a>, <a href="/search/physics?searchtype=author&amp;query=Gilbert%2C+M+S">Martin S. Gilbert</a>, <a href="/search/physics?searchtype=author&amp;query=Katsumura%2C+M">Mark Katsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Klipstein%2C+W">William Klipstein</a>, <a href="/search/physics?searchtype=author&amp;query=Larsen%2C+K">Kameron Larsen</a>, <a href="/search/physics?searchtype=author&amp;query=Liebe%2C+C+C">Carl Christian Liebe</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jehhal Liu</a>, <a href="/search/physics?searchtype=author&amp;query=McKenzie%2C+K">Kirk McKenzie</a>, <a href="/search/physics?searchtype=author&amp;query=Morton%2C+P+R">Phillip R. Morton</a>, <a href="/search/physics?searchtype=author&amp;query=Murray%2C+A+T">Alexander T. Murray</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+D+J">Don J. Nguyen</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.00104v1-abstract-short" style="display: inline;"> The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degree of freedom two-way laser link between remote spacecr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00104v1-abstract-full').style.display = 'inline'; document.getElementById('1907.00104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.00104v1-abstract-full" style="display: none;"> The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degree of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wavefront sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of $1\,{\rm nm}/\sqrt{\rm Hz}$ at Fourier frequencies above 100 mHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00104v1-abstract-full').style.display = 'none'; document.getElementById('1907.00104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123 031101 19 July 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.04694">arXiv:1904.04694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.04694">pdf</a>, <a href="https://arxiv.org/ps/1904.04694">ps</a>, <a href="https://arxiv.org/format/1904.04694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab0c99">10.3847/1538-4357/ab0c99 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Forbush decreases and $&lt;$ 2-day GCR flux non-recurrent variations studied with LISA Pathfinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grimani%2C+C">C. Grimani</a>, <a href="/search/physics?searchtype=author&amp;query=Armano%2C+M">M. Armano</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H. Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Baird%2C+J">J. Baird</a>, <a href="/search/physics?searchtype=author&amp;query=Benella%2C+S">S. Benella</a>, <a href="/search/physics?searchtype=author&amp;query=Binetruy%2C+P">P. Binetruy</a>, <a href="/search/physics?searchtype=author&amp;query=Born%2C+M">M. Born</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoluzzi%2C+D">D. Bortoluzzi</a>, <a href="/search/physics?searchtype=author&amp;query=Castelli%2C+E">E. Castelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A. Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cesarini%2C+A">A. Cesarini</a>, <a href="/search/physics?searchtype=author&amp;query=Cruise%2C+A+M">A. M. Cruise</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+M+d+D">M. de Deus Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Diepholz%2C+I">I. Diepholz</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+G">G. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dolesi%2C+R">R. Dolesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fabi%2C+M">M. Fabi</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L. Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+V">V. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Finetti%2C+N">N. Finetti</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E+D">E. D. Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Freschi%2C+M">M. Freschi</a>, <a href="/search/physics?searchtype=author&amp;query=Gesa%2C+L">L. Gesa</a>, <a href="/search/physics?searchtype=author&amp;query=Gibert%2C+F">F. Gibert</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.04694v1-abstract-short" style="display: inline;"> Non-recurrent short term variations of the galactic cosmic-ray (GCR) flux above 70 MeV n$^{-1}$ were observed between 2016 February 18 and 2017 July 3 aboard the European Space Agency LISA Pathfinder (LPF) mission orbiting around the Lagrange point L1 at 1.5$\times$10$^6$ km from Earth. The energy dependence of three Forbush decreases (FDs) is studied and reported here. A comparison of these obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04694v1-abstract-full').style.display = 'inline'; document.getElementById('1904.04694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.04694v1-abstract-full" style="display: none;"> Non-recurrent short term variations of the galactic cosmic-ray (GCR) flux above 70 MeV n$^{-1}$ were observed between 2016 February 18 and 2017 July 3 aboard the European Space Agency LISA Pathfinder (LPF) mission orbiting around the Lagrange point L1 at 1.5$\times$10$^6$ km from Earth. The energy dependence of three Forbush decreases (FDs) is studied and reported here. A comparison of these observations with others carried out in space down to the energy of a few tens of MeV n$^{-1}$ shows that the same GCR flux parameterization applies to events of different intensity during the main phase. FD observations in L1 with LPF and geomagnetic storm occurrence is also presented. Finally, the characteristics of GCR flux non-recurrent variations (peaks and depressions) of duration $&lt;$ 2 days and their association with interplanetary structures are investigated. It is found that, most likely, plasma compression regions between subsequent corotating high-speed streams cause peaks, while heliospheric current sheet crossing cause the majority of the depressions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04694v1-abstract-full').style.display = 'none'; document.getElementById('1904.04694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> M. Armano et al 2019 ApJ 874 167 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.02435">arXiv:1807.02435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.02435">pdf</a>, <a href="https://arxiv.org/format/1807.02435">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.062001">10.1103/PhysRevD.98.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Charge Control for Isolated Free-Falling Test Masses: LISA Pathfinder Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armano%2C+M">M. Armano</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H. Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Baird%2C+J">J. Baird</a>, <a href="/search/physics?searchtype=author&amp;query=Binetruy%2C+P">P. Binetruy</a>, <a href="/search/physics?searchtype=author&amp;query=Born%2C+M">M. Born</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoluzzi%2C+D">D. Bortoluzzi</a>, <a href="/search/physics?searchtype=author&amp;query=Castelli%2C+E">E. Castelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A. Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cesarini%2C+A">A. Cesarini</a>, <a href="/search/physics?searchtype=author&amp;query=Cruise%2C+A+M">A. M. Cruise</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+M+d+D">M. de Deus Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Diepholz%2C+I">I. Diepholz</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+G">G. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dolesi%2C+R">R. Dolesi</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L. Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+V">V. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E+D">E. D. Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Freschi%2C+M">M. Freschi</a>, <a href="/search/physics?searchtype=author&amp;query=Gesa%2C+L">L. Gesa</a>, <a href="/search/physics?searchtype=author&amp;query=Giardini%2C+D">D. Giardini</a>, <a href="/search/physics?searchtype=author&amp;query=Gibert%2C+F">F. Gibert</a>, <a href="/search/physics?searchtype=author&amp;query=Giusteri%2C+R">R. Giusteri</a>, <a href="/search/physics?searchtype=author&amp;query=Grimani%2C+C">C. Grimani</a>, <a href="/search/physics?searchtype=author&amp;query=Grzymisch%2C+J">J. Grzymisch</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.02435v2-abstract-short" style="display: inline;"> The LISA Pathfinder charge management device was responsible for neutralising the cosmic ray induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground and in-flight that quantify the performance of this contactless discharge system which was based on photo-emission under UV illumination. In addition, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.02435v2-abstract-full').style.display = 'inline'; document.getElementById('1807.02435v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.02435v2-abstract-full" style="display: none;"> The LISA Pathfinder charge management device was responsible for neutralising the cosmic ray induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground and in-flight that quantify the performance of this contactless discharge system which was based on photo-emission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modelling of the absorbed UV light within the Pathfinder sensor was carried out with the GEANT4 software toolkit and a separate MATLAB charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.02435v2-abstract-full').style.display = 'none'; document.getElementById('1807.02435v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 062001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09374">arXiv:1802.09374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.09374">pdf</a>, <a href="https://arxiv.org/ps/1802.09374">ps</a>, <a href="https://arxiv.org/format/1802.09374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaa774">10.3847/1538-4357/aaa774 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a Forbush decrease with LISA Pathfinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armano%2C+M">M. Armano</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H. Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Baird%2C+J">J. Baird</a>, <a href="/search/physics?searchtype=author&amp;query=Bassan%2C+M">M. Bassan</a>, <a href="/search/physics?searchtype=author&amp;query=Benella%2C+S">S. Benella</a>, <a href="/search/physics?searchtype=author&amp;query=Binetruy%2C+P">P. Binetruy</a>, <a href="/search/physics?searchtype=author&amp;query=Born%2C+M">M. Born</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoluzzi%2C+D">D. Bortoluzzi</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A. Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Cesarini%2C+A">A. Cesarini</a>, <a href="/search/physics?searchtype=author&amp;query=Cruise%2C+A+M">A. M. Cruise</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+M+d+D">M. de Deus Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Diepholz%2C+I">I. Diepholz</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+G">G. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dolesi%2C+R">R. Dolesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fabi%2C+M">M. Fabi</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L. Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+V">V. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Finetti%2C+N">N. Finetti</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E+D">E. D. Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Freschi%2C+M">M. Freschi</a>, <a href="/search/physics?searchtype=author&amp;query=Gesa%2C+L">L. Gesa</a>, <a href="/search/physics?searchtype=author&amp;query=Gibert%2C+F">F. Gibert</a>, <a href="/search/physics?searchtype=author&amp;query=Giardini%2C+D">D. Giardini</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09374v2-abstract-short" style="display: inline;"> Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder (LPF), meant for subsystems diagnostics, was devoted to the measurement of galactic cosmic-ray and solar energetic particle integral fluxes above 70 Me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09374v2-abstract-full').style.display = 'inline'; document.getElementById('1802.09374v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09374v2-abstract-full" style="display: none;"> Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder (LPF), meant for subsystems diagnostics, was devoted to the measurement of galactic cosmic-ray and solar energetic particle integral fluxes above 70 MeV n$^{-1}$ up to 6500 counts s$^{-1}$. PD data were gathered with a sampling time of 15 s. Characteristics and energy-dependence of GCR flux recurrent depressions and of a Forbush decrease dated August 2, 2016 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections (ICMEs) is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09374v2-abstract-full').style.display = 'none'; document.getElementById('1802.09374v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 854, 2018, 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.10320">arXiv:1711.10320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.10320">pdf</a>, <a href="https://arxiv.org/ps/1711.10320">ps</a>, <a href="https://arxiv.org/format/1711.10320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aab86c">10.1088/1361-6382/aab86c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reducing tilt-to-length coupling for the LISA test mass interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">M Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Schuster%2C+S">S Schuster</a>, <a href="/search/physics?searchtype=author&amp;query=Lieser%2C+M">M Lieser</a>, <a href="/search/physics?searchtype=author&amp;query=Zwetz%2C+M">M Zwetz</a>, <a href="/search/physics?searchtype=author&amp;query=Chwalla%2C+M">M Chwalla</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Barranco%2C+G+F">G Fernandez Barranco</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E+D">E D Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">O Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">G Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Killow%2C+C+J">C J Killow</a>, <a href="/search/physics?searchtype=author&amp;query=Perreur-Lloyd%2C+M">M Perreur-Lloyd</a>, <a href="/search/physics?searchtype=author&amp;query=Robertson%2C+D+I">D I Robertson</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarze%2C+T+S">T S Schwarze</a>, <a href="/search/physics?searchtype=author&amp;query=Wanner%2C+G">G Wanner</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+H">H Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.10320v1-abstract-short" style="display: inline;"> Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement -- tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.10320v1-abstract-full').style.display = 'inline'; document.getElementById('1711.10320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.10320v1-abstract-full" style="display: none;"> Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement -- tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of +-25 um/rad for interfering beams with relative angles of up to +-300 urad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.10320v1-abstract-full').style.display = 'none'; document.getElementById('1711.10320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work will be submitted to CQG</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity, 2018, Volume 35, Number 10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.06515">arXiv:1709.06515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.06515">pdf</a>, <a href="https://arxiv.org/format/1709.06515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aaa879">10.1088/1361-6382/aaa879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards the LISA Backlink: Experiment design for comparing optical phase reference distribution systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Isleif%2C+K">Katharina-Sophie Isleif</a>, <a href="/search/physics?searchtype=author&amp;query=Bischof%2C+L">Lea Bischof</a>, <a href="/search/physics?searchtype=author&amp;query=Ast%2C+S">Stefan Ast</a>, <a href="/search/physics?searchtype=author&amp;query=Penkert%2C+D">Daniel Penkert</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarze%2C+T+S">Thomas S Schwarze</a>, <a href="/search/physics?searchtype=author&amp;query=Barranco%2C+G+F">Germ谩n Fern谩ndez Barranco</a>, <a href="/search/physics?searchtype=author&amp;query=Zwetz%2C+M">Max Zwetz</a>, <a href="/search/physics?searchtype=author&amp;query=Veith%2C+S">Sonja Veith</a>, <a href="/search/physics?searchtype=author&amp;query=Hennig%2C+J">Jan-Simon Hennig</a>, <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">Michael Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Reiche%2C+J">Jens Reiche</a>, <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">Oliver Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.06515v3-abstract-short" style="display: inline;"> LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06515v3-abstract-full').style.display = 'inline'; document.getElementById('1709.06515v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.06515v3-abstract-full" style="display: none;"> LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most $2蟺\,\mathrm{渭rad/\sqrt{Hz}}$, equivalent to $1\,\mathrm{pm/\sqrt{Hz}}$ for a wavelength of $1064\,\mathrm{nm}$ in the frequency band from $0.1\,\mathrm{mHz}$ to $1\,\mathrm{Hz}$. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by $\pm 1^\circ$ are presented. This experiment demonstrates sufficient thermal stability during rotation of less than $10^{-4}\,\mathrm{K/\sqrt{Hz}}$ at $1\,\mathrm{mHz}$ and operation of the free beam steering mirror control over more than 1 week. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06515v3-abstract-full').style.display = 'none'; document.getElementById('1709.06515v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, submitted to Classical Quantum Gravity</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.02385">arXiv:1709.02385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.02385">pdf</a>, <a href="https://arxiv.org/format/1709.02385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aaa276">10.1088/1361-6382/aaa276 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-pm/$\mathrm{\mathbf{\sqrt{\rm Hz}}}$ non-reciprocal noise in the LISA backlink fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fleddermann%2C+R">Roland Fleddermann</a>, <a href="/search/physics?searchtype=author&amp;query=Diekmann%2C+C">Christian Diekmann</a>, <a href="/search/physics?searchtype=author&amp;query=Steier%2C+F">Frank Steier</a>, <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">Michael Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.02385v3-abstract-short" style="display: inline;"> The future space-based gravitational wave detector Laser Interferometer Space Antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02385v3-abstract-full').style.display = 'inline'; document.getElementById('1709.02385v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.02385v3-abstract-full" style="display: none;"> The future space-based gravitational wave detector Laser Interferometer Space Antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (&#34;non-reciprocal&#34;) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur$^{\rm TM}$ baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm/$\sqrt{\textrm{Hz}}$ level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02385v3-abstract-full').style.display = 'none'; document.getElementById('1709.02385v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02903">arXiv:1707.02903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02903">pdf</a>, <a href="https://arxiv.org/format/1707.02903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aa5e1f">10.1088/1361-6382/aa5e1f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Passive-performance, analysis, and upgrades of a 1-ton seismic attenuation system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bergmann%2C+G">G Bergmann</a>, <a href="/search/physics?searchtype=author&amp;query=Mow-Lowry%2C+C+M">C M Mow-Lowry</a>, <a href="/search/physics?searchtype=author&amp;query=Adya%2C+V+B">V B Adya</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolini%2C+A">A Bertolini</a>, <a href="/search/physics?searchtype=author&amp;query=Hanke%2C+M+M">M M Hanke</a>, <a href="/search/physics?searchtype=author&amp;query=Kirchhoff%2C+R">R Kirchhoff</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6hlenbeck%2C+S+M">S M K枚hlenbeck</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BChn%2C+G">G K眉hn</a>, <a href="/search/physics?searchtype=author&amp;query=Oppermann%2C+P">P Oppermann</a>, <a href="/search/physics?searchtype=author&amp;query=Wanner%2C+A">A Wanner</a>, <a href="/search/physics?searchtype=author&amp;query=Westphal%2C+T">T Westphal</a>, <a href="/search/physics?searchtype=author&amp;query=W%C3%B6hler%2C+J">J W枚hler</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D+S">D S Wu</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">H L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">K A Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02903v1-abstract-short" style="display: inline;"> The 10m Prototype facility at the Albert-Einstein-Institute (AEI) in Hanover, Germany, employs three large seismic attenuation systems to reduce mechanical motion. The AEI Seismic-Attenuation-System (AEI-SAS) uses mechanical anti-springs in order to achieve resonance frequencies below 0.5Hz. This system provides passive isolation from ground motion by a factor of about 400 in the horizontal direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02903v1-abstract-full').style.display = 'inline'; document.getElementById('1707.02903v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02903v1-abstract-full" style="display: none;"> The 10m Prototype facility at the Albert-Einstein-Institute (AEI) in Hanover, Germany, employs three large seismic attenuation systems to reduce mechanical motion. The AEI Seismic-Attenuation-System (AEI-SAS) uses mechanical anti-springs in order to achieve resonance frequencies below 0.5Hz. This system provides passive isolation from ground motion by a factor of about 400 in the horizontal direction at 4Hz and in the vertical direction at 9Hz. The presented isolation performance is measured under vacuum conditions using a combination of commercial and custom-made inertial sensors. Detailed analysis of this performance led to the design and implementation of tuned dampers to mitigate the effect of the unavoidable higher order modes of the system. These dampers reduce RMS motion substantially in the frequency range between 10 and 100Hz in 6 degrees of freedom. The results presented here demonstrate that the AEI-SAS provides substantial passive isolation at all the fundamental mirror-suspension resonances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02903v1-abstract-full').style.display = 'none'; document.getElementById('1707.02903v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity 34.6 (2017): 065002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.03329">arXiv:1702.03329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.03329">pdf</a>, <a href="https://arxiv.org/format/1702.03329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.043831">10.1103/PhysRevA.95.043831 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum correlation measurements in interferometric gravitational wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martynov%2C+D+V">D. V. Martynov</a>, <a href="/search/physics?searchtype=author&amp;query=Frolov%2C+V+V">V. V. Frolov</a>, <a href="/search/physics?searchtype=author&amp;query=Kandhasamy%2C+S">S. Kandhasamy</a>, <a href="/search/physics?searchtype=author&amp;query=Izumi%2C+K">K. Izumi</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Mavalvala%2C+N">N. Mavalvala</a>, <a href="/search/physics?searchtype=author&amp;query=Hall%2C+E+D">E. D. Hall</a>, <a href="/search/physics?searchtype=author&amp;query=Lanza%2C+R">R. Lanza</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+S+B">S. B. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/physics?searchtype=author&amp;query=Appert%2C+S">S. Appert</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&amp;query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+B">B. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/physics?searchtype=author&amp;query=Bartos%2C+I">I. Bartos</a>, <a href="/search/physics?searchtype=author&amp;query=Batch%2C+J+C">J. C. Batch</a> , et al. (177 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.03329v1-abstract-short" style="display: inline;"> Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational wave detectors, such as the Advanced Laser Interferometer Gravitational wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03329v1-abstract-full').style.display = 'inline'; document.getElementById('1702.03329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.03329v1-abstract-full" style="display: none;"> Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational wave detectors, such as the Advanced Laser Interferometer Gravitational wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03329v1-abstract-full').style.display = 'none'; document.getElementById('1702.03329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 95, 043831 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.09684">arXiv:1610.09684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.09684">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.7.024027">10.1103/PhysRevApplied.7.024027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-Frequency Stabilization via a Quasimonolithic Mach-Zehnder Interferometer with Arms of Unequal Length and Balanced dc Readout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">Oliver Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Isleif%2C+K">Katharina-Sophie Isleif</a>, <a href="/search/physics?searchtype=author&amp;query=Mehmet%2C+M">Moritz Mehmet</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.09684v2-abstract-short" style="display: inline;"> Low frequency high precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer level sensitivities in the 0.1 mHz to 1 Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09684v2-abstract-full').style.display = 'inline'; document.getElementById('1610.09684v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.09684v2-abstract-full" style="display: none;"> Low frequency high precision laser interferometry is subject to excess laser-frequency-noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This approach is crucial to achieve picometer level sensitivities in the 0.1 mHz to 1 Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilising an external cavity diode laser to a quasi-monolithic unequal arm-length Mach-Zehnder interferometer read out at mid-fringe via balanced detection. We find this stabilization scheme to be an elegant solution combining a minimal number of optical components, no additional laser modulations and relatively low frequency noise levels. The Mach-Zehnder interferometer has been designed and constructed to minimize the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool ifocad. We achieve frequency-noise levels below 100 Hz/$\sqrt{\textrm{Hz}}$ at 1 Hz and are able to demonstrate the LISA frequency prestabilization requirement of 300 Hz/$\sqrt{\textrm{Hz}}$ down to frequencies of 100 mHz by beating the stabilized laser with an iodine-locked reference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09684v2-abstract-full').style.display = 'none'; document.getElementById('1610.09684v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, published in Phyiscal Review Applied</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 7, 024027 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00408">arXiv:1607.00408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.00408">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/33/24/245015">10.1088/0264-9381/33/24/245015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chwalla%2C+M">Michael Chwalla</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Barranco%2C+G+F">Germ谩n Fern谩ndez Barranco</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E">Ewan Fitzsimons</a>, <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">Oliver Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Killow%2C+C+J">Christian J Killow</a>, <a href="/search/physics?searchtype=author&amp;query=Lieser%2C+M">Maike Lieser</a>, <a href="/search/physics?searchtype=author&amp;query=Perreur-Lloyd%2C+M">Michael Perreur-Lloyd</a>, <a href="/search/physics?searchtype=author&amp;query=Robertson%2C+D+I">David I Robertson</a>, <a href="/search/physics?searchtype=author&amp;query=Schuster%2C+S">S枚nke Schuster</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarze%2C+T+S">Thomas S Schwarze</a>, <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">Michael Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+H">Henry Ward</a>, <a href="/search/physics?searchtype=author&amp;query=Zwetz%2C+M">Max Zwetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00408v3-abstract-short" style="display: inline;"> The Laser Interferometer Space Antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00408v3-abstract-full').style.display = 'inline'; document.getElementById('1607.00408v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00408v3-abstract-full" style="display: none;"> The Laser Interferometer Space Antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00408v3-abstract-full').style.display = 'none'; document.getElementById('1607.00408v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity, 33(24):245015, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.00439">arXiv:1604.00439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.00439">pdf</a>, <a href="https://arxiv.org/format/1604.00439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.112004">10.1103/PhysRevD.93.112004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martynov%2C+D+V">D. V. Martynov</a>, <a href="/search/physics?searchtype=author&amp;query=Hall%2C+E+D">E. D. Hall</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+R+A">R. A. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+S+B">S. B. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arain%2C+M+A">M. A. Arain</a>, <a href="/search/physics?searchtype=author&amp;query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&amp;query=Austin%2C+L">L. Austin</a>, <a href="/search/physics?searchtype=author&amp;query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&amp;query=Barbet%2C+M">M. Barbet</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+B">B. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Bartos%2C+I">I. Bartos</a>, <a href="/search/physics?searchtype=author&amp;query=Batch%2C+J+C">J. C. Batch</a>, <a href="/search/physics?searchtype=author&amp;query=Bell%2C+A+S">A. S. Bell</a>, <a href="/search/physics?searchtype=author&amp;query=Belopolski%2C+I">I. Belopolski</a>, <a href="/search/physics?searchtype=author&amp;query=Bergman%2C+J">J. Bergman</a> , et al. (239 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.00439v3-abstract-short" style="display: inline;"> The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00439v3-abstract-full').style.display = 'inline'; document.getElementById('1604.00439v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.00439v3-abstract-full" style="display: none;"> The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than $10^{-23}/\sqrt{\text{Hz}}$ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the observable volume in the universe. The average distance at which coalescing binary black hole systems with individual masses of 30 $M_\odot$ could be detected was 1.3 Gpc. Similarly, the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of Universe increased respectively by a factor 69 and 43. These improvements allowed Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00439v3-abstract-full').style.display = 'none'; document.getElementById('1604.00439v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 112004 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.03845">arXiv:1602.03845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.03845">pdf</a>, <a href="https://arxiv.org/ps/1602.03845">ps</a>, <a href="https://arxiv.org/format/1602.03845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.062003">10.1103/PhysRevD.95.062003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+B+P">B. P. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abernathy%2C+M+R">M. R. Abernathy</a>, <a href="/search/physics?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Addesso%2C+P">P. Addesso</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/physics?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/physics?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/physics?searchtype=author&amp;query=Allen%2C+B">B. Allen</a>, <a href="/search/physics?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/physics?searchtype=author&amp;query=Amariutei%2C+D+V">D. V. Amariutei</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+S+B">S. B. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+W+G">W. G. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+M+C">M. C. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Arceneaux%2C+C+C">C. C. Arceneaux</a>, <a href="/search/physics?searchtype=author&amp;query=Areeda%2C+J+S">J. S. Areeda</a>, <a href="/search/physics?searchtype=author&amp;query=Arun%2C+K+G">K. G. Arun</a> , et al. (702 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.03845v2-abstract-short" style="display: inline;"> In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector&#39;s differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03845v2-abstract-full').style.display = 'inline'; document.getElementById('1602.03845v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.03845v2-abstract-full" style="display: none;"> In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector&#39;s differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector&#39;s gravitational-wave response. The gravitational-wave response model is determined by the detector&#39;s opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03845v2-abstract-full').style.display = 'none'; document.getElementById('1602.03845v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 062003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00317">arXiv:1510.00317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.00317">pdf</a>, <a href="https://arxiv.org/format/1510.00317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/33/7/075009">10.1088/0264-9381/33/7/075009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GEO 600 and the GEO-HF upgrade program: successes and challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dooley%2C+K+L">K. L. Dooley</a>, <a href="/search/physics?searchtype=author&amp;query=Leong%2C+J+R">J. R. Leong</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+T">T. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Bisht%2C+A">A. Bisht</a>, <a href="/search/physics?searchtype=author&amp;query=Bogan%2C+C">C. Bogan</a>, <a href="/search/physics?searchtype=author&amp;query=Degallaix%2C+J">J. Degallaix</a>, <a href="/search/physics?searchtype=author&amp;query=Gr%C3%A4f%2C+C">C. Gr盲f</a>, <a href="/search/physics?searchtype=author&amp;query=Hild%2C+S">S. Hild</a>, <a href="/search/physics?searchtype=author&amp;query=Hough%2C+J">J. Hough</a>, <a href="/search/physics?searchtype=author&amp;query=Khalaidovski%2C+A">A. Khalaidovski</a>, <a href="/search/physics?searchtype=author&amp;query=Lastzka%2C+N">N. Lastzka</a>, <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">J. Lough</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">H. L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Macleod%2C+D">D. Macleod</a>, <a href="/search/physics?searchtype=author&amp;query=Nuttall%2C+L">L. Nuttall</a>, <a href="/search/physics?searchtype=author&amp;query=Prijatelj%2C+M">M. Prijatelj</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">R. Schnabel</a>, <a href="/search/physics?searchtype=author&amp;query=Schreiber%2C+E">E. Schreiber</a>, <a href="/search/physics?searchtype=author&amp;query=Slutsky%2C+J">J. Slutsky</a>, <a href="/search/physics?searchtype=author&amp;query=Sorazu%2C+B">B. Sorazu</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">K. A. Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">H. Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Was%2C+M">M. Was</a>, <a href="/search/physics?searchtype=author&amp;query=Willke%2C+B">B. Willke</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00317v2-abstract-short" style="display: inline;"> The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00317v2-abstract-full').style.display = 'inline'; document.getElementById('1510.00317v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00317v2-abstract-full" style="display: none;"> The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00317v2-abstract-full').style.display = 'none'; document.getElementById('1510.00317v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06468">arXiv:1507.06468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06468">pdf</a>, <a href="https://arxiv.org/ps/1507.06468">ps</a>, <a href="https://arxiv.org/format/1507.06468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.24.000146">10.1364/OE.24.000146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Alignment sensing and control for squeezed vacuum states of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schreiber%2C+E">Emil Schreiber</a>, <a href="/search/physics?searchtype=author&amp;query=Dooley%2C+K+L">Kathrine L. Dooley</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">Henning Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Bisht%2C+A">Aparna Bisht</a>, <a href="/search/physics?searchtype=author&amp;query=Leong%2C+J+R">Jonathan R. Leong</a>, <a href="/search/physics?searchtype=author&amp;query=Lough%2C+J">James Lough</a>, <a href="/search/physics?searchtype=author&amp;query=Prijatelj%2C+M">Mirko Prijatelj</a>, <a href="/search/physics?searchtype=author&amp;query=Slutsky%2C+J">Jacob Slutsky</a>, <a href="/search/physics?searchtype=author&amp;query=Was%2C+M">Michal Was</a>, <a href="/search/physics?searchtype=author&amp;query=Wittel%2C+H">Holger Wittel</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Grote%2C+H">Hartmut Grote</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06468v1-abstract-short" style="display: inline;"> Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO600 gravitat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06468v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06468v1-abstract-full" style="display: none;"> Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06468v1-abstract-full').style.display = 'none'; document.getElementById('1507.06468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P1500056 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.08266">arXiv:1504.08266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.08266">pdf</a>, <a href="https://arxiv.org/format/1504.08266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4927071">10.1063/1.4927071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">Oliver Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Diekmann%2C+C">Christian Diekmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kullmann%2C+J">Joachim Kullmann</a>, <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">Michael Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Bykov%2C+I">Ioury Bykov</a>, <a href="/search/physics?searchtype=author&amp;query=Barke%2C+S">Simon Barke</a>, <a href="/search/physics?searchtype=author&amp;query=Brause%2C+N+C">Nils Christopher Brause</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+J+J+E">Juan Jos茅 Esteban Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Schwarze%2C+T+S">Thomas S. Schwarze</a>, <a href="/search/physics?searchtype=author&amp;query=Reiche%2C+J">Jens Reiche</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Rasmussen%2C+T">Torben Rasmussen</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+T+V">Torben Vendt Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Engaard%2C+A">Anders Engaard</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersen%2C+S+M">S酶ren M酶ller Pedersen</a>, <a href="/search/physics?searchtype=author&amp;query=Jennrich%2C+O">Oliver Jennrich</a>, <a href="/search/physics?searchtype=author&amp;query=Suess%2C+M">Martin Suess</a>, <a href="/search/physics?searchtype=author&amp;query=Sodnik%2C+Z">Zoran Sodnik</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.08266v1-abstract-short" style="display: inline;"> Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of $渭\textrm{rad}/\sqrt{\textrm{Hz}}$ at frequencies between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.08266v1-abstract-full').style.display = 'inline'; document.getElementById('1504.08266v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.08266v1-abstract-full" style="display: none;"> Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of $渭\textrm{rad}/\sqrt{\textrm{Hz}}$ at frequencies between $0.1\,\textrm{mHz}$ and $1\,\textrm{Hz}$. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.08266v1-abstract-full').style.display = 'none'; document.getElementById('1504.08266v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Review of Scientific Instruments on April 30th 2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 86, 074501 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.01381">arXiv:1503.01381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.01381">pdf</a>, <a href="https://arxiv.org/format/1503.01381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.40.002053">10.1364/OL.40.002053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cancellation of lateral displacement noise of 3-port gratings for coupling light to cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meinders%2C+M">Melanie Meinders</a>, <a href="/search/physics?searchtype=author&amp;query=Kroker%2C+S">Stefanie Kroker</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+A+P">Amrit Pal Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Kley%2C+E">Ernst-Bernhard Kley</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%BCnnermann%2C+A">Andreas T眉nnermann</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.01381v2-abstract-short" style="display: inline;"> Reflection gratings enable light coupling to optical cavities without transmission through substrates. Gratings that have three ports and are mounted in second-order Littrow configuration even allow the coupling to high-finesse cavities using low diffraction efficiencies. In contrast to conventional transmissive cavity couplers, however, the phase of the diffracted light depends on the lateral pos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01381v2-abstract-full').style.display = 'inline'; document.getElementById('1503.01381v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.01381v2-abstract-full" style="display: none;"> Reflection gratings enable light coupling to optical cavities without transmission through substrates. Gratings that have three ports and are mounted in second-order Littrow configuration even allow the coupling to high-finesse cavities using low diffraction efficiencies. In contrast to conventional transmissive cavity couplers, however, the phase of the diffracted light depends on the lateral position of the grating, which introduces an additional noise coupling. Here we experimentally demonstrate that this kind of noise cancels out once both diffracted output ports of the grating are combined. We achieve the same signal-to-shot-noise ratio as for a conventional coupler. From this perspective, 3-port grating couplers in second-order Littrow configuration remain a valuable approach to reducing optical absorption of cavity coupler substrates in future gravitational wave detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01381v2-abstract-full').style.display = 'none'; document.getElementById('1503.01381v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Lett. 40, 2053-2055 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3853">arXiv:1411.3853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.3853">pdf</a>, <a href="https://arxiv.org/format/1411.3853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/32/17/175021">10.1088/0264-9381/32/17/175021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Design of Electrostatic Mirror Actuators for Application in High-Precision Interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wittel%2C+H">H. Wittel</a>, <a href="/search/physics?searchtype=author&amp;query=Hild%2C+S">S. Hild</a>, <a href="/search/physics?searchtype=author&amp;query=Bergmann%2C+G">G. Bergmann</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">K. A. Strain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3853v1-abstract-short" style="display: inline;"> We describe a new geometry for electrostatic actuators to be used in sensitive laser interferometers. The arrangement consists of two plates at the sides of the mirror (test mass), and therefore does not reduce its clear aperture as a conventional electrostatic drive (ESD) would do. Using the sample case of the AEI-10m prototype interferometer, we investigate the actuation range and influences of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3853v1-abstract-full').style.display = 'inline'; document.getElementById('1411.3853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3853v1-abstract-full" style="display: none;"> We describe a new geometry for electrostatic actuators to be used in sensitive laser interferometers. The arrangement consists of two plates at the sides of the mirror (test mass), and therefore does not reduce its clear aperture as a conventional electrostatic drive (ESD) would do. Using the sample case of the AEI-10m prototype interferometer, we investigate the actuation range and influences of relative misalignment of the ESD plates in respect to the test mass. We find that in the case of the AEI-10 m prototype interferometer, this new kind of ESD could provide a range of 0.28 micrometer when operated at a voltage of 1 kV. In addition, the geometry presented is shown to provide a reduction factor of about 100 in the magnitude of actuator motion coupling to test mass displacement. We show that therefore in the specific case of the AEI-10m interferometer it is possible to mount the ESD actuators directly on the optical table, without spoiling the seismic isolation performance of the triple stage suspension of the main test masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3853v1-abstract-full').style.display = 'none'; document.getElementById('1411.3853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1260">arXiv:1411.1260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.1260">pdf</a>, <a href="https://arxiv.org/format/1411.1260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/32/9/095004">10.1088/0264-9381/32/9/095004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Gravitational Wave Observatory Designer: Sensitivity Limits of Spaceborne Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barke%2C+S">Simon Barke</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+J+J+E">Juan Jose Esteban Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Tr%C3%B6bs%2C+M">Michael Tr枚bs</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1260v1-abstract-short" style="display: inline;"> The most promising concept for low frequency gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web appli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1260v1-abstract-full').style.display = 'inline'; document.getElementById('1411.1260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1260v1-abstract-full" style="display: none;"> The most promising concept for low frequency gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus you can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory&#39;s sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1260v1-abstract-full').style.display = 'none'; document.getElementById('1411.1260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.5367">arXiv:1311.5367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.5367">pdf</a>, <a href="https://arxiv.org/format/1311.5367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/31/6/065008">10.1088/0264-9381/31/6/065008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Correction of Astigmatism in the Gravitational Wave Observatory GEO 600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wittel%2C+H">Holger Wittel</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Affeldt%2C+C">Christoph Affeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Dooley%2C+K+L">Katherine L Dooley</a>, <a href="/search/physics?searchtype=author&amp;query=Grote%2C+H">Hartmut Grote</a>, <a href="/search/physics?searchtype=author&amp;query=Leong%2C+J+R">Jonathan R Leong</a>, <a href="/search/physics?searchtype=author&amp;query=Prijatelj%2C+M">Mirko Prijatelj</a>, <a href="/search/physics?searchtype=author&amp;query=Schreiber%2C+E">Emil Schreiber</a>, <a href="/search/physics?searchtype=author&amp;query=Slutsky%2C+J">Jacob Slutsky</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">Kenneth A. Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Was%2C+M">Michal Was</a>, <a href="/search/physics?searchtype=author&amp;query=Willke%2C+B">Benno Willke</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.5367v1-abstract-short" style="display: inline;"> The output port of GEO 600 is dominated by unwanted high order modes (HOMs). The current thermal actuation system, a ring heater behind one of the folding mirrors, causes a significant amount of astigmatism, which produces HOMs. We have built and installed an astigmatism correction system, based on heating this folding mirror at the sides (laterally). With these side heaters and the ring heater be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.5367v1-abstract-full').style.display = 'inline'; document.getElementById('1311.5367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.5367v1-abstract-full" style="display: none;"> The output port of GEO 600 is dominated by unwanted high order modes (HOMs). The current thermal actuation system, a ring heater behind one of the folding mirrors, causes a significant amount of astigmatism, which produces HOMs. We have built and installed an astigmatism correction system, based on heating this folding mirror at the sides (laterally). With these side heaters and the ring heater behind the mirror, it is possible to tune its radius of curvature in the horizontal and the vertical degree of freedom. We use this system to match the mirrors in the two arms of GEO 600 to each other, thereby reducing the contrast defect. The use of the side heaters reduces the power of the HOMs at the output of GEO 600 by approximately 37%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.5367v1-abstract-full').style.display = 'none'; document.getElementById('1311.5367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.2486">arXiv:1310.2486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.2486">pdf</a>, <a href="https://arxiv.org/format/1310.2486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/30/23/235029">10.1088/0264-9381/30/23/235029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">Oliver Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Sheard%2C+B">Benjamin Sheard</a>, <a href="/search/physics?searchtype=author&amp;query=Bykov%2C+I">Iouri Bykov</a>, <a href="/search/physics?searchtype=author&amp;query=Kullmann%2C+J">Joachim Kullmann</a>, <a href="/search/physics?searchtype=author&amp;query=Delgado%2C+J+J+E">Juan Jose Esteban Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.2486v1-abstract-short" style="display: inline;"> Inter satellite laser interferometry is a central component of future space-borne gravity instruments like LISA, eLISA, NGO and future geodesy missions. The inherently small laser wavelength allows to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, able to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.2486v1-abstract-full').style.display = 'inline'; document.getElementById('1310.2486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.2486v1-abstract-full" style="display: none;"> Inter satellite laser interferometry is a central component of future space-borne gravity instruments like LISA, eLISA, NGO and future geodesy missions. The inherently small laser wavelength allows to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, able to measure the phase of an incoming beatnote with high precision over a wide range of frequencies. The implementation of such phasemeters is based on all digital phase-locked loops, hosted in FPGAs. Here we present a precise model of an all digital phase locked loop that allows to design such a readout algorithm and we support our analysis by numerical performance measurements and experiments with analog signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.2486v1-abstract-full').style.display = 'none'; document.getElementById('1310.2486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, accepted for publication in CQG</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity, Volume 30, Number 23 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.4487">arXiv:1306.4487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.4487">pdf</a>, <a href="https://arxiv.org/ps/1306.4487">ps</a>, <a href="https://arxiv.org/format/1306.4487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> State space modelling and data analysis exercises in LISA Pathfinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nofrarias%2C+M">M Nofrarias</a>, <a href="/search/physics?searchtype=author&amp;query=Antonucci%2C+F">F Antonucci</a>, <a href="/search/physics?searchtype=author&amp;query=Armano%2C+M">M Armano</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+G">G Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Benedetti%2C+M">M Benedetti</a>, <a href="/search/physics?searchtype=author&amp;query=Binetruy%2C+P">P Binetruy</a>, <a href="/search/physics?searchtype=author&amp;query=Bogenstahl%2C+J">J Bogenstahl</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoluzzi%2C+D">D Bortoluzzi</a>, <a href="/search/physics?searchtype=author&amp;query=Brandt%2C+N">N Brandt</a>, <a href="/search/physics?searchtype=author&amp;query=Caleno%2C+M">M Caleno</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Congedo%2C+G">G Congedo</a>, <a href="/search/physics?searchtype=author&amp;query=Cruise%2C+M">M Cruise</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=De+Marchi%2C+F">F De Marchi</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Aguilo%2C+M">M Diaz-Aguilo</a>, <a href="/search/physics?searchtype=author&amp;query=Diepholz%2C+I">I Diepholz</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+G">G Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dolesi%2C+R">R Dolesi</a>, <a href="/search/physics?searchtype=author&amp;query=Dunbar%2C+N">N Dunbar</a>, <a href="/search/physics?searchtype=author&amp;query=Fauste%2C+J">J Fauste</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Fichter%2C+V+F+W">V Ferroni W Fichter</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E">E Fitzsimons</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.4487v2-abstract-short" style="display: inline;"> LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4487v2-abstract-full').style.display = 'inline'; document.getElementById('1306.4487v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.4487v2-abstract-full" style="display: none;"> LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4487v2-abstract-full').style.display = 'none'; document.getElementById('1306.4487v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary talk presented at the 9th International LISA Symposium, 21-25 May 2012, Paris</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2013ASPC..467..161N </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.2188">arXiv:1302.2188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.2188">pdf</a>, <a href="https://arxiv.org/ps/1302.2188">ps</a>, <a href="https://arxiv.org/format/1302.2188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.181101">10.1103/PhysRevLett.110.181101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grote%2C+H">H. Grote</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Dooley%2C+K+L">K. L. Dooley</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">R. Schnabel</a>, <a href="/search/physics?searchtype=author&amp;query=Slutsky%2C+J">J. Slutsky</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">H. Vahlbruch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.2188v3-abstract-short" style="display: inline;"> We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.2188v3-abstract-full').style.display = 'inline'; document.getElementById('1302.2188v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.2188v3-abstract-full" style="display: none;"> We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. In a second period squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data was acquired with GEO600. Sensitivity increase from squeezed vacuum application was observed broad-band above 400Hz. The time average of gain in sensitivity was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This corresponds to a factor of two increase in observed volume of the universe, for sources in the kHz region (e.g. supernovae, magnetars). We introduce three new techniques to enable stable long-term application of squeezed light, and show that the glitch-rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.2188v3-abstract-full').style.display = 'none'; document.getElementById('1302.2188v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.7037">arXiv:1211.7037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.7037">pdf</a>, <a href="https://arxiv.org/ps/1211.7037">ps</a>, <a href="https://arxiv.org/format/1211.7037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.21.005287">10.1364/OE.21.005287 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Length sensing and control of a Michelson interferometer with Power Recycling and Twin Signal Recycling cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gr%C3%A4f%2C+C">Christian Gr盲f</a>, <a href="/search/physics?searchtype=author&amp;query=Th%C3%BCring%2C+A">Andr茅 Th眉ring</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">Henning Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.7037v1-abstract-short" style="display: inline;"> The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.7037v1-abstract-full').style.display = 'inline'; document.getElementById('1211.7037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.7037v1-abstract-full" style="display: none;"> The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled. In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom, enabling the long-term stable operation of the experiment. We thus laid the foundation for further investigations of this interferometer topology to evaluate its viability for the application in gravitational wave detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.7037v1-abstract-full').style.display = 'none'; document.getElementById('1211.7037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express, Vol. 21, Issue 5, pp. 5287-5299 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.1961">arXiv:1209.1961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.1961">pdf</a>, <a href="https://arxiv.org/ps/1209.1961">ps</a>, <a href="https://arxiv.org/format/1209.1961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.025400">10.1364/OE.20.025400 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Britzger%2C+M">Michael Britzger</a>, <a href="/search/physics?searchtype=author&amp;query=Wimmer%2C+M+H">Maximilian H. Wimmer</a>, <a href="/search/physics?searchtype=author&amp;query=Khalaidovski%2C+A">Alexander Khalaidovski</a>, <a href="/search/physics?searchtype=author&amp;query=Friedrich%2C+D">Daniel Friedrich</a>, <a href="/search/physics?searchtype=author&amp;query=Kroker%2C+S">Stefanie Kroker</a>, <a href="/search/physics?searchtype=author&amp;query=Brueckner%2C+F">Frank Brueckner</a>, <a href="/search/physics?searchtype=author&amp;query=Kley%2C+E">Ernst-Bernhard Kley</a>, <a href="/search/physics?searchtype=author&amp;query=ennermann%2C+A+T">Andreas Tu ennermann</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.1961v1-abstract-short" style="display: inline;"> Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively- coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.1961v1-abstract-full').style.display = 'inline'; document.getElementById('1209.1961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.1961v1-abstract-full" style="display: none;"> Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively- coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.1961v1-abstract-full').style.display = 'none'; document.getElementById('1209.1961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.6418">arXiv:1208.6418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.6418">pdf</a>, <a href="https://arxiv.org/ps/1208.6418">ps</a>, <a href="https://arxiv.org/format/1208.6418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Breadboard model of the LISA phasemeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gerberding%2C+O">Oliver Gerberding</a>, <a href="/search/physics?searchtype=author&amp;query=Barke%2C+S">Simon Barke</a>, <a href="/search/physics?searchtype=author&amp;query=Bykov%2C+I">Ioury Bykov</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Enggaard%2C+A">Anders Enggaard</a>, <a href="/search/physics?searchtype=author&amp;query=Esteban%2C+J+J">Juan Jose Esteban</a>, <a href="/search/physics?searchtype=author&amp;query=Gianolio%2C+A">Alberto Gianolio</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+T+V">Torben Vendt Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Hornstrup%2C+A">Allan Hornstrup</a>, <a href="/search/physics?searchtype=author&amp;query=Jennrich%2C+O">Oliver Jennrich</a>, <a href="/search/physics?searchtype=author&amp;query=Kullmann%2C+J">Joachim Kullmann</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersen%2C+S+M">S酶ren M酶ller Pedersen</a>, <a href="/search/physics?searchtype=author&amp;query=Rasmussen%2C+T">Torben Rasmussen</a>, <a href="/search/physics?searchtype=author&amp;query=Reiche%2C+J">Jens Reiche</a>, <a href="/search/physics?searchtype=author&amp;query=Sodnik%2C+Z">Zoran Sodnik</a>, <a href="/search/physics?searchtype=author&amp;query=Suess%2C+M">Martin Suess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.6418v2-abstract-short" style="display: inline;"> An elegant breadboard model of the LISA phasemeter is currently under development by a Danish-German consortium. The breadboard is build in the frame of an ESA technology development activity to demonstrate the feasibility and readiness of the LISA metrology baseline architecture. This article gives an overview about the breadboard design and its components, including the distribution of key funct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.6418v2-abstract-full').style.display = 'inline'; document.getElementById('1208.6418v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.6418v2-abstract-full" style="display: none;"> An elegant breadboard model of the LISA phasemeter is currently under development by a Danish-German consortium. The breadboard is build in the frame of an ESA technology development activity to demonstrate the feasibility and readiness of the LISA metrology baseline architecture. This article gives an overview about the breadboard design and its components, including the distribution of key functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.6418v2-abstract-full').style.display = 'none'; document.getElementById('1208.6418v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, published in ASP Conference Series, Vol. 467, 9th LISA Symposium (2012), pp 271-276</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.4544">arXiv:1205.4544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.4544">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JQE.2011.2108637">10.1109/JQE.2011.2108637 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital laser frequency control and phase stabilization loops for a high precision space-borne metrology system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hechenblaikner%2C+G">Gerald Hechenblaikner</a>, <a href="/search/physics?searchtype=author&amp;query=Wand%2C+V">Vinzenz Wand</a>, <a href="/search/physics?searchtype=author&amp;query=Kersten%2C+M">Michael Kersten</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+A">Antonio Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Nofrarias%2C+M">Miquel Nofrarias</a>, <a href="/search/physics?searchtype=author&amp;query=Steier%2C+F">Frank Steier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.4544v1-abstract-short" style="display: inline;"> We report on the design, implementation and characterization of fully digital control loops for laser frequency stabilization, differential phase-locking and performance optimization of the optical metrology system on-board the LISA Pathfinder space mission. The optical metrology system consists of a laser with modulator, four Mach-Zehnder interferometers, a phase-meter and a digital processing un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4544v1-abstract-full').style.display = 'inline'; document.getElementById('1205.4544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.4544v1-abstract-full" style="display: none;"> We report on the design, implementation and characterization of fully digital control loops for laser frequency stabilization, differential phase-locking and performance optimization of the optical metrology system on-board the LISA Pathfinder space mission. The optical metrology system consists of a laser with modulator, four Mach-Zehnder interferometers, a phase-meter and a digital processing unit for data analysis. The digital loop design has the advantage of easy and flexible controller implementation and loop calibration, automated and flexible locking and resetting, and improved performance over analogue circuitry. Using the practical ability of our system to modulate the laser frequency allows us to accurately determine the open loop transfer function and other system properties. Various noise sources and their impact on system performance are investigated in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.4544v1-abstract-full').style.display = 'none'; document.getElementById('1205.4544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures; draft only, for edited version see journal link</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Journal of Quantum Electronics, Vol. 47, No. 5, p.p. 651 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.4842">arXiv:1203.4842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.4842">pdf</a>, <a href="https://arxiv.org/format/1203.4842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/26/9/094010">10.1088/0264-9381/26/9/094010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The end-to-end testbed of the Optical Metrology System on-board LISA Pathfinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Steier%2C+F">Frank Steier</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+F+G">Felipe Guzm谩n Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Mar%C3%ADn%2C+A+F+G">Antonio F. Garc铆a Mar铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Gerardi%2C+D">Domenico Gerardi</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.4842v1-abstract-short" style="display: inline;"> LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3x10^(-14) ms^(-2)/sqrt[Hz] between 1 mHz and 30 mHz. This measurement is performed int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4842v1-abstract-full').style.display = 'inline'; document.getElementById('1203.4842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.4842v1-abstract-full" style="display: none;"> LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3x10^(-14) ms^(-2)/sqrt[Hz] between 1 mHz and 30 mHz. This measurement is performed interferometrically by the Optical Metrology System (OMS) on-board LISA Pathfinder. In this paper we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer back-end which is a phasemeter and the processing of the phasemeter output data. Furthermore, 3-axes piezo actuated mirrors are used instead of the free-falling test masses for the characterisation of the dynamic behaviour of the system and some parts of the Drag-free and Attitude Control System (DFACS) which controls the test masses and the satellite. The end-to-end testbed includes all parts of the LTP that can reasonably be tested on earth without free-falling test masses. At its present status it consists mainly of breadboard components. Some of those have already been replaced by Engineering Models of the LTP experiment. In the next steps, further Engineering Models and Flight Models will also be inserted in this testbed and tested against well characterised breadboard components. The presented testbed is an important reference for the unit tests and can also be used for validation of the on-board experiment during the mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4842v1-abstract-full').style.display = 'none'; document.getElementById('1203.4842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity 26 094010 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.4478">arXiv:1203.4478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.4478">pdf</a>, <a href="https://arxiv.org/format/1203.4478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.46.004541">10.1364/AO.46.004541 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time phasefront detector for heterodyne interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+F+G">Felipe Guzm谩n Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Mar%C3%ADn%2C+A+F+G">Antonio F. Garc铆a Mar铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Wand%2C+V">Vinzenz Wand</a>, <a href="/search/physics?searchtype=author&amp;query=Steier%2C+F">Frank Steier</a>, <a href="/search/physics?searchtype=author&amp;query=Jennrich%2C+O">Oliver Jennrich</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.4478v1-abstract-short" style="display: inline;"> We present a real-time differential phasefront detector sensitive to better than 3 mrad rms, which corresponds to a precision of about 500 pm. This detector performs a spatially resolving measurement of the phasefront of a heterodyne interferometer, with heterodyne frequencies up to approximately 10 kHz. This instrument was developed as part of the research for the LISA Technology Package (LTP) in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4478v1-abstract-full').style.display = 'inline'; document.getElementById('1203.4478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.4478v1-abstract-full" style="display: none;"> We present a real-time differential phasefront detector sensitive to better than 3 mrad rms, which corresponds to a precision of about 500 pm. This detector performs a spatially resolving measurement of the phasefront of a heterodyne interferometer, with heterodyne frequencies up to approximately 10 kHz. This instrument was developed as part of the research for the LISA Technology Package (LTP) interferometer, and will assist in the manufacture of its flight model. Due to the advantages this instrument offers, it also has general applications in optical metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4478v1-abstract-full').style.display = 'none'; document.getElementById('1203.4478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Optics, Vol. 46, Issue 21, pp. 4541-4548 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.4476">arXiv:1203.4476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.4476">pdf</a>, <a href="https://arxiv.org/format/1203.4476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00340-007-2923-0">10.1007/s00340-007-2923-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subtraction of test mass angular noise in the LISA Technology Package interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+F+G">Felipe Guzm谩n Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Steier%2C+F">Frank Steier</a>, <a href="/search/physics?searchtype=author&amp;query=Wanner%2C+G">Gudrun Wanner</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.4476v1-abstract-short" style="display: inline;"> We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4476v1-abstract-full').style.display = 'inline'; document.getElementById('1203.4476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.4476v1-abstract-full" style="display: none;"> We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jitter onto the sensitive displacement readout was completely subtracted by fitting the angular interferometric data streams to the longitudinal displacement measurement. Thus, this cross-coupling constitutes no limitation to the required performance of the LISA Technology Package interferometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4476v1-abstract-full').style.display = 'none'; document.getElementById('1203.4476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Applied Physics B - Lasers and Optics (2008)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.2853">arXiv:1203.2853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.2853">pdf</a>, <a href="https://arxiv.org/format/1203.2853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.18.019076">10.1364/OE.18.019076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep phase modulation interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+F+G">Felipe Guzm谩n Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Mar%C3%ADn%2C+A+F+G">Antonio F. Garc铆a Mar铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Kullmann%2C+J">Joachim Kullmann</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+W">Wang Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.2853v2-abstract-short" style="display: inline;"> We have developed a method to equip homodyne interferometers with the capability to operate with constant high sensitivity over many fringes for continuous real-time tracking. The method can be considered as an extension of the &#34;J_1...J_4&#34; methods, and its enhancement to deliver very sensitive angular measurements through Differential Wavefront Sensing is straightforward. Beam generation requires&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.2853v2-abstract-full').style.display = 'inline'; document.getElementById('1203.2853v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.2853v2-abstract-full" style="display: none;"> We have developed a method to equip homodyne interferometers with the capability to operate with constant high sensitivity over many fringes for continuous real-time tracking. The method can be considered as an extension of the &#34;J_1...J_4&#34; methods, and its enhancement to deliver very sensitive angular measurements through Differential Wavefront Sensing is straightforward. Beam generation requires a sinusoidal phase modulation of several radians in one interferometer arm. On a stable optical bench, we have demonstrated a long-term sensitivity over thousands of seconds of 0.1 mrad/sqrt[Hz] that correspond to 20 pm/sqrt[Hz] in length, and 10 nrad/sqrt[Hz] in angle at millihertz frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.2853v2-abstract-full').style.display = 'none'; document.getElementById('1203.2853v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express, Vol. 18, Issue 18, pp. 19076-19086 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.4718">arXiv:1201.4718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.4718">pdf</a>, <a href="https://arxiv.org/ps/1201.4718">ps</a>, <a href="https://arxiv.org/format/1201.4718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/29/9/095024">10.1088/0264-9381/29/9/095024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suspension platform interferometer for the AEI 10\,m prototype: concept, design and optical layout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dahl%2C+K">Katrin Dahl</a>, <a href="/search/physics?searchtype=author&amp;query=Kranz%2C+O">Oliver Kranz</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Willke%2C+B">Benno Willke</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">Kenneth A Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Go%C3%9Fler%2C+S">Stefan Go脽ler</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.4718v1-abstract-short" style="display: inline;"> At present a 10\,m prototype interferometer facility is being set up at the AEI Hannover. One unique feature of the prototype will be the suspension platform interferometer (SPI). The purpose of the SPI is to monitor and stabilise the relative motion between three seismically isolated optical tables. The in-vacuum tables are suspended in an L-shaped configuration with an arm length of 11.65\,m. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.4718v1-abstract-full').style.display = 'inline'; document.getElementById('1201.4718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.4718v1-abstract-full" style="display: none;"> At present a 10\,m prototype interferometer facility is being set up at the AEI Hannover. One unique feature of the prototype will be the suspension platform interferometer (SPI). The purpose of the SPI is to monitor and stabilise the relative motion between three seismically isolated optical tables. The in-vacuum tables are suspended in an L-shaped configuration with an arm length of 11.65\,m. The design goal of the SPI is to stabilise longitudinal differential displacements to a level of 100\,pm/$\sqrt{\mathrm{Hz}}$ between 10\,mHz and 100\,Hz and relative angular noise of 10\,nrad/$\sqrt{\mathrm{Hz}}$ in the same frequency band. This paper covers the design aspects of the SPI, e.g. cross-coupling between the different degrees of freedom and fibre pointing noise are investigated. A simulation is presented which shows that with the chosen optical design of the SPI all degrees of table motion can be sensed in a fully decoupled way. Furthermore, a proof of principle test of the SPI sensing scheme is shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.4718v1-abstract-full').style.display = 'none'; document.getElementById('1201.4718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.1804">arXiv:1112.1804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.1804">pdf</a>, <a href="https://arxiv.org/ps/1112.1804">ps</a>, <a href="https://arxiv.org/format/1112.1804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0264-9381/29/7/075003">10.1088/0264-9381/29/7/075003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical layout for a 10m Fabry-P茅rot Michelson interferometer with tunable stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gr%C3%A4f%2C+C">Christian Gr盲f</a>, <a href="/search/physics?searchtype=author&amp;query=Hild%2C+S">Stefan Hild</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCck%2C+H">Harald L眉ck</a>, <a href="/search/physics?searchtype=author&amp;query=Willke%2C+B">Benno Willke</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">Kenneth A. Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Go%C3%9Fler%2C+S">Stefan Go脽ler</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.1804v1-abstract-short" style="display: inline;"> The sensitivity of high-precision interferometric measurements can be limited by Brownian noise within dielectric mirror coatings. This occurs, for instance, in the optical resonators of gravitational wave detectors where the noise can be reduced by increasing the laser beam size. However, the stability of the resonator and its optical performance often impose a limit on the maximally feasible bea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1804v1-abstract-full').style.display = 'inline'; document.getElementById('1112.1804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.1804v1-abstract-full" style="display: none;"> The sensitivity of high-precision interferometric measurements can be limited by Brownian noise within dielectric mirror coatings. This occurs, for instance, in the optical resonators of gravitational wave detectors where the noise can be reduced by increasing the laser beam size. However, the stability of the resonator and its optical performance often impose a limit on the maximally feasible beam size. In this article we describe the optical design of a 10\,m Fabry-P茅rot Michelson interferometer with tunable stability. Our design will allow us to carry out initial commissioning with arm cavities of high stability, while afterwards the arm cavity length can be increased stepwise towards the final, marginally stable configuration. Requiring only minimal hardware changes, with respect to a comparable &#34;static&#34; layout, the proposed technique will not only enable us to explore the stability limits of an optical resonator with realistic mirrors exhibiting inevitable surface imperfections, but also the opportunity to measure coating Brownian noise at frequencies as low as a few hundred Hertz. A detailed optical design of the tunable interferometer is presented and requirements for the optical elements are derived from robustness evaluations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1804v1-abstract-full').style.display = 'none'; document.getElementById('1112.1804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quantum Grav. 29 (2012) 075003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.0198">arXiv:1112.0198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.0198">pdf</a>, <a href="https://arxiv.org/format/1112.0198">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/363/1/012013">10.1088/1742-6596/363/1/012013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Status of the GEO 600 squeezed-light laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khalaidovski%2C+A">Alexander Khalaidovski</a>, <a href="/search/physics?searchtype=author&amp;query=Vahlbruch%2C+H">Henning Vahlbruch</a>, <a href="/search/physics?searchtype=author&amp;query=Lastzka%2C+N">Nico Lastzka</a>, <a href="/search/physics?searchtype=author&amp;query=Graef%2C+C">Christian Graef</a>, <a href="/search/physics?searchtype=author&amp;query=Lueck%2C+H">Harald Lueck</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Grote%2C+H">Hartmut Grote</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.0198v1-abstract-short" style="display: inline;"> In the course of the high-frequency upgrade of GEO 600, its optical configuration was extended by a squeezed-light laser [1]. Recently, a non-classically enhanced measurement sensitivity of GEO 600 was reported [2]. In this paper, a characterization of the squeezed-light laser is presented. Thereupon, the status of the integration into GEO 600 is reviewed, focussing on the sources of optical loss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0198v1-abstract-full').style.display = 'inline'; document.getElementById('1112.0198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.0198v1-abstract-full" style="display: none;"> In the course of the high-frequency upgrade of GEO 600, its optical configuration was extended by a squeezed-light laser [1]. Recently, a non-classically enhanced measurement sensitivity of GEO 600 was reported [2]. In this paper, a characterization of the squeezed-light laser is presented. Thereupon, the status of the integration into GEO 600 is reviewed, focussing on the sources of optical loss limiting the shot noise reduction by squeezing at the moment. Finally, the possibilities for a future loss reduction are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.0198v1-abstract-full').style.display = 'none'; document.getElementById('1112.0198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of the 9th Edoardo Amaldi Conference on Gravitational Waves</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.7252">arXiv:1111.7252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.7252">pdf</a>, <a href="https://arxiv.org/format/1111.7252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00340-012-4878-z">10.1007/s00340-012-4878-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 10m AEI prototype facility A brief overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Westphal%2C+T">Tobias Westphal</a>, <a href="/search/physics?searchtype=author&amp;query=Bergmann%2C+G">Gerald Bergmann</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolini%2C+A">Alessandro Bertolini</a>, <a href="/search/physics?searchtype=author&amp;query=Born%2C+M">Michael Born</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yanbei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cumming%2C+A+V">Alan V Cumming</a>, <a href="/search/physics?searchtype=author&amp;query=Cunningham%2C+L">Liam Cunningham</a>, <a href="/search/physics?searchtype=author&amp;query=Dahl%2C+K">Katrin Dahl</a>, <a href="/search/physics?searchtype=author&amp;query=Graef%2C+C">Christian Graef</a>, <a href="/search/physics?searchtype=author&amp;query=Hammond%2C+G">Giles Hammond</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">Gerhard Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Hild%2C+S">Stefan Hild</a>, <a href="/search/physics?searchtype=author&amp;query=Huttner%2C+S">Sabina Huttner</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+R">Russel Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Kawazoe%2C+F">Fumiko Kawazoe</a>, <a href="/search/physics?searchtype=author&amp;query=Koehlenbeck%2C+S">Sina Koehlenbeck</a>, <a href="/search/physics?searchtype=author&amp;query=Kuehn%2C+G">Gerrit Kuehn</a>, <a href="/search/physics?searchtype=author&amp;query=Lueck%2C+H">Harald Lueck</a>, <a href="/search/physics?searchtype=author&amp;query=Mossavi%2C+K">Kasem Mossavi</a>, <a href="/search/physics?searchtype=author&amp;query=Poeld%2C+J+H">Jan H Poeld</a>, <a href="/search/physics?searchtype=author&amp;query=Somiya%2C+K">Kentaro Somiya</a>, <a href="/search/physics?searchtype=author&amp;query=van+Veggel%2C+M">Marielle van Veggel</a>, <a href="/search/physics?searchtype=author&amp;query=Wanner%2C+A">Alexander Wanner</a>, <a href="/search/physics?searchtype=author&amp;query=Willke%2C+B">Benno Willke</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">Ken A Strain</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.7252v2-abstract-short" style="display: inline;"> The AEI 10 m prototype interferometer facility is currently being constructed at the Albert Einstein Institute in Hannover, Germany. It aims to perform experiments for future gravitational wave detectors using advanced techniques. Seismically isolated benches are planned to be interferometrically interconnected and stabilized, forming a low-noise testbed inside a 100 m^3 ultra-high vacuum system.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7252v2-abstract-full').style.display = 'inline'; document.getElementById('1111.7252v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.7252v2-abstract-full" style="display: none;"> The AEI 10 m prototype interferometer facility is currently being constructed at the Albert Einstein Institute in Hannover, Germany. It aims to perform experiments for future gravitational wave detectors using advanced techniques. Seismically isolated benches are planned to be interferometrically interconnected and stabilized, forming a low-noise testbed inside a 100 m^3 ultra-high vacuum system. A well-stabilized high power laser will perform differential position readout of 100 g test masses in a 10 m suspended arm-cavity enhanced Michelson interferometer at the crossover of measurement (shot) noise and backaction (quantum radiation pressure) noise, the so-called Standard Quantum Limit (SQL). Such a sensitivity enables experiments in the highly topical field of macroscopic quantum mechanics. In this article we introduce the experimental facility and describe the methods employed, technical details of subsystems will be covered in future papers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7252v2-abstract-full').style.display = 'none'; document.getElementById('1111.7252v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.7236">arXiv:1111.7236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.7236">pdf</a>, <a href="https://arxiv.org/format/1111.7236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.81.033849">10.1103/PhysRevA.81.033849 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interferometer readout-noise below the Standard Quantum Limit of a membrane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Westphal%2C+T">Tobias Westphal</a>, <a href="/search/physics?searchtype=author&amp;query=Friedrich%2C+D">Daniel Friedrich</a>, <a href="/search/physics?searchtype=author&amp;query=Kaufer%2C+H">Henning Kaufer</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+K">Kazuhiro Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Gossler%2C+S">Stefan Gossler</a>, <a href="/search/physics?searchtype=author&amp;query=Mueller-Ebhardt%2C+H">Helge Mueller-Ebhardt</a>, <a href="/search/physics?searchtype=author&amp;query=Danilishin%2C+S+L">Stefan L. Danilishin</a>, <a href="/search/physics?searchtype=author&amp;query=Khalili%2C+F+Y">Farid Ya. Khalili</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.7236v1-abstract-short" style="display: inline;"> Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise characterization of the motion of membranes showing significant light transmission. Our interferometer has a readout noise spectral density (imprecision) of 3E-16 m/sqrt(Hz) at frequencies around the fundamental resonance of a SiN_x membrane at about 100 kHz, without using optical cavities. The read&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7236v1-abstract-full').style.display = 'inline'; document.getElementById('1111.7236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.7236v1-abstract-full" style="display: none;"> Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise characterization of the motion of membranes showing significant light transmission. Our interferometer has a readout noise spectral density (imprecision) of 3E-16 m/sqrt(Hz) at frequencies around the fundamental resonance of a SiN_x membrane at about 100 kHz, without using optical cavities. The readout noise demonstrated is more than 16 dB below the peak value of the membrane&#39;s standard quantum limit (SQL). This reduction is significantly higher than those of previous works with nano-wires [Teufel et al., Nature Nano. 4, 820 (2009); Anetsberger et al., Nature Phys. 5, 909 (2009)]. We discuss the meaning of the SQL for force measurements and its relation to the readout performance and conclude that neither our nor previous experiments achieved a total noise spectral density as low as the SQL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.7236v1-abstract-full').style.display = 'none'; document.getElementById('1111.7236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.0305">arXiv:1105.0305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.0305">pdf</a>, <a href="https://arxiv.org/format/1105.0305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.19.014964">10.1364/OE.19.014964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diffractively coupled Fabry-Perot resonator with power-recycling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Britzger%2C+M">Michael Britzger</a>, <a href="/search/physics?searchtype=author&amp;query=Friedrich%2C+D">Daniel Friedrich</a>, <a href="/search/physics?searchtype=author&amp;query=Kroker%2C+S">Stefanie Kroker</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%BCckner%2C+F">Frank Br眉ckner</a>, <a href="/search/physics?searchtype=author&amp;query=Burmeister%2C+O">Oliver Burmeister</a>, <a href="/search/physics?searchtype=author&amp;query=Kley%2C+E">Ernst-Bernhard Kley</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%BCnnermann%2C+A">Andreas T眉nnermann</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.0305v1-abstract-short" style="display: inline;"> We demonstrate the optical coupling of two cavities without light transmission through a substrate. Compared to a conventional coupling component, that is a partially transmissive mirror, an all-reflective coupler avoids light absorption in the substrate and therefore associated thermal problems, and even allows the use of opaque materials with possibly favourable mechanical and thermal properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.0305v1-abstract-full').style.display = 'inline'; document.getElementById('1105.0305v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.0305v1-abstract-full" style="display: none;"> We demonstrate the optical coupling of two cavities without light transmission through a substrate. Compared to a conventional coupling component, that is a partially transmissive mirror, an all-reflective coupler avoids light absorption in the substrate and therefore associated thermal problems, and even allows the use of opaque materials with possibly favourable mechanical and thermal properties. Recently, the all-reflective coupling of two cavities with a low-efficiency 3-port diffraction grating was theoretically investigated. Such a grating has an additional (a third) port. However, it was shown that the additional port does not necessarily decrease the bandwidth of the coupled cavities. Such an all-reflective scheme for cavity coupling is of interest in the field of gravitational wave detection. In such detectors light that is resonantly enhanced inside the so-called power-recycling cavity is coupled to (kilometre-scale) Fabry-Perot resonators representing the arms of a Michelson interferometer. In order to achieve a high sensitivity over a broad spectrum, the Fabry-Perot resonators need to have a high bandwidth for a given (high) power build-up. We realized such an all-reflective coupling in a table-top experiment. Our findings are in full agreement with the theoretical model incorporating the characteristics of the 3-port grating used, and therefore encourage the application of all-reflective cavity couplers in future gravitational wave detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.0305v1-abstract-full').style.display = 'none'; document.getElementById('1105.0305v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.3251">arXiv:1104.3251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.3251">pdf</a>, <a href="https://arxiv.org/format/1104.3251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/13/9/093017">10.1088/1367-2630/13/9/093017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser interferometry with translucent and absorbing mechanical oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Friedrich%2C+D">D. Friedrich</a>, <a href="/search/physics?searchtype=author&amp;query=Kaufer%2C+H">H. Kaufer</a>, <a href="/search/physics?searchtype=author&amp;query=Westphal%2C+T">T. Westphal</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+K">K. Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sawadsky%2C+A">A. Sawadsky</a>, <a href="/search/physics?searchtype=author&amp;query=Khalili%2C+F+Y">F. Ya. Khalili</a>, <a href="/search/physics?searchtype=author&amp;query=Danilishin%2C+S">S. Danilishin</a>, <a href="/search/physics?searchtype=author&amp;query=Go%C3%9Fler%2C+S">S. Go脽ler</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">R. Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.3251v1-abstract-short" style="display: inline;"> The sensitivity of laser interferometers can be pushed into regimes that enable the direct observation of quantum behaviour of mechanical oscillators. In the past, membranes with subwavelength thickness (thin films) have been proposed as high-mechanical-quality, low-thermal-noise oscillators. Thin films from a homogenous material, however, generally show considerable light transmission accompanied&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3251v1-abstract-full').style.display = 'inline'; document.getElementById('1104.3251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.3251v1-abstract-full" style="display: none;"> The sensitivity of laser interferometers can be pushed into regimes that enable the direct observation of quantum behaviour of mechanical oscillators. In the past, membranes with subwavelength thickness (thin films) have been proposed as high-mechanical-quality, low-thermal-noise oscillators. Thin films from a homogenous material, however, generally show considerable light transmission accompanied by heating due to light absorption, which typically reduces the mechanical quality and limits quantum opto-mechanical experiments in particular at low temperatures. In this work, we experimentally analyze a Michelson-Sagnac interferometer including a translucent silicon nitride (SiN) membrane with subwavelength thickness. We find that such an interferometer provides an operational point being optimally suited for quantum opto-mechanical experiments with translucent oscillators. In case of a balanced beam splitter of the interferometer, the membrane can be placed at a node of the electro-magnetic field, which simultaneously provides lowest absorption and optimum laser noise rejection at the signal port. We compare the optical and mechanical model of our interferometer with experimental data and confirm that the SiN membrane can be coupled to a laser power of the order of one Watt at 1064 nm without significantly degrading the membrane&#39;s quality factor of the order 10^6, at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3251v1-abstract-full').style.display = 'none'; document.getElementById('1104.3251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 13, 093017 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2780">arXiv:1104.2780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2780">pdf</a>, <a href="https://arxiv.org/format/1104.2780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.19.014955">10.1364/OE.19.014955 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Friedrich%2C+D">Daniel Friedrich</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+B+W">Bryan W. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%BCckner%2C+F">Frank Br眉ckner</a>, <a href="/search/physics?searchtype=author&amp;query=Hild%2C+S">Stefan Hild</a>, <a href="/search/physics?searchtype=author&amp;query=Nelson%2C+J">John Nelson</a>, <a href="/search/physics?searchtype=author&amp;query=Mcarthur%2C+J">John Mcarthur</a>, <a href="/search/physics?searchtype=author&amp;query=Plissi%2C+M+V">Michael V. Plissi</a>, <a href="/search/physics?searchtype=author&amp;query=Edgar%2C+M+P">Matthew P. Edgar</a>, <a href="/search/physics?searchtype=author&amp;query=Huttner%2C+S+H">Sabina H. Huttner</a>, <a href="/search/physics?searchtype=author&amp;query=Sorazu%2C+B">Borja Sorazu</a>, <a href="/search/physics?searchtype=author&amp;query=Kroker%2C+S">Stefanie Kroker</a>, <a href="/search/physics?searchtype=author&amp;query=Britzger%2C+M">Michael Britzger</a>, <a href="/search/physics?searchtype=author&amp;query=Kley%2C+E">Ernst-Bernhard Kley</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%BCnnermann%2C+A">Andreas T眉nnermann</a>, <a href="/search/physics?searchtype=author&amp;query=Strain%2C+K+A">Ken A. Strain</a>, <a href="/search/physics?searchtype=author&amp;query=Schnabel%2C+R">Roman Schnabel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2780v1-abstract-short" style="display: inline;"> We report on the first demonstration of a fully suspended 10m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and employing feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.2% at the laser wavelen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2780v1-abstract-full').style.display = 'inline'; document.getElementById('1104.2780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2780v1-abstract-full" style="display: none;"> We report on the first demonstration of a fully suspended 10m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and employing feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.2% at the laser wavelength of 1064\,nm, which is in good agreement with rigorous simulations. Our waveguide grating design was based on tantala and fused silica and included a ~20nm thin etch stop layer made of Al2O3 that allowed us to define the grating depth accurately during the fabrication process. Demonstrating stable operation of a waveguide grating featuring high reflectivity in a suspended low-noise cavity, our work paves the way for the potential application of waveguide gratings as mirrors in high-precision interferometry, for instance in future gravitational wave observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2780v1-abstract-full').style.display = 'none'; document.getElementById('1104.2780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.5280">arXiv:1008.5280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.5280">pdf</a>, <a href="https://arxiv.org/format/1008.5280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.122002">10.1103/PhysRevD.82.122002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bayesian parameter estimation in the second LISA Pathfinder Mock Data Challenge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nofrarias%2C+M">M. Nofrarias</a>, <a href="/search/physics?searchtype=author&amp;query=R%C3%B6ver%2C+C">C. R枚ver</a>, <a href="/search/physics?searchtype=author&amp;query=Hewitson%2C+M">M. Hewitson</a>, <a href="/search/physics?searchtype=author&amp;query=Monsky%2C+A">A. Monsky</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">G. Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L. Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Hueller%2C+M">M. Hueller</a>, <a href="/search/physics?searchtype=author&amp;query=Vitale%2C+S">S. Vitale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.5280v1-abstract-short" style="display: inline;"> A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.5280v1-abstract-full').style.display = 'inline'; document.getElementById('1008.5280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.5280v1-abstract-full" style="display: none;"> A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package (LTP) instrument. We describe the LTP by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework and it is shown that this method reaches the optimal attainable error, the Cramer-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.5280v1-abstract-full').style.display = 'none'; document.getElementById('1008.5280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, submitted to PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:122002,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.2122">arXiv:1006.2122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1006.2122">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.49.005665">10.1364/AO.49.005665 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupling characterization and noise studies of the Optical Metrology System on-board the LISA Pathfinder Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hechenblaikner%2C+G">G. Hechenblaikner</a>, <a href="/search/physics?searchtype=author&amp;query=Gerndt%2C+R">R. Gerndt</a>, <a href="/search/physics?searchtype=author&amp;query=Johann%2C+U">U. Johann</a>, <a href="/search/physics?searchtype=author&amp;query=Luetzow-Wentzky%2C+P">P. Luetzow-Wentzky</a>, <a href="/search/physics?searchtype=author&amp;query=Wand%2C+V">V. Wand</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H. Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K. Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Marin%2C+A">A. Garcia-Marin</a>, <a href="/search/physics?searchtype=author&amp;query=Heinzel%2C+G">G. Heinzel</a>, <a href="/search/physics?searchtype=author&amp;query=Nofrarias%2C+M">M. Nofrarias</a>, <a href="/search/physics?searchtype=author&amp;query=Steier%2C+F">F. Steier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.2122v1-abstract-short" style="display: inline;"> In this article we describe the first investigations of the complete engineering model of the Optical Metrology System (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a space-borne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach Zehnder interferometers, a highly stable laser w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.2122v1-abstract-full').style.display = 'inline'; document.getElementById('1006.2122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.2122v1-abstract-full" style="display: none;"> In this article we describe the first investigations of the complete engineering model of the Optical Metrology System (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a space-borne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach Zehnder interferometers, a highly stable laser with external modulator and a phase-meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test-masses in the optical reference frame with a (relative) precision in the picometer and nanorad range, respectively. We analyze sensor signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed in the context of the Pathfinder mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.2122v1-abstract-full').style.display = 'none'; document.getElementById('1006.2122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages double-spaced 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl.Opt.49:5665-5677,2010 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Danzmann%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10