CINXE.COM
List of unsolved problems in mathematics - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>List of unsolved problems in mathematics - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3102c5b8-9c4f-4e07-bbab-c13372141368","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"List_of_unsolved_problems_in_mathematics","wgTitle":"List of unsolved problems in mathematics","wgCurRevisionId":1258699358,"wgRevisionId":1258699358,"wgArticleId":183091,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 Russian-language sources (ru)","CS1 Spanish-language sources (es)","Webarchive template wayback links","CS1 German-language sources (de)","CS1 maint: DOI inactive as of November 2024","CS1 French-language sources (fr)","Wikipedia semi-protected pages","Articles with short description","Short description is different from Wikidata","Dynamic lists","Articles containing Russian-language text","Unsolved problems in mathematics", "Conjectures","Lists of unsolved problems","Lists of problems"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"List_of_unsolved_problems_in_mathematics","wgRelevantArticleId":183091,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q848034","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready", "ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="List of unsolved problems in mathematics - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-List_of_unsolved_problems_in_mathematics rootpage-List_of_unsolved_problems_in_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=List+of+unsolved+problems+in+mathematics" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=List+of+unsolved+problems+in+mathematics" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=List+of+unsolved+problems+in+mathematics" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=List+of+unsolved+problems+in+mathematics" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Lists_of_unsolved_problems_in_mathematics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lists_of_unsolved_problems_in_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Lists of unsolved problems in mathematics</span> </div> </a> <button aria-controls="toc-Lists_of_unsolved_problems_in_mathematics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lists of unsolved problems in mathematics subsection</span> </button> <ul id="toc-Lists_of_unsolved_problems_in_mathematics-sublist" class="vector-toc-list"> <li id="toc-Millennium_Prize_Problems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Millennium_Prize_Problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Millennium Prize Problems</span> </div> </a> <ul id="toc-Millennium_Prize_Problems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notebooks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notebooks"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Notebooks</span> </div> </a> <ul id="toc-Notebooks-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Unsolved_problems" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Unsolved_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Unsolved problems</span> </div> </a> <button aria-controls="toc-Unsolved_problems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Unsolved problems subsection</span> </button> <ul id="toc-Unsolved_problems-sublist" class="vector-toc-list"> <li id="toc-Algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Algebra</span> </div> </a> <ul id="toc-Algebra-sublist" class="vector-toc-list"> <li id="toc-Group_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Group_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Group theory</span> </div> </a> <ul id="toc-Group_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representation_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Representation_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Representation theory</span> </div> </a> <ul id="toc-Representation_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Analysis</span> </div> </a> <ul id="toc-Analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Combinatorics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Combinatorics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Combinatorics</span> </div> </a> <ul id="toc-Combinatorics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamical_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamical_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Dynamical systems</span> </div> </a> <ul id="toc-Dynamical_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Games_and_puzzles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Games_and_puzzles"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Games and puzzles</span> </div> </a> <ul id="toc-Games_and_puzzles-sublist" class="vector-toc-list"> <li id="toc-Combinatorial_games" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Combinatorial_games"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.1</span> <span>Combinatorial games</span> </div> </a> <ul id="toc-Combinatorial_games-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Games_with_imperfect_information" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Games_with_imperfect_information"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.2</span> <span>Games with imperfect information</span> </div> </a> <ul id="toc-Games_with_imperfect_information-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Geometry</span> </div> </a> <ul id="toc-Geometry-sublist" class="vector-toc-list"> <li id="toc-Algebraic_geometry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Algebraic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.1</span> <span>Algebraic geometry</span> </div> </a> <ul id="toc-Algebraic_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Covering_and_packing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Covering_and_packing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.2</span> <span>Covering and packing</span> </div> </a> <ul id="toc-Covering_and_packing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differential_geometry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Differential_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.3</span> <span>Differential geometry</span> </div> </a> <ul id="toc-Differential_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Discrete_geometry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Discrete_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.4</span> <span>Discrete geometry</span> </div> </a> <ul id="toc-Discrete_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Euclidean_geometry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Euclidean_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.5</span> <span>Euclidean geometry</span> </div> </a> <ul id="toc-Euclidean_geometry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Graph_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graph_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Graph theory</span> </div> </a> <ul id="toc-Graph_theory-sublist" class="vector-toc-list"> <li id="toc-Algebraic_graph_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Algebraic_graph_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.1</span> <span>Algebraic graph theory</span> </div> </a> <ul id="toc-Algebraic_graph_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Games_on_graphs" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Games_on_graphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.2</span> <span>Games on graphs</span> </div> </a> <ul id="toc-Games_on_graphs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Graph_coloring_and_labeling" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Graph_coloring_and_labeling"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.3</span> <span>Graph coloring and labeling</span> </div> </a> <ul id="toc-Graph_coloring_and_labeling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Graph_drawing_and_embedding" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Graph_drawing_and_embedding"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.4</span> <span>Graph drawing and embedding</span> </div> </a> <ul id="toc-Graph_drawing_and_embedding-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Restriction_of_graph_parameters" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Restriction_of_graph_parameters"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.5</span> <span>Restriction of graph parameters</span> </div> </a> <ul id="toc-Restriction_of_graph_parameters-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subgraphs" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Subgraphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.6</span> <span>Subgraphs</span> </div> </a> <ul id="toc-Subgraphs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Word-representation_of_graphs" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Word-representation_of_graphs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.7</span> <span>Word-representation of graphs</span> </div> </a> <ul id="toc-Word-representation_of_graphs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Miscellaneous_graph_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Miscellaneous_graph_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.8</span> <span>Miscellaneous graph theory</span> </div> </a> <ul id="toc-Miscellaneous_graph_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Model_theory_and_formal_languages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Model_theory_and_formal_languages"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Model theory and formal languages</span> </div> </a> <ul id="toc-Model_theory_and_formal_languages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9</span> <span>Probability theory</span> </div> </a> <ul id="toc-Probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Number_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10</span> <span>Number theory</span> </div> </a> <ul id="toc-Number_theory-sublist" class="vector-toc-list"> <li id="toc-General" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#General"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.1</span> <span>General</span> </div> </a> <ul id="toc-General-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Additive_number_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Additive_number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.2</span> <span>Additive number theory</span> </div> </a> <ul id="toc-Additive_number_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_number_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Algebraic_number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.3</span> <span>Algebraic number theory</span> </div> </a> <ul id="toc-Algebraic_number_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computational_number_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Computational_number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.4</span> <span>Computational number theory</span> </div> </a> <ul id="toc-Computational_number_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Diophantine_approximation_and_transcendental_number_theory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Diophantine_approximation_and_transcendental_number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.5</span> <span>Diophantine approximation and transcendental number theory</span> </div> </a> <ul id="toc-Diophantine_approximation_and_transcendental_number_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Diophantine_equations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Diophantine_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.6</span> <span>Diophantine equations</span> </div> </a> <ul id="toc-Diophantine_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prime_numbers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Prime_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10.7</span> <span>Prime numbers</span> </div> </a> <ul id="toc-Prime_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Set_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Set_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.11</span> <span>Set theory</span> </div> </a> <ul id="toc-Set_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.12</span> <span>Topology</span> </div> </a> <ul id="toc-Topology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Problems_solved_since_1995" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Problems_solved_since_1995"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Problems solved since 1995</span> </div> </a> <button aria-controls="toc-Problems_solved_since_1995-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Problems solved since 1995 subsection</span> </button> <ul id="toc-Problems_solved_since_1995-sublist" class="vector-toc-list"> <li id="toc-Algebra_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebra_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Algebra</span> </div> </a> <ul id="toc-Algebra_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analysis_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analysis_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Analysis</span> </div> </a> <ul id="toc-Analysis_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Combinatorics_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Combinatorics_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Combinatorics</span> </div> </a> <ul id="toc-Combinatorics_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamical_systems_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamical_systems_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Dynamical systems</span> </div> </a> <ul id="toc-Dynamical_systems_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Game_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Game_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Game theory</span> </div> </a> <ul id="toc-Game_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometry_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometry_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Geometry</span> </div> </a> <ul id="toc-Geometry_2-sublist" class="vector-toc-list"> <li id="toc-21st_century" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#21st_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.1</span> <span>21st century</span> </div> </a> <ul id="toc-21st_century-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-20th_century" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#20th_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.2</span> <span>20th century</span> </div> </a> <ul id="toc-20th_century-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Graph_theory_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graph_theory_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Graph theory</span> </div> </a> <ul id="toc-Graph_theory_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Group_theory_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Group_theory_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8</span> <span>Group theory</span> </div> </a> <ul id="toc-Group_theory_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Number_theory_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_theory_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.9</span> <span>Number theory</span> </div> </a> <ul id="toc-Number_theory_2-sublist" class="vector-toc-list"> <li id="toc-21st_century_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#21st_century_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.9.1</span> <span>21st century</span> </div> </a> <ul id="toc-21st_century_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-20th_century_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#20th_century_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.9.2</span> <span>20th century</span> </div> </a> <ul id="toc-20th_century_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ramsey_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ramsey_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.10</span> <span>Ramsey theory</span> </div> </a> <ul id="toc-Ramsey_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theoretical_computer_science" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Theoretical_computer_science"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.11</span> <span>Theoretical computer science</span> </div> </a> <ul id="toc-Theoretical_computer_science-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topology_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topology_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.12</span> <span>Topology</span> </div> </a> <ul id="toc-Topology_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uncategorised" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uncategorised"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.13</span> <span>Uncategorised</span> </div> </a> <ul id="toc-Uncategorised-sublist" class="vector-toc-list"> <li id="toc-2010s" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#2010s"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.13.1</span> <span>2010s</span> </div> </a> <ul id="toc-2010s-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2000s" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#2000s"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.13.2</span> <span>2000s</span> </div> </a> <ul id="toc-2000s-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Books_discussing_problems_solved_since_1995" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Books_discussing_problems_solved_since_1995"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Books discussing problems solved since 1995</span> </div> </a> <ul id="toc-Books_discussing_problems_solved_since_1995-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Books_discussing_unsolved_problems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Books_discussing_unsolved_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Books discussing unsolved problems</span> </div> </a> <ul id="toc-Books_discussing_unsolved_problems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">List of unsolved problems in mathematics</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%A6%D9%85%D8%A9_%D8%A7%D9%84%D9%85%D8%B3%D8%A7%D8%A6%D9%84_%D8%BA%D9%8A%D8%B1_%D8%A7%D9%84%D9%85%D8%AD%D9%84%D9%88%D9%84%D8%A9_%D9%81%D9%8A_%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA" title="قائمة المسائل غير المحلولة في الرياضيات – Arabic" lang="ar" hreflang="ar" data-title="قائمة المسائل غير المحلولة في الرياضيات" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4%E0%A7%87_%E0%A6%85%E0%A6%B8%E0%A6%AE%E0%A6%BE%E0%A6%A7%E0%A6%BF%E0%A6%A4_%E0%A6%B8%E0%A6%AE%E0%A6%B8%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%B0_%E0%A6%A4%E0%A6%BE%E0%A6%B2%E0%A6%BF%E0%A6%95%E0%A6%BE" title="গণিতে অসমাধিত সমস্যার তালিকা – Bangla" lang="bn" hreflang="bn" data-title="গণিতে অসমাধিত সমস্যার তালিকা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Problemes_no_resolts_en_matem%C3%A0tiques" title="Problemes no resolts en matemàtiques – Catalan" lang="ca" hreflang="ca" data-title="Problemes no resolts en matemàtiques" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Otev%C5%99en%C3%A9_probl%C3%A9my_v_matematice" title="Otevřené problémy v matematice – Czech" lang="cs" hreflang="cs" data-title="Otevřené problémy v matematice" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ungel%C3%B6ste_Probleme_der_Mathematik" title="Ungelöste Probleme der Mathematik – German" lang="de" hreflang="de" data-title="Ungelöste Probleme der Mathematik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anexo:Problemas_no_resueltos_de_la_Matem%C3%A1tica" title="Anexo:Problemas no resueltos de la Matemática – Spanish" lang="es" hreflang="es" data-title="Anexo:Problemas no resueltos de la Matemática" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Ebatzi_gabeko_problema_matematikoak" title="Ebatzi gabeko problema matematikoak – Basque" lang="eu" hreflang="eu" data-title="Ebatzi gabeko problema matematikoak" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D9%87%D8%B1%D8%B3%D8%AA_%D9%85%D8%B3%D8%A6%D9%84%D9%87%E2%80%8C%D9%87%D8%A7%DB%8C_%D8%AD%D9%84%E2%80%8C%D9%86%D8%B4%D8%AF%D9%87_%D8%AF%D8%B1_%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA" title="فهرست مسئلههای حلنشده در ریاضیات – Persian" lang="fa" hreflang="fa" data-title="فهرست مسئلههای حلنشده در ریاضیات" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Probl%C3%A8mes_non_r%C3%A9solus_en_math%C3%A9matiques" title="Problèmes non résolus en mathématiques – French" lang="fr" hreflang="fr" data-title="Problèmes non résolus en mathématiques" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Lista_de_problemas_sen_solucionar_en_matem%C3%A1ticas" title="Lista de problemas sen solucionar en matemáticas – Galician" lang="gl" hreflang="gl" data-title="Lista de problemas sen solucionar en matemáticas" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99%EC%9D%98_%EB%AF%B8%ED%95%B4%EA%B2%B0_%EB%AC%B8%EC%A0%9C_%EB%AA%A9%EB%A1%9D" title="수학의 미해결 문제 목록 – Korean" lang="ko" hreflang="ko" data-title="수학의 미해결 문제 목록" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Daftar_masalah_matematika_yang_belum_terpecahkan" title="Daftar masalah matematika yang belum terpecahkan – Indonesian" lang="id" hreflang="id" data-title="Daftar masalah matematika yang belum terpecahkan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Problemi_irrisolti_in_matematica" title="Problemi irrisolti in matematica – Italian" lang="it" hreflang="it" data-title="Problemi irrisolti in matematica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/A_matematika_megoldatlan_probl%C3%A9m%C3%A1inak_list%C3%A1ja" title="A matematika megoldatlan problémáinak listája – Hungarian" lang="hu" hreflang="hu" data-title="A matematika megoldatlan problémáinak listája" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Onopgeloste_vraagstukken_in_de_wiskunde" title="Onopgeloste vraagstukken in de wiskunde – Dutch" lang="nl" hreflang="nl" data-title="Onopgeloste vraagstukken in de wiskunde" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E4%B8%8A%E3%81%AE%E6%9C%AA%E8%A7%A3%E6%B1%BA%E5%95%8F%E9%A1%8C" title="数学上の未解決問題 – Japanese" lang="ja" hreflang="ja" data-title="数学上の未解決問題" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Liste_over_ul%C3%B8ste_matematiske_g%C3%A5ter" title="Liste over uløste matematiske gåter – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Liste over uløste matematiske gåter" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Nierozwi%C4%85zane_problemy_w_matematyce" title="Nierozwiązane problemy w matematyce – Polish" lang="pl" hreflang="pl" data-title="Nierozwiązane problemy w matematyce" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Problemas_em_aberto_da_matem%C3%A1tica" title="Problemas em aberto da matemática – Portuguese" lang="pt" hreflang="pt" data-title="Problemas em aberto da matemática" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Probleme_nerezolvate_ale_matematicii" title="Probleme nerezolvate ale matematicii – Romanian" lang="ro" hreflang="ro" data-title="Probleme nerezolvate ale matematicii" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%BA%D1%80%D1%8B%D1%82%D1%8B%D0%B5_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D1%8B" title="Открытые математические проблемы – Russian" lang="ru" hreflang="ru" data-title="Открытые математические проблемы" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Nere%C5%A1eni_matemati%C4%8Dni_problemi" title="Nerešeni matematični problemi – Slovenian" lang="sl" hreflang="sl" data-title="Nerešeni matematični problemi" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Luettelo_ratkaisemattomista_matemaattisista_ongelmista" title="Luettelo ratkaisemattomista matemaattisista ongelmista – Finnish" lang="fi" hreflang="fi" data-title="Luettelo ratkaisemattomista matemaattisista ongelmista" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ol%C3%B6sta_matematiska_problem" title="Olösta matematiska problem – Swedish" lang="sv" hreflang="sv" data-title="Olösta matematiska problem" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%87%C3%B6z%C3%BClememi%C5%9F_matematik_problemleri_listesi" title="Çözülememiş matematik problemleri listesi – Turkish" lang="tr" hreflang="tr" data-title="Çözülememiş matematik problemleri listesi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D1%96%D0%B4%D0%BA%D1%80%D0%B8%D1%82%D1%96_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D1%96_%D0%BF%D0%B8%D1%82%D0%B0%D0%BD%D0%BD%D1%8F" title="Відкриті математичні питання – Ukrainian" lang="uk" hreflang="uk" data-title="Відкриті математичні питання" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Danh_s%C3%A1ch_v%E1%BA%A5n_%C4%91%E1%BB%81_m%E1%BB%9F_trong_to%C3%A1n_h%E1%BB%8Dc" title="Danh sách vấn đề mở trong toán học – Vietnamese" lang="vi" hreflang="vi" data-title="Danh sách vấn đề mở trong toán học" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9C%AA%E8%A7%A3%E5%86%B3%E7%9A%84%E6%95%B0%E5%AD%A6%E9%97%AE%E9%A2%98" title="未解决的数学问题 – Chinese" lang="zh" hreflang="zh" data-title="未解决的数学问题" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q848034#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/List_of_unsolved_problems_in_mathematics" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:List_of_unsolved_problems_in_mathematics" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/List_of_unsolved_problems_in_mathematics"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&action=edit" title="This page is protected. You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/List_of_unsolved_problems_in_mathematics"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/List_of_unsolved_problems_in_mathematics" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/List_of_unsolved_problems_in_mathematics" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&oldid=1258699358" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=List_of_unsolved_problems_in_mathematics&id=1258699358&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_unsolved_problems_in_mathematics"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_unsolved_problems_in_mathematics"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=List_of_unsolved_problems_in_mathematics&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=List_of_unsolved_problems_in_mathematics&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Unsolved_problems_in_mathematics" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q848034" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected until August 26, 2025 at 08:34 UTC."><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This is a <a href="/wiki/Wikipedia:WikiProject_Lists#Dynamic_lists" title="Wikipedia:WikiProject Lists">dynamic list</a> and may never be able to satisfy particular standards for completeness. You can help by <a href="/wiki/Special:EditPage/List_of_unsolved_problems_in_mathematics" title="Special:EditPage/List of unsolved problems in mathematics">adding missing items</a> with <a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources">reliable sources</a>.</div> <p>Many <a href="/wiki/Mathematical_problems" class="mw-redirect" title="Mathematical problems">mathematical problems</a> have been stated but not yet solved. These problems come from many <a href="/wiki/Areas_of_mathematics" class="mw-redirect" title="Areas of mathematics">areas of mathematics</a>, such as <a href="/wiki/Theoretical_physics" title="Theoretical physics">theoretical physics</a>, <a href="/wiki/Computer_science" title="Computer science">computer science</a>, <a href="/wiki/Algebra" title="Algebra">algebra</a>, <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">analysis</a>, <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a>, <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic</a>, <a href="/wiki/Differential_geometry" title="Differential geometry">differential</a>, <a href="/wiki/Discrete_geometry" title="Discrete geometry">discrete</a> and <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometries</a>, <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>, <a href="/wiki/Group_theory" title="Group theory">group theory</a>, <a href="/wiki/Model_theory" title="Model theory">model theory</a>, <a href="/wiki/Number_theory" title="Number theory">number theory</a>, <a href="/wiki/Set_theory" title="Set theory">set theory</a>, <a href="/wiki/Ramsey_theory" title="Ramsey theory">Ramsey theory</a>, <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical systems</a>, and <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the <a href="/wiki/Millennium_Prize_Problems" title="Millennium Prize Problems">Millennium Prize Problems</a>, receive considerable attention. </p><p>This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the problems listed here vary widely in both difficulty and importance. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Lists_of_unsolved_problems_in_mathematics">Lists of unsolved problems in mathematics</h2></div> <p>Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions. </p> <table class="wikitable sortable"> <tbody><tr> <th>List</th> <th>Number of<br />problems</th> <th>Number unsolved <br /> or incompletely solved</th> <th>Proposed by</th> <th>Proposed<br />in </th></tr> <tr> <td><a href="/wiki/Hilbert%27s_problems" title="Hilbert's problems">Hilbert's problems</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></td> <td>23</td> <td>15</td> <td><a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a></td> <td>1900 </td></tr> <tr> <td><a href="/wiki/Landau%27s_problems" title="Landau's problems">Landau's problems</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></td> <td>4</td> <td>4</td> <td><a href="/wiki/Edmund_Landau" title="Edmund Landau">Edmund Landau</a></td> <td>1912 </td></tr> <tr> <td><a href="/w/index.php?title=Taniyama%27s_problems&action=edit&redlink=1" class="new" title="Taniyama's problems (page does not exist)">Taniyama's problems</a><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></td> <td>36</td> <td>-</td> <td><a href="/wiki/Yutaka_Taniyama" title="Yutaka Taniyama">Yutaka Taniyama</a></td> <td>1955 </td></tr> <tr> <td><a href="/w/index.php?title=Thurston%27s_24_questions&action=edit&redlink=1" class="new" title="Thurston's 24 questions (page does not exist)">Thurston's 24 questions</a><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></td> <td>24</td> <td>-</td> <td><a href="/wiki/William_Thurston" title="William Thurston">William Thurston</a></td> <td>1982 </td></tr> <tr> <td><a href="/wiki/Smale%27s_problems" title="Smale's problems">Smale's problems</a></td> <td>18</td> <td>14</td> <td><a href="/wiki/Stephen_Smale" title="Stephen Smale">Stephen Smale</a></td> <td>1998 </td></tr> <tr> <td><a href="/wiki/Millennium_Prize_Problems" title="Millennium Prize Problems">Millennium Prize Problems</a></td> <td>7</td> <td>6<sup id="cite_ref-auto1_6-0" class="reference"><a href="#cite_note-auto1-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></td> <td><a href="/wiki/Clay_Mathematics_Institute" title="Clay Mathematics Institute">Clay Mathematics Institute</a></td> <td>2000 </td></tr> <tr> <td><a href="/wiki/Simon_problems" title="Simon problems">Simon problems</a></td> <td>15</td> <td><12<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-guardian_8-0" class="reference"><a href="#cite_note-guardian-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></td> <td><a href="/wiki/Barry_Simon" title="Barry Simon">Barry Simon</a></td> <td>2000 </td></tr> <tr> <td><a href="/w/index.php?title=Unsolved_Problems_on_Mathematics_for_the_21st_Century&action=edit&redlink=1" class="new" title="Unsolved Problems on Mathematics for the 21st Century (page does not exist)">Unsolved Problems on Mathematics for the 21st Century</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></td> <td>22</td> <td>-</td> <td>Jair Minoro Abe, Shotaro Tanaka</td> <td>2001 </td></tr> <tr> <td><a href="/wiki/DARPA" title="DARPA">DARPA</a>'s math challenges<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></td> <td>23</td> <td>-</td> <td><a href="/wiki/DARPA" title="DARPA">DARPA</a></td> <td>2007 </td></tr> <tr> <td><a href="/w/index.php?title=Erd%C5%91s%27s_problems&action=edit&redlink=1" class="new" title="Erdős's problems (page does not exist)">Erdős's problems</a><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></td> <td>>860</td> <td>580</td> <td><a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Paul Erdős</a></td> <td>Over six decades of Erdős' career, from the 1930s to 1990s </td></tr></tbody></table> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Riemann-Zeta-Func.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Riemann-Zeta-Func.png/250px-Riemann-Zeta-Func.png" decoding="async" width="250" height="332" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Riemann-Zeta-Func.png/375px-Riemann-Zeta-Func.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Riemann-Zeta-Func.png/500px-Riemann-Zeta-Func.png 2x" data-file-width="1320" data-file-height="1752" /></a><figcaption>The <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>, subject of the celebrated and influential unsolved problem known as the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Millennium_Prize_Problems">Millennium Prize Problems</h3></div> <p>Of the original seven <a href="/wiki/Millennium_Prize_Problems" title="Millennium Prize Problems">Millennium Prize Problems</a> listed by the <a href="/wiki/Clay_Mathematics_Institute" title="Clay Mathematics Institute">Clay Mathematics Institute</a> in 2000, six remain unsolved to date:<sup id="cite_ref-auto1_6-1" class="reference"><a href="#cite_note-auto1-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <ul><li><a href="/wiki/Birch_and_Swinnerton-Dyer_conjecture" title="Birch and Swinnerton-Dyer conjecture">Birch and Swinnerton-Dyer conjecture</a></li> <li><a href="/wiki/Hodge_conjecture" title="Hodge conjecture">Hodge conjecture</a></li> <li><a href="/wiki/Navier%E2%80%93Stokes_existence_and_smoothness" title="Navier–Stokes existence and smoothness">Navier–Stokes existence and smoothness</a></li> <li><a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Yang%E2%80%93Mills_existence_and_mass_gap" title="Yang–Mills existence and mass gap">Yang–Mills existence and mass gap</a></li></ul> <p>The seventh problem, the <a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a>, was solved by <a href="/wiki/Grigori_Perelman" title="Grigori Perelman">Grigori Perelman</a> in 2003.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> However, a generalization called the <a href="/wiki/Generalized_Poincar%C3%A9_conjecture" title="Generalized Poincaré conjecture">smooth four-dimensional Poincaré conjecture</a>—that is, whether a <i>four</i>-dimensional <a href="/wiki/Topological_sphere" class="mw-redirect" title="Topological sphere">topological sphere</a> can have two or more inequivalent <a href="/wiki/Smooth_structure" title="Smooth structure">smooth structures</a>—is unsolved.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Notebooks">Notebooks</h3></div> <ul><li>The <a href="/wiki/Kourovka,_Sverdlovsk_Oblast" title="Kourovka, Sverdlovsk Oblast">Kourovka</a> Notebook (<a href="/wiki/Russian_language" title="Russian language">Russian</a>: <span lang="ru">Коуровская тетрадь</span>) is a collection of unsolved problems in <a href="/wiki/Group_theory" title="Group theory">group theory</a>, first published in 1965 and updated many times since.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Yekaterinburg" title="Yekaterinburg">Sverdlovsk</a> Notebook (<a href="/wiki/Russian_language" title="Russian language">Russian</a>: <span lang="ru">Свердловская тетрадь</span>) is a collection of unsolved problems in <a href="/wiki/Semigroup_theory" class="mw-redirect" title="Semigroup theory">semigroup theory</a>, first published in 1965 and updated every 2 to 4 years since.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Dniester" title="Dniester">Dniester</a> Notebook (<a href="/wiki/Russian_language" title="Russian language">Russian</a>: <span lang="ru">Днестровская тетрадь</span>) lists several hundred unsolved problems in algebra, particularly <a href="/wiki/Ring_theory" title="Ring theory">ring theory</a> and <a href="/wiki/Modulus_(algebraic_number_theory)" title="Modulus (algebraic number theory)">modulus theory</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/w/index.php?title=Erlagol&action=edit&redlink=1" class="new" title="Erlagol (page does not exist)">Erlagol</a> Notebook (<a href="/wiki/Russian_language" title="Russian language">Russian</a>: <span lang="ru">Эрлагольская тетрадь</span>) lists unsolved problems in algebra and <a href="/wiki/Model_theory" title="Model theory">model theory</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Unsolved_problems">Unsolved problems</h2></div> <div class="mw-heading mw-heading3"><h3 id="Algebra">Algebra</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebra" title="Algebra">Algebra</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Regular_tetrahedron_inscribed_in_a_sphere.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/220px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png" decoding="async" width="220" height="194" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/330px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Regular_tetrahedron_inscribed_in_a_sphere.svg/440px-Regular_tetrahedron_inscribed_in_a_sphere.svg.png 2x" data-file-width="602" data-file-height="532" /></a><figcaption>In the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a> representation of a <a href="/wiki/Qubit" title="Qubit">qubit</a>, a <a href="/wiki/SIC-POVM" title="SIC-POVM">SIC-POVM</a> forms a <a href="/wiki/Regular_tetrahedron" class="mw-redirect" title="Regular tetrahedron">regular tetrahedron</a>. Zauner conjectured that analogous structures exist in complex <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a> of all finite dimensions.</figcaption></figure> <ul><li><a href="/wiki/Birch%E2%80%93Tate_conjecture" title="Birch–Tate conjecture">Birch–Tate conjecture</a> on the relation between the order of the <a href="/wiki/Center_(group_theory)" title="Center (group theory)">center</a> of the <a href="/wiki/Steinberg_group_(K-theory)" title="Steinberg group (K-theory)">Steinberg group</a> of the <a href="/wiki/Ring_of_integers" title="Ring of integers">ring of integers</a> of a <a href="/wiki/Algebraic_number_field" title="Algebraic number field">number field</a> to the field's <a href="/wiki/Dedekind_zeta_function" title="Dedekind zeta function">Dedekind zeta function</a>.</li> <li><a href="/wiki/Bombieri%E2%80%93Lang_conjecture" title="Bombieri–Lang conjecture">Bombieri–Lang conjectures</a> on densities of rational points of <a href="/wiki/Algebraic_surface" title="Algebraic surface">algebraic surfaces</a> and <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a> defined on <a href="/wiki/Algebraic_number_field" title="Algebraic number field">number fields</a> and their <a href="/wiki/Field_extension" title="Field extension">field extensions</a>.</li> <li><a href="/wiki/Connes_embedding_problem" title="Connes embedding problem">Connes embedding problem</a> in <a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a> theory</li> <li><a href="/wiki/Crouzeix%27s_conjecture" title="Crouzeix's conjecture">Crouzeix's conjecture</a>: the <a href="/wiki/Matrix_norm" title="Matrix norm">matrix norm</a> of a complex function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> applied to a complex matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is at most twice the <a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">supremum</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(z)|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(z)|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdbe46515a38cb5b3c75554c463f7ee985853a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.47ex; height:2.843ex;" alt="{\displaystyle |f(z)|}"></span> over the <a href="/wiki/Numerical_range" title="Numerical range">field of values</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>.</li> <li><a href="/wiki/Determinantal_conjecture" title="Determinantal conjecture">Determinantal conjecture</a> on the <a href="/wiki/Determinant" title="Determinant">determinant</a> of the sum of two <a href="/wiki/Normal_matrix" title="Normal matrix">normal matrices</a>.</li> <li><a href="/wiki/Eilenberg%E2%80%93Ganea_conjecture" title="Eilenberg–Ganea conjecture">Eilenberg–Ganea conjecture</a>: a group with <a href="/wiki/Cohomological_dimension" title="Cohomological dimension">cohomological dimension</a> 2 also has a 2-dimensional <a href="/wiki/Eilenberg%E2%80%93MacLane_space" title="Eilenberg–MacLane space">Eilenberg–MacLane space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(G,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(G,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30ac500e56f9a311b1e02891755822a53a99af5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.898ex; height:2.843ex;" alt="{\displaystyle K(G,1)}"></span>.</li> <li><a href="/wiki/Farrell%E2%80%93Jones_conjecture" title="Farrell–Jones conjecture">Farrell–Jones conjecture</a> on whether certain <a href="/wiki/Assembly_map" title="Assembly map">assembly maps</a> are <a href="/wiki/Isomorphisms" class="mw-redirect" title="Isomorphisms">isomorphisms</a>. <ul><li><a href="/wiki/Farrell%E2%80%93Jones_conjecture#Bost_conjecture" title="Farrell–Jones conjecture">Bost conjecture</a>: a specific case of the Farrell–Jones conjecture</li></ul></li> <li><a href="/wiki/Finite_lattice_representation_problem" title="Finite lattice representation problem">Finite lattice representation problem</a>: is every finite <a href="/wiki/Lattice_(order)" title="Lattice (order)">lattice</a> isomorphic to the <a href="/wiki/Quotient_(universal_algebra)#Congruence_lattice" title="Quotient (universal algebra)">congruence lattice</a> of some finite <a href="/wiki/Universal_algebra" title="Universal algebra">algebra</a>?<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Goncharov_conjecture" title="Goncharov conjecture">Goncharov conjecture</a> on the <a href="/wiki/Cohomology" title="Cohomology">cohomology</a> of certain <a href="/wiki/Motivic_cohomology" title="Motivic cohomology">motivic complexes</a>.</li> <li><a href="/wiki/Green%27s_conjecture" class="mw-redirect" title="Green's conjecture">Green's conjecture</a>: the <a href="/wiki/Clifford%27s_theorem_on_special_divisors" title="Clifford's theorem on special divisors">Clifford index</a> of a non-<a href="/wiki/Hyperelliptic_curve" title="Hyperelliptic curve">hyperelliptic curve</a> is determined by the extent to which it, as a <a href="/wiki/Canonical_bundle" title="Canonical bundle">canonical curve</a>, has <a href="/wiki/Linear_relation" title="Linear relation">linear syzygies</a>.</li> <li><a href="/wiki/Grothendieck%E2%80%93Katz_p-curvature_conjecture" title="Grothendieck–Katz p-curvature conjecture">Grothendieck–Katz p-curvature conjecture</a>: a conjectured <a href="/wiki/Hasse_principle" title="Hasse principle">local–global principle</a> for <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear ordinary differential equations</a>.</li> <li><a href="/wiki/Hadamard_conjecture" class="mw-redirect" title="Hadamard conjecture">Hadamard conjecture</a>: for every positive integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, a <a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard matrix</a> of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ea0bbe41a62da2d834f6fcc4298362c11e17ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.374ex; height:2.176ex;" alt="{\displaystyle 4k}"></span> exists. <ul><li><a href="/wiki/Williamson_conjecture" title="Williamson conjecture">Williamson conjecture</a>: the problem of finding Williamson matrices, which can be used to construct Hadamard matrices.</li></ul></li> <li><a href="/wiki/Hadamard%27s_maximal_determinant_problem" title="Hadamard's maximal determinant problem">Hadamard's maximal determinant problem</a>: what is the largest <a href="/wiki/Determinant" title="Determinant">determinant</a> of a matrix with entries all equal to 1 or –1?</li> <li><a href="/wiki/Hilbert%27s_fifteenth_problem" title="Hilbert's fifteenth problem">Hilbert's fifteenth problem</a>: put <a href="/wiki/Schubert_calculus" title="Schubert calculus">Schubert calculus</a> on a rigorous foundation.</li> <li><a href="/wiki/Hilbert%27s_sixteenth_problem" title="Hilbert's sixteenth problem">Hilbert's sixteenth problem</a>: what are the possible configurations of the <a href="/wiki/Connected_space" title="Connected space">connected components</a> of <a href="/wiki/Harnack%27s_curve_theorem" title="Harnack's curve theorem">M-curves</a>?</li> <li><a href="/wiki/Homological_conjectures_in_commutative_algebra" title="Homological conjectures in commutative algebra">Homological conjectures in commutative algebra</a></li> <li><a href="/wiki/Jacobson%27s_conjecture" title="Jacobson's conjecture">Jacobson's conjecture</a>: the intersection of all powers of the <a href="/wiki/Jacobson_radical" title="Jacobson radical">Jacobson radical</a> of a left-and-right <a href="/wiki/Noetherian_ring" title="Noetherian ring">Noetherian ring</a> is precisely 0.</li> <li><a href="/wiki/Kaplansky%27s_conjectures" title="Kaplansky's conjectures">Kaplansky's conjectures</a></li> <li><a href="/wiki/K%C3%B6the_conjecture" title="Köthe conjecture">Köthe conjecture</a>: if a ring has no <a href="/wiki/Nil_ideal" title="Nil ideal">nil ideal</a> other than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff0df9ef65c0572eb676580ce1c02b8ec40f694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{0\}}"></span>, then it has no nil <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">one-sided ideal</a> other than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff0df9ef65c0572eb676580ce1c02b8ec40f694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{0\}}"></span>.</li> <li><a href="/wiki/Monomial_conjecture" title="Monomial conjecture">Monomial conjecture</a> on <a href="/wiki/Noetherian_ring" title="Noetherian ring">Noetherian</a> <a href="/wiki/Local_ring" title="Local ring">local rings</a></li> <li>Existence of <a href="/wiki/Perfect_cuboid" class="mw-redirect" title="Perfect cuboid">perfect cuboids</a> and associated <a href="/wiki/Cuboid_conjectures" class="mw-redirect" title="Cuboid conjectures">cuboid conjectures</a></li> <li><a href="/wiki/Pierce%E2%80%93Birkhoff_conjecture" title="Pierce–Birkhoff conjecture">Pierce–Birkhoff conjecture</a>: every piecewise-polynomial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab54a3a84df609b7ac88c7f37cc10cbd5e5761fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.404ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} }"></span> is the maximum of a finite set of minimums of finite collections of polynomials.</li> <li><a href="/wiki/Rota%27s_basis_conjecture" title="Rota's basis conjecture">Rota's basis conjecture</a>: for matroids of rank <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> disjoint bases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82cda0578ec6b48774c541ecb9bee4a90176e62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle B_{i}}"></span>, it is possible to create an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrix whose rows are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82cda0578ec6b48774c541ecb9bee4a90176e62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle B_{i}}"></span> and whose columns are also bases.</li> <li><a href="/wiki/Serre%27s_conjecture_II_(algebra)" class="mw-redirect" title="Serre's conjecture II (algebra)">Serre's conjecture II</a>: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is a <a href="/wiki/Simply_connected_space" title="Simply connected space">simply connected</a> <a href="/wiki/Semisimple_algebraic_group" class="mw-redirect" title="Semisimple algebraic group">semisimple algebraic group</a> over a perfect <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> of <a href="/wiki/Cohomological_dimension" title="Cohomological dimension">cohomological dimension</a> at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span>, then the <a href="/wiki/Galois_cohomology" title="Galois cohomology">Galois cohomology</a> set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{1}(F,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{1}(F,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fa9afc3c30f7c4c00e9676d91500924121ef0c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.568ex; height:3.176ex;" alt="{\displaystyle H^{1}(F,G)}"></span> is zero.</li> <li><a href="/wiki/Serre%27s_multiplicity_conjectures" title="Serre's multiplicity conjectures">Serre's positivity conjecture</a> that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a commutative <a href="/wiki/Regular_local_ring" title="Regular local ring">regular local ring</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P,Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>,</mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P,Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94b3c5b21ee2d8a12253a952e4c4b1733ceb0735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.618ex; height:2.509ex;" alt="{\displaystyle P,Q}"></span> are <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideals</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dim(R/P)+\dim(R/Q)=\dim(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dim(R/P)+\dim(R/Q)=\dim(R)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/474abd9433fba154199dffc7a82f5d56643470a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.193ex; height:2.843ex;" alt="{\displaystyle \dim(R/P)+\dim(R/Q)=\dim(R)}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (R/P,R/Q)>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>χ<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> <mo>,</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (R/P,R/Q)>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d319b0b57fc8e393df931c5910d7c0b6ef1f2523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.996ex; height:2.843ex;" alt="{\displaystyle \chi (R/P,R/Q)>0}"></span>.</li> <li><a href="/wiki/Uniform_boundedness_conjecture_for_rational_points" title="Uniform boundedness conjecture for rational points">Uniform boundedness conjecture for rational points</a>: do <a href="/wiki/Algebraic_curve" title="Algebraic curve">algebraic curves</a> of <a href="/wiki/Geometric_genus" title="Geometric genus">genus</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84b2394f64ae9927e09ee51b848be213edecafe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.377ex; height:2.509ex;" alt="{\displaystyle g\geq 2}"></span> over <a href="/wiki/Algebraic_number_field" title="Algebraic number field">number fields</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> have at most some bounded number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(K,g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(K,g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc13b3e0400ce3c69aa0b173b7a5a764d9d25ac2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.089ex; height:2.843ex;" alt="{\displaystyle N(K,g)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>-<a href="/wiki/Rational_point" title="Rational point">rational points</a>?</li> <li><a href="/wiki/Wild_problem" title="Wild problem">Wild problems</a>: problems involving classification of pairs of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> matrices under simultaneous conjugation.</li> <li><a href="/wiki/Zariski%E2%80%93Lipman_conjecture" class="mw-redirect" title="Zariski–Lipman conjecture">Zariski–Lipman conjecture</a>: for a <a href="/wiki/Complex_algebraic_variety" title="Complex algebraic variety">complex algebraic variety</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> with <a href="/wiki/Coordinate_ring" class="mw-redirect" title="Coordinate ring">coordinate ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>, if the <a href="/wiki/Derivation_(algebra)" class="mw-redirect" title="Derivation (algebra)">derivations</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> are a <a href="/wiki/Free_module" title="Free module">free module</a> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> is <a href="/wiki/Smooth_algebraic_variety" class="mw-redirect" title="Smooth algebraic variety">smooth</a>.</li> <li>Zauner's conjecture: do <a href="/wiki/SIC-POVM" title="SIC-POVM">SIC-POVMs</a> exist in all dimensions?</li> <li><a href="/wiki/Zilber%E2%80%93Pink_conjecture" title="Zilber–Pink conjecture">Zilber–Pink conjecture</a> that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a mixed <a href="/wiki/Shimura_variety" title="Shimura variety">Shimura variety</a> or <a href="/wiki/Abelian_variety#Semiabelian_variety" title="Abelian variety">semiabelian variety</a> defined over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>⊆<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd13f9c1d91f8036a8c33fb8d6b03a7d08492a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.866ex; height:2.343ex;" alt="{\displaystyle V\subseteq X}"></span> is a subvariety, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> contains only finitely many atypical subvarieties.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Group_theory">Group theory</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Group_theory" title="Group theory">Group theory</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FreeBurnsideGroupExp3Gens2.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c6/FreeBurnsideGroupExp3Gens2.png/220px-FreeBurnsideGroupExp3Gens2.png" decoding="async" width="220" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c6/FreeBurnsideGroupExp3Gens2.png/330px-FreeBurnsideGroupExp3Gens2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c6/FreeBurnsideGroupExp3Gens2.png/440px-FreeBurnsideGroupExp3Gens2.png 2x" data-file-width="1792" data-file-height="1381" /></a><figcaption>The <a href="/wiki/Free_Burnside_group" class="mw-redirect" title="Free Burnside group">free Burnside group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(2,3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(2,3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4c9f28d2252e08412db83b4e6432aaa759b2680" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.932ex; height:2.843ex;" alt="{\displaystyle B(2,3)}"></span> is finite; in its <a href="/wiki/Cayley_graph" title="Cayley graph">Cayley graph</a>, shown here, each of its 27 elements is represented by a vertex. The question of which other groups <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(m,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(m,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f1a73c7fa714079c1d7d34ac057cc268407d334" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.042ex; height:2.843ex;" alt="{\displaystyle B(m,n)}"></span> are finite remains open.</figcaption></figure> <ul><li><a href="/wiki/Andrews%E2%80%93Curtis_conjecture" title="Andrews–Curtis conjecture">Andrews–Curtis conjecture</a>: every balanced <a href="/wiki/Presentation_of_a_group" title="Presentation of a group">presentation</a> of the <a href="/wiki/Trivial_group" title="Trivial group">trivial group</a> can be transformed into a trivial presentation by a sequence of <a href="/wiki/Nielsen_transformation" title="Nielsen transformation">Nielsen transformations</a> on <a href="/wiki/Presentation_of_a_group#Definition" title="Presentation of a group">relators</a> and conjugations of relators</li> <li><a href="/wiki/Burnside_problem" title="Burnside problem">Burnside problem</a>: for which positive integers <i>m</i>, <i>n</i> is the free Burnside group <span class="nowrap">B(<i>m</i>,<i>n</i>)</span> finite? In particular, is <span class="nowrap">B(2, 5)</span> finite?</li> <li>Guralnick–Thompson conjecture on the composition factors of groups in genus-0 systems<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Herzog%E2%80%93Sch%C3%B6nheim_conjecture" title="Herzog–Schönheim conjecture">Herzog–Schönheim conjecture</a>: if a finite system of left <a href="/wiki/Coset" title="Coset">cosets</a> of subgroups of a group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> form a partition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, then the finite indices of said subgroups cannot be distinct.</li> <li>The <a href="/wiki/Inverse_Galois_problem" title="Inverse Galois problem">inverse Galois problem</a>: is every finite group the Galois group of a Galois extension of the rationals?</li> <li>Are there an infinite number of <a href="/wiki/Leinster_group" title="Leinster group">Leinster groups</a>?</li> <li>Does <a href="/wiki/Monstrous_moonshine#Generalized_moonshine" title="Monstrous moonshine">generalized moonshine</a> exist?</li> <li>Is every <a href="/wiki/Finitely_presented_group" class="mw-redirect" title="Finitely presented group">finitely presented</a> <a href="/wiki/Periodic_group" class="mw-redirect" title="Periodic group">periodic group</a> finite?</li> <li>Is every group <a href="/wiki/Surjunctive_group" title="Surjunctive group">surjunctive</a>?</li> <li>Is every discrete, countable group <a href="/wiki/Sofic_group" title="Sofic group">sofic</a>?</li> <li><a href="/wiki/Problems_in_loop_theory_and_quasigroup_theory" class="mw-redirect" title="Problems in loop theory and quasigroup theory">Problems in loop theory and quasigroup theory</a> consider generalizations of groups</li></ul> <div class="mw-heading mw-heading4"><h4 id="Representation_theory">Representation theory</h4></div> <ul><li><a href="/wiki/Arthur%27s_conjectures" title="Arthur's conjectures">Arthur's conjectures</a></li> <li><a href="/wiki/Dade%27s_conjecture" title="Dade's conjecture">Dade's conjecture</a> relating the numbers of <a href="/wiki/Character_theory" title="Character theory">characters</a> of <a href="/wiki/Modular_representation_theory#Blocks_and_the_structure_of_the_group_algebra" title="Modular representation theory">blocks</a> of a finite group to the numbers of characters of blocks of local <a href="/wiki/Subgroup" title="Subgroup">subgroups</a>.</li> <li><a href="/wiki/Demazure_conjecture" title="Demazure conjecture">Demazure conjecture</a> on <a href="/wiki/Group_representation" title="Group representation">representations</a> of <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic groups</a> over the integers.</li> <li><a href="/wiki/Kazhdan%E2%80%93Lusztig_polynomial#Kazhdan–Lusztig_conjectures" title="Kazhdan–Lusztig polynomial">Kazhdan–Lusztig conjectures</a> relating the values of the <a href="/wiki/Kazhdan%E2%80%93Lusztig_polynomial" title="Kazhdan–Lusztig polynomial">Kazhdan–Lusztig polynomials</a> at 1 with <a href="/wiki/Group_representation" title="Group representation">representations</a> of complex <a href="/wiki/Semisimple_Lie_algebra#Semisimple_and_reductive_groups" title="Semisimple Lie algebra">semisimple Lie groups</a> and <a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">Lie algebras</a>.</li> <li><a href="/wiki/McKay_conjecture" title="McKay conjecture">McKay conjecture</a>: in a group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, the number of <a href="/wiki/Character_theory#Definitions" title="Character theory">irreducible complex characters</a> of degree not divisible by a <a href="/wiki/Prime_number" title="Prime number">prime number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is equal to the number of irreducible complex characters of the <a href="/wiki/Centralizer_and_normalizer" title="Centralizer and normalizer">normalizer</a> of any <a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-subgroup</a> within <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Analysis">Analysis</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Mathematical analysis</a></div> <ul><li>The <a href="/wiki/Brennan_conjecture" title="Brennan conjecture">Brennan conjecture</a>: estimating the integral of powers of the moduli of the derivative of <a href="/wiki/Conformal_map" title="Conformal map">conformal maps</a> into the open unit disk, on certain subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span></li> <li><a href="/wiki/Fuglede%27s_conjecture" title="Fuglede's conjecture">Fuglede's conjecture</a> on whether nonconvex sets in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> are spectral if and only if they tile by <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a>.</li> <li><a href="/wiki/Goodman%27s_conjecture" title="Goodman's conjecture">Goodman's conjecture</a> on the coefficients of <a href="/wiki/Multivalent_function" class="mw-redirect" title="Multivalent function">multivalent functions</a></li> <li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a> – does every <a href="/wiki/Bounded_operator" title="Bounded operator">bounded operator</a> on a complex <a href="/wiki/Banach_space" title="Banach space">Banach space</a> send some non-trivial <a href="/wiki/Closed_set" title="Closed set">closed</a> subspace to itself?</li> <li>Kung–Traub conjecture on the optimal order of a multipoint iteration without memory<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Lehmer%27s_conjecture" title="Lehmer's conjecture">Lehmer's conjecture</a> on the Mahler measure of non-cyclotomic polynomials<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Mean_value_problem" title="Mean value problem">mean value problem</a>: given a <a href="/wiki/Complex_number" title="Complex number">complex</a> <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> of <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4f0ac074e1d66eecdf58762164e0afd3d628232" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.477ex; height:2.343ex;" alt="{\displaystyle d\geq 2}"></span> and a complex number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, is there a <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical point</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(z)-f(c)|\leq |f'(z)||z-c|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(z)-f(c)|\leq |f'(z)||z-c|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/367a795b758b5bcf81ef3920bbc5f8eb26689dd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.929ex; height:3.009ex;" alt="{\displaystyle |f(z)-f(c)|\leq |f'(z)||z-c|}"></span>?</li> <li>The <a href="/wiki/Pompeiu_problem" title="Pompeiu problem">Pompeiu problem</a> on the topology of domains for which some nonzero function has integrals that vanish over every congruent copy<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Sendov%27s_conjecture" title="Sendov's conjecture">Sendov's conjecture</a>: if a complex polynomial with degree at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> has all roots in the closed <a href="/wiki/Unit_disk" title="Unit disk">unit disk</a>, then each root is within distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> from some <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical point</a>.</li> <li><a href="/wiki/Analytic_capacity#Vitushkin's_conjecture" title="Analytic capacity">Vitushkin's conjecture</a> on compact subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> with <a href="/wiki/Analytic_capacity" title="Analytic capacity">analytic capacity</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span></li> <li>What is the exact value of <a href="/wiki/Landau%27s_constants" class="mw-redirect" title="Landau's constants">Landau's constants</a>, including <a href="/wiki/Bloch%27s_theorem_(complex_variables)#Bloch's_and_Landau's_constants" class="mw-redirect" title="Bloch's theorem (complex variables)">Bloch's constant</a>?</li></ul> <ul><li>Regularity of solutions of <a href="/wiki/Euler_equations_(fluid_dynamics)" title="Euler equations (fluid dynamics)">Euler equations</a></li> <li>Convergence of <a href="/wiki/Flint_Hills_series" class="mw-redirect" title="Flint Hills series">Flint Hills series</a></li> <li>Regularity of solutions of <a href="/wiki/Vlasov%E2%80%93Maxwell_equations" class="mw-redirect" title="Vlasov–Maxwell equations">Vlasov–Maxwell equations</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Combinatorics">Combinatorics</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Combinatorics" title="Combinatorics">Combinatorics</a></div> <ul><li>The <a href="/wiki/1/3%E2%80%932/3_conjecture" title="1/3–2/3 conjecture">1/3–2/3 conjecture</a> – does every finite <a href="/wiki/Partially_ordered_set" title="Partially ordered set">partially ordered set</a> that is not <a href="/wiki/Totally_ordered" class="mw-redirect" title="Totally ordered">totally ordered</a> contain two elements <i>x</i> and <i>y</i> such that the probability that <i>x</i> appears before <i>y</i> in a random <a href="/wiki/Linear_extension" title="Linear extension">linear extension</a> is between 1/3 and 2/3?<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Dittert_conjecture" title="Dittert conjecture">Dittert conjecture</a> concerning the maximum achieved by a particular function of matrices with real, nonnegative entries satisfying a summation condition</li> <li><a href="/wiki/Problems_in_Latin_squares" title="Problems in Latin squares">Problems in Latin squares</a> – open questions concerning <a href="/wiki/Latin_squares" class="mw-redirect" title="Latin squares">Latin squares</a></li> <li>The <a href="/wiki/Lonely_runner_conjecture" title="Lonely runner conjecture">lonely runner conjecture</a> – if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7e9fedad8c70c6331b2640b56c23cef8c884e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.536ex; height:2.843ex;" alt="{\displaystyle 1/k}"></span> from each other runner) at some time?<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Map_folding" title="Map folding">Map folding</a> – various problems in map folding and stamp folding.</li> <li><a href="/wiki/No-three-in-line_problem" title="No-three-in-line problem">No-three-in-line problem</a> – how many points can be placed in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> grid so that no three of them lie on a line?</li> <li><a href="/wiki/Rudin%27s_conjecture" title="Rudin's conjecture">Rudin's conjecture</a> on the number of squares in finite <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progressions</a><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Sunflower_(mathematics)" title="Sunflower (mathematics)">sunflower conjecture</a> – can the number of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> size sets required for the existence of a sunflower of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> sets be bounded by an exponential function in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> for every fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r>2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r>2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b91ae29874a80d658689e051217e63068e49708" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r>2}"></span>?</li> <li>Frankl's <a href="/wiki/Union-closed_sets_conjecture" title="Union-closed sets conjecture">union-closed sets conjecture</a> – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>Give a combinatorial interpretation of the <a href="/wiki/Kronecker_coefficient" title="Kronecker coefficient">Kronecker coefficients</a><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></li> <li>The values of the <a href="/wiki/Dedekind_number" title="Dedekind number">Dedekind numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c856803491e153263b91aacc660e26ef129d467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.646ex; height:2.843ex;" alt="{\displaystyle M(n)}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20b8a0ac431041fa3ed940ebccbb54e9a8b332f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.818ex; height:2.343ex;" alt="{\displaystyle n\geq 10}"></span><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></li> <li>The values of the <a href="/wiki/Ramsey_numbers" class="mw-redirect" title="Ramsey numbers">Ramsey numbers</a>, particularly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(5,5)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(5,5)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce54825efec1236758d3393b148f0e1d92788b01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.932ex; height:2.843ex;" alt="{\displaystyle R(5,5)}"></span></li> <li>The values of the <a href="/wiki/Van_der_Waerden_number" title="Van der Waerden number">Van der Waerden numbers</a></li> <li>Finding a function to model n-step <a href="/wiki/Self-avoiding_walk" title="Self-avoiding walk">self-avoiding walks</a><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Dynamical_systems">Dynamical systems</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Dynamical_system" title="Dynamical system">Dynamical system</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mandel_zoom_07_satellite.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Mandel_zoom_07_satellite.jpg/220px-Mandel_zoom_07_satellite.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Mandel_zoom_07_satellite.jpg/330px-Mandel_zoom_07_satellite.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Mandel_zoom_07_satellite.jpg/440px-Mandel_zoom_07_satellite.jpg 2x" data-file-width="2560" data-file-height="1920" /></a><figcaption>A detail of the <a href="/wiki/Mandelbrot_set" title="Mandelbrot set">Mandelbrot set</a>. It is not known whether the Mandelbrot set is <a href="/wiki/Locally_connected_space" title="Locally connected space">locally connected</a> or not.</figcaption></figure> <ul><li><a href="/wiki/Arnold%E2%80%93Givental_conjecture" class="mw-redirect" title="Arnold–Givental conjecture">Arnold–Givental conjecture</a> and <a href="/wiki/Symplectomorphism#Arnold_conjecture" title="Symplectomorphism">Arnold conjecture</a> – relating symplectic geometry to Morse theory.</li> <li><a href="/wiki/Quantum_chaos#Berry–Tabor_conjecture" title="Quantum chaos">Berry–Tabor conjecture</a> in <a href="/wiki/Quantum_chaos" title="Quantum chaos">quantum chaos</a></li> <li><a href="/wiki/Stefan_Banach" title="Stefan Banach">Banach's</a> problem – is there an <a href="/wiki/Measure-preserving_dynamical_system" title="Measure-preserving dynamical system">ergodic system</a> with simple Lebesgue spectrum?<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/George_David_Birkhoff" title="George David Birkhoff">Birkhoff</a> conjecture – if a <a href="/wiki/Dynamical_billiards" title="Dynamical billiards">billiard table</a> is strictly convex and integrable, is its boundary necessarily an ellipse?<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Collatz_conjecture" title="Collatz conjecture">Collatz conjecture</a> (<i>aka</i> the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1623e0fa64e26934ce78d9f779af38a90de4d157" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.56ex; height:2.343ex;" alt="{\displaystyle 3n+1}"></span> conjecture)</li> <li><a href="/wiki/Eden%27s_conjecture" title="Eden's conjecture">Eden's conjecture</a> that the <a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">supremum</a> of the local <a href="/wiki/Lyapunov_dimension" title="Lyapunov dimension">Lyapunov dimensions</a> on the global <a href="/wiki/Attractor" title="Attractor">attractor</a> is achieved on a stationary point or an unstable periodic orbit embedded into the attractor.</li> <li><a href="/wiki/Alexandre_Eremenko" title="Alexandre Eremenko">Eremenko's</a> conjecture: every component of the <a href="/wiki/Escaping_set" title="Escaping set">escaping set</a> of an <a href="/wiki/Entire_function" title="Entire function">entire</a> <a href="/wiki/Transcendental_function" title="Transcendental function">transcendental</a> function is unbounded.</li> <li><a href="/wiki/Fatou_conjecture" title="Fatou conjecture">Fatou conjecture</a> that a quadratic family of maps from the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> to itself is hyperbolic for an open dense set of parameters.</li> <li><a href="/wiki/Hillel_Furstenberg" title="Hillel Furstenberg">Furstenberg</a> conjecture – is every invariant and <a href="/wiki/Ergodicity" title="Ergodicity">ergodic</a> measure for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times 2,\times 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>×<!-- × --></mo> <mn>2</mn> <mo>,</mo> <mo>×<!-- × --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times 2,\times 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5ff8bc142eaf3ce64a03a5c1b79c9f4dc3bd2d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.975ex; height:2.509ex;" alt="{\displaystyle \times 2,\times 3}"></span> action on the circle either Lebesgue or atomic?</li> <li><a href="/wiki/Kaplan%E2%80%93Yorke_conjecture" title="Kaplan–Yorke conjecture">Kaplan–Yorke conjecture</a> on the dimension of an <a href="/wiki/Attractor" title="Attractor">attractor</a> in terms of its <a href="/wiki/Lyapunov_exponent" title="Lyapunov exponent">Lyapunov exponents</a></li> <li><a href="/wiki/Grigory_Margulis" title="Grigory Margulis">Margulis</a> conjecture – measure classification for diagonalizable actions in higher-rank groups.</li> <li><a href="/wiki/MLC_conjecture" class="mw-redirect" title="MLC conjecture">MLC conjecture</a> – is the Mandelbrot set locally connected?</li> <li>Many problems concerning an <a href="/wiki/Outer_billiard#open_problems" class="mw-redirect" title="Outer billiard">outer billiard</a>, for example showing that outer billiards relative to almost every convex polygon have unbounded orbits.</li> <li>Quantum unique ergodicity conjecture on the distribution of large-frequency <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunctions</a> of the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a> on a <a href="/wiki/Curvature" title="Curvature">negatively-curved</a> <a href="/wiki/Manifold" title="Manifold">manifold</a><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Vladimir_Abramovich_Rokhlin" title="Vladimir Abramovich Rokhlin">Rokhlin's</a> multiple mixing problem – are all <a href="/wiki/Mixing_(mathematics)" title="Mixing (mathematics)">strongly mixing</a> systems also strongly 3-mixing?<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Weinstein_conjecture" title="Weinstein conjecture">Weinstein conjecture</a> – does a regular compact <a href="/wiki/Contact_type" title="Contact type">contact type</a> <a href="/wiki/Level_set" title="Level set">level set</a> of a <a href="/wiki/Hamiltonian_function" class="mw-redirect" title="Hamiltonian function">Hamiltonian</a> on a <a href="/wiki/Symplectic_manifold" title="Symplectic manifold">symplectic manifold</a> carry at least one periodic orbit of the Hamiltonian flow?</li></ul> <ul><li>Does every positive integer generate a <a href="/wiki/Juggler_sequence" title="Juggler sequence">juggler sequence</a> terminating at 1?</li> <li><a href="/wiki/Lyapunov_function" title="Lyapunov function">Lyapunov function: Lyapunov's second method for stability</a> – For what classes of <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ODEs</a>, describing dynamical systems, does Lyapunov's second method, formulated in the classical and canonically generalized forms, define the necessary and sufficient conditions for the (asymptotical) stability of motion?</li> <li>Is every <a href="/wiki/Reversible_cellular_automaton" title="Reversible cellular automaton">reversible cellular automaton</a> in three or more dimensions locally reversible?<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Games_and_puzzles">Games and puzzles</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Game_theory" title="Game theory">Game theory</a></div> <div class="mw-heading mw-heading4"><h4 id="Combinatorial_games">Combinatorial games</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Combinatorial_game_theory" title="Combinatorial game theory">Combinatorial game theory</a></div> <ul><li><a href="/wiki/Sudoku" title="Sudoku">Sudoku</a>: <ul><li>How many puzzles have exactly one solution?<sup id="cite_ref-openq_39-0" class="reference"><a href="#cite_note-openq-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li> <li>How many puzzles with exactly one solution are <a href="/wiki/Glossary_of_Sudoku#Other_terminology" title="Glossary of Sudoku">minimal</a>?<sup id="cite_ref-openq_39-1" class="reference"><a href="#cite_note-openq-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li> <li>What is the <a href="/wiki/Mathematics_of_Sudoku#Maximum_number_of_givens" title="Mathematics of Sudoku">maximum number of givens</a> for a <a href="/wiki/Glossary_of_Sudoku#Other_terminology" title="Glossary of Sudoku">minimal</a> puzzle?<sup id="cite_ref-openq_39-2" class="reference"><a href="#cite_note-openq-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li></ul></li> <li><a href="/wiki/Tic-tac-toe_variants" title="Tic-tac-toe variants">Tic-tac-toe variants</a>: <ul><li>Given the width of a tic-tac-toe board, what is the smallest dimension such that X is guaranteed to have a winning strategy? (See also <a href="/wiki/Hales%E2%80%93Jewett_theorem" title="Hales–Jewett theorem">Hales–Jewett theorem</a> and <a href="/wiki/Nd_game" title="Nd game">n<sup>d</sup> game</a>)<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup></li></ul></li> <li><a href="/wiki/Chess" title="Chess">Chess</a>: <ul><li>What is the outcome of a perfectly played game of chess? (See also <a href="/wiki/First-move_advantage_in_chess" title="First-move advantage in chess">first-move advantage in chess</a>)</li></ul></li> <li><a href="/wiki/Go_(game)" title="Go (game)">Go</a>: <ul><li>What is the perfect value of <a href="/wiki/Komi_(Go)" title="Komi (Go)">Komi</a>?</li></ul></li> <li>Are the nim-sequences of all finite <a href="/wiki/Octal_game" title="Octal game">octal games</a> eventually periodic?</li> <li>Is the nim-sequence of <a href="/wiki/Grundy%27s_game" title="Grundy's game">Grundy's game</a> eventually periodic?</li></ul> <div class="mw-heading mw-heading4"><h4 id="Games_with_imperfect_information">Games with imperfect information</h4></div> <ul><li><a href="/wiki/Rendezvous_problem" title="Rendezvous problem">Rendezvous problem</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Geometry">Geometry</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Geometry" title="Geometry">Geometry</a></div> <div class="mw-heading mw-heading4"><h4 id="Algebraic_geometry">Algebraic geometry</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic geometry</a></div> <ul><li><a href="/wiki/Abundance_conjecture" title="Abundance conjecture">Abundance conjecture</a>: if the <a href="/wiki/Canonical_bundle" title="Canonical bundle">canonical bundle</a> of a <a href="/wiki/Projective_variety" title="Projective variety">projective variety</a> with <a href="/wiki/Canonical_singularity#Pairs" title="Canonical singularity">Kawamata log terminal singularities</a> is <a href="/wiki/Nef_line_bundle" title="Nef line bundle">nef</a>, then it is semiample.</li> <li><a href="/wiki/Bass_conjecture" title="Bass conjecture">Bass conjecture</a> on the <a href="/wiki/Finitely_generated_group" title="Finitely generated group">finite generation</a> of certain <a href="/wiki/Algebraic_K-theory" title="Algebraic K-theory">algebraic K-groups</a>.</li> <li><a href="/wiki/Bass%E2%80%93Quillen_conjecture" title="Bass–Quillen conjecture">Bass–Quillen conjecture</a> relating <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundles</a> over a <a href="/wiki/Regular_local_ring#Regular_ring" title="Regular local ring">regular</a> <a href="/wiki/Noetherian_ring" title="Noetherian ring">Noetherian ring</a> and over the <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A[t_{1},\ldots ,t_{n}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">[</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A[t_{1},\ldots ,t_{n}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6db7c2e068068f81d1be4e7ed8f140f0f69fea50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.167ex; height:2.843ex;" alt="{\displaystyle A[t_{1},\ldots ,t_{n}]}"></span>.</li> <li><a href="/wiki/Deligne_conjecture" class="mw-redirect" title="Deligne conjecture">Deligne conjecture</a>: any one of numerous named for <a href="/wiki/Pierre_Deligne" title="Pierre Deligne">Pierre Deligne</a>. <ul><li><a href="/wiki/Deligne%27s_conjecture_on_Hochschild_cohomology" title="Deligne's conjecture on Hochschild cohomology">Deligne's conjecture on Hochschild cohomology</a> about the <a href="/wiki/Operad" title="Operad">operadic</a> structure on <a href="/wiki/Hochschild_homology" title="Hochschild homology">Hochschild cochain complex</a>.</li></ul></li> <li><a href="/wiki/Dixmier_conjecture" title="Dixmier conjecture">Dixmier conjecture</a>: any <a href="/wiki/Endomorphism" title="Endomorphism">endomorphism</a> of a <a href="/wiki/Weyl_algebra" title="Weyl algebra">Weyl algebra</a> is an <a href="/wiki/Automorphism" title="Automorphism">automorphism</a>.</li> <li><a href="/wiki/Fr%C3%B6berg_conjecture" title="Fröberg conjecture">Fröberg conjecture</a> on the <a href="/wiki/Hilbert_series_and_Hilbert_polynomial" title="Hilbert series and Hilbert polynomial">Hilbert functions</a> of a set of forms.</li> <li><a href="/wiki/Fujita_conjecture" title="Fujita conjecture">Fujita conjecture</a> regarding the line bundle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{M}\otimes L^{\otimes m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo>⊗<!-- ⊗ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊗<!-- ⊗ --></mo> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{M}\otimes L^{\otimes m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ac21e9e6433e387fdf9efc5a112c2a9fdbe98d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.309ex; height:2.843ex;" alt="{\displaystyle K_{M}\otimes L^{\otimes m}}"></span> constructed from a <a href="/wiki/Positive_form#Positive_line_bundles" title="Positive form">positive</a> <a href="/wiki/Holomorphic_vector_bundle" title="Holomorphic vector bundle">holomorphic line bundle</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> on a <a href="/wiki/Compact_space" title="Compact space">compact</a> <a href="/wiki/Complex_manifold" title="Complex manifold">complex manifold</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and the <a href="/wiki/Canonical_bundle" title="Canonical bundle">canonical line bundle</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{M}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{M}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14296e7a6cf6d829e6dd8bbb40421855edc4de67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.932ex; height:2.509ex;" alt="{\displaystyle K_{M}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span></li> <li><a href="/wiki/General_elephant" title="General elephant">General elephant problem</a>: do <a href="/wiki/General_elephant" title="General elephant">general elephants</a> have at most <a href="/wiki/Du_Val_singularity" title="Du Val singularity">Du Val singularities</a>?</li> <li>Hartshorne's conjectures<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Jacobian_conjecture" title="Jacobian conjecture">Jacobian conjecture</a>: if a <a href="/wiki/Polynomial_mapping" title="Polynomial mapping">polynomial mapping</a> over a <a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a>-0 field has a constant nonzero <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian determinant</a>, then it has a <a href="/wiki/Morphism_of_algebraic_varieties" title="Morphism of algebraic varieties">regular</a> (i.e. with polynomial components) inverse function.</li> <li><a href="/wiki/Manin_conjecture" title="Manin conjecture">Manin conjecture</a> on the distribution of <a href="/wiki/Rational_point" title="Rational point">rational points</a> of bounded <a href="/wiki/Height_function" title="Height function">height</a> in certain subsets of <a href="/wiki/Fano_variety" title="Fano variety">Fano varieties</a></li> <li><a href="/wiki/Maulik%E2%80%93Nekrasov%E2%80%93Okounkov%E2%80%93Pandharipande_conjecture" class="mw-redirect" title="Maulik–Nekrasov–Okounkov–Pandharipande conjecture">Maulik–Nekrasov–Okounkov–Pandharipande conjecture</a> on an equivalence between <a href="/wiki/Gromov%E2%80%93Witten_invariant" title="Gromov–Witten invariant">Gromov–Witten theory</a> and <a href="/wiki/Donaldson%E2%80%93Thomas_theory" title="Donaldson–Thomas theory">Donaldson–Thomas theory</a><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Nagata%27s_conjecture_on_curves" title="Nagata's conjecture on curves">Nagata's conjecture on curves</a>, specifically the minimal degree required for a <a href="/wiki/Algebraic_curve" title="Algebraic curve">plane algebraic curve</a> to pass through a collection of very general points with prescribed <a href="/wiki/Multiplicity_(mathematics)" title="Multiplicity (mathematics)">multiplicities</a>.</li> <li><a href="/wiki/Nagata%E2%80%93Biran_conjecture" title="Nagata–Biran conjecture">Nagata–Biran conjecture</a> that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a smooth <a href="/wiki/Algebraic_surface" title="Algebraic surface">algebraic surface</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is an <a href="/wiki/Ample_line_bundle" title="Ample line bundle">ample line bundle</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>, then for sufficiently large <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, the <a href="/wiki/Seshadri_constant" title="Seshadri constant">Seshadri constant</a> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon (p_{1},\ldots ,p_{r};X,L)=d/{\sqrt {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>;</mo> <mi>X</mi> <mo>,</mo> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>r</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon (p_{1},\ldots ,p_{r};X,L)=d/{\sqrt {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcdcf84dd017bfb73db433eb5420115fb1dbd1d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.53ex; height:3.009ex;" alt="{\displaystyle \varepsilon (p_{1},\ldots ,p_{r};X,L)=d/{\sqrt {r}}}"></span>.</li> <li><a href="/wiki/Nakai_conjecture" title="Nakai conjecture">Nakai conjecture</a>: if a <a href="/wiki/Complex_algebraic_variety" title="Complex algebraic variety">complex algebraic variety</a> has a ring of <a href="/wiki/Differential_operator" title="Differential operator">differential operators</a> generated by its contained <a href="/wiki/Derivation_(differential_algebra)" title="Derivation (differential algebra)">derivations</a>, then it must be <a href="/wiki/Singular_point_of_an_algebraic_variety" title="Singular point of an algebraic variety">smooth</a>.</li> <li><a href="/wiki/Parshin%27s_conjecture" title="Parshin's conjecture">Parshin's conjecture</a>: the higher <a href="/wiki/Algebraic_K-theory" title="Algebraic K-theory">algebraic K-groups</a> of any <a href="/wiki/Smooth_morphism" title="Smooth morphism">smooth</a> <a href="/wiki/Projective_variety" title="Projective variety">projective variety</a> defined over a <a href="/wiki/Finite_field" title="Finite field">finite field</a> must vanish up to torsion.</li> <li><a href="/wiki/Section_conjecture" title="Section conjecture">Section conjecture</a> on splittings of <a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphisms</a> from <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental groups</a> of complete <a href="/wiki/Curve#Differential_geometry" title="Curve">smooth curves</a> over finitely-generated <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> to the <a href="/wiki/Galois_group" title="Galois group">Galois group</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>.</li> <li><a href="/wiki/Standard_conjectures" class="mw-redirect" title="Standard conjectures">Standard conjectures</a> on algebraic cycles</li> <li><a href="/wiki/Tate_conjecture" title="Tate conjecture">Tate conjecture</a> on the connection between <a href="/wiki/Algebraic_cycle" title="Algebraic cycle">algebraic cycles</a> on <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a> and <a href="/wiki/Galois_module" class="mw-redirect" title="Galois module">Galois representations</a> on <a href="/wiki/%C3%89tale_cohomology" title="Étale cohomology">étale cohomology groups</a>.</li> <li><a href="/wiki/Virasoro_conjecture" title="Virasoro conjecture">Virasoro conjecture</a>: a certain <a href="/wiki/Generating_function" title="Generating function">generating function</a> encoding the <a href="/wiki/Gromov%E2%80%93Witten_invariant" title="Gromov–Witten invariant">Gromov–Witten invariants</a> of a <a href="/wiki/Singular_point_of_an_algebraic_variety" title="Singular point of an algebraic variety">smooth</a> <a href="/wiki/Projective_variety" title="Projective variety">projective variety</a> is fixed by an action of half of the <a href="/wiki/Virasoro_algebra" title="Virasoro algebra">Virasoro algebra</a>.</li> <li>Zariski multiplicity conjecture on the topological equisingularity and equimultiplicity of <a href="/wiki/Algebraic_variety" title="Algebraic variety">varieties</a> at <a href="/wiki/Singular_point_of_an_algebraic_variety" title="Singular point of an algebraic variety">singular points</a><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>Are infinite sequences of <a href="/wiki/Flip_(mathematics)" title="Flip (mathematics)">flips</a> possible in dimensions greater than 3?</li> <li><a href="/wiki/Resolution_of_singularities" title="Resolution of singularities">Resolution of singularities</a> in characteristic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span></li></ul> <div class="mw-heading mw-heading4"><h4 id="Covering_and_packing">Covering and packing</h4></div> <ul><li><a href="/wiki/Borsuk%27s_conjecture" title="Borsuk's conjecture">Borsuk's problem</a> on upper and lower bounds for the number of smaller-diameter subsets needed to cover a <a href="/wiki/Bounded_set" title="Bounded set">bounded</a> <i>n</i>-dimensional set.</li> <li>The <a href="/wiki/Covering_problem_of_Rado" title="Covering problem of Rado">covering problem of Rado</a>: if the union of finitely many axis-parallel squares has unit area, how small can the largest area covered by a disjoint subset of squares be?<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Circle_packing_in_an_equilateral_triangle" title="Circle packing in an equilateral triangle">Erdős–Oler conjecture</a>: when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is a <a href="/wiki/Triangular_number" title="Triangular number">triangular number</a>, packing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> circles in an equilateral triangle requires a triangle of the same size as packing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> circles<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Kissing_number_problem" class="mw-redirect" title="Kissing number problem">kissing number problem</a> for dimensions other than 1, 2, 3, 4, 8 and 24<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Reinhardt%27s_conjecture" class="mw-redirect" title="Reinhardt's conjecture">Reinhardt's conjecture</a>: the smoothed octagon has the lowest maximum packing density of all centrally-symmetric convex plane sets<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Sphere_packing" title="Sphere packing">Sphere packing</a> problems, including the density of the densest packing in dimensions other than 1, 2, 3, 8 and 24, and its asymptotic behavior for high dimensions.</li> <li><a href="/wiki/Square_packing_in_a_square" class="mw-redirect" title="Square packing in a square">Square packing in a square</a>: what is the asymptotic growth rate of wasted space?<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ulam%27s_packing_conjecture" title="Ulam's packing conjecture">Ulam's packing conjecture</a> about the identity of the worst-packing convex solid<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Tammes_problem" title="Tammes problem">Tammes problem</a> for numbers of nodes greater than 14 (except 24).<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Differential_geometry">Differential geometry</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></div> <ul><li>The <a href="/wiki/Spherical_Bernstein%27s_problem" title="Spherical Bernstein's problem">spherical Bernstein's problem</a>, a generalization of <a href="/wiki/Bernstein%27s_problem" title="Bernstein's problem">Bernstein's problem</a></li> <li><a href="/wiki/Carath%C3%A9odory_conjecture" title="Carathéodory conjecture">Carathéodory conjecture</a>: any convex, closed, and twice-differentiable surface in three-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> admits at least two <a href="/wiki/Umbilical_point" title="Umbilical point">umbilical points</a>.</li> <li><a href="/wiki/Cartan%E2%80%93Hadamard_conjecture" title="Cartan–Hadamard conjecture">Cartan–Hadamard conjecture</a>: can the classical <a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">isoperimetric inequality</a> for subsets of Euclidean space be extended to spaces of nonpositive curvature, known as <a href="/wiki/Hadamard_manifold" title="Hadamard manifold">Cartan–Hadamard manifolds</a>?</li> <li><a href="/wiki/Chern%27s_conjecture_(affine_geometry)" title="Chern's conjecture (affine geometry)">Chern's conjecture (affine geometry)</a> that the <a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a> of a <a href="/wiki/Closed_manifold" title="Closed manifold">compact</a> <a href="/wiki/Affine_manifold" title="Affine manifold">affine manifold</a> vanishes.</li> <li><a href="/wiki/Chern%27s_conjecture_for_hypersurfaces_in_spheres" title="Chern's conjecture for hypersurfaces in spheres">Chern's conjecture for hypersurfaces in spheres</a>, a number of closely related conjectures.</li> <li>Closed curve problem: find (explicit) necessary and sufficient conditions that determine when, given two periodic functions with the same period, the integral curve is closed.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Filling_area_conjecture" title="Filling area conjecture">filling area conjecture</a>, that a hemisphere has the minimum area among shortcut-free surfaces in Euclidean space whose boundary forms a closed curve of given length<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Hopf_conjecture" title="Hopf conjecture">Hopf conjectures</a> relating the curvature and Euler characteristic of higher-dimensional Riemannian manifolds<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Yau%27s_conjecture_on_the_first_eigenvalue" title="Yau's conjecture on the first eigenvalue">Yau's conjecture on the first eigenvalue</a> that the first <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalue</a> for the <a href="/wiki/Laplace%E2%80%93Beltrami_operator" title="Laplace–Beltrami operator">Laplace–Beltrami operator</a> on an embedded <a href="/wiki/Minimal_surface" title="Minimal surface">minimal hypersurface</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d94abac312d4d24606e0465b5468606a3923068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.841ex; height:2.676ex;" alt="{\displaystyle S^{n+1}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Discrete_geometry">Discrete geometry</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Discrete_geometry" title="Discrete geometry">Discrete geometry</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Kissing-3d.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Kissing-3d.png/220px-Kissing-3d.png" decoding="async" width="220" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Kissing-3d.png/330px-Kissing-3d.png 1.5x, //upload.wikimedia.org/wikipedia/commons/8/8f/Kissing-3d.png 2x" data-file-width="424" data-file-height="437" /></a><figcaption>In three dimensions, the <a href="/wiki/Kissing_number_problem" class="mw-redirect" title="Kissing number problem">kissing number</a> is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a <a href="/wiki/Regular_icosahedron" title="Regular icosahedron">regular icosahedron</a>.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.</figcaption></figure> <ul><li>The <a href="/wiki/Big-line-big-clique_conjecture" title="Big-line-big-clique conjecture">big-line-big-clique conjecture</a> on the existence of either many collinear points or many mutually visible points in large planar point sets<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Hadwiger_conjecture_(combinatorial_geometry)" title="Hadwiger conjecture (combinatorial geometry)">Hadwiger conjecture</a> on covering <i>n</i>-dimensional convex bodies with at most 2<sup><i>n</i></sup> smaller copies<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup></li> <li>Solving the <a href="/wiki/Happy_ending_problem" title="Happy ending problem">happy ending problem</a> for arbitrary <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup></li> <li>Improving lower and upper bounds for the <a href="/wiki/Heilbronn_triangle_problem" title="Heilbronn triangle problem">Heilbronn triangle problem</a>.</li> <li><a href="/wiki/Kalai%27s_3%5Ed_conjecture" title="Kalai's 3^d conjecture">Kalai's 3<sup><i>d</i></sup> conjecture</a> on the least possible number of faces of <a href="/wiki/Point_symmetry" class="mw-redirect" title="Point symmetry">centrally symmetric</a> <a href="/wiki/Polytopes" class="mw-redirect" title="Polytopes">polytopes</a>.<sup id="cite_ref-kalai_57-0" class="reference"><a href="#cite_note-kalai-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Kobon_triangle_problem" title="Kobon triangle problem">Kobon triangle problem</a> on triangles in line arrangements<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Kusner_conjecture" class="mw-redirect" title="Kusner conjecture">Kusner conjecture</a>: at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8106478cb4da6af49992eeb3a3b8690d27797ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.378ex; height:2.176ex;" alt="{\displaystyle 2d}"></span> points can be equidistant in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span> spaces<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/McMullen_problem" title="McMullen problem">McMullen problem</a> on projectively transforming sets of points into <a href="/wiki/Convex_position" title="Convex position">convex position</a><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Opaque_forest_problem" class="mw-redirect" title="Opaque forest problem">Opaque forest problem</a> on finding <a href="/wiki/Opaque_set" title="Opaque set">opaque sets</a> for various planar shapes</li> <li><a href="/wiki/Unit_distance_graph#Counting_unit_distances" title="Unit distance graph">How many unit distances</a> can be determined by a set of <span class="texhtml mvar" style="font-style:italic;">n</span> points in the Euclidean plane?<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup></li> <li>Finding matching upper and lower bounds for <a href="/wiki/K-set_(geometry)" title="K-set (geometry)"><i>k</i>-sets</a> and halving lines<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Tripod_packing" title="Tripod packing">Tripod packing</a>:<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> how many tripods can have their apexes packed into a given cube?</li></ul> <div class="mw-heading mw-heading4"><h4 id="Euclidean_geometry">Euclidean geometry</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></div> <ul><li>The <a href="/wiki/Atiyah_conjecture_on_configurations" title="Atiyah conjecture on configurations">Atiyah conjecture on configurations</a> on the invertibility of a certain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-by-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> matrix depending on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> points in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Bellman%27s_lost-in-a-forest_problem" title="Bellman's lost-in-a-forest problem">Bellman's lost-in-a-forest problem</a> – find the shortest route that is guaranteed to reach the boundary of a given shape, starting at an unknown point of the shape with unknown orientation<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Borromean_rings" title="Borromean rings">Borromean rings</a> — are there three unknotted space curves, not all three circles, which cannot be arranged to form this link?<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup></li> <li>Danzer's problem and Conway's dead fly problem – do <a href="/wiki/Danzer_set" title="Danzer set">Danzer sets</a> of bounded density or bounded separation exist?<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Dissection_into_orthoschemes" title="Dissection into orthoschemes">Dissection into orthoschemes</a> – is it possible for <a href="/wiki/Simplex" title="Simplex">simplices</a> of every dimension?<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ehrhart%27s_volume_conjecture" title="Ehrhart's volume conjecture">Ehrhart's volume conjecture</a>: a convex body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> dimensions containing a single lattice point in its interior as its <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> cannot have volume greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)^{n}/n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)^{n}/n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067d8ddbf91c7487fb330033be927c283308df57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.629ex; height:2.843ex;" alt="{\displaystyle (n+1)^{n}/n!}"></span></li> <li><a href="/wiki/Falconer%27s_conjecture" title="Falconer's conjecture">Falconer's conjecture</a>: sets of Hausdorff dimension greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/582b6455b1ff5f4fb027024a8b1458687dc8ed74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.541ex; height:2.843ex;" alt="{\displaystyle d/2}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a713426956296f1668fce772df3c60b9dde8a685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.77ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{d}}"></span> must have a distance set of nonzero <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup></li> <li>The values of the <a href="/wiki/Hermite_constant" title="Hermite constant">Hermite constants</a> for dimensions other than 1–8 and 24</li> <li><a href="/wiki/Inscribed_square_problem" title="Inscribed square problem">Inscribed square problem</a>, also known as <a href="/wiki/Toeplitz%27_conjecture" class="mw-redirect" title="Toeplitz' conjecture">Toeplitz' conjecture</a> and the square peg problem – does every <a href="/wiki/Jordan_curve" class="mw-redirect" title="Jordan curve">Jordan curve</a> have an inscribed square?<sup id="cite_ref-matschke_70-0" class="reference"><a href="#cite_note-matschke-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Kakeya_conjecture" class="mw-redirect" title="Kakeya conjecture">Kakeya conjecture</a> – do <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional sets that contain a unit line segment in every direction necessarily have <a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff dimension</a> and <a href="/wiki/Minkowski_dimension" class="mw-redirect" title="Minkowski dimension">Minkowski dimension</a> equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>?<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup></li> <li>The Kelvin problem on minimum-surface-area partitions of space into equal-volume cells, and the optimality of the <a href="/wiki/Weaire%E2%80%93Phelan_structure" title="Weaire–Phelan structure">Weaire–Phelan structure</a> as a solution to the Kelvin problem<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Lebesgue%27s_universal_covering_problem" title="Lebesgue's universal covering problem">Lebesgue's universal covering problem</a> on the minimum-area convex shape in the plane that can cover any shape of diameter one<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Mahler_volume" title="Mahler volume">Mahler's conjecture</a> on the product of the volumes of a <a href="/wiki/Central_symmetry" class="mw-redirect" title="Central symmetry">centrally symmetric</a> <a href="/wiki/Convex_body" title="Convex body">convex body</a> and its <a href="/wiki/Polar_set" title="Polar set">polar</a>.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Moser%27s_worm_problem" title="Moser's worm problem">Moser's worm problem</a> – what is the smallest area of a shape that can cover every unit-length curve in the plane?<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Moving_sofa_problem" title="Moving sofa problem">moving sofa problem</a> – what is the largest area of a shape that can be maneuvered through a unit-width L-shaped corridor?<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup></li> <li>Does every convex polyhedron have <a href="/wiki/Prince_Rupert%27s_cube#Generalizations" title="Prince Rupert's cube">Rupert's property</a>?<sup id="cite_ref-cyz_77-0" class="reference"><a href="#cite_note-cyz-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-styu_78-0" class="reference"><a href="#cite_note-styu-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Shephard%27s_conjecture" class="mw-redirect" title="Shephard's conjecture">Shephard's problem (a.k.a. Dürer's conjecture)</a> – does every <a href="/wiki/Convex_polyhedron" class="mw-redirect" title="Convex polyhedron">convex polyhedron</a> have a <a href="/wiki/Net_(polyhedron)" title="Net (polyhedron)">net</a>, or simple edge-unfolding?<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup></li> <li>Is there a non-convex polyhedron without self-intersections with <a href="/wiki/Szilassi_polyhedron" title="Szilassi polyhedron">more than seven faces</a>, all of which share an edge with each other?</li> <li>The <a href="/wiki/Thomson_problem" title="Thomson problem">Thomson problem</a> – what is the minimum energy configuration of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> mutually-repelling particles on a unit sphere?<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup></li> <li>Convex <a href="/wiki/Uniform_5-polytope" title="Uniform 5-polytope">uniform 5-polytopes</a> – find and classify the complete set of these shapes<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Graph_theory">Graph theory</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Graph_theory" title="Graph theory">Graph theory</a></div> <div class="mw-heading mw-heading4"><h4 id="Algebraic_graph_theory">Algebraic graph theory</h4></div> <ul><li><a href="/wiki/Babai%27s_problem" title="Babai's problem">Babai's problem</a>: which groups are Babai invariant groups?</li> <li><a href="/wiki/Brouwer%27s_conjecture" title="Brouwer's conjecture">Brouwer's conjecture</a> on upper bounds for sums of <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues</a> of <a href="/wiki/Laplacian_matrix" title="Laplacian matrix">Laplacians</a> of graphs in terms of their number of edges</li></ul> <div class="mw-heading mw-heading4"><h4 id="Games_on_graphs">Games on graphs</h4></div> <ul><li><a href="/wiki/Graham%27s_pebbling_conjecture" class="mw-redirect" title="Graham's pebbling conjecture">Graham's pebbling conjecture</a> on the pebbling number of Cartesian products of graphs<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup></li> <li>Meyniel's conjecture that <a href="/wiki/Cop_number" title="Cop number">cop number</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O({\sqrt {n}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O({\sqrt {n}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5526ab1252c0f682bbe07c0ad67c0f29de5522b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.913ex; height:3.009ex;" alt="{\displaystyle O({\sqrt {n}})}"></span><sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Graph_coloring_and_labeling">Graph coloring and labeling</h4></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg/220px-Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg.png" decoding="async" width="220" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg/330px-Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg/440px-Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture.svg.png 2x" data-file-width="574" data-file-height="612" /></a><figcaption>An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.</figcaption></figure> <ul><li>The <a href="/wiki/Graph_factorization#1-factorization_conjecture" title="Graph factorization">1-factorization conjecture</a> that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is odd or even and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\geq n,n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>≥<!-- ≥ --></mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\geq n,n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/891a20f063981733ec4207e0edd4fe4cdab2fb06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.136ex; height:2.509ex;" alt="{\displaystyle k\geq n,n-1}"></span> respectively, then a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-<a href="/wiki/Regular_graph" title="Regular graph">regular graph</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134afa8ff09fdddd24b06f289e92e3a045092bd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:2.176ex;" alt="{\displaystyle 2n}"></span> vertices is <a href="/wiki/Graph_factorization#1-factorization" title="Graph factorization">1-factorable</a>. <ul><li>The <a href="/wiki/Graph_factorization#Perfect_1-factorization" title="Graph factorization">perfect 1-factorization conjecture</a> that every <a href="/wiki/Complete_graph" title="Complete graph">complete graph</a> on an even number of vertices admits a <a href="/wiki/Graph_factorization#Perfect_1-factorization" title="Graph factorization">perfect 1-factorization</a>.</li></ul></li> <li><a href="/wiki/Cereceda%27s_conjecture" title="Cereceda's conjecture">Cereceda's conjecture</a> on the diameter of the space of colorings of degenerate graphs<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Earth%E2%80%93Moon_problem" title="Earth–Moon problem">Earth–Moon problem</a>: what is the maximum chromatic number of biplanar graphs?<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Erd%C5%91s%E2%80%93Faber%E2%80%93Lov%C3%A1sz_conjecture" title="Erdős–Faber–Lovász conjecture">Erdős–Faber–Lovász conjecture</a> on coloring unions of cliques<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Graceful_labeling" title="Graceful labeling">graceful tree conjecture</a> that every tree admits a graceful labeling <ul><li><a href="/wiki/Graceful_labeling" title="Graceful labeling">Rosa's conjecture</a> that all <a href="/wiki/Cactus_graph#Triangular_cactus" title="Cactus graph">triangular cacti</a> are graceful or nearly-graceful</li></ul></li> <li>The <a href="/wiki/Gy%C3%A1rf%C3%A1s%E2%80%93Sumner_conjecture" title="Gyárfás–Sumner conjecture">Gyárfás–Sumner conjecture</a> on χ-boundedness of graphs with a forbidden induced tree<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Hadwiger_conjecture_(graph_theory)" title="Hadwiger conjecture (graph theory)">Hadwiger conjecture</a> relating coloring to clique minors<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Hadwiger%E2%80%93Nelson_problem" title="Hadwiger–Nelson problem">Hadwiger–Nelson problem</a> on the chromatic number of unit distance graphs<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Petersen_graph#Petersen_coloring_conjecture" title="Petersen graph">Jaeger's Petersen-coloring conjecture</a>: every bridgeless cubic graph has a cycle-continuous mapping to the Petersen graph<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/List_coloring_conjecture" class="mw-redirect" title="List coloring conjecture">list coloring conjecture</a>: for every graph, the list chromatic index equals the chromatic index<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Overfull_graph#Overfull_conjecture" title="Overfull graph">overfull conjecture</a> that a graph with maximum degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (G)\geq n/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (G)\geq n/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c19772d97806e15e88aeeee446dc54185a0ec2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.39ex; height:2.843ex;" alt="{\displaystyle \Delta (G)\geq n/3}"></span> is <a href="/wiki/Vizing%27s_theorem" title="Vizing's theorem">class 2</a> if and only if it has an <a href="/wiki/Overfull_graph" title="Overfull graph">overfull subgraph</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (S)=\Delta (G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (S)=\Delta (G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d45cf9c11bc5b7296673226c931d7f209e6f293" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.915ex; height:2.843ex;" alt="{\displaystyle \Delta (S)=\Delta (G)}"></span>.</li> <li>The <a href="/wiki/Total_coloring_conjecture" class="mw-redirect" title="Total coloring conjecture">total coloring conjecture</a> of Behzad and Vizing that the total chromatic number is at most two plus the maximum degree<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Graph_drawing_and_embedding">Graph drawing and embedding</h4></div> <ul><li>The <a href="/wiki/Albertson_conjecture" title="Albertson conjecture">Albertson conjecture</a>: the crossing number can be lower-bounded by the crossing number of a <a href="/wiki/Complete_graph" title="Complete graph">complete graph</a> with the same <a href="/wiki/Chromatic_number" class="mw-redirect" title="Chromatic number">chromatic number</a><sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Conway%27s_thrackle_conjecture" class="mw-redirect" title="Conway's thrackle conjecture">Conway's thrackle conjecture</a><sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> that <a href="/wiki/Thrackle" title="Thrackle">thrackles</a> cannot have more edges than vertices</li> <li>The <a href="/wiki/GNRS_conjecture" title="GNRS conjecture">GNRS conjecture</a> on whether minor-closed graph families have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/361ddd720474aa41cb05453e03424fb7999d3b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{1}}"></span> embeddings with bounded distortion<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Harborth%27s_conjecture" title="Harborth's conjecture">Harborth's conjecture</a>: every planar graph can be drawn with integer edge lengths<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Negami%27s_conjecture" class="mw-redirect" title="Negami's conjecture">Negami's conjecture</a> on projective-plane embeddings of graphs with planar covers<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Greedy_embedding#Planar_graphs" title="Greedy embedding">strong Papadimitriou–Ratajczak conjecture</a>: every polyhedral graph has a convex greedy embedding<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Tur%C3%A1n%27s_brick_factory_problem" title="Turán's brick factory problem">Turán's brick factory problem</a> – Is there a drawing of any complete bipartite graph with fewer crossings than the number given by Zarankiewicz?<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li><a href="/wiki/Universal_point_set" title="Universal point set">Universal point sets</a> of subquadratic size for planar graphs<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Restriction_of_graph_parameters">Restriction of graph parameters</h4></div> <ul><li><a href="/wiki/Conway%27s_99-graph_problem" title="Conway's 99-graph problem">Conway's 99-graph problem</a>: does there exist a <a href="/wiki/Strongly_regular_graph" title="Strongly regular graph">strongly regular graph</a> with parameters (99,14,1,2)?<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Degree_diameter_problem" title="Degree diameter problem">Degree diameter problem</a>: given two positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d,k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>,</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d,k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbb3254902512cb166d72568bbcd0b1c68cd0c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.461ex; height:2.509ex;" alt="{\displaystyle d,k}"></span>, what is the largest graph of diameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> such that all vertices have degrees at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>?</li> <li>Jørgensen's conjecture that every 6-vertex-connected <i>K</i><sub>6</sub>-minor-free graph is an <a href="/wiki/Apex_graph" title="Apex graph">apex graph</a><sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup></li> <li>Does a <a href="/wiki/Moore_graph" title="Moore graph">Moore graph</a> with girth 5 and degree 57 exist?<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup></li> <li>Do there exist infinitely many <a href="/wiki/Strongly_regular_graph" title="Strongly regular graph">strongly regular</a> <a href="/wiki/Geodetic_graph" title="Geodetic graph">geodetic graphs</a>, or any strongly regular geodetic graphs that are not Moore graphs?<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Subgraphs">Subgraphs</h4></div> <ul><li><a href="/wiki/Barnette%27s_conjecture" title="Barnette's conjecture">Barnette's conjecture</a>: every cubic bipartite three-connected planar graph has a Hamiltonian cycle<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Gilbert%E2%80%93Pollack_conjecture_on_the_Steiner_ratio_of_the_Euclidean_plane" class="mw-redirect" title="Gilbert–Pollack conjecture on the Steiner ratio of the Euclidean plane">Gilbert–Pollack conjecture on the Steiner ratio of the Euclidean plane</a> that the Steiner ratio is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3245e1141ec36a954dd702c886bba16d8c6cb057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3}}/2}"></span></li> <li><a href="/wiki/Graph_toughness" title="Graph toughness">Chvátal's toughness conjecture</a>, that there is a number <span class="texhtml mvar" style="font-style:italic;">t</span> such that every <span class="texhtml mvar" style="font-style:italic;">t</span>-tough graph is Hamiltonian<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Cycle_double_cover_conjecture" class="mw-redirect" title="Cycle double cover conjecture">cycle double cover conjecture</a>: every bridgeless graph has a family of cycles that includes each edge twice<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Erd%C5%91s%E2%80%93Gy%C3%A1rf%C3%A1s_conjecture" title="Erdős–Gyárfás conjecture">Erdős–Gyárfás conjecture</a> on cycles with power-of-two lengths in cubic graphs<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Erd%C5%91s%E2%80%93Hajnal_conjecture" title="Erdős–Hajnal conjecture">Erdős–Hajnal conjecture</a> on large cliques or independent sets in graphs with a forbidden induced subgraph<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Linear_arboricity" title="Linear arboricity">linear arboricity</a> conjecture on decomposing graphs into disjoint unions of paths according to their maximum degree<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Lov%C3%A1sz_conjecture" title="Lovász conjecture">Lovász conjecture</a> on Hamiltonian paths in symmetric graphs<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Oberwolfach_problem" title="Oberwolfach problem">Oberwolfach problem</a> on which 2-regular graphs have the property that a complete graph on the same number of vertices can be decomposed into edge-disjoint copies of the given graph.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup></li> <li>What is the largest possible <a href="/wiki/Pathwidth" title="Pathwidth">pathwidth</a> of an <span class="texhtml mvar" style="font-style:italic;">n</span>-vertex <a href="/wiki/Cubic_graph" title="Cubic graph">cubic graph</a>?<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Reconstruction_conjecture" title="Reconstruction conjecture">reconstruction conjecture</a> and <a href="/wiki/New_digraph_reconstruction_conjecture" title="New digraph reconstruction conjecture">new digraph reconstruction conjecture</a> on whether a graph is uniquely determined by its vertex-deleted subgraphs.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Snake-in-the-box" title="Snake-in-the-box">snake-in-the-box</a> problem: what is the longest possible <a href="/wiki/Induced_path" title="Induced path">induced path</a> in an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional <a href="/wiki/Hypercube" title="Hypercube">hypercube</a> graph?</li> <li><a href="/wiki/Sumner%27s_conjecture" title="Sumner's conjecture">Sumner's conjecture</a>: does every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2n-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2n-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/670a78b7547a73a8894aa40bc55ddea996fd38bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.369ex; height:2.843ex;" alt="{\displaystyle (2n-2)}"></span>-vertex tournament contain as a subgraph every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-vertex oriented tree?<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Szymanski%27s_conjecture" title="Szymanski's conjecture">Szymanski's conjecture</a>: every <a href="/wiki/Permutation" title="Permutation">permutation</a> on the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional doubly-<a href="/wiki/Directed_graph" title="Directed graph">directed</a> <a href="/wiki/Hypercube_graph" title="Hypercube graph">hypercube graph</a> can be routed with edge-disjoint <a href="/wiki/Path_(graph_theory)" title="Path (graph theory)">paths</a>.</li> <li><a href="/wiki/Tuza%27s_conjecture" title="Tuza's conjecture">Tuza's conjecture</a>: if the maximum number of disjoint triangles is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>, can all triangles be hit by a set of at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2654d0632cb4b4cd30cfddb80a75ba7d743216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.395ex; height:2.176ex;" alt="{\displaystyle 2\nu }"></span> edges?<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Vizing%27s_conjecture" title="Vizing's conjecture">Vizing's conjecture</a> on the <a href="/wiki/Domination_number" class="mw-redirect" title="Domination number">domination number</a> of <a href="/wiki/Cartesian_product_of_graphs" title="Cartesian product of graphs">cartesian products of graphs</a><sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Zarankiewicz_problem" title="Zarankiewicz problem">Zarankiewicz problem</a>: how many edges can there be in a <a href="/wiki/Bipartite_graph" title="Bipartite graph">bipartite graph</a> on a given number of vertices with no <a href="/wiki/Complete_bipartite_graph" title="Complete bipartite graph">complete bipartite subgraphs</a> of a given size?</li></ul> <div class="mw-heading mw-heading4"><h4 id="Word-representation_of_graphs">Word-representation of graphs</h4></div> <ul><li>Are there any graphs on <i>n</i> vertices whose <a href="/wiki/Word-representable_graph" title="Word-representable graph">representation</a> requires more than floor(<i>n</i>/2) copies of each letter?<sup id="cite_ref-KL15_120-0" class="reference"><a href="#cite_note-KL15-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-K17_121-0" class="reference"><a href="#cite_note-K17-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18_122-0" class="reference"><a href="#cite_note-KP18-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18-2_123-0" class="reference"><a href="#cite_note-KP18-2-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup></li> <li>Characterise (non-)<a href="/wiki/Word-representable_graph" title="Word-representable graph">word-representable</a> <a href="/wiki/Planar_graph" title="Planar graph">planar graphs</a><sup id="cite_ref-KL15_120-1" class="reference"><a href="#cite_note-KL15-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-K17_121-1" class="reference"><a href="#cite_note-K17-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18_122-1" class="reference"><a href="#cite_note-KP18-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18-2_123-1" class="reference"><a href="#cite_note-KP18-2-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup></li> <li>Characterise <a href="/wiki/Word-representable_graph" title="Word-representable graph">word-representable graphs</a> in terms of (induced) forbidden subgraphs.<sup id="cite_ref-KL15_120-2" class="reference"><a href="#cite_note-KL15-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-K17_121-2" class="reference"><a href="#cite_note-K17-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18_122-2" class="reference"><a href="#cite_note-KP18-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18-2_123-2" class="reference"><a href="#cite_note-KP18-2-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup></li> <li>Characterise <a href="/wiki/Word-representable_graph" title="Word-representable graph">word-representable</a> near-triangulations containing the complete graph <i>K</i><sub>4</sub> (such a characterisation is known for <i>K</i><sub>4</sub>-free planar graphs<sup id="cite_ref-Glen2019_124-0" class="reference"><a href="#cite_note-Glen2019-124"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup>)</li> <li>Classify graphs with representation number 3, that is, graphs that can be <a href="/wiki/Word-representable_graph" title="Word-representable graph">represented</a> using 3 copies of each letter, but cannot be represented using 2 copies of each letter<sup id="cite_ref-Kit2013-3-repr_125-0" class="reference"><a href="#cite_note-Kit2013-3-repr-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup></li> <li>Is it true that out of all <a href="/wiki/Bipartite_graph" title="Bipartite graph">bipartite graphs</a>, <a href="/wiki/Crown_graph" title="Crown graph">crown graphs</a> require longest word-representants?<sup id="cite_ref-GKP18_126-0" class="reference"><a href="#cite_note-GKP18-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup></li> <li>Is the <a href="/wiki/Line_graph" title="Line graph">line graph</a> of a non-<a href="/wiki/Word-representable_graph" title="Word-representable graph">word-representable</a> graph always non-<a href="/wiki/Word-representable_graph" title="Word-representable graph">word-representable</a>?<sup id="cite_ref-KL15_120-3" class="reference"><a href="#cite_note-KL15-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-K17_121-3" class="reference"><a href="#cite_note-K17-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18_122-3" class="reference"><a href="#cite_note-KP18-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18-2_123-3" class="reference"><a href="#cite_note-KP18-2-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup></li> <li>Which (hard) problems on graphs can be translated to words <a href="/wiki/Word-representable_graph" title="Word-representable graph">representing</a> them and solved on words (efficiently)?<sup id="cite_ref-KL15_120-4" class="reference"><a href="#cite_note-KL15-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-K17_121-4" class="reference"><a href="#cite_note-K17-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18_122-4" class="reference"><a href="#cite_note-KP18-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KP18-2_123-4" class="reference"><a href="#cite_note-KP18-2-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Miscellaneous_graph_theory">Miscellaneous graph theory</h4></div> <ul><li>The <a href="/wiki/Implicit_graph_conjecture" class="mw-redirect" title="Implicit graph conjecture">implicit graph conjecture</a> on the existence of implicit representations for slowly-growing <a href="/wiki/Hereditary_property#In_graph_theory" title="Hereditary property">hereditary families of graphs</a><sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ryser%27s_conjecture" title="Ryser's conjecture">Ryser's conjecture</a> relating the maximum <a href="/wiki/Matching_in_hypergraphs" title="Matching in hypergraphs">matching</a> size and minimum <a href="/wiki/Vertex_cover_in_hypergraphs" title="Vertex cover in hypergraphs">transversal</a> size in <a href="/wiki/Hypergraph" title="Hypergraph">hypergraphs</a></li> <li>The <a href="/wiki/Second_neighborhood_problem" title="Second neighborhood problem">second neighborhood problem</a>: does every oriented graph contain a vertex for which there are at least as many other vertices at distance two as at distance one?<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Sidorenko%27s_conjecture" title="Sidorenko's conjecture">Sidorenko's conjecture</a> on <a href="/wiki/Homomorphism_density" title="Homomorphism density">homomorphism densities</a> of graphs in <a href="/wiki/Graphon" title="Graphon">graphons</a></li> <li>Tutte's conjectures: <ul><li>every bridgeless graph has a <a href="/wiki/Nowhere-zero_flows" class="mw-redirect" title="Nowhere-zero flows">nowhere-zero 5-flow</a><sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup></li> <li>every <a href="/wiki/Petersen_graph" title="Petersen graph">Petersen</a>-<a href="/wiki/Graph_minor" title="Graph minor">minor</a>-free bridgeless graph has a nowhere-zero 4-flow<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup></li></ul></li> <li><a href="/wiki/Woodall%27s_conjecture" title="Woodall's conjecture">Woodall's conjecture</a> that the minimum number of edges in a <a href="/wiki/Dicut" title="Dicut">dicut</a> of a <a href="/wiki/Directed_graph" title="Directed graph">directed graph</a> is equal to the maximum number of disjoint <a href="/wiki/Dijoin" title="Dijoin">dijoins</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Model_theory_and_formal_languages">Model theory and formal languages</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Model_theory" title="Model theory">Model theory</a> and <a href="/wiki/Formal_languages" class="mw-redirect" title="Formal languages">formal languages</a></div> <ul><li>The <a href="/wiki/Stable_group" title="Stable group">Cherlin–Zilber conjecture</a>: A simple group whose first-order theory is <a href="/wiki/Stable_theory" title="Stable theory">stable</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span> is a simple algebraic group over an algebraically closed field.</li> <li><a href="/wiki/Generalized_star_height_problem" class="mw-redirect" title="Generalized star height problem">Generalized star height problem</a>: can all <a href="/wiki/Regular_language" title="Regular language">regular languages</a> be expressed using <a href="/wiki/Regular_expression#Expressive_power_and_compactness" title="Regular expression">generalized regular expressions</a> with limited nesting depths of <a href="/wiki/Kleene_star" title="Kleene star">Kleene stars</a>?</li> <li>For which number fields does <a href="/wiki/Hilbert%27s_tenth_problem" title="Hilbert's tenth problem">Hilbert's tenth problem</a> hold?</li> <li>Kueker's conjecture<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup></li> <li>The main gap conjecture, e.g. for uncountable <a href="/wiki/First_order_theory" class="mw-redirect" title="First order theory">first order theories</a>, for <a href="/wiki/Abstract_elementary_class" title="Abstract elementary class">AECs</a>, and for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c211ce8badf4ffbf9417ecceb0ef7ab0a8caed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{1}}"></span>-saturated models of a countable theory.<sup id="cite_ref-:0_132-0" class="reference"><a href="#cite_note-:0-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup></li> <li>Shelah's categoricity conjecture for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{\omega _{1},\omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>ω<!-- ω --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{\omega _{1},\omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/037b84dcf7eb85313f964632c939bce6464a657c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.149ex; height:2.843ex;" alt="{\displaystyle L_{\omega _{1},\omega }}"></span>: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.<sup id="cite_ref-:0_132-1" class="reference"><a href="#cite_note-:0-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup></li> <li>Shelah's eventual categoricity conjecture: For every cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> there exists a cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cebe02d911e1160383302c9f7f3d493af6dd5d72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.566ex; height:2.843ex;" alt="{\displaystyle \mu (\lambda )}"></span> such that if an <a href="/wiki/Abstract_elementary_class" title="Abstract elementary class">AEC</a> K with LS(K)<= <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is categorical in a cardinal above <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cebe02d911e1160383302c9f7f3d493af6dd5d72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.566ex; height:2.843ex;" alt="{\displaystyle \mu (\lambda )}"></span> then it is categorical in all cardinals above <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cebe02d911e1160383302c9f7f3d493af6dd5d72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.566ex; height:2.843ex;" alt="{\displaystyle \mu (\lambda )}"></span>.<sup id="cite_ref-:0_132-2" class="reference"><a href="#cite_note-:0-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup></li> <li>The stable field conjecture: every infinite field with a <a href="/wiki/Stable_theory" title="Stable theory">stable</a> first-order theory is separably closed.</li> <li>The stable forking conjecture for simple theories<sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Tarski%27s_exponential_function_problem" title="Tarski's exponential function problem">Tarski's exponential function problem</a>: is the <a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">theory</a> of the <a href="/wiki/Real_number" title="Real number">real numbers</a> with the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> <a href="/wiki/Decidability_(logic)#Decidability_of_a_theory" title="Decidability (logic)">decidable</a>?</li> <li>The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup></li> <li>The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?<sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Vaught_conjecture" title="Vaught conjecture">Vaught conjecture</a>: the number of <a href="/wiki/Countable_set" title="Countable set">countable</a> models of a <a href="/wiki/First-order_logic" title="First-order logic">first-order</a> <a href="/wiki/Complete_theory" title="Complete theory">complete theory</a> in a countable <a href="/wiki/Formal_language" title="Formal language">language</a> is either finite, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\aleph _{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\aleph _{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/779da5db4ed54fa334dd92089cdf1c284e45febb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.231ex; height:2.676ex;" alt="{\displaystyle 2^{\aleph _{0}}}"></span>.</li></ul> <ul><li>Assume K is the class of models of a countable first order theory omitting countably many <a href="/wiki/Type_(model_theory)" title="Type (model theory)">types</a>. If K has a model of cardinality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{\omega _{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{\omega _{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5581018c2ccc2eab23589bcc75998188cc9556b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.506ex; height:2.843ex;" alt="{\displaystyle \aleph _{\omega _{1}}}"></span> does it have a model of cardinality continuum?<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup></li> <li>Do the <a href="/wiki/Henson_graph" title="Henson graph">Henson graphs</a> have the <a href="/wiki/Finite_model_property" title="Finite model property">finite model property</a>?</li> <li>Does a finitely presented homogeneous structure for a finite relational language have finitely many <a href="/wiki/Reduct" title="Reduct">reducts</a>?</li> <li>Does there exist an <a href="/wiki/O-minimal" class="mw-redirect" title="O-minimal">o-minimal</a> first order theory with a trans-exponential (rapid growth) function?</li> <li>If the class of atomic models of a complete first order theory is <a href="/wiki/Categorical_(model_theory)" class="mw-redirect" title="Categorical (model theory)">categorical</a> in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008ec35e700beeb6f6ac979c7ed7bfec35f85725" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.639ex; height:2.509ex;" alt="{\displaystyle \aleph _{n}}"></span>, is it categorical in every cardinal?<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup></li> <li>Is every infinite, minimal field of characteristic zero <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed</a>? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)</li> <li>Is the Borel monadic theory of the real order (BMTO) decidable? Is the monadic theory of well-ordering (MTWO) consistently decidable?<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup></li> <li>Is the theory of the field of Laurent series over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span> <a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a>? of the field of polynomials over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>?</li> <li>Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>Determine the structure of Keisler's order.<sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Probability_theory">Probability theory</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></div> <ul><li><a href="/wiki/Ibragimov%E2%80%93Iosifescu_conjecture_for_%CF%86-mixing_sequences" title="Ibragimov–Iosifescu conjecture for φ-mixing sequences">Ibragimov–Iosifescu conjecture for φ-mixing sequences</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Number_theory">Number theory</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main page: <a href="/wiki/Category:Unsolved_problems_in_number_theory" title="Category:Unsolved problems in number theory">Category:Unsolved problems in number theory</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Number_theory" title="Number theory">Number theory</a></div> <div class="mw-heading mw-heading4"><h4 id="General">General</h4></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Perfect_number_Cuisenaire_rods_6_exact.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/220px-Perfect_number_Cuisenaire_rods_6_exact.svg.png" decoding="async" width="220" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/330px-Perfect_number_Cuisenaire_rods_6_exact.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/db/Perfect_number_Cuisenaire_rods_6_exact.svg/440px-Perfect_number_Cuisenaire_rods_6_exact.svg.png 2x" data-file-width="437" data-file-height="345" /></a><figcaption>6 is a <a href="/wiki/Perfect_number" title="Perfect number">perfect number</a> because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd.</figcaption></figure> <ul><li><a href="/wiki/Special_values_of_L-functions" title="Special values of L-functions">Beilinson's conjectures</a></li> <li><a href="/wiki/Brocard%27s_problem" title="Brocard's problem">Brocard's problem</a>: are there any integer solutions to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!+1=m^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>+</mo> <mn>1</mn> <mo>=</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!+1=m^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c3aa826f4474ccacd153c6cdc10759f3e515884" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.238ex; height:2.843ex;" alt="{\displaystyle n!+1=m^{2}}"></span> other than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=4,5,7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=4,5,7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd770c28a5c336cbc5bcd85551c181ffa0a7a009" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.048ex; height:2.509ex;" alt="{\displaystyle n=4,5,7}"></span>?</li> <li><a href="/wiki/B%C3%BCchi%27s_problem" title="Büchi's problem">Büchi's problem</a> on sufficiently large sequences of square numbers with constant second difference.</li> <li><a href="/wiki/Carmichael%27s_totient_function_conjecture" title="Carmichael's totient function conjecture">Carmichael's totient function conjecture</a>: do all values of <a href="/wiki/Euler%27s_totient_function" title="Euler's totient function">Euler's totient function</a> have <a href="/wiki/Multiplicity_(mathematics)" title="Multiplicity (mathematics)">multiplicity</a> greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>?</li> <li><a href="/wiki/Casas-Alvero_conjecture" title="Casas-Alvero conjecture">Casas-Alvero conjecture</a>: if a polynomial of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> defined over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> of <a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> has a factor in common with its first through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0195b64ba44bcc80b4c98e9d34256b4043fe519e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.219ex; height:2.343ex;" alt="{\displaystyle d-1}"></span>-th derivative, then must <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> be the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>-th power of a linear polynomial?</li> <li><a href="/wiki/Aliquot_sequence#Catalan-Dickson_conjecture" title="Aliquot sequence">Catalan–Dickson conjecture on aliquot sequences</a>: no <a href="/wiki/Aliquot_sequence" title="Aliquot sequence">aliquot sequences</a> are infinite but non-repeating.</li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Ulam_problem" title="Erdős–Ulam problem">Erdős–Ulam problem</a>: is there a <a href="/wiki/Dense_set" title="Dense set">dense set</a> of points in the plane all at rational distances from one-another?</li> <li><a href="/wiki/Van_der_Corput%27s_method#Exponent_pairs" title="Van der Corput's method">Exponent pair conjecture</a>: for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon >0}"></span>, is the pair <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\epsilon ,1/2+\epsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\epsilon ,1/2+\epsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/520a6878e45c22c247a7f6f4b1ee05e3fa1ca828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.059ex; height:2.843ex;" alt="{\displaystyle (\epsilon ,1/2+\epsilon )}"></span> an <a href="/wiki/Van_der_Corput%27s_method#Exponent_pairs" title="Van der Corput's method">exponent pair</a>?</li> <li>The <a href="/wiki/Gauss_circle_problem" title="Gauss circle problem">Gauss circle problem</a>: how far can the number of integer points in a circle centered at the origin be from the area of the circle?</li> <li><a href="/wiki/Grand_Riemann_hypothesis" title="Grand Riemann hypothesis">Grand Riemann hypothesis</a>: do the nontrivial zeros of all <a href="/wiki/Automorphic_L-function" title="Automorphic L-function">automorphic L-functions</a> lie on the critical line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2+it}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>i</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2+it}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2df2af523085c4237a3b99695f1063ac8412776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.97ex; height:2.843ex;" alt="{\displaystyle 1/2+it}"></span> with real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>? <ul><li><a href="/wiki/Generalized_Riemann_hypothesis" title="Generalized Riemann hypothesis">Generalized Riemann hypothesis</a>: do the nontrivial zeros of all <a href="/wiki/Dirichlet_L-function" title="Dirichlet L-function">Dirichlet L-functions</a> lie on the critical line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2+it}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>i</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2+it}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2df2af523085c4237a3b99695f1063ac8412776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.97ex; height:2.843ex;" alt="{\displaystyle 1/2+it}"></span> with real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>? <ul><li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>: do the nontrivial zeros of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> lie on the critical line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2+it}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>i</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2+it}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2df2af523085c4237a3b99695f1063ac8412776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.97ex; height:2.843ex;" alt="{\displaystyle 1/2+it}"></span> with real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>?</li></ul></li></ul></li> <li><a href="/wiki/Grimm%27s_conjecture" title="Grimm's conjecture">Grimm's conjecture</a>: each element of a set of consecutive <a href="/wiki/Composite_number" title="Composite number">composite numbers</a> can be assigned a distinct <a href="/wiki/Prime_number" title="Prime number">prime number</a> that divides it.</li> <li><a href="/wiki/Hall%27s_conjecture" title="Hall's conjecture">Hall's conjecture</a>: for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon >0}"></span>, there is some constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(\epsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(\epsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e6d84254c3840f120614be54230e5b80e759359" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.76ex; height:2.843ex;" alt="{\displaystyle c(\epsilon )}"></span> such that either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{2}=x^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{2}=x^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/542b1833d59c3ed167c061e27c140e08dde91425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.697ex; height:3.009ex;" alt="{\displaystyle y^{2}=x^{3}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |y^{2}-x^{3}|>c(\epsilon )x^{1/2-\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>−<!-- − --></mo> <mi>ϵ<!-- ϵ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |y^{2}-x^{3}|>c(\epsilon )x^{1/2-\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/787b125a2be82ce3368461af57452862d90df916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.565ex; height:3.343ex;" alt="{\displaystyle |y^{2}-x^{3}|>c(\epsilon )x^{1/2-\epsilon }}"></span>.</li> <li><a href="/wiki/Hardy%E2%80%93Littlewood_zeta_function_conjectures" title="Hardy–Littlewood zeta function conjectures">Hardy–Littlewood zeta function conjectures</a></li> <li><a href="/wiki/Hilbert%E2%80%93P%C3%B3lya_conjecture" title="Hilbert–Pólya conjecture">Hilbert–Pólya conjecture</a>: the nontrivial zeros of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> correspond to <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues</a> of a <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">self-adjoint operator</a>.</li> <li><a href="/wiki/Hilbert%27s_eleventh_problem" title="Hilbert's eleventh problem">Hilbert's eleventh problem</a>: classify <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic forms</a> over <a href="/wiki/Algebraic_number_field" title="Algebraic number field">algebraic number fields</a>.</li> <li><a href="/wiki/Hilbert%27s_ninth_problem" title="Hilbert's ninth problem">Hilbert's ninth problem</a>: find the most general <a href="/wiki/Reciprocity_law" title="Reciprocity law">reciprocity law</a> for the <a href="/wiki/Hilbert_symbol" title="Hilbert symbol">norm residues</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-th order in a general <a href="/wiki/Algebraic_number_field" title="Algebraic number field">algebraic number field</a>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is a power of a prime.</li> <li><a href="/wiki/Hilbert%27s_twelfth_problem" title="Hilbert's twelfth problem">Hilbert's twelfth problem</a>: extend the <a href="/wiki/Kronecker%E2%80%93Weber_theorem" title="Kronecker–Weber theorem">Kronecker–Weber theorem</a> on <a href="/wiki/Abelian_extension" title="Abelian extension">Abelian extensions</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> to any base number field.</li> <li>Keating–Snaith conjecture concerning the asymptotics of an integral involving the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a><sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Lehmer%27s_totient_problem" title="Lehmer's totient problem">Lehmer's totient problem</a>: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbb3dbe542ca7d51c4f32e32cefb8572edb26ab3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.589ex; height:2.843ex;" alt="{\displaystyle \phi (n)}"></span> divides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span>, must <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> be prime?</li> <li><a href="/wiki/Leopoldt%27s_conjecture" title="Leopoldt's conjecture">Leopoldt's conjecture</a>: a <a href="/wiki/P-adic_number" title="P-adic number">p-adic</a> analogue of the <a href="/wiki/Dirichlet%27s_unit_theorem#The_regulator" title="Dirichlet's unit theorem">regulator</a> of an <a href="/wiki/Algebraic_number_field" title="Algebraic number field">algebraic number field</a> does not vanish.</li> <li><a href="/wiki/Lindel%C3%B6f_hypothesis" title="Lindelöf hypothesis">Lindelöf hypothesis</a> that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon >0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (1/2+it)=o(t^{\epsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (1/2+it)=o(t^{\epsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6c328e278b5d771fc1010674e8191df940bbb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.649ex; height:2.843ex;" alt="{\displaystyle \zeta (1/2+it)=o(t^{\epsilon })}"></span> <ul><li>The <a href="/wiki/Bombieri%E2%80%93Vinogradov_theorem" title="Bombieri–Vinogradov theorem">density hypothesis</a> for zeroes of the Riemann zeta function</li></ul></li> <li><a href="/wiki/Littlewood_conjecture" title="Littlewood conjecture">Littlewood conjecture</a>: for any two real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4b46b57cfa0011b643037751809904d915c1b48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.854ex; height:2.509ex;" alt="{\displaystyle \alpha ,\beta }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \liminf _{n\rightarrow \infty }n\,\Vert n\alpha \Vert \,\Vert n\beta \Vert =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mi>n</mi> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>n</mi> <mi>α<!-- α --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>n</mi> <mi>β<!-- β --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \liminf _{n\rightarrow \infty }n\,\Vert n\alpha \Vert \,\Vert n\beta \Vert =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6441b88120c558e3da418676c914aa1a78dd48ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.344ex; height:3.843ex;" alt="{\displaystyle \liminf _{n\rightarrow \infty }n\,\Vert n\alpha \Vert \,\Vert n\beta \Vert =0}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Vert x\Vert }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Vert x\Vert }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a55b4869c4465426e7f1efca07aeecf645fc9ffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.655ex; height:2.843ex;" alt="{\displaystyle \Vert x\Vert }"></span> is the distance from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> to the nearest integer.</li> <li><a href="/wiki/Mahler%27s_3/2_problem" title="Mahler's 3/2 problem">Mahler's 3/2 problem</a> that no real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> has the property that the fractional parts of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(3/2)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(3/2)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38408a87601f4216211772e392a294add024a43a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.845ex; height:2.843ex;" alt="{\displaystyle x(3/2)^{n}}"></span> are less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e308a3a46b7fdce07cc09dcab9e8d8f73e37d935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/2}"></span> for all positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.</li> <li><a href="/wiki/Montgomery%27s_pair_correlation_conjecture" title="Montgomery's pair correlation conjecture">Montgomery's pair correlation conjecture</a>: the normalized pair <a href="/wiki/Correlation_function" title="Correlation function">correlation function</a> between pairs of zeros of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> is the same as the pair correlation function of <a href="/wiki/Random_matrix#Gaussian_ensembles" title="Random matrix">random Hermitian matrices</a>.</li> <li><a href="/wiki/N_conjecture" title="N conjecture"><i>n</i> conjecture</a>: a generalization of the <i>abc</i> conjecture to more than three integers. <ul><li><a href="/wiki/Abc_conjecture" title="Abc conjecture"><i>abc</i> conjecture</a>: for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon >0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{rad}}(abc)^{1+\epsilon }<c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>rad</mtext> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> </mrow> </msup> <mo><</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{rad}}(abc)^{1+\epsilon }<c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1b89d3c1d5587fcec781653c2205fcb0e712c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.516ex; height:3.176ex;" alt="{\displaystyle {\text{rad}}(abc)^{1+\epsilon }<c}"></span> is true for only finitely many positive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c85465b60dd983e3d20d07b64938bbf40b9220d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.173ex; height:2.343ex;" alt="{\displaystyle a+b=c}"></span>.</li> <li><a href="/wiki/Szpiro%27s_conjecture" title="Szpiro's conjecture">Szpiro's conjecture</a>: for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon >0}"></span>, there is some constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(\epsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(\epsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/783db856a83f49b75f39c35610143fdb071613f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.52ex; height:2.843ex;" alt="{\displaystyle C(\epsilon )}"></span> such that, for any elliptic curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> defined over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> with minimal discriminant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> and conductor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Delta |\leq C(\epsilon )\cdot f^{6+\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Delta |\leq C(\epsilon )\cdot f^{6+\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4b43b007fb7b28b4eb50ecf4776cea035216500" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.848ex; height:3.176ex;" alt="{\displaystyle |\Delta |\leq C(\epsilon )\cdot f^{6+\epsilon }}"></span>.</li></ul></li> <li><a href="/wiki/Newman%27s_conjecture" title="Newman's conjecture">Newman's conjecture</a>: the <a href="/wiki/Partition_function_(number_theory)" title="Partition function (number theory)">partition function</a> satisfies any arbitrary congruence infinitely often.</li> <li><a href="/wiki/Divisor_summatory_function#Piltz_divisor_problem" title="Divisor summatory function">Piltz divisor problem</a> on bounding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{k}(x)=D_{k}(x)-xP_{k}(\log(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>x</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{k}(x)=D_{k}(x)-xP_{k}(\log(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c2843b07dce4e8b4c34021e7da821d4cfb05985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.085ex; height:2.843ex;" alt="{\displaystyle \Delta _{k}(x)=D_{k}(x)-xP_{k}(\log(x))}"></span> <ul><li><a href="/wiki/Divisor_summatory_function#Dirichlet's_divisor_problem" title="Divisor summatory function">Dirichlet's divisor problem</a>: the specific case of the Piltz divisor problem for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c035ffa69b5bca8bf2d16c3da3aaad79a8bcbfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k=1}"></span></li></ul></li> <li><a href="/wiki/Ramanujan%E2%80%93Petersson_conjecture" title="Ramanujan–Petersson conjecture">Ramanujan–Petersson conjecture</a>: a number of related conjectures that are generalizations of the original conjecture.</li> <li><a href="/wiki/Sato%E2%80%93Tate_conjecture" title="Sato–Tate conjecture">Sato–Tate conjecture</a>: also a number of related conjectures that are generalizations of the original conjecture.</li> <li><a href="/wiki/Scholz_conjecture" title="Scholz conjecture">Scholz conjecture</a>: the length of the shortest <a href="/wiki/Addition_chain" title="Addition chain">addition chain</a> producing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e4bd4ef2f9549d026cbf643a91c0d12a8c6794" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.384ex; height:2.509ex;" alt="{\displaystyle 2^{n}-1}"></span> is at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> plus the length of the shortest addition chain producing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.</li> <li>Do <a href="/wiki/Siegel_zero" title="Siegel zero">Siegel zeros</a> exist?</li> <li><a href="/wiki/Singmaster%27s_conjecture" title="Singmaster's conjecture">Singmaster's conjecture</a>: is there a finite upper bound on the multiplicities of the entries greater than 1 in <a href="/wiki/Pascal%27s_triangle" title="Pascal's triangle">Pascal's triangle</a>?<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Vojta%27s_conjecture" title="Vojta's conjecture">Vojta's conjecture</a> on <a href="/wiki/Height_function" title="Height function">heights</a> of points on <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a> over <a href="/wiki/Algebraic_number_field" title="Algebraic number field">algebraic number fields</a>.</li></ul> <ul><li>Are there infinitely many <a href="/wiki/Perfect_number" title="Perfect number">perfect numbers</a>?</li> <li>Do any <a href="/wiki/Odd_perfect_number" class="mw-redirect" title="Odd perfect number">odd perfect numbers</a> exist?</li> <li>Do <a href="/wiki/Quasiperfect_number" title="Quasiperfect number">quasiperfect numbers</a> exist?</li> <li>Do any non-power of 2 <a href="/wiki/Almost_perfect_number" title="Almost perfect number">almost perfect numbers</a> exist?</li> <li>Are there 65, 66, or 67 <a href="/wiki/Idoneal_number" title="Idoneal number">idoneal numbers</a>?</li> <li>Are there any pairs of <a href="/wiki/Amicable_numbers" title="Amicable numbers">amicable numbers</a> which have opposite parity?</li> <li>Are there any pairs of <a href="/wiki/Betrothed_numbers" title="Betrothed numbers">betrothed numbers</a> which have same parity?</li> <li>Are there any pairs of <a href="/wiki/Relatively_prime" class="mw-redirect" title="Relatively prime">relatively prime</a> <a href="/wiki/Amicable_numbers" title="Amicable numbers">amicable numbers</a>?</li> <li>Are there infinitely many <a href="/wiki/Amicable_numbers" title="Amicable numbers">amicable numbers</a>?</li> <li>Are there infinitely many <a href="/wiki/Betrothed_numbers" title="Betrothed numbers">betrothed numbers</a>?</li> <li>Are there infinitely many <a href="/wiki/Giuga_number" title="Giuga number">Giuga numbers</a>?</li> <li>Does every <a href="/wiki/Rational_number" title="Rational number">rational number</a> with an odd denominator have an <a href="/wiki/Odd_greedy_expansion" title="Odd greedy expansion">odd greedy expansion</a>?</li> <li>Do any <a href="/wiki/Lychrel_number" title="Lychrel number">Lychrel numbers</a> exist?</li> <li>Do any odd <a href="/wiki/Noncototient" title="Noncototient">noncototients</a> exist?</li> <li>Do any odd <a href="/wiki/Weird_number" title="Weird number">weird numbers</a> exist?</li> <li>Do any <a href="/wiki/Superperfect_number#Generalizations" title="Superperfect number">(2, 5)-perfect numbers</a> exist?</li> <li>Do any <a href="/wiki/Generalized_taxicab_number" title="Generalized taxicab number">Taxicab(5, 2, n)</a> exist for <i>n</i> > 1?</li> <li>Is there a <a href="/wiki/Covering_system" title="Covering system">covering system</a> with odd distinct moduli?<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup></li> <li>Is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> a <a href="/wiki/Normal_number" title="Normal number">normal number</a> (i.e., is each digit 0–9 equally frequent)?<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup></li> <li>Are all <a href="/wiki/Irrational_number" title="Irrational number">irrational</a> <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic</a> numbers normal?</li> <li>Is 10 a <a href="/wiki/Solitary_number" class="mw-redirect" title="Solitary number">solitary number</a>?</li> <li>Can a 3×3 <a href="/wiki/Magic_square" title="Magic square">magic square</a> be constructed from 9 distinct perfect square numbers?<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup></li> <li>Find the value of the <a href="/wiki/De_Bruijn%E2%80%93Newman_constant" title="De Bruijn–Newman constant">De Bruijn–Newman constant</a>.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Additive_number_theory">Additive number theory</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Additive_number_theory" title="Additive number theory">Additive number theory</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Problems_involving_arithmetic_progressions" title="Problems involving arithmetic progressions">Problems involving arithmetic progressions</a></div> <ul><li><a href="/wiki/Erd%C5%91s_conjecture_on_arithmetic_progressions" title="Erdős conjecture on arithmetic progressions">Erdős conjecture on arithmetic progressions</a> that if the sum of the reciprocals of the members of a set of positive integers diverges, then the set contains arbitrarily long <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progressions</a>.</li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Tur%C3%A1n_conjecture_on_additive_bases" title="Erdős–Turán conjecture on additive bases">Erdős–Turán conjecture on additive bases</a>: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is an <a href="/wiki/Additive_basis" title="Additive basis">additive basis</a> of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span>, then the number of ways that positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> can be expressed as the sum of two numbers in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> must tend to infinity as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> tends to infinity.</li> <li><a href="/wiki/Gilbreath%27s_conjecture" title="Gilbreath's conjecture">Gilbreath's conjecture</a> on consecutive applications of the unsigned <a href="/wiki/Finite_difference" title="Finite difference">forward difference</a> operator to the sequence of <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>.</li> <li><a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach's conjecture</a>: every even natural number greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> is the sum of two <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>.</li> <li><a href="/wiki/Lander,_Parkin,_and_Selfridge_conjecture" title="Lander, Parkin, and Selfridge conjecture">Lander, Parkin, and Selfridge conjecture</a>: if the sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-th powers of positive integers is equal to a different sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-th powers of positive integers, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m+n\geq k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m+n\geq k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/742ac2b937fb0debcf8e32d6fb269935b2557740" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.585ex; height:2.343ex;" alt="{\displaystyle m+n\geq k}"></span>.</li> <li><a href="/wiki/Lemoine%27s_conjecture" title="Lemoine's conjecture">Lemoine's conjecture</a>: all odd integers greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> can be represented as the sum of an odd <a href="/wiki/Prime_number" title="Prime number">prime number</a> and an even <a href="/wiki/Semiprime" title="Semiprime">semiprime</a>.</li> <li><a href="/wiki/Minimum_overlap_problem" title="Minimum overlap problem">Minimum overlap problem</a> of estimating the minimum possible maximum number of times a number appears in the termwise difference of two equally large sets partitioning the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,\ldots ,2n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mn>2</mn> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,\ldots ,2n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e8e827c68dd8b99ef59ebf0b7d2fd930f9b70ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.223ex; height:2.843ex;" alt="{\displaystyle \{1,\ldots ,2n\}}"></span></li> <li><a href="/wiki/Pollock%27s_conjectures" title="Pollock's conjectures">Pollock's conjectures</a></li> <li>Does every nonnegative integer appear in <a href="/wiki/Recam%C3%A1n%27s_sequence" title="Recamán's sequence">Recamán's sequence</a>?</li> <li><a href="/wiki/Skolem_problem" title="Skolem problem">Skolem problem</a>: can an algorithm determine if a <a href="/wiki/Constant-recursive_sequence" title="Constant-recursive sequence">constant-recursive sequence</a> contains a zero?</li> <li>The values of <i>g</i>(<i>k</i>) and <i>G</i>(<i>k</i>) in <a href="/wiki/Waring%27s_problem" title="Waring's problem">Waring's problem</a></li></ul> <ul><li>Do the <a href="/wiki/Ulam_number" title="Ulam number">Ulam numbers</a> have a positive density?</li></ul> <ul><li>Determine growth rate of <i>r</i><sub><i>k</i></sub>(<i>N</i>) (see <a href="/wiki/Szemer%C3%A9di%27s_theorem" title="Szemerédi's theorem">Szemerédi's theorem</a>)</li></ul> <div class="mw-heading mw-heading4"><h4 id="Algebraic_number_theory">Algebraic number theory</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a></div> <ul><li><a href="/wiki/Class_number_problem" title="Class number problem">Class number problem</a>: are there infinitely many <a href="/wiki/Class_number_problem#Real_quadratic_fields" title="Class number problem">real quadratic number fields</a> with <a href="/wiki/Unique_factorization" class="mw-redirect" title="Unique factorization">unique factorization</a>?</li> <li><a href="/wiki/Fontaine%E2%80%93Mazur_conjecture" title="Fontaine–Mazur conjecture">Fontaine–Mazur conjecture</a>: actually numerous conjectures, all proposed by <a href="/wiki/Jean-Marc_Fontaine" title="Jean-Marc Fontaine">Jean-Marc Fontaine</a> and <a href="/wiki/Barry_Mazur" title="Barry Mazur">Barry Mazur</a>.</li> <li><a href="/wiki/Gan%E2%80%93Gross%E2%80%93Prasad_conjecture" title="Gan–Gross–Prasad conjecture">Gan–Gross–Prasad conjecture</a>: a <a href="/wiki/Restricted_representation" title="Restricted representation">restriction</a> problem in <a href="/wiki/Representation_of_a_Lie_group" title="Representation of a Lie group">representation theory of real or p-adic Lie groups</a>.</li> <li><a href="/wiki/Greenberg%27s_conjectures" title="Greenberg's conjectures">Greenberg's conjectures</a></li> <li><a href="/wiki/Hermite%27s_problem" title="Hermite's problem">Hermite's problem</a>: is it possible, for any natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, to assign a sequence of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> to each <a href="/wiki/Real_number" title="Real number">real number</a> such that the sequence for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is eventually <a href="/wiki/Periodic_sequence" title="Periodic sequence">periodic</a> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic</a> of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>?</li> <li><a href="/wiki/Kummer%E2%80%93Vandiver_conjecture" title="Kummer–Vandiver conjecture">Kummer–Vandiver conjecture</a>: primes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> do not divide the <a href="/wiki/Ideal_class_group#Properties" title="Ideal class group">class number</a> of the maximal real <a href="/wiki/Field_extension" title="Field extension">subfield</a> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-th <a href="/wiki/Cyclotomic_field" title="Cyclotomic field">cyclotomic field</a>.</li> <li>Lang and Trotter's conjecture on <a href="/wiki/Supersingular_prime_(algebraic_number_theory)" title="Supersingular prime (algebraic number theory)">supersingular primes</a> that the number of <a href="/wiki/Supersingular_prime_(algebraic_number_theory)" title="Supersingular prime (algebraic number theory)">supersingular primes</a> less than a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is within a constant multiple of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {X}}/\ln {X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>X</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {X}}/\ln {X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/007945f34f075f0707882e5539ecab3669553a93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.772ex; height:3.176ex;" alt="{\displaystyle {\sqrt {X}}/\ln {X}}"></span></li> <li><a href="/wiki/Selberg%27s_1/4_conjecture" title="Selberg's 1/4 conjecture">Selberg's 1/4 conjecture</a>: the <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues</a> of the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplace operator</a> on <a href="/wiki/Maass_wave_form" title="Maass wave form">Maass wave forms</a> of <a href="/wiki/Congruence_subgroup" title="Congruence subgroup">congruence subgroups</a> are at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d3cf1ef33695c3d98cb09f01e5700f927ce928c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/4}"></span>.</li> <li><a href="/wiki/Stark_conjectures" title="Stark conjectures">Stark conjectures</a> (including <a href="/wiki/Brumer%E2%80%93Stark_conjecture" title="Brumer–Stark conjecture">Brumer–Stark conjecture</a>)</li></ul> <ul><li>Characterize all algebraic number fields that have some <a href="/wiki/Algebraic_number_field#Bases_for_number_fields" title="Algebraic number field">power basis</a>.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Computational_number_theory">Computational number theory</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Computational_number_theory" title="Computational number theory">Computational number theory</a></div> <ul><li>Can <a href="/wiki/Integer_factorization" title="Integer factorization">integer factorization</a> be done in <a href="/wiki/Polynomial_time" class="mw-redirect" title="Polynomial time">polynomial time</a>?</li></ul> <div class="mw-heading mw-heading4"><h4 id="Diophantine_approximation_and_transcendental_number_theory">Diophantine approximation and transcendental number theory</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Diophantine_approximation" title="Diophantine approximation">Diophantine approximation</a> and <a href="/wiki/Transcendental_number_theory" title="Transcendental number theory">Transcendental number theory</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Gamma-area.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Gamma-area.svg/220px-Gamma-area.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Gamma-area.svg/330px-Gamma-area.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/04/Gamma-area.svg/440px-Gamma-area.svg.png 2x" data-file-width="720" data-file-height="480" /></a><figcaption>The area of the blue region converges to the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a>, which may or may not be a rational number.</figcaption></figure> <ul><li><a href="/wiki/Schanuel%27s_conjecture" title="Schanuel's conjecture">Schanuel's conjecture</a> on the <a href="/wiki/Transcendence_degree" class="mw-redirect" title="Transcendence degree">transcendence degree</a> of certain <a href="/wiki/Field_extension" title="Field extension">field extensions</a> of the rational numbers.<sup id="cite_ref-waldschmidt_149-0" class="reference"><a href="#cite_note-waldschmidt-149"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup> In particular: Are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> <a href="/wiki/Algebraic_independence" title="Algebraic independence">algebraically independent</a>? Which nontrivial combinations of <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental numbers</a> (such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e+\pi ,e\pi ,\pi ^{e},\pi ^{\pi },e^{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>+</mo> <mi>π<!-- π --></mi> <mo>,</mo> <mi>e</mi> <mi>π<!-- π --></mi> <mo>,</mo> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </msup> <mo>,</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e+\pi ,e\pi ,\pi ^{e},\pi ^{\pi },e^{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf20dad9379caf3bf97a076e9d4fe37cefe20ebd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.73ex; height:2.676ex;" alt="{\displaystyle e+\pi ,e\pi ,\pi ^{e},\pi ^{\pi },e^{e}}"></span>) are themselves transcendental?<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Four_exponentials_conjecture" title="Four exponentials conjecture">four exponentials conjecture</a>: the transcendence of at least one of four exponentials of combinations of irrationals<sup id="cite_ref-waldschmidt_149-1" class="reference"><a href="#cite_note-waldschmidt-149"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup></li> <li>Are <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler's constant</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> and <a href="/wiki/Catalan%27s_constant" title="Catalan's constant">Catalan's constant</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> irrational? Are they transcendental? Is <a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry's constant">Apéry's constant</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3088978098c7b90b2754a9d9b0b994d873e1755c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (3)}"></span> transcendental?<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_153-0" class="reference"><a href="#cite_note-:1-153"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup></li> <li>Which transcendental numbers are <a href="/wiki/Period_(algebraic_geometry)" title="Period (algebraic geometry)">(exponential) periods</a>?<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup></li> <li>How well can <a href="/wiki/Quadratic_equation" title="Quadratic equation">non-quadratic</a> irrational numbers be approximated? What is the <a href="/wiki/Irrationality_measure" title="Irrationality measure">irrationality measure</a> of specific (suspected) transcendental numbers such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>?<sup id="cite_ref-:1_153-1" class="reference"><a href="#cite_note-:1-153"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup></li> <li>Which irrational numbers have <a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">simple continued fraction</a> terms whose <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> converges to <a href="/wiki/Khinchin%27s_constant" title="Khinchin's constant">Khinchin's constant</a>?<sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Diophantine_equations">Diophantine equations</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a></div> <ul><li><a href="/wiki/Beal%27s_conjecture" class="mw-redirect" title="Beal's conjecture">Beal's conjecture</a>: for all integral solutions to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{x}+B^{y}=C^{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{x}+B^{y}=C^{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e579ed4b1e64d713b6255681b9103dfc8bad8cfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.467ex; height:2.509ex;" alt="{\displaystyle A^{x}+B^{y}=C^{z}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z>2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,z>2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c693f1e3aa5b6f4053242e790610ecb31a93ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.902ex; height:2.509ex;" alt="{\displaystyle x,y,z>2}"></span>, all three numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce2acf22b93dfbd22373336bd9c22dbd98a49d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.341ex; height:2.509ex;" alt="{\displaystyle A,B,C}"></span> must share some prime factor.</li> <li><a href="/wiki/Congruent_number_problem" class="mw-redirect" title="Congruent number problem">Congruent number problem</a> (a corollary to <a href="/wiki/Birch_and_Swinnerton-Dyer_conjecture" title="Birch and Swinnerton-Dyer conjecture">Birch and Swinnerton-Dyer conjecture</a>, per <a href="/wiki/Tunnell%27s_theorem" title="Tunnell's theorem">Tunnell's theorem</a>): determine precisely what rational numbers are <a href="/wiki/Congruent_number" title="Congruent number">congruent numbers</a>.</li> <li>Erdős–Moser problem: is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{1}+2^{1}=3^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{1}+2^{1}=3^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08bb8af942b066453ddbed89d7cab7e1665fcf31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.589ex; height:2.843ex;" alt="{\displaystyle 1^{1}+2^{1}=3^{1}}"></span> the only solution to the <a href="/wiki/Erd%C5%91s%E2%80%93Moser_equation" title="Erdős–Moser equation">Erdős–Moser equation</a>?</li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Straus_conjecture" title="Erdős–Straus conjecture">Erdős–Straus conjecture</a>: for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6bf67f9d06ca3af619657f8d20ee1322da77174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 2}"></span>, there are positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeca34b28f569a407ef74a955d041df9f360268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.641ex; height:2.009ex;" alt="{\displaystyle x,y,z}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4/n=1/x+1/y+1/z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>y</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4/n=1/x+1/y+1/z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aabfae6433b32a07b54ae29bff11abae5d74830" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.047ex; height:2.843ex;" alt="{\displaystyle 4/n=1/x+1/y+1/z}"></span>.</li> <li><a href="/wiki/Fermat%E2%80%93Catalan_conjecture" title="Fermat–Catalan conjecture">Fermat–Catalan conjecture</a>: there are finitely many distinct solutions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a^{m},b^{n},c^{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a^{m},b^{n},c^{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0d58c53a987d94141b810856ec91e0e18f5880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.094ex; height:3.176ex;" alt="{\displaystyle (a^{m},b^{n},c^{k})}"></span> to the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{m}+b^{n}=c^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{m}+b^{n}=c^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3123b1f3f56d4029e9308f91c9b00aa785ba985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.155ex; height:2.843ex;" alt="{\displaystyle a^{m}+b^{n}=c^{k}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span> being positive <a href="/wiki/Coprime_integers" title="Coprime integers">coprime integers</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,n,k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,n,k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29a958b5e16104a290f7982ca4425d60863f3e51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.714ex; height:2.509ex;" alt="{\displaystyle m,n,k}"></span> being positive integers satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/m+1/n+1/k<1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> <mo><</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/m+1/n+1/k<1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1406267891f5f8bbbd3c91777186ba90ef525bf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.563ex; height:2.843ex;" alt="{\displaystyle 1/m+1/n+1/k<1}"></span>.</li> <li><a href="/wiki/Goormaghtigh_conjecture" title="Goormaghtigh conjecture">Goormaghtigh conjecture</a> on solutions to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x^{m}-1)/(x-1)=(y^{n}-1)/(y-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x^{m}-1)/(x-1)=(y^{n}-1)/(y-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769e849b912b88a8a073c4fa781d99fe761d3095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.541ex; height:2.843ex;" alt="{\displaystyle (x^{m}-1)/(x-1)=(y^{n}-1)/(y-1)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x>y>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>></mo> <mi>y</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x>y>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c75ca33e807a3dd892bc1e9157b119f58571d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.845ex; height:2.509ex;" alt="{\displaystyle x>y>1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,n>2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,n>2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1314eaa2adee834031142ea98977b9eeb4a6d2f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.73ex; height:2.509ex;" alt="{\displaystyle m,n>2}"></span>.</li> <li>The <a href="/wiki/Markov_number#Other_properties" title="Markov number">uniqueness conjecture for Markov numbers</a><sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup> that every <a href="/wiki/Markov_number" title="Markov number">Markov number</a> is the largest number in exactly one normalized solution to the Markov <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a>.</li> <li><a href="/wiki/Pillai%27s_conjecture" class="mw-redirect" title="Pillai's conjecture">Pillai's conjecture</a>: for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce2acf22b93dfbd22373336bd9c22dbd98a49d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.341ex; height:2.509ex;" alt="{\displaystyle A,B,C}"></span>, the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ax^{m}-By^{n}=C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>B</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Ax^{m}-By^{n}=C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d24044dfffbbb6c9ab654c2730c437941bdc3b81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.596ex; height:2.676ex;" alt="{\displaystyle Ax^{m}-By^{n}=C}"></span> has finitely many solutions when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6568e95b6bf8f39b7fd2c9b52b7b00ee124c6250" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.469ex; height:2.009ex;" alt="{\displaystyle m,n}"></span> are not both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span>.</li> <li>Which integers can be written as the <a href="/wiki/Sums_of_three_cubes" title="Sums of three cubes">sum of three perfect cubes</a>?<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Sum_of_four_cubes_problem" title="Sum of four cubes problem">Can every integer be written as a sum of four perfect cubes?</a></li></ul> <div class="mw-heading mw-heading4"><h4 id="Prime_numbers">Prime numbers</h4></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Prime_numbers" class="mw-redirect" title="Prime numbers">Prime numbers</a></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Prime_number_conjectures" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Prime_number_conjectures" title="Template:Prime number conjectures"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Prime_number_conjectures" title="Template talk:Prime number conjectures"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Prime_number_conjectures" title="Special:EditPage/Template:Prime number conjectures"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Prime_number_conjectures" style="font-size:114%;margin:0 4em">Prime number conjectures</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy%E2%80%93Littlewood_conjecture" class="mw-redirect" title="Hardy–Littlewood conjecture">Hardy–Littlewood</a> <ul><li><a href="/wiki/First_Hardy%E2%80%93Littlewood_conjecture" title="First Hardy–Littlewood conjecture">1st</a></li> <li><a href="/wiki/Second_Hardy%E2%80%93Littlewood_conjecture" title="Second Hardy–Littlewood conjecture">2nd</a></li></ul></li> <li><a href="/wiki/Agoh%E2%80%93Giuga_conjecture" title="Agoh–Giuga conjecture">Agoh–Giuga</a></li> <li><a href="/wiki/Andrica%27s_conjecture" title="Andrica's conjecture">Andrica's</a></li> <li><a href="/wiki/Artin%27s_conjecture_on_primitive_roots" title="Artin's conjecture on primitive roots">Artin's</a></li> <li><a href="/wiki/Bateman%E2%80%93Horn_conjecture" title="Bateman–Horn conjecture">Bateman–Horn</a></li> <li><a href="/wiki/Brocard%27s_conjecture" title="Brocard's conjecture">Brocard's</a></li> <li><a href="/wiki/Bunyakovsky_conjecture" title="Bunyakovsky conjecture">Bunyakovsky</a></li> <li><a href="/wiki/Chinese_hypothesis" title="Chinese hypothesis">Chinese hypothesis</a></li> <li><a href="/wiki/Cram%C3%A9r%27s_conjecture" title="Cramér's conjecture">Cramér's (Shanks')</a></li> <li><a href="/wiki/Dickson%27s_conjecture" title="Dickson's conjecture">Dickson's</a></li> <li><a href="/wiki/Elliott%E2%80%93Halberstam_conjecture" title="Elliott–Halberstam conjecture">Elliott–Halberstam</a></li> <li><a href="/wiki/Firoozbakht%27s_conjecture" title="Firoozbakht's conjecture">Firoozbakht's (Forgues', Nicholson's, Farhadian's)</a></li> <li><a href="/wiki/Gilbreath%27s_conjecture" title="Gilbreath's conjecture">Gilbreath's</a></li> <li><a href="/wiki/Grimm%27s_conjecture" title="Grimm's conjecture">Grimm's</a></li> <li><a href="/wiki/Landau%27s_problems" title="Landau's problems">Landau's problems</a> <ul><li><a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach's</a> <ul><li><a href="/wiki/Goldbach%27s_weak_conjecture" title="Goldbach's weak conjecture">weak</a></li></ul></li> <li><a href="/wiki/Legendre%27s_conjecture" title="Legendre's conjecture">Legendre's</a></li> <li><a href="/wiki/Twin_prime_conjecture" class="mw-redirect" title="Twin prime conjecture">Twin prime</a></li></ul></li> <li><a href="/wiki/Legendre%27s_constant" title="Legendre's constant">Legendre's constant</a></li> <li><a href="/wiki/Lemoine%27s_conjecture" title="Lemoine's conjecture">Lemoine's</a></li> <li><a href="/wiki/Mersenne_conjectures" title="Mersenne conjectures">Mersenne</a></li> <li><a href="/wiki/Oppermann%27s_conjecture" title="Oppermann's conjecture">Oppermann's</a></li> <li><a href="/wiki/Polignac%27s_conjecture" title="Polignac's conjecture">Polignac's</a></li> <li><a href="/wiki/P%C3%B3lya_conjecture" title="Pólya conjecture">Pólya</a></li> <li><a href="/wiki/Schinzel%27s_hypothesis_H" title="Schinzel's hypothesis H">Schinzel's hypothesis H</a></li> <li><a href="/wiki/Waring%27s_prime_number_conjecture" title="Waring's prime number conjecture">Waring's prime number</a></li></ul> </div></td></tr></tbody></table></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg" title="File:Goldbach partitions of the even integers from 4 to 50 rev4b.svg"><img resource="/wiki/File:Goldbach_partitions_of_the_even_integers_from_4_to_50_rev4b.svg" src="//upload.wikimedia.org/wikipedia/commons/d/dd/Goldbach_partitions_of_the_even_integers_from_4_to_28_300px.png" decoding="async" width="300" height="283" class="mw-file-element" data-file-width="300" data-file-height="283" /></a><figcaption><a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach's conjecture</a> states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.</figcaption></figure> <ul><li><a href="/wiki/Agoh%E2%80%93Giuga_conjecture" title="Agoh–Giuga conjecture">Agoh–Giuga conjecture</a> on the <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is prime if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pB_{p-1}\equiv -1{\pmod {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>≡<!-- ≡ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pB_{p-1}\equiv -1{\pmod {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45bbc5b944ef7488e3965ece35d3dddb7cc67654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:23.105ex; height:3.009ex;" alt="{\displaystyle pB_{p-1}\equiv -1{\pmod {p}}}"></span></li> <li><a href="/wiki/Agrawal%27s_conjecture" title="Agrawal's conjecture">Agrawal's conjecture</a> that given <a href="/wiki/Coprime_integers" title="Coprime integers">coprime positive integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X-1)^{n}\equiv X^{n}-1{\pmod {n,X^{r}-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>n</mi> <mo>,</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X-1)^{n}\equiv X^{n}-1{\pmod {n,X^{r}-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96fe434f1db5b7fd76ff87c685469d9bf1f0d630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.413ex; height:2.843ex;" alt="{\displaystyle (X-1)^{n}\equiv X^{n}-1{\pmod {n,X^{r}-1}}}"></span>, then either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is prime or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}\equiv 1{\pmod {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}\equiv 1{\pmod {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84397b34b97c6792e676740a268d1bd5efe0b37a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.443ex; height:3.176ex;" alt="{\displaystyle n^{2}\equiv 1{\pmod {r}}}"></span></li> <li><a href="/wiki/Artin%27s_conjecture_on_primitive_roots" title="Artin's conjecture on primitive roots">Artin's conjecture on primitive roots</a> that if an integer is neither a perfect square nor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span>, then it is a <a href="/wiki/Primitive_root_modulo_n" title="Primitive root modulo n">primitive root</a> modulo infinitely many <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span></li> <li><a href="/wiki/Brocard%27s_conjecture" title="Brocard's conjecture">Brocard's conjecture</a>: there are always at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> between consecutive squares of prime numbers, aside from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efd7711cd907a2d46557a410fb67fc0d84c52ba3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 2^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84cba38173d6b69364f2016245721c333282e0d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 3^{2}}"></span>.</li> <li><a href="/wiki/Bunyakovsky_conjecture" title="Bunyakovsky conjecture">Bunyakovsky conjecture</a>: if an integer-coefficient polynomial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> has a positive leading coefficient, is irreducible over the integers, and has no common factors over all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is a positive integer, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is prime infinitely often.</li> <li><a href="/wiki/Catalan%27s_Mersenne_conjecture" class="mw-redirect" title="Catalan's Mersenne conjecture">Catalan's Mersenne conjecture</a>: some <a href="/wiki/Double_Mersenne_number#Catalan–Mersenne_number_conjecture" title="Double Mersenne number">Catalan–Mersenne number</a> is composite and thus all Catalan–Mersenne numbers are composite after some point.</li> <li><a href="/wiki/Dickson%27s_conjecture" title="Dickson's conjecture">Dickson's conjecture</a>: for a finite set of linear forms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}+b_{1}n,\ldots ,a_{k}+b_{k}n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>n</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}+b_{1}n,\ldots ,a_{k}+b_{k}n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cb10dce43dd93cca89f82d0842c6f676434efb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.389ex; height:2.509ex;" alt="{\displaystyle a_{1}+b_{1}n,\ldots ,a_{k}+b_{k}n}"></span> with each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/136d19bf28b138b6bc5a82f6145837f23e19253f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.058ex; height:2.509ex;" alt="{\displaystyle b_{i}\geq 1}"></span>, there are infinitely many <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> for which all forms are <a href="/wiki/Prime_number" title="Prime number">prime</a>, unless there is some <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">congruence</a> condition preventing it.</li> <li>Dubner's conjecture: every even number greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4208}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4208</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4208}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cf748b5a4d51034390cd771257f3996295c11d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.65ex; height:2.176ex;" alt="{\displaystyle 4208}"></span> is the sum of two <a href="/wiki/Prime_number" title="Prime number">primes</a> which both have a <a href="/wiki/Twin_prime" title="Twin prime">twin</a>.</li> <li><a href="/wiki/Elliott%E2%80%93Halberstam_conjecture" title="Elliott–Halberstam conjecture">Elliott–Halberstam conjecture</a> on the distribution of <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> in <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progressions</a>.</li> <li><a href="/wiki/Powerful_number#Mathematical_properties" title="Powerful number">Erdős–Mollin–Walsh conjecture</a>: no three consecutive numbers are all <a href="/wiki/Powerful_number" title="Powerful number">powerful</a>.</li> <li><a href="/wiki/Feit%E2%80%93Thompson_conjecture" title="Feit–Thompson conjecture">Feit–Thompson conjecture</a>: for all distinct <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p^{q}-1)/(p-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p^{q}-1)/(p-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfb2afa4999a4bef33e4de378e4a081b5b3b0830" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.114ex; height:2.843ex;" alt="{\displaystyle (p^{q}-1)/(p-1)}"></span> does not divide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q^{p}-1)/(q-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q^{p}-1)/(q-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5a30551f59f2ed380015f1ea83cf5313b6e2174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.995ex; height:2.843ex;" alt="{\displaystyle (q^{p}-1)/(q-1)}"></span></li> <li>Fortune's conjecture that no <a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate number</a> is composite.</li> <li>The <a href="/wiki/Gaussian_moat" title="Gaussian moat">Gaussian moat</a> problem: is it possible to find an infinite sequence of distinct <a href="/wiki/Gaussian_prime_number" class="mw-redirect" title="Gaussian prime number">Gaussian prime numbers</a> such that the difference between consecutive numbers in the sequence is bounded?</li> <li><a href="/wiki/Gillies%27_conjecture" title="Gillies' conjecture">Gillies' conjecture</a> on the distribution of <a href="/wiki/Prime_number" title="Prime number">prime</a> divisors of <a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne numbers</a>.</li> <li><a href="/wiki/Landau%27s_problems" title="Landau's problems">Landau's problems</a> <ul><li><a href="/wiki/Goldbach_conjecture" class="mw-redirect" title="Goldbach conjecture">Goldbach conjecture</a>: all even <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> are the sum of two <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>.</li> <li><a href="/wiki/Legendre%27s_conjecture" title="Legendre's conjecture">Legendre's conjecture</a>: for every positive integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, there is a prime between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9810bbdafe4a6a8061338db0f74e25b7952620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.676ex;" alt="{\displaystyle n^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/660fbe855b0a0cbe51cad9de61f0fb05908c6661" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.261ex; height:3.176ex;" alt="{\displaystyle (n+1)^{2}}"></span>.</li> <li><a href="/wiki/Twin_prime#Twin_prime_conjecture" title="Twin prime">Twin prime conjecture</a>: there are infinitely many <a href="/wiki/Twin_prime" title="Twin prime">twin primes</a>.</li> <li>Are there infinitely many primes of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b0744bc6c0cbdf56197698229110e29b06cb8a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.452ex; height:2.843ex;" alt="{\displaystyle n^{2}+1}"></span>?</li></ul></li> <li>Problems associated to <a href="/wiki/Linnik%27s_theorem" title="Linnik's theorem">Linnik's theorem</a></li> <li><a href="/wiki/Mersenne_conjectures#New_Mersenne_conjecture" title="Mersenne conjectures">New Mersenne conjecture</a>: for any odd <a href="/wiki/Natural_number" title="Natural number">natural number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, if any two of the three conditions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=2^{k}\pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=2^{k}\pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3d108e28cc35bc9994dbcc21b2c53dd012b4b69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:10.611ex; height:3.009ex;" alt="{\displaystyle p=2^{k}\pm 1}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=4^{k}\pm 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>±<!-- ± --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=4^{k}\pm 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b56dae2374f0118c3f64539d177c851db9c707c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:10.611ex; height:3.009ex;" alt="{\displaystyle p=4^{k}\pm 3}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> is prime, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2^{p}+1)/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2^{p}+1)/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e026ad87a946d1d5ccefde798bae9ca7ca6bd3b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.359ex; height:2.843ex;" alt="{\displaystyle (2^{p}+1)/3}"></span> is prime are true, then the third condition is also true.</li> <li><a href="/wiki/Polignac%27s_conjecture" title="Polignac's conjecture">Polignac's conjecture</a>: for all positive even numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, there are infinitely many <a href="/wiki/Prime_gap" title="Prime gap">prime gaps</a> of size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.</li> <li><a href="/wiki/Schinzel%27s_hypothesis_H" title="Schinzel's hypothesis H">Schinzel's hypothesis H</a> that for every finite collection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f_{1},\ldots ,f_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f_{1},\ldots ,f_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17b7f693d1809e863e4b7c1ee4cc3cfc42f75fc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.925ex; height:2.843ex;" alt="{\displaystyle \{f_{1},\ldots ,f_{k}\}}"></span> of nonconstant <a href="/wiki/Irreducible_polynomial" title="Irreducible polynomial">irreducible polynomials</a> over the integers with positive leading coefficients, either there are infinitely many positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}(n),\ldots ,f_{k}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}(n),\ldots ,f_{k}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d3f34c43079ec67cf5e477020f3f891f9dbef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.008ex; height:2.843ex;" alt="{\displaystyle f_{1}(n),\ldots ,f_{k}(n)}"></span> are all <a href="/wiki/Prime_number" title="Prime number">primes</a>, or there is some fixed divisor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f27527902d05e4c32bcbe28d425d7790f8ae191" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m>1}"></span> which, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, divides some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58335d44ef6dbb4ce8678ce00f2bdfb2daee93aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.143ex; height:2.843ex;" alt="{\displaystyle f_{i}(n)}"></span>.</li> <li><a href="/wiki/Sierpi%C5%84ski_number" title="Sierpiński number">Selfridge's conjecture</a>: is 78,557 the lowest <a href="/wiki/Sierpi%C5%84ski_number" title="Sierpiński number">Sierpiński number</a>?</li> <li>Does the <a href="/wiki/Wolstenholme%27s_theorem#The_converse_as_a_conjecture" title="Wolstenholme's theorem">converse of Wolstenholme's theorem</a> hold for all natural numbers?</li></ul> <ul><li>Are all <a href="/wiki/Euclid_number" title="Euclid number">Euclid numbers</a> <a href="/wiki/Square-free_integer" title="Square-free integer">square-free</a>?</li> <li>Are all <a href="/wiki/Fermat_number" title="Fermat number">Fermat numbers</a> <a href="/wiki/Square-free_integer" title="Square-free integer">square-free</a>?</li> <li>Are all <a href="/wiki/Mersenne_number" class="mw-redirect" title="Mersenne number">Mersenne numbers</a> of prime index <a href="/wiki/Square-free_integer" title="Square-free integer">square-free</a>?</li> <li>Are there any composite <i>c</i> satisfying 2<sup><i>c</i> − 1</sup> ≡ 1 (mod <i>c</i><sup>2</sup>)?</li> <li>Are there any <a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun primes</a>?</li> <li>Are there any <a href="/wiki/Wieferich_prime" title="Wieferich prime">Wieferich primes</a> in base 47?</li> <li>Are there infinitely many <a href="/wiki/Balanced_prime" title="Balanced prime">balanced primes</a>?</li> <li>Are there infinitely many Carol primes?</li> <li>Are there infinitely many <a href="/wiki/Cluster_prime" title="Cluster prime">cluster primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Cousin_prime" title="Cousin prime">cousin primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Cullen_number" title="Cullen number">Cullen primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Euclid_number" title="Euclid number">Euclid primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Fibonacci_prime" title="Fibonacci prime">Fibonacci primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Euclid_number#Generalization" title="Euclid number">Kummer primes</a>?</li> <li>Are there infinitely many Kynea primes?</li> <li>Are there infinitely many <a href="/wiki/Lucas_number#Lucas_primes" title="Lucas number">Lucas primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne primes</a> (<a href="/wiki/Lenstra%E2%80%93Pomerance%E2%80%93Wagstaff_conjecture" class="mw-redirect" title="Lenstra–Pomerance–Wagstaff conjecture">Lenstra–Pomerance–Wagstaff conjecture</a>); equivalently, infinitely many even <a href="/wiki/Perfect_number" title="Perfect number">perfect numbers</a>?</li> <li>Are there infinitely many <a href="/wiki/Newman%E2%80%93Shanks%E2%80%93Williams_prime" title="Newman–Shanks–Williams prime">Newman–Shanks–Williams primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Palindromic_prime" title="Palindromic prime">palindromic primes</a> to every base?</li> <li>Are there infinitely many <a href="/wiki/Pell_number" title="Pell number">Pell primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Pierpont_prime" title="Pierpont prime">Pierpont primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Prime_quadruplet" title="Prime quadruplet">prime quadruplets</a>?</li> <li>Are there infinitely many <a href="/wiki/Prime_triplet" title="Prime triplet">prime triplets</a>?</li> <li>Are there infinitely many <a href="/wiki/Regular_prime" title="Regular prime">regular primes</a>, and if so is their relative density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a56ec5c5b26f80a643b22ec4ea800cafc69ae14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.06ex; height:2.843ex;" alt="{\displaystyle e^{-1/2}}"></span>?</li> <li>Are there infinitely many <a href="/wiki/Sexy_prime" title="Sexy prime">sexy primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Safe_and_Sophie_Germain_primes" title="Safe and Sophie Germain primes">safe and Sophie Germain primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Wagstaff_prime" title="Wagstaff prime">Wagstaff primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Wieferich_prime" title="Wieferich prime">Wieferich primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Wilson_prime" title="Wilson prime">Wilson primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme primes</a>?</li> <li>Are there infinitely many <a href="/wiki/Woodall_number#Woodall_primes" title="Woodall number">Woodall primes</a>?</li> <li>Can a prime <i>p</i> satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p-1}\equiv 1{\pmod {p^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p-1}\equiv 1{\pmod {p^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0c2e45a693d9b8fdac3c5947e38fb67e4e3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.491ex; height:3.176ex;" alt="{\displaystyle 2^{p-1}\equiv 1{\pmod {p^{2}}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3^{p-1}\equiv 1{\pmod {p^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3^{p-1}\equiv 1{\pmod {p^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd7897724adaf6a14eca67dd4855d46cdc89b278" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.491ex; height:3.176ex;" alt="{\displaystyle 3^{p-1}\equiv 1{\pmod {p^{2}}}}"></span> simultaneously?<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup></li> <li>Does every prime number appear in the <a href="/wiki/Euclid%E2%80%93Mullin_sequence" title="Euclid–Mullin sequence">Euclid–Mullin sequence</a>?</li> <li>What is the smallest <a href="/wiki/Skewes%27s_number" title="Skewes's number">Skewes's number</a>?</li> <li>For any given integer <i>a</i> > 0, are there infinitely many <a href="/wiki/Lucas%E2%80%93Wieferich_prime" class="mw-redirect" title="Lucas–Wieferich prime">Lucas–Wieferich primes</a> associated with the pair (<i>a</i>, −1)? (Specially, when <i>a</i> = 1, this is the Fibonacci-Wieferich primes, and when <i>a</i> = 2, this is the Pell-Wieferich primes)</li> <li>For any given integer <i>a</i> > 0, are there infinitely many primes <i>p</i> such that <i>a</i><sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>)?<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup></li> <li>For any given integer <i>a</i> which is not a square and does not equal to −1, are there infinitely many primes with <i>a</i> as a primitive root?</li> <li>For any given integer <i>b</i> which is not a perfect power and not of the form −4<i>k</i><sup>4</sup> for integer <i>k</i>, are there infinitely many <a href="/wiki/Repunit" title="Repunit">repunit</a> primes to base <i>b</i>?</li> <li>For any given integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\geq 1,b\geq 2,c\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mo>,</mo> <mi>b</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> <mo>,</mo> <mi>c</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\geq 1,b\geq 2,c\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef9f484eb8ace7fc5baf3c8be4bb8c8db05999c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.066ex; height:2.676ex;" alt="{\displaystyle k\geq 1,b\geq 2,c\neq 0}"></span>, with <span class="nowrap">gcd(<i>k</i>, <i>c</i>) = 1</span> and <span class="nowrap">gcd(<i>b</i>, <i>c</i>) = 1,</span> are there infinitely many primes of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k\times b^{n}+c)/{\text{gcd}}(k+c,b-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>×<!-- × --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>gcd</mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k\times b^{n}+c)/{\text{gcd}}(k+c,b-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb0b9d7e3d49af673d4c4ecd8b5bae4146ceb0a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.476ex; height:2.843ex;" alt="{\displaystyle (k\times b^{n}+c)/{\text{gcd}}(k+c,b-1)}"></span> with integer <i>n</i> ≥ 1?</li> <li>Is every <a href="/wiki/Fermat_number" title="Fermat number">Fermat number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{n}}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{n}}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b27f57a4191be088259902a790ef2fb093ffb812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.184ex; height:2.843ex;" alt="{\displaystyle 2^{2^{n}}+1}"></span> composite for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6b13dc8b113121cdaf76a723a61aa4f8be1468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>4}"></span>?</li> <li>Is 509,203 the lowest <a href="/wiki/Riesel_number" title="Riesel number">Riesel number</a>?</li></ul> <div class="mw-heading mw-heading3"><h3 id="Set_theory">Set theory</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Set_theory" title="Set theory">Set theory</a></div> <p>Note: These conjectures are about <a href="/wiki/Model_theory" title="Model theory">models</a> of <a href="/wiki/Zermelo-Frankel_set_theory" class="mw-redirect" title="Zermelo-Frankel set theory">Zermelo-Frankel set theory</a> with <a href="/wiki/Axiom_of_choice" title="Axiom of choice">choice</a>, and may not be able to be expressed in models of other set theories such as the various <a href="/wiki/Constructive_set_theory" title="Constructive set theory">constructive set theories</a> or <a href="/wiki/Non-wellfounded_set_theory" class="mw-redirect" title="Non-wellfounded set theory">non-wellfounded set theory</a>. </p> <ul><li>(<a href="/wiki/W._Hugh_Woodin" title="W. Hugh Woodin">Woodin</a>) Does the <a href="/wiki/Generalized_continuum_hypothesis" class="mw-redirect" title="Generalized continuum hypothesis">generalized continuum hypothesis</a> below a <a href="/wiki/Strongly_compact_cardinal" title="Strongly compact cardinal">strongly compact cardinal</a> imply the <a href="/wiki/Generalized_continuum_hypothesis" class="mw-redirect" title="Generalized continuum hypothesis">generalized continuum hypothesis</a> everywhere?</li> <li>Does the <a href="/wiki/Generalized_continuum_hypothesis" class="mw-redirect" title="Generalized continuum hypothesis">generalized continuum hypothesis</a> entail <a href="/wiki/Diamondsuit" class="mw-redirect" title="Diamondsuit"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\diamondsuit (E_{\operatorname {cf} (\lambda )}^{\lambda ^{+}}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">♢<!-- ♢ --></mi> <mo stretchy="false">(</mo> <msubsup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>cf</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </msubsup> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\diamondsuit (E_{\operatorname {cf} (\lambda )}^{\lambda ^{+}}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/059f357bf72a29a78ecf0dfa53eace8216f71203" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:9.036ex; height:4.009ex;" alt="{\displaystyle {\diamondsuit (E_{\operatorname {cf} (\lambda )}^{\lambda ^{+}}})}"></span></a> for every <a href="/wiki/Singular_cardinal" class="mw-redirect" title="Singular cardinal">singular cardinal</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>?</li> <li>Does the <a href="/wiki/Generalized_continuum_hypothesis" class="mw-redirect" title="Generalized continuum hypothesis">generalized continuum hypothesis</a> imply the existence of an <a href="/wiki/Suslin_tree" title="Suslin tree">ℵ<sub>2</sub>-Suslin tree</a>?</li> <li>If ℵ<sub>ω</sub> is a strong limit cardinal, is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\aleph _{\omega }}<\aleph _{\omega _{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ω<!-- ω --></mi> </mrow> </msub> </mrow> </msup> <mo><</mo> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\aleph _{\omega }}<\aleph _{\omega _{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95d31494986f0ad425a2433e2876c2cedb139576" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.998ex; height:3.343ex;" alt="{\displaystyle 2^{\aleph _{\omega }}<\aleph _{\omega _{1}}}"></span> (see <a href="/wiki/Singular_cardinals_hypothesis" title="Singular cardinals hypothesis">Singular cardinals hypothesis</a>)? The best bound, ℵ<sub>ω<sub>4</sub></sub>, was obtained by <a href="/wiki/Saharon_Shelah" title="Saharon Shelah">Shelah</a> using his <a href="/wiki/PCF_theory" title="PCF theory">PCF theory</a>.</li> <li>The problem of finding the ultimate <a href="/wiki/Core_model" title="Core model">core model</a>, one that contains all <a href="/wiki/Large_cardinal_property" class="mw-redirect" title="Large cardinal property">large cardinals</a>.</li> <li><a href="/wiki/W._Hugh_Woodin" title="W. Hugh Woodin">Woodin's</a> <a href="/wiki/%CE%A9-logic" title="Ω-logic">Ω-conjecture</a>: if there is a <a href="/wiki/Class_(set_theory)" title="Class (set theory)">proper class</a> of <a href="/wiki/Woodin_cardinal" title="Woodin cardinal">Woodin cardinals</a>, then <a href="/wiki/%CE%A9-logic" title="Ω-logic">Ω-logic</a> satisfies an analogue of <a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel's completeness theorem">Gödel's completeness theorem</a>.</li> <li>Does the <a href="/wiki/Consistency" title="Consistency">consistency</a> of the existence of a <a href="/wiki/Strongly_compact_cardinal" title="Strongly compact cardinal">strongly compact cardinal</a> imply the consistent existence of a <a href="/wiki/Supercompact_cardinal" title="Supercompact cardinal">supercompact cardinal</a>?</li> <li>Does there exist a <a href="/wiki/J%C3%B3nsson_cardinal" title="Jónsson cardinal">Jónsson algebra</a> on ℵ<sub>ω</sub>?</li> <li>Is OCA (the <a href="/wiki/Open_coloring_axiom" title="Open coloring axiom">open coloring axiom</a>) consistent with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{\aleph _{0}}>\aleph _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> <mo>></mo> <msub> <mi mathvariant="normal">ℵ<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{\aleph _{0}}>\aleph _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62d33ea7f548a17f2b49ecbb8bd45b6954a5da37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.804ex; height:3.009ex;" alt="{\displaystyle 2^{\aleph _{0}}>\aleph _{2}}"></span>?</li> <li><a href="/wiki/Reinhardt_cardinal" title="Reinhardt cardinal">Reinhardt cardinals</a>: Without assuming the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>, can a <a href="/wiki/Reinhardt_cardinal" title="Reinhardt cardinal">nontrivial elementary embedding</a> <i>V</i>→<i>V</i> exist?</li></ul> <div class="mw-heading mw-heading3"><h3 id="Topology">Topology</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Topology" title="Topology">Topology</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ochiai_unknot.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Ochiai_unknot.svg/220px-Ochiai_unknot.svg.png" decoding="async" width="220" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Ochiai_unknot.svg/330px-Ochiai_unknot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Ochiai_unknot.svg/440px-Ochiai_unknot.svg.png 2x" data-file-width="868" data-file-height="682" /></a><figcaption>The <a href="/wiki/Unknotting_problem" title="Unknotting problem">unknotting problem</a> asks whether there is an efficient algorithm to identify when the shape presented in a <a href="/wiki/Knot_diagram" class="mw-redirect" title="Knot diagram">knot diagram</a> is actually the <a href="/wiki/Unknot" title="Unknot">unknot</a>.</figcaption></figure> <ul><li><a href="/wiki/Baum%E2%80%93Connes_conjecture" title="Baum–Connes conjecture">Baum–Connes conjecture</a>: the <a href="/wiki/Baum%E2%80%93Connes_conjecture#Formulation" title="Baum–Connes conjecture">assembly map</a> is an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>.</li> <li><a href="/wiki/Berge_knot" title="Berge knot">Berge conjecture</a> that the only <a href="/wiki/Knot_(mathematics)" title="Knot (mathematics)">knots</a> in the <a href="/wiki/3-sphere" title="3-sphere">3-sphere</a> which admit <a href="/wiki/Lens_space" title="Lens space">lens space</a> <a href="/wiki/Dehn_surgery" title="Dehn surgery">surgeries</a> are <a href="/wiki/Berge_knot" title="Berge knot">Berge knots</a>.</li> <li><a href="/wiki/Bing%E2%80%93Borsuk_conjecture" title="Bing–Borsuk conjecture">Bing–Borsuk conjecture</a>: every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional <a href="/wiki/Homogeneous_space" title="Homogeneous space">homogeneous</a> <a href="/wiki/Retraction_(topology)" title="Retraction (topology)">absolute neighborhood retract</a> is a <a href="/wiki/Topological_manifold" title="Topological manifold">topological manifold</a>.</li> <li><a href="/wiki/Borel_conjecture" title="Borel conjecture">Borel conjecture</a>: <a href="/wiki/Aspherical_space" title="Aspherical space">aspherical</a> <a href="/wiki/Closed_manifold" title="Closed manifold">closed manifolds</a> are determined up to <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a> by their <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental groups</a>.</li> <li><a href="/wiki/Halperin_conjecture" title="Halperin conjecture">Halperin conjecture</a> on rational <a href="/wiki/Serre_spectral_sequence" title="Serre spectral sequence">Serre spectral sequences</a> of certain <a href="/wiki/Fibration" title="Fibration">fibrations</a>.</li> <li><a href="/wiki/Hilbert%E2%80%93Smith_conjecture" title="Hilbert–Smith conjecture">Hilbert–Smith conjecture</a>: if a <a href="/wiki/Locally_compact_space" title="Locally compact space">locally compact</a> <a href="/wiki/Topological_group" title="Topological group">topological group</a> has a <a href="/wiki/Continuous_function" title="Continuous function">continuous</a>, <a href="/wiki/Group_action#Remarkable_properties_of_actions" title="Group action">faithful group action</a> on a <a href="/wiki/Topological_manifold" title="Topological manifold">topological manifold</a>, then the group must be a <a href="/wiki/Lie_group" title="Lie group">Lie group</a>.</li> <li>Mazur's conjectures<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Novikov_conjecture" title="Novikov conjecture">Novikov conjecture</a> on the <a href="/wiki/Homotopy#Invariance" title="Homotopy">homotopy invariance</a> of certain <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> in the <a href="/wiki/Pontryagin_class" title="Pontryagin class">Pontryagin classes</a> of a <a href="/wiki/Manifold" title="Manifold">manifold</a>, arising from the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a>.</li> <li><a href="/wiki/Quadrisecant" title="Quadrisecant">Quadrisecants</a> of <a href="/wiki/Wild_knot" title="Wild knot">wild knots</a>: it has been conjectured that wild knots always have infinitely many quadrisecants.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ravenel_conjectures" class="mw-redirect" title="Ravenel conjectures">Telescope conjecture</a>: the last of <a href="/wiki/Ravenel%27s_conjectures" title="Ravenel's conjectures">Ravenel's conjectures</a> in <a href="/wiki/Stable_homotopy_theory" title="Stable homotopy theory">stable homotopy theory</a> to be resolved.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Unknotting_problem" title="Unknotting problem">Unknotting problem</a>: can <a href="/wiki/Unknot" title="Unknot">unknots</a> be recognized in <a href="/wiki/Time_complexity#Polynomial_time" title="Time complexity">polynomial time</a>?</li> <li><a href="/wiki/Volume_conjecture" title="Volume conjecture">Volume conjecture</a> relating <a href="/wiki/Quantum_invariant" title="Quantum invariant">quantum invariants</a> of <a href="/wiki/Knot_(mathematics)" title="Knot (mathematics)">knots</a> to the <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a> of their <a href="/wiki/Knot_complement" title="Knot complement">knot complements</a>.</li> <li><a href="/wiki/Whitehead_conjecture" title="Whitehead conjecture">Whitehead conjecture</a>: every <a href="/wiki/Connectedness" title="Connectedness">connected</a> <a href="/wiki/CW_complex#Inductive_construction_of_CW_complexes" title="CW complex">subcomplex</a> of a two-dimensional <a href="/wiki/Aspherical_space" title="Aspherical space">aspherical</a> <a href="/wiki/CW_complex" title="CW complex">CW complex</a> is aspherical.</li> <li><a href="/wiki/Zeeman_conjecture" title="Zeeman conjecture">Zeeman conjecture</a>: given a finite <a href="/wiki/Contractible_space" title="Contractible space">contractible</a> two-dimensional <a href="/wiki/CW_complex" title="CW complex">CW complex</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, is the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\times [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>×<!-- × --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\times [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e2fb8d4b78388febd562c9e819d1d82dedd778" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.559ex; height:2.843ex;" alt="{\displaystyle K\times [0,1]}"></span> <a href="/wiki/Collapse_(topology)" title="Collapse (topology)">collapsible</a>?</li></ul> <div class="mw-heading mw-heading2"><h2 id="Problems_solved_since_1995">Problems solved since 1995</h2></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ricci_flow.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Ricci_flow.png/220px-Ricci_flow.png" decoding="async" width="220" height="405" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Ricci_flow.png/330px-Ricci_flow.png 1.5x, //upload.wikimedia.org/wikipedia/commons/5/52/Ricci_flow.png 2x" data-file-width="350" data-file-height="644" /></a><figcaption><a href="/wiki/Ricci_flow" title="Ricci flow">Ricci flow</a>, here illustrated with a 2D manifold, was the key tool in <a href="/wiki/Grigori_Perelman" title="Grigori Perelman">Grigori Perelman</a>'s <a href="/wiki/Poincar%C3%A9_conjecture#Solution" title="Poincaré conjecture">solution of the Poincaré conjecture</a>.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Algebra_2">Algebra</h3></div> <ul><li><a href="/wiki/Uniform_boundedness_conjecture_for_rational_points#Mazur's_conjecture_B" title="Uniform boundedness conjecture for rational points">Mazur's conjecture B</a> (Vessilin Dimitrov, Ziyang Gao, and Philipp Habegger, 2020)<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Suita_conjecture" title="Suita conjecture">Suita conjecture</a> (Qi'an Guan and <a href="/wiki/Xiangyu_Zhou" title="Xiangyu Zhou">Xiangyu Zhou</a>, 2015) <sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Torsion_conjecture" title="Torsion conjecture">Torsion conjecture</a> (<a href="/wiki/Lo%C3%AFc_Merel" title="Loïc Merel">Loïc Merel</a>, 1996)<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Carlitz%E2%80%93Wan_conjecture" title="Carlitz–Wan conjecture">Carlitz–Wan conjecture</a> (<a href="/wiki/Hendrik_Lenstra" title="Hendrik Lenstra">Hendrik Lenstra</a>, 1995)<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Serre%27s_multiplicity_conjectures#Nonnegativity" title="Serre's multiplicity conjectures">Serre's nonnegativity conjecture</a> (<a href="/wiki/Ofer_Gabber" title="Ofer Gabber">Ofer Gabber</a>, 1995)</li></ul> <div class="mw-heading mw-heading3"><h3 id="Analysis_2">Analysis</h3></div> <ul><li><a href="/wiki/Kadison%E2%80%93Singer_problem" title="Kadison–Singer problem">Kadison–Singer problem</a> (<a href="/wiki/Adam_Marcus_(mathematician)" title="Adam Marcus (mathematician)">Adam Marcus</a>, <a href="/wiki/Daniel_Spielman" title="Daniel Spielman">Daniel Spielman</a> and <a href="/wiki/Nikhil_Srivastava" title="Nikhil Srivastava">Nikhil Srivastava</a>, 2013)<sup id="cite_ref-Casazza2006_168-0" class="reference"><a href="#cite_note-Casazza2006-168"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SIAM02.2014_169-0" class="reference"><a href="#cite_note-SIAM02.2014-169"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup> (and the <a href="/wiki/Hans_Georg_Feichtinger#Feichtinger's_conjecture" title="Hans Georg Feichtinger">Feichtinger's conjecture</a>, Anderson's paving conjectures, Weaver's discrepancy theoretic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle KS_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle KS_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb20dd98814b07bb2a5d4518b99080553dbd7132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.465ex; height:2.509ex;" alt="{\displaystyle KS_{r}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle KS'_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle KS'_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8930fb054a722a575e3ab75ca904c6a8240838d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.465ex; height:2.509ex;" alt="{\displaystyle KS'_{r}}"></span> conjectures, Bourgain-Tzafriri conjecture and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45d43f763cabc17610e01044eee5aa5f356af298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.664ex; height:2.509ex;" alt="{\displaystyle R_{\epsilon }}"></span>-conjecture)</li> <li><a href="/wiki/Ahlfors_measure_conjecture" title="Ahlfors measure conjecture">Ahlfors measure conjecture</a> (<a href="/wiki/Ian_Agol" title="Ian Agol">Ian Agol</a>, 2004)<sup id="cite_ref-Agol_170-0" class="reference"><a href="#cite_note-Agol-170"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Gradient_conjecture" title="Gradient conjecture">Gradient conjecture</a> (Krzysztof Kurdyka, Tadeusz Mostowski, Adam Parusinski, 1999)<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">[</span>170<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Combinatorics_2">Combinatorics</h3></div> <ul><li><a href="/wiki/Erd%C5%91s_sumset_conjecture" title="Erdős sumset conjecture">Erdős sumset conjecture</a> (Joel Moreira, Florian Richter, Donald Robertson, 2018)<sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Simplicial_sphere" title="Simplicial sphere">McMullen's g-conjecture</a> on the possible numbers of faces of different dimensions in a simplicial sphere (also Grünbaum conjecture, several conjectures of Kühnel) (Karim Adiprasito, 2018)<sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">[</span>172<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">[</span>173<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Hirsch_conjecture" title="Hirsch conjecture">Hirsch conjecture</a> (<a href="/wiki/Francisco_Santos_Leal" title="Francisco Santos Leal">Francisco Santos Leal</a>, 2010)<sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ira_Gessel#Gessel's_lattice_path_conjecture" title="Ira Gessel">Gessel's lattice path conjecture</a> (<a href="/wiki/Manuel_Kauers" title="Manuel Kauers">Manuel Kauers</a>, <a href="/wiki/Christoph_Koutschan" title="Christoph Koutschan">Christoph Koutschan</a>, and <a href="/wiki/Doron_Zeilberger" title="Doron Zeilberger">Doron Zeilberger</a>, 2009)<sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">[</span>176<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Stanley%E2%80%93Wilf_conjecture" title="Stanley–Wilf conjecture">Stanley–Wilf conjecture</a> (<a href="/wiki/G%C3%A1bor_Tardos" title="Gábor Tardos">Gábor Tardos</a> and <a href="/wiki/Adam_Marcus_(mathematician)" title="Adam Marcus (mathematician)">Adam Marcus</a>, 2004)<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">[</span>177<span class="cite-bracket">]</span></a></sup> (and also the Alon–Friedgut conjecture)</li> <li><a href="/wiki/Kemnitz%27s_conjecture" title="Kemnitz's conjecture">Kemnitz's conjecture</a> (<a href="/wiki/Christian_Reiher" title="Christian Reiher">Christian Reiher</a>, 2003, Carlos di Fiore, 2003)<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">[</span>178<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Cameron%E2%80%93Erd%C5%91s_conjecture" title="Cameron–Erdős conjecture">Cameron–Erdős conjecture</a> (<a href="/wiki/Ben_J._Green" class="mw-redirect" title="Ben J. Green">Ben J. Green</a>, 2003, Alexander Sapozhenko, 2003)<sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Dynamical_systems_2">Dynamical systems</h3></div> <ul><li><a href="/wiki/Zimmer%27s_conjecture" title="Zimmer's conjecture">Zimmer's conjecture</a> (Aaron Brown, David Fisher, and Sebastián Hurtado-Salazar, 2017)<sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">[</span>181<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Painlev%C3%A9_conjecture" title="Painlevé conjecture">Painlevé conjecture</a> (Jinxin Xue, 2014)<sup id="cite_ref-Xue1_183-0" class="reference"><a href="#cite_note-Xue1-183"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Xue2_184-0" class="reference"><a href="#cite_note-Xue2-184"><span class="cite-bracket">[</span>183<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Game_theory">Game theory</h3></div> <ul><li>Existence of a non-terminating game of <a href="/wiki/Beggar-my-neighbour" title="Beggar-my-neighbour">beggar-my-neighbour</a> (Brayden Casella, 2024)<sup id="cite_ref-185" class="reference"><a href="#cite_note-185"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Angel_problem" title="Angel problem">angel problem</a> (Various independent proofs, 2006)<sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">[</span>186<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">[</span>187<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">[</span>188<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Geometry_2">Geometry</h3></div> <div class="mw-heading mw-heading4"><h4 id="21st_century">21st century</h4></div> <ul><li><a href="/wiki/Einstein_problem" title="Einstein problem">Einstein problem</a> (David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss, 2024)<sup id="cite_ref-190" class="reference"><a href="#cite_note-190"><span class="cite-bracket">[</span>189<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Maximal_rank_conjecture&action=edit&redlink=1" class="new" title="Maximal rank conjecture (page does not exist)">Maximal rank conjecture</a> (Eric Larson, 2018)<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">[</span>190<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Weibel%27s_conjecture" title="Weibel's conjecture">Weibel's conjecture</a> (Moritz Kerz, Florian Strunk, and Georg Tamme, 2018)<sup id="cite_ref-192" class="reference"><a href="#cite_note-192"><span class="cite-bracket">[</span>191<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Yau%27s_conjecture" title="Yau's conjecture">Yau's conjecture</a> (<a href="/wiki/Antoine_Song" title="Antoine Song">Antoine Song</a>, 2018)<sup id="cite_ref-193" class="reference"><a href="#cite_note-193"><span class="cite-bracket">[</span>192<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-194" class="reference"><a href="#cite_note-194"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Pentagonal_tiling" title="Pentagonal tiling">Pentagonal tiling</a> (Michaël Rao, 2017)<sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Willmore_conjecture" title="Willmore conjecture">Willmore conjecture</a> (<a href="/wiki/Fernando_Cod%C3%A1_Marques" title="Fernando Codá Marques">Fernando Codá Marques</a> and <a href="/wiki/Andr%C3%A9_Neves" title="André Neves">André Neves</a>, 2012)<sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">[</span>195<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Erd%C5%91s_distinct_distances_problem" title="Erdős distinct distances problem">Erdős distinct distances problem</a> (<a href="/wiki/Larry_Guth" title="Larry Guth">Larry Guth</a>, <a href="/wiki/Nets_Katz" title="Nets Katz">Nets Hawk Katz</a>, 2011)<sup id="cite_ref-197" class="reference"><a href="#cite_note-197"><span class="cite-bracket">[</span>196<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Squaring_the_plane" class="mw-redirect" title="Squaring the plane">Heterogeneous tiling conjecture (squaring the plane)</a> (Frederick V. Henle and James M. Henle, 2008)<sup id="cite_ref-198" class="reference"><a href="#cite_note-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Tameness_conjecture" class="mw-redirect" title="Tameness conjecture">Tameness conjecture</a> (<a href="/wiki/Ian_Agol" title="Ian Agol">Ian Agol</a>, 2004)<sup id="cite_ref-Agol_170-1" class="reference"><a href="#cite_note-Agol-170"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ending_lamination_theorem" title="Ending lamination theorem">Ending lamination theorem</a> (<a href="/wiki/Jeffrey_Brock" title="Jeffrey Brock">Jeffrey F. Brock</a>, <a href="/wiki/Richard_Canary" title="Richard Canary">Richard D. Canary</a>, <a href="/wiki/Yair_Minsky" title="Yair Minsky">Yair N. Minsky</a>, 2004)<sup id="cite_ref-199" class="reference"><a href="#cite_note-199"><span class="cite-bracket">[</span>198<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Carpenter%27s_rule_problem" title="Carpenter's rule problem">Carpenter's rule problem</a> (<a href="/wiki/Robert_Connelly" title="Robert Connelly">Robert Connelly</a>, <a href="/wiki/Erik_Demaine" title="Erik Demaine">Erik Demaine</a>, Günter Rote, 2003)<sup id="cite_ref-200" class="reference"><a href="#cite_note-200"><span class="cite-bracket">[</span>199<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Lambda_g_conjecture" title="Lambda g conjecture">Lambda g conjecture</a> (Carel Faber and <a href="/wiki/Rahul_Pandharipande" title="Rahul Pandharipande">Rahul Pandharipande</a>, 2003)<sup id="cite_ref-201" class="reference"><a href="#cite_note-201"><span class="cite-bracket">[</span>200<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Nagata%27s_conjecture" title="Nagata's conjecture">Nagata's conjecture</a> (Ivan Shestakov, Ualbai Umirbaev, 2003)<sup id="cite_ref-202" class="reference"><a href="#cite_note-202"><span class="cite-bracket">[</span>201<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Double_bubble_conjecture" class="mw-redirect" title="Double bubble conjecture">Double bubble conjecture</a> (<a href="/wiki/Michael_Hutchings_(mathematician)" title="Michael Hutchings (mathematician)">Michael Hutchings</a>, <a href="/wiki/Frank_Morgan_(mathematician)" title="Frank Morgan (mathematician)">Frank Morgan</a>, Manuel Ritoré, Antonio Ros, 2002)<sup id="cite_ref-203" class="reference"><a href="#cite_note-203"><span class="cite-bracket">[</span>202<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="20th_century">20th century</h4></div> <ul><li><a href="/wiki/Honeycomb_conjecture" title="Honeycomb conjecture">Honeycomb conjecture</a> (<a href="/wiki/Thomas_Callister_Hales" title="Thomas Callister Hales">Thomas Callister Hales</a>, 1999)<sup id="cite_ref-204" class="reference"><a href="#cite_note-204"><span class="cite-bracket">[</span>203<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Lange%27s_conjecture" title="Lange's conjecture">Lange's conjecture</a> (<a href="/wiki/Montserrat_Teixidor_i_Bigas" title="Montserrat Teixidor i Bigas">Montserrat Teixidor i Bigas</a> and Barbara Russo, 1999)<sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">[</span>204<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Bogomolov_conjecture" title="Bogomolov conjecture">Bogomolov conjecture</a> (<a href="/wiki/Emmanuel_Ullmo" title="Emmanuel Ullmo">Emmanuel Ullmo</a>, 1998, <a href="/wiki/Shou-Wu_Zhang" title="Shou-Wu Zhang">Shou-Wu Zhang</a>, 1998)<sup id="cite_ref-206" class="reference"><a href="#cite_note-206"><span class="cite-bracket">[</span>205<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">[</span>206<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Kepler_conjecture" title="Kepler conjecture">Kepler conjecture</a> (Samuel Ferguson, <a href="/wiki/Thomas_Callister_Hales" title="Thomas Callister Hales">Thomas Callister Hales</a>, 1998)<sup id="cite_ref-208" class="reference"><a href="#cite_note-208"><span class="cite-bracket">[</span>207<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Dodecahedral_conjecture" title="Dodecahedral conjecture">Dodecahedral conjecture</a> (<a href="/wiki/Thomas_Callister_Hales" title="Thomas Callister Hales">Thomas Callister Hales</a>, Sean McLaughlin, 1998)<sup id="cite_ref-209" class="reference"><a href="#cite_note-209"><span class="cite-bracket">[</span>208<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Graph_theory_2">Graph theory</h3></div> <ul><li><a href="/wiki/Kahn%E2%80%93Kalai_conjecture" title="Kahn–Kalai conjecture">Kahn–Kalai conjecture</a> (<a href="/wiki/Jinyoung_Park_(mathematician)" title="Jinyoung Park (mathematician)">Jinyoung Park</a> and Huy Tuan Pham, 2022)<sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">[</span>209<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Blankenship%E2%80%93Oporowski_conjecture" class="mw-redirect" title="Blankenship–Oporowski conjecture">Blankenship–Oporowski conjecture</a> on the book thickness of subdivisions (<a href="/wiki/Vida_Dujmovi%C4%87" title="Vida Dujmović">Vida Dujmović</a>, <a href="/wiki/David_Eppstein" title="David Eppstein">David Eppstein</a>, Robert Hickingbotham, <a href="/wiki/Pat_Morin" title="Pat Morin">Pat Morin</a>, and <a href="/wiki/David_Wood_(mathematician)" title="David Wood (mathematician)">David Wood</a>, 2021)<sup id="cite_ref-211" class="reference"><a href="#cite_note-211"><span class="cite-bracket">[</span>210<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Graceful_labeling" title="Graceful labeling">Ringel's conjecture</a> that the complete graph <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{2n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{2n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc21967f557f1281e605947db7b1d0018012388b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.114ex; height:2.509ex;" alt="{\displaystyle K_{2n+1}}"></span> can be decomposed into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ca410f731fe4c7c444330343afb1d1850eadaea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.56ex; height:2.343ex;" alt="{\displaystyle 2n+1}"></span> copies of any tree with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> edges (Richard Montgomery, <a href="/wiki/Benny_Sudakov" title="Benny Sudakov">Benny Sudakov</a>, Alexey Pokrovskiy, 2020)<sup id="cite_ref-212" class="reference"><a href="#cite_note-212"><span class="cite-bracket">[</span>211<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-213" class="reference"><a href="#cite_note-213"><span class="cite-bracket">[</span>212<span class="cite-bracket">]</span></a></sup></li> <li>Disproof of <a href="/wiki/Hedetniemi%27s_conjecture" title="Hedetniemi's conjecture">Hedetniemi's conjecture</a> on the chromatic number of tensor products of graphs (Yaroslav Shitov, 2019)<sup id="cite_ref-214" class="reference"><a href="#cite_note-214"><span class="cite-bracket">[</span>213<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Kelmans%E2%80%93Seymour_conjecture" title="Kelmans–Seymour conjecture">Kelmans–Seymour conjecture</a> (Dawei He, Yan Wang, and Xingxing Yu, 2020)<sup id="cite_ref-215" class="reference"><a href="#cite_note-215"><span class="cite-bracket">[</span>214<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-216" class="reference"><a href="#cite_note-216"><span class="cite-bracket">[</span>215<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">[</span>216<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">[</span>217<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Goldberg%E2%80%93Seymour_conjecture" title="Goldberg–Seymour conjecture">Goldberg–Seymour conjecture</a> (Guantao Chen, Guangming Jing, and Wenan Zang, 2019)<sup id="cite_ref-219" class="reference"><a href="#cite_note-219"><span class="cite-bracket">[</span>218<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Babai%27s_problem" title="Babai's problem">Babai's problem</a> (Alireza Abdollahi, Maysam Zallaghi, 2015)<sup id="cite_ref-220" class="reference"><a href="#cite_note-220"><span class="cite-bracket">[</span>219<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Alspach%27s_conjecture" title="Alspach's conjecture">Alspach's conjecture</a> (Darryn Bryant, Daniel Horsley, William Pettersson, 2014)</li> <li><a href="/wiki/Alon%E2%80%93Saks%E2%80%93Seymour_conjecture" class="mw-redirect" title="Alon–Saks–Seymour conjecture">Alon–Saks–Seymour conjecture</a> (Hao Huang, <a href="/wiki/Benny_Sudakov" title="Benny Sudakov">Benny Sudakov</a>, 2012)</li> <li><a href="/wiki/Read%27s_conjecture" title="Read's conjecture">Read–Hoggar conjecture</a> (<a href="/wiki/June_Huh" title="June Huh">June Huh</a>, 2009)<sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">[</span>220<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Scheinerman%27s_conjecture" title="Scheinerman's conjecture">Scheinerman's conjecture</a> (Jeremie Chalopin and Daniel Gonçalves, 2009)<sup id="cite_ref-222" class="reference"><a href="#cite_note-222"><span class="cite-bracket">[</span>221<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Menger_conjecture" class="mw-redirect" title="Erdős–Menger conjecture">Erdős–Menger conjecture</a> (<a href="/wiki/Ron_Aharoni" title="Ron Aharoni">Ron Aharoni</a>, Eli Berger 2007)<sup id="cite_ref-223" class="reference"><a href="#cite_note-223"><span class="cite-bracket">[</span>222<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Road_coloring_conjecture" class="mw-redirect" title="Road coloring conjecture">Road coloring conjecture</a> (<a href="/wiki/Avraham_Trahtman" title="Avraham Trahtman">Avraham Trahtman</a>, 2007)<sup id="cite_ref-224" class="reference"><a href="#cite_note-224"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Robertson%E2%80%93Seymour_theorem" title="Robertson–Seymour theorem">Robertson–Seymour theorem</a> (<a href="/wiki/Neil_Robertson_(mathematician)" title="Neil Robertson (mathematician)">Neil Robertson</a>, <a href="/wiki/Paul_Seymour_(mathematician)" title="Paul Seymour (mathematician)">Paul Seymour</a>, 2004)<sup id="cite_ref-225" class="reference"><a href="#cite_note-225"><span class="cite-bracket">[</span>224<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Strong_perfect_graph_conjecture" class="mw-redirect" title="Strong perfect graph conjecture">Strong perfect graph conjecture</a> (<a href="/wiki/Maria_Chudnovsky" title="Maria Chudnovsky">Maria Chudnovsky</a>, <a href="/wiki/Neil_Robertson_(mathematician)" title="Neil Robertson (mathematician)">Neil Robertson</a>, <a href="/wiki/Paul_Seymour_(mathematician)" title="Paul Seymour (mathematician)">Paul Seymour</a> and <a href="/wiki/Robin_Thomas_(mathematician)" title="Robin Thomas (mathematician)">Robin Thomas</a>, 2002)<sup id="cite_ref-226" class="reference"><a href="#cite_note-226"><span class="cite-bracket">[</span>225<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Toida%27s_conjecture" title="Toida's conjecture">Toida's conjecture</a> (Mikhail Muzychuk, Mikhail Klin, and Reinhard Pöschel, 2001)<sup id="cite_ref-227" class="reference"><a href="#cite_note-227"><span class="cite-bracket">[</span>226<span class="cite-bracket">]</span></a></sup></li> <li>Harary's conjecture on the integral sum number of complete graphs (Zhibo Chen, 1996)<sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">[</span>227<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Group_theory_2">Group theory</h3></div> <ul><li><a href="/wiki/Hanna_Neumann_conjecture" title="Hanna Neumann conjecture">Hanna Neumann conjecture</a> (Joel Friedman, 2011, Igor Mineyev, 2011)<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">[</span>228<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-230" class="reference"><a href="#cite_note-230"><span class="cite-bracket">[</span>229<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Density_theorem_for_Kleinian_groups" title="Density theorem for Kleinian groups">Density theorem</a> (Hossein Namazi, Juan Souto, 2010)<sup id="cite_ref-231" class="reference"><a href="#cite_note-231"><span class="cite-bracket">[</span>230<span class="cite-bracket">]</span></a></sup></li> <li>Full <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">classification of finite simple groups</a> (<a href="/wiki/Koichiro_Harada" title="Koichiro Harada">Koichiro Harada</a>, <a href="/wiki/Ronald_Solomon" title="Ronald Solomon">Ronald Solomon</a>, 2008)</li></ul> <div class="mw-heading mw-heading3"><h3 id="Number_theory_2">Number theory</h3></div> <div class="mw-heading mw-heading4"><h4 id="21st_century_2">21st century</h4></div> <ul><li><a href="/wiki/Andr%C3%A9%E2%80%93Oort_conjecture" title="André–Oort conjecture">André–Oort conjecture</a> (<a href="/wiki/Jonathan_Pila" title="Jonathan Pila">Jonathan Pila</a>, Ananth Shankar, <a href="/wiki/Jacob_Tsimerman" title="Jacob Tsimerman">Jacob Tsimerman</a>, 2021)<sup id="cite_ref-232" class="reference"><a href="#cite_note-232"><span class="cite-bracket">[</span>231<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Duffin%E2%80%93Schaeffer_conjecture" class="mw-redirect" title="Duffin–Schaeffer conjecture">Duffin-Schaeffer conjecture</a> (<a href="/wiki/Dimitris_Koukoulopoulos" title="Dimitris Koukoulopoulos">Dimitris Koukoulopoulos</a>, <a href="/wiki/James_Maynard_(mathematician)" class="mw-redirect" title="James Maynard (mathematician)">James Maynard</a>, 2019)</li> <li><a href="/wiki/Vinogradov%27s_mean-value_theorem#The_conjectured_form" title="Vinogradov's mean-value theorem">Main conjecture in Vinogradov's mean-value theorem</a> (<a href="/wiki/Jean_Bourgain" title="Jean Bourgain">Jean Bourgain</a>, Ciprian Demeter, <a href="/wiki/Larry_Guth" title="Larry Guth">Larry Guth</a>, 2015)<sup id="cite_ref-233" class="reference"><a href="#cite_note-233"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Goldbach%27s_weak_conjecture" title="Goldbach's weak conjecture">Goldbach's weak conjecture</a> (<a href="/wiki/Harald_Helfgott" title="Harald Helfgott">Harald Helfgott</a>, 2013)<sup id="cite_ref-234" class="reference"><a href="#cite_note-234"><span class="cite-bracket">[</span>233<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-235" class="reference"><a href="#cite_note-235"><span class="cite-bracket">[</span>234<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-236" class="reference"><a href="#cite_note-236"><span class="cite-bracket">[</span>235<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Prime_gap#Further_results" title="Prime gap">Existence of bounded gaps between primes</a> (<a href="/wiki/Yitang_Zhang" title="Yitang Zhang">Yitang Zhang</a>, <a href="/wiki/Polymath_Project" title="Polymath Project">Polymath8</a>, <a href="/wiki/James_Maynard_(mathematician)" class="mw-redirect" title="James Maynard (mathematician)">James Maynard</a>, 2013)<sup id="cite_ref-237" class="reference"><a href="#cite_note-237"><span class="cite-bracket">[</span>236<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-238" class="reference"><a href="#cite_note-238"><span class="cite-bracket">[</span>237<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-239" class="reference"><a href="#cite_note-239"><span class="cite-bracket">[</span>238<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Sidon_sequence" title="Sidon sequence">Sidon set problem</a> (Javier Cilleruelo, <a href="/wiki/Imre_Z._Ruzsa" title="Imre Z. Ruzsa">Imre Z. Ruzsa</a>, and Carlos Vinuesa, 2010)<sup id="cite_ref-240" class="reference"><a href="#cite_note-240"><span class="cite-bracket">[</span>239<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Serre%27s_modularity_conjecture" title="Serre's modularity conjecture">Serre's modularity conjecture</a> (<a href="/wiki/Chandrashekhar_Khare" title="Chandrashekhar Khare">Chandrashekhar Khare</a> and <a href="/wiki/Jean-Pierre_Wintenberger" title="Jean-Pierre Wintenberger">Jean-Pierre Wintenberger</a>, 2008)<sup id="cite_ref-241" class="reference"><a href="#cite_note-241"><span class="cite-bracket">[</span>240<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-242" class="reference"><a href="#cite_note-242"><span class="cite-bracket">[</span>241<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-243" class="reference"><a href="#cite_note-243"><span class="cite-bracket">[</span>242<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Green%E2%80%93Tao_theorem" title="Green–Tao theorem">Green–Tao theorem</a> (<a href="/wiki/Ben_J._Green" class="mw-redirect" title="Ben J. Green">Ben J. Green</a> and <a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a>, 2004)<sup id="cite_ref-244" class="reference"><a href="#cite_note-244"><span class="cite-bracket">[</span>243<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Mih%C4%83ilescu%27s_theorem" class="mw-redirect" title="Mihăilescu's theorem">Catalan's conjecture</a> (<a href="/wiki/Preda_Mih%C4%83ilescu" title="Preda Mihăilescu">Preda Mihăilescu</a>, 2002)<sup id="cite_ref-245" class="reference"><a href="#cite_note-245"><span class="cite-bracket">[</span>244<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Graham_problem" title="Erdős–Graham problem">Erdős–Graham problem</a> (<a href="/wiki/Ernest_S._Croot_III" title="Ernest S. Croot III">Ernest S. Croot III</a>, 2000)<sup id="cite_ref-246" class="reference"><a href="#cite_note-246"><span class="cite-bracket">[</span>245<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="20th_century_2">20th century</h4></div> <ul><li><a href="/wiki/Lafforgue%27s_theorem" title="Lafforgue's theorem">Lafforgue's theorem</a> (<a href="/wiki/Laurent_Lafforgue" title="Laurent Lafforgue">Laurent Lafforgue</a>, 1998)<sup id="cite_ref-247" class="reference"><a href="#cite_note-247"><span class="cite-bracket">[</span>246<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Fermat%27s_Last_Theorem" title="Fermat's Last Theorem">Fermat's Last Theorem</a> (<a href="/wiki/Andrew_Wiles" title="Andrew Wiles">Andrew Wiles</a> and <a href="/wiki/Richard_Taylor_(mathematician)" title="Richard Taylor (mathematician)">Richard Taylor</a>, 1995)<sup id="cite_ref-248" class="reference"><a href="#cite_note-248"><span class="cite-bracket">[</span>247<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-249" class="reference"><a href="#cite_note-249"><span class="cite-bracket">[</span>248<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Ramsey_theory">Ramsey theory</h3></div> <ul><li><a href="/wiki/Burr%E2%80%93Erd%C5%91s_conjecture" title="Burr–Erdős conjecture">Burr–Erdős conjecture</a> (Choongbum Lee, 2017)<sup id="cite_ref-250" class="reference"><a href="#cite_note-250"><span class="cite-bracket">[</span>249<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Boolean_Pythagorean_triples_problem" title="Boolean Pythagorean triples problem">Boolean Pythagorean triples problem</a> (<a href="/wiki/Marijn_Heule" title="Marijn Heule">Marijn Heule</a>, Oliver Kullmann, <a href="/wiki/Victor_W._Marek" title="Victor W. Marek">Victor W. Marek</a>, 2016)<sup id="cite_ref-251" class="reference"><a href="#cite_note-251"><span class="cite-bracket">[</span>250<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-252" class="reference"><a href="#cite_note-252"><span class="cite-bracket">[</span>251<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Theoretical_computer_science">Theoretical computer science</h3></div> <ul><li><a href="/wiki/Decision_tree_model#Sensitivity_conjecture" title="Decision tree model">Sensitivity conjecture</a> for Boolean functions (<a href="/wiki/Hao_Huang_(mathematician)" title="Hao Huang (mathematician)">Hao Huang</a>, 2019)<sup id="cite_ref-253" class="reference"><a href="#cite_note-253"><span class="cite-bracket">[</span>252<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Topology_2">Topology</h3></div> <ul><li>Deciding whether the <a href="/wiki/Conway_knot" title="Conway knot">Conway knot</a> is a <a href="/wiki/Slice_knot" title="Slice knot">slice knot</a> (<a href="/wiki/Lisa_Piccirillo" title="Lisa Piccirillo">Lisa Piccirillo</a>, 2020)<sup id="cite_ref-254" class="reference"><a href="#cite_note-254"><span class="cite-bracket">[</span>253<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-255" class="reference"><a href="#cite_note-255"><span class="cite-bracket">[</span>254<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Virtual_Haken_conjecture" class="mw-redirect" title="Virtual Haken conjecture">Virtual Haken conjecture</a> (<a href="/wiki/Ian_Agol" title="Ian Agol">Ian Agol</a>, Daniel Groves, Jason Manning, 2012)<sup id="cite_ref-256" class="reference"><a href="#cite_note-256"><span class="cite-bracket">[</span>255<span class="cite-bracket">]</span></a></sup> (and by work of <a href="/wiki/Daniel_Wise_(mathematician)" title="Daniel Wise (mathematician)">Daniel Wise</a> also <a href="/wiki/Virtually_fibered_conjecture" title="Virtually fibered conjecture">virtually fibered conjecture</a>)</li> <li><a href="/wiki/Hsiang%E2%80%93Lawson%27s_conjecture" title="Hsiang–Lawson's conjecture">Hsiang–Lawson's conjecture</a> (<a href="/wiki/Simon_Brendle" title="Simon Brendle">Simon Brendle</a>, 2012)<sup id="cite_ref-257" class="reference"><a href="#cite_note-257"><span class="cite-bracket">[</span>256<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Ehrenpreis_conjecture" title="Ehrenpreis conjecture">Ehrenpreis conjecture</a> (<a href="/wiki/Jeremy_Kahn" title="Jeremy Kahn">Jeremy Kahn</a>, <a href="/wiki/Vladimir_Markovic" title="Vladimir Markovic">Vladimir Markovic</a>, 2011)<sup id="cite_ref-258" class="reference"><a href="#cite_note-258"><span class="cite-bracket">[</span>257<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Atiyah_conjecture" title="Atiyah conjecture">Atiyah conjecture</a> for groups with finite subgroups of unbounded order (Austin, 2009)<sup id="cite_ref-259" class="reference"><a href="#cite_note-259"><span class="cite-bracket">[</span>258<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Cobordism_hypothesis" title="Cobordism hypothesis">Cobordism hypothesis</a> (<a href="/wiki/Jacob_Lurie" title="Jacob Lurie">Jacob Lurie</a>, 2008)<sup id="cite_ref-260" class="reference"><a href="#cite_note-260"><span class="cite-bracket">[</span>259<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Spherical_space_form_conjecture" title="Spherical space form conjecture">Spherical space form conjecture</a> (<a href="/wiki/Grigori_Perelman" title="Grigori Perelman">Grigori Perelman</a>, 2006)</li> <li><a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a> (<a href="/wiki/Grigori_Perelman" title="Grigori Perelman">Grigori Perelman</a>, 2002)<sup id="cite_ref-auto_261-0" class="reference"><a href="#cite_note-auto-261"><span class="cite-bracket">[</span>260<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Geometrization_conjecture" title="Geometrization conjecture">Geometrization conjecture</a>, (<a href="/wiki/Grigori_Perelman" title="Grigori Perelman">Grigori Perelman</a>,<sup id="cite_ref-auto_261-1" class="reference"><a href="#cite_note-auto-261"><span class="cite-bracket">[</span>260<span class="cite-bracket">]</span></a></sup> series of preprints in 2002–2003)<sup id="cite_ref-262" class="reference"><a href="#cite_note-262"><span class="cite-bracket">[</span>261<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Nikiel%27s_conjecture" title="Nikiel's conjecture">Nikiel's conjecture</a> (<a href="/wiki/Mary_Ellen_Rudin" title="Mary Ellen Rudin">Mary Ellen Rudin</a>, 1999)<sup id="cite_ref-263" class="reference"><a href="#cite_note-263"><span class="cite-bracket">[</span>262<span class="cite-bracket">]</span></a></sup></li> <li>Disproof of the <a href="/wiki/Ganea_conjecture" title="Ganea conjecture">Ganea conjecture</a> (Iwase, 1997)<sup id="cite_ref-264" class="reference"><a href="#cite_note-264"><span class="cite-bracket">[</span>263<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Uncategorised">Uncategorised</h3></div> <div class="mw-heading mw-heading4"><h4 id="2010s">2010s</h4></div> <ul><li><a href="/wiki/Erd%C5%91s_discrepancy_problem" class="mw-redirect" title="Erdős discrepancy problem">Erdős discrepancy problem</a> (<a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a>, 2015)<sup id="cite_ref-265" class="reference"><a href="#cite_note-265"><span class="cite-bracket">[</span>264<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Umbral_moonshine" title="Umbral moonshine">Umbral moonshine</a> conjecture (John F. R. Duncan, Michael J. Griffin, <a href="/wiki/Ken_Ono" title="Ken Ono">Ken Ono</a>, 2015)<sup id="cite_ref-266" class="reference"><a href="#cite_note-266"><span class="cite-bracket">[</span>265<span class="cite-bracket">]</span></a></sup></li> <li>Anderson conjecture on the finite number of diffeomorphism classes of the collection of 4-manifolds satisfying certain properties (<a href="/wiki/Jeff_Cheeger" title="Jeff Cheeger">Jeff Cheeger</a>, Aaron Naber, 2014)<sup id="cite_ref-267" class="reference"><a href="#cite_note-267"><span class="cite-bracket">[</span>266<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Gaussian_correlation_inequality" title="Gaussian correlation inequality">Gaussian correlation inequality</a> (<a href="/wiki/Thomas_Royen" title="Thomas Royen">Thomas Royen</a>, 2014)<sup id="cite_ref-268" class="reference"><a href="#cite_note-268"><span class="cite-bracket">[</span>267<span class="cite-bracket">]</span></a></sup></li> <li>Beck's conjecture on discrepancies of set systems constructed from three permutations (Alantha Newman, <a href="/wiki/Aleksandar_Nikolov_(computer_scientist)" title="Aleksandar Nikolov (computer scientist)">Aleksandar Nikolov</a>, 2011)<sup id="cite_ref-269" class="reference"><a href="#cite_note-269"><span class="cite-bracket">[</span>268<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Bloch%E2%80%93Kato_conjecture" class="mw-redirect" title="Bloch–Kato conjecture">Bloch–Kato conjecture</a> (<a href="/wiki/Vladimir_Voevodsky" title="Vladimir Voevodsky">Vladimir Voevodsky</a>, 2011)<sup id="cite_ref-270" class="reference"><a href="#cite_note-270"><span class="cite-bracket">[</span>269<span class="cite-bracket">]</span></a></sup> (and <a href="/wiki/Quillen%E2%80%93Lichtenbaum_conjecture" title="Quillen–Lichtenbaum conjecture">Quillen–Lichtenbaum conjecture</a> and by work of <a href="/wiki/Thomas_Geisser_(mathematician)" class="mw-redirect" title="Thomas Geisser (mathematician)">Thomas Geisser</a> and <a href="/wiki/Marc_Levine_(mathematician)" title="Marc Levine (mathematician)">Marc Levine</a> (2001) also <a href="/wiki/Norm_residue_isomorphism_theorem#Beilinson–Lichtenbaum_conjecture" title="Norm residue isomorphism theorem">Beilinson–Lichtenbaum conjecture</a><sup id="cite_ref-271" class="reference"><a href="#cite_note-271"><span class="cite-bracket">[</span>270<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-272" class="reference"><a href="#cite_note-272"><span class="cite-bracket">[</span>271<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 359">: 359 </span></sup><sup id="cite_ref-273" class="reference"><a href="#cite_note-273"><span class="cite-bracket">[</span>272<span class="cite-bracket">]</span></a></sup>)</li></ul> <div class="mw-heading mw-heading4"><h4 id="2000s">2000s</h4></div> <ul><li><a href="/w/index.php?title=Kauffman%E2%80%93Harary_conjecture&action=edit&redlink=1" class="new" title="Kauffman–Harary conjecture (page does not exist)">Kauffman–Harary conjecture</a> (Thomas Mattman, Pablo Solis, 2009)<sup id="cite_ref-274" class="reference"><a href="#cite_note-274"><span class="cite-bracket">[</span>273<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Surface_subgroup_conjecture" title="Surface subgroup conjecture">Surface subgroup conjecture</a> (<a href="/wiki/Jeremy_Kahn" title="Jeremy Kahn">Jeremy Kahn</a>, <a href="/wiki/Vladimir_Markovic" title="Vladimir Markovic">Vladimir Markovic</a>, 2009)<sup id="cite_ref-275" class="reference"><a href="#cite_note-275"><span class="cite-bracket">[</span>274<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Normal_scalar_curvature_conjecture&action=edit&redlink=1" class="new" title="Normal scalar curvature conjecture (page does not exist)">Normal scalar curvature conjecture</a> and the <a href="/w/index.php?title=B%C3%B6ttcher%E2%80%93Wenzel_conjecture&action=edit&redlink=1" class="new" title="Böttcher–Wenzel conjecture (page does not exist)">Böttcher–Wenzel conjecture</a> (Zhiqin Lu, 2007)<sup id="cite_ref-276" class="reference"><a href="#cite_note-276"><span class="cite-bracket">[</span>275<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Nirenberg%E2%80%93Treves_conjecture&action=edit&redlink=1" class="new" title="Nirenberg–Treves conjecture (page does not exist)">Nirenberg–Treves conjecture</a> (<a href="/wiki/Nils_Dencker" title="Nils Dencker">Nils Dencker</a>, 2005)<sup id="cite_ref-277" class="reference"><a href="#cite_note-277"><span class="cite-bracket">[</span>276<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-278" class="reference"><a href="#cite_note-278"><span class="cite-bracket">[</span>277<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Peter_Lax" title="Peter Lax">Lax conjecture</a> (<a href="/wiki/Adrian_Lewis_(mathematician)" title="Adrian Lewis (mathematician)">Adrian Lewis</a>, <a href="/wiki/Pablo_Parrilo" title="Pablo Parrilo">Pablo Parrilo</a>, Motakuri Ramana, 2005)<sup id="cite_ref-279" class="reference"><a href="#cite_note-279"><span class="cite-bracket">[</span>278<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Langlands%E2%80%93Shelstad_fundamental_lemma" class="mw-redirect" title="Langlands–Shelstad fundamental lemma">Langlands–Shelstad fundamental lemma</a> (<a href="/wiki/Ng%C3%B4_B%E1%BA%A3o_Ch%C3%A2u" title="Ngô Bảo Châu">Ngô Bảo Châu</a> and <a href="/wiki/G%C3%A9rard_Laumon" title="Gérard Laumon">Gérard Laumon</a>, 2004)<sup id="cite_ref-280" class="reference"><a href="#cite_note-280"><span class="cite-bracket">[</span>279<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Milnor_conjecture_(K-theory)" title="Milnor conjecture (K-theory)">Milnor conjecture</a> (<a href="/wiki/Vladimir_Voevodsky" title="Vladimir Voevodsky">Vladimir Voevodsky</a>, 2003)<sup id="cite_ref-281" class="reference"><a href="#cite_note-281"><span class="cite-bracket">[</span>280<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Kirillov%27s_conjecture&action=edit&redlink=1" class="new" title="Kirillov's conjecture (page does not exist)">Kirillov's conjecture</a> (Ehud Baruch, 2003)<sup id="cite_ref-282" class="reference"><a href="#cite_note-282"><span class="cite-bracket">[</span>281<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Kouchnirenko%27s_conjecture&action=edit&redlink=1" class="new" title="Kouchnirenko's conjecture (page does not exist)">Kouchnirenko's conjecture</a> (Bertrand Haas, 2002)<sup id="cite_ref-283" class="reference"><a href="#cite_note-283"><span class="cite-bracket">[</span>282<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/N!_conjecture" title="N! conjecture"><i>n</i>! conjecture</a> (<a href="/wiki/Mark_Haiman" title="Mark Haiman">Mark Haiman</a>, 2001)<sup id="cite_ref-284" class="reference"><a href="#cite_note-284"><span class="cite-bracket">[</span>283<span class="cite-bracket">]</span></a></sup> (and also <a href="/wiki/Macdonald_polynomials#The_Macdonald_positivity_conjecture" title="Macdonald polynomials">Macdonald positivity conjecture</a>)</li> <li><a href="/wiki/Kato%27s_conjecture" title="Kato's conjecture">Kato's conjecture</a> (<a href="/wiki/Pascal_Auscher" title="Pascal Auscher">Pascal Auscher</a>, <a href="/wiki/Steve_Hofmann" title="Steve Hofmann">Steve Hofmann</a>, <a href="/wiki/Michael_Lacey_(mathematician)" title="Michael Lacey (mathematician)">Michael Lacey</a>, <a href="/wiki/Alan_Gaius_Ramsay_McIntosh" title="Alan Gaius Ramsay McIntosh">Alan McIntosh</a>, and Philipp Tchamitchian, 2001)<sup id="cite_ref-285" class="reference"><a href="#cite_note-285"><span class="cite-bracket">[</span>284<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Deligne%27s_conjecture_on_1-motives&action=edit&redlink=1" class="new" title="Deligne's conjecture on 1-motives (page does not exist)">Deligne's conjecture on 1-motives</a> (Luca Barbieri-Viale, Andreas Rosenschon, <a href="/wiki/Morihiko_Saito" title="Morihiko Saito">Morihiko Saito</a>, 2001)<sup id="cite_ref-286" class="reference"><a href="#cite_note-286"><span class="cite-bracket">[</span>285<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Modularity_theorem" title="Modularity theorem">Modularity theorem</a> (<a href="/wiki/Christophe_Breuil" title="Christophe Breuil">Christophe Breuil</a>, <a href="/wiki/Brian_Conrad" title="Brian Conrad">Brian Conrad</a>, <a href="/wiki/Fred_Diamond" title="Fred Diamond">Fred Diamond</a>, and <a href="/wiki/Richard_Taylor_(mathematician)" title="Richard Taylor (mathematician)">Richard Taylor</a>, 2001)<sup id="cite_ref-287" class="reference"><a href="#cite_note-287"><span class="cite-bracket">[</span>286<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Erd%C5%91s%E2%80%93Stewart_conjecture&action=edit&redlink=1" class="new" title="Erdős–Stewart conjecture (page does not exist)">Erdős–Stewart conjecture</a> (<a href="/wiki/Florian_Luca" title="Florian Luca">Florian Luca</a>, 2001)<sup id="cite_ref-288" class="reference"><a href="#cite_note-288"><span class="cite-bracket">[</span>287<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Berry%E2%80%93Robbins_problem" title="Berry–Robbins problem">Berry–Robbins problem</a> (<a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Michael Atiyah</a>, 2000)<sup id="cite_ref-289" class="reference"><a href="#cite_note-289"><span class="cite-bracket">[</span>288<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <ul><li><a href="/wiki/List_of_conjectures" title="List of conjectures">List of conjectures</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_statistics" title="List of unsolved problems in statistics">List of unsolved problems in statistics</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_computer_science" title="List of unsolved problems in computer science">List of unsolved problems in computer science</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_physics" title="List of unsolved problems in physics">List of unsolved problems in physics</a></li> <li><a href="/wiki/Lists_of_unsolved_problems" title="Lists of unsolved problems">Lists of unsolved problems</a></li> <li><i><a href="/wiki/Open_Problems_in_Mathematics" title="Open Problems in Mathematics">Open Problems in Mathematics</a></i></li> <li><i><a href="/wiki/The_Great_Mathematical_Problems" title="The Great Mathematical Problems">The Great Mathematical Problems</a></i></li> <li><a href="/wiki/Scottish_Book" title="Scottish Book">Scottish Book</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text">A disproof has been announced, with a preprint made available on <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFThiele2005" class="citation cs2">Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen (ed.), <a href="/wiki/Kenneth_May" class="mw-redirect" title="Kenneth May"><i>Mathematics and the historian's craft. The Kenneth O. May Lectures</i></a>, <a href="/wiki/Canadian_Mathematical_Society" title="Canadian Mathematical Society">CMS</a> Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 21, pp. 243–295, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-25284-1" title="Special:BookSources/978-0-387-25284-1"><bdi>978-0-387-25284-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=On+Hilbert+and+his+twenty-four+problems&rft.btitle=Mathematics+and+the+historian%27s+craft.+The+Kenneth+O.+May+Lectures&rft.series=CMS+Books+in+Mathematics%2FOuvrages+de+Math%C3%A9matiques+de+la+SMC&rft.pages=243-295&rft.date=2005&rft.isbn=978-0-387-25284-1&rft.aulast=Thiele&rft.aufirst=R%C3%BCdiger&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy1994" class="citation cs2"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard</a> (1994), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7"><i>Unsolved Problems in Number Theory</i></a> (2nd ed.), Springer, p. vii, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4899-3585-4" title="Special:BookSources/978-1-4899-3585-4"><bdi>978-1-4899-3585-4</bdi></a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190323220345/https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7">archived</a> from the original on 2019-03-23<span class="reference-accessdate">, retrieved <span class="nowrap">2016-09-22</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+in+Number+Theory&rft.pages=vii&rft.edition=2nd&rft.pub=Springer&rft.date=1994&rft.isbn=978-1-4899-3585-4&rft.aulast=Guy&rft.aufirst=Richard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEbLzBwAAQBAJ%26pg%3DPR7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShimura1989" class="citation journal cs1"><a href="/wiki/Goro_Shimura" title="Goro Shimura">Shimura, G.</a> (1989). "Yutaka Taniyama and his time". <i>Bulletin of the London Mathematical Society</i>. <b>21</b> (2): 186–196. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fblms%2F21.2.186">10.1112/blms/21.2.186</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+London+Mathematical+Society&rft.atitle=Yutaka+Taniyama+and+his+time&rft.volume=21&rft.issue=2&rft.pages=186-196&rft.date=1989&rft_id=info%3Adoi%2F10.1112%2Fblms%2F21.2.186&rft.aulast=Shimura&rft.aufirst=G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedl2014" class="citation journal cs1">Friedl, Stefan (2014). "Thurston's vision and the virtual fibering theorem for 3-manifolds". <i>Jahresbericht der Deutschen Mathematiker-Vereinigung</i>. <b>116</b> (4): 223–241. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1365%2Fs13291-014-0102-x">10.1365/s13291-014-0102-x</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3280572">3280572</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56322745">56322745</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Jahresbericht+der+Deutschen+Mathematiker-Vereinigung&rft.atitle=Thurston%27s+vision+and+the+virtual+fibering+theorem+for+3-manifolds&rft.volume=116&rft.issue=4&rft.pages=223-241&rft.date=2014&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3280572%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56322745%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1365%2Fs13291-014-0102-x&rft.aulast=Friedl&rft.aufirst=Stefan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThurston1982" class="citation journal cs1">Thurston, William P. (1982). "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry". <i>Bulletin of the American Mathematical Society</i>. New Series. <b>6</b> (3): 357–381. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-1982-15003-0">10.1090/S0273-0979-1982-15003-0</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0648524">0648524</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Three-dimensional+manifolds%2C+Kleinian+groups+and+hyperbolic+geometry&rft.volume=6&rft.issue=3&rft.pages=357-381&rft.date=1982&rft_id=info%3Adoi%2F10.1090%2FS0273-0979-1982-15003-0&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D648524%23id-name%3DMR&rft.aulast=Thurston&rft.aufirst=William+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-auto1-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto1_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto1_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170606121331/http://claymath.org/millennium-problems">"Millennium Problems"</a>. <i>claymath.org</i>. Archived from <a rel="nofollow" class="external text" href="http://claymath.org/millennium-problems">the original</a> on 2017-06-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-01-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=claymath.org&rft.atitle=Millennium+Problems&rft_id=http%3A%2F%2Fclaymath.org%2Fmillennium-problems&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180710010437/http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12">"Fields Medal awarded to Artur Avila"</a>. <i><a href="/wiki/Centre_national_de_la_recherche_scientifique" class="mw-redirect" title="Centre national de la recherche scientifique">Centre national de la recherche scientifique</a></i>. 2014-08-13. Archived from <a rel="nofollow" class="external text" href="http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12">the original</a> on 2018-07-10<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-07-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Centre+national+de+la+recherche+scientifique&rft.atitle=Fields+Medal+awarded+to+Artur+Avila&rft.date=2014-08-13&rft_id=http%3A%2F%2Fwww2.cnrs.fr%2Fen%2F2435.htm%3Fdebut%3D8%26theme1%3D12&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-guardian-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-guardian_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBellos2014" class="citation web cs1">Bellos, Alex (2014-08-13). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani">"Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161021115900/https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani">Archived</a> from the original on 2016-10-21<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-07-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Guardian&rft.atitle=Fields+Medals+2014%3A+the+maths+of+Avila%2C+Bhargava%2C+Hairer+and+Mirzakhani+explained&rft.date=2014-08-13&rft.aulast=Bellos&rft.aufirst=Alex&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2Falexs-adventures-in-numberland%2F2014%2Faug%2F13%2Ffields-medals-2014-maths-avila-bhargava-hairer-mirzakhani&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbeTanaka2001" class="citation book cs1">Abe, Jair Minoro; Tanaka, Shotaro (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yHzfbqtVGLIC&q=unsolved+problems+in+mathematics"><i>Unsolved Problems on Mathematics for the 21st Century</i></a>. IOS Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-5199-490-2" title="Special:BookSources/978-90-5199-490-2"><bdi>978-90-5199-490-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+on+Mathematics+for+the+21st+Century&rft.pub=IOS+Press&rft.date=2001&rft.isbn=978-90-5199-490-2&rft.aulast=Abe&rft.aufirst=Jair+Minoro&rft.au=Tanaka%2C+Shotaro&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyHzfbqtVGLIC%26q%3Dunsolved%2Bproblems%2Bin%2Bmathematics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090304121240/http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html">"DARPA invests in math"</a>. <a href="/wiki/Cable_News_Network" class="mw-redirect" title="Cable News Network">CNN</a>. 2008-10-14. Archived from <a rel="nofollow" class="external text" href="http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html">the original</a> on 2009-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-01-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=DARPA+invests+in+math&rft.pub=CNN&rft.date=2008-10-14&rft_id=http%3A%2F%2Fedition.cnn.com%2F2008%2FTECH%2Fscience%2F10%2F09%2Fdarpa.challenges%2Findex.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121001111057/http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html">"Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)"</a>. DARPA. 2007-09-10. Archived from <a rel="nofollow" class="external text" href="http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html">the original</a> on 2012-10-01<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-06-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Broad+Agency+Announcement+%28BAA+07-68%29+for+Defense+Sciences+Office+%28DSO%29&rft.pub=DARPA&rft.date=2007-09-10&rft_id=http%3A%2F%2Fwww.math.utk.edu%2F~vasili%2Frefs%2Fdarpa07.MathChallenges.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBloom" class="citation web cs1"><a href="/wiki/Thomas_Bloom" title="Thomas Bloom">Bloom, Thomas</a>. <a rel="nofollow" class="external text" href="https://www.erdosproblems.com/">"Erdős Problems"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Erd%C5%91s+Problems&rft.aulast=Bloom&rft.aufirst=Thomas&rft_id=https%3A%2F%2Fwww.erdosproblems.com%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20131215120130/http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture">"Poincaré Conjecture"</a>. <i>Clay Mathematics Institute</i>. Archived from <a rel="nofollow" class="external text" href="http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture">the original</a> on 2013-12-15.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Clay+Mathematics+Institute&rft.atitle=Poincar%C3%A9+Conjecture&rft_id=http%3A%2F%2Fwww.claymath.org%2Fmillenium-problems%2Fpoincar%25C3%25A9-conjecture&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFrybu2009" class="citation web cs1">rybu (November 7, 2009). <a rel="nofollow" class="external text" href="http://www.openproblemgarden.org/?q=op/smooth_4_dimensional_poincare_conjecture">"Smooth 4-dimensional Poincare conjecture"</a>. <i>Open Problem Garden</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180125203721/http://www.openproblemgarden.org/?q=op%2Fsmooth_4_dimensional_poincare_conjecture">Archived</a> from the original on 2018-01-25<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-08-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Open+Problem+Garden&rft.atitle=Smooth+4-dimensional+Poincare+conjecture&rft.date=2009-11-07&rft.au=rybu&rft_id=http%3A%2F%2Fwww.openproblemgarden.org%2F%3Fq%3Dop%2Fsmooth_4_dimensional_poincare_conjecture&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhukhroMazurov2019" class="citation cs2">Khukhro, Evgeny I.; <a href="/wiki/Victor_Mazurov" title="Victor Mazurov">Mazurov, Victor D.</a> (2019), <i>Unsolved Problems in Group Theory. The Kourovka Notebook</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.0300v16">1401.0300v16</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+in+Group+Theory.+The+Kourovka+Notebook&rft.date=2019&rft_id=info%3Aarxiv%2F1401.0300v16&rft.aulast=Khukhro&rft.aufirst=Evgeny+I.&rft.au=Mazurov%2C+Victor+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRSFSRRussie)1969" class="citation book cs1 cs1-prop-foreign-lang-source">RSFSR, MV i SSO; Russie), Uralʹskij gosudarstvennyj universitet im A. M. Gorʹkogo (Ekaterinbourg (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nKwgzgEACAAJ"><i>Свердловская тетрадь: нерешенные задачи теории подгрупп</i></a> (in Russian). S. l.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F+%D1%82%D0%B5%D1%82%D1%80%D0%B0%D0%B4%D1%8C%3A+%D0%BD%D0%B5%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5+%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B8+%D0%BF%D0%BE%D0%B4%D0%B3%D1%80%D1%83%D0%BF%D0%BF&rft.pub=S.+l.&rft.date=1969&rft.aulast=RSFSR&rft.aufirst=MV+i+SSO&rft.au=Russie%29%2C+Ural%CA%B9skij+gosudarstvennyj+universitet+im+A.+M.+Gor%CA%B9kogo+%28Ekaterinbourg&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnKwgzgEACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп</i>. <a href="/w/index.php?title=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA&action=edit&redlink=1" class="new" title="Свердловск (page does not exist)">Свердловск</a>: <a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%BB%D1%8C%D1%81%D0%BA%D0%B8%D0%B9_%D0%B3%D0%BE%D1%81%D1%83%D0%B4%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%83%D0%BD%D0%B8%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%82%D0%B5%D1%82&action=edit&redlink=1" class="new" title="Уральский государственный университет (page does not exist)">Уральский государственный университет</a>. 1979.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F+%D1%82%D0%B5%D1%82%D1%80%D0%B0%D0%B4%D1%8C%3A+%D0%A1%D0%B1.+%D0%BD%D0%B5%D1%80%D0%B5%D1%88%D1%91%D0%BD%D0%BD%D1%8B%D1%85+%D0%B7%D0%B0%D0%B4%D0%B0%D1%87+%D0%BF%D0%BE+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B8+%D0%BF%D0%BE%D0%BB%D1%83%D0%B3%D1%80%D1%83%D0%BF%D0%BF&rft.place=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA&rft.pub=%D0%A3%D1%80%D0%B0%D0%BB%D1%8C%D1%81%D0%BA%D0%B8%D0%B9+%D0%B3%D0%BE%D1%81%D1%83%D0%B4%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9+%D1%83%D0%BD%D0%B8%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%82%D0%B5%D1%82&rft.date=1979&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп</i>. <a href="/w/index.php?title=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA&action=edit&redlink=1" class="new" title="Свердловск (page does not exist)">Свердловск</a>: <a href="/w/index.php?title=%D0%A3%D1%80%D0%B0%D0%BB%D1%8C%D1%81%D0%BA%D0%B8%D0%B9_%D0%B3%D0%BE%D1%81%D1%83%D0%B4%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%83%D0%BD%D0%B8%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%82%D0%B5%D1%82&action=edit&redlink=1" class="new" title="Уральский государственный университет (page does not exist)">Уральский государственный университет</a>. 1989.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F+%D1%82%D0%B5%D1%82%D1%80%D0%B0%D0%B4%D1%8C%3A+%D0%A1%D0%B1.+%D0%BD%D0%B5%D1%80%D0%B5%D1%88%D1%91%D0%BD%D0%BD%D1%8B%D1%85+%D0%B7%D0%B0%D0%B4%D0%B0%D1%87+%D0%BF%D0%BE+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B8+%D0%BF%D0%BE%D0%BB%D1%83%D0%B3%D1%80%D1%83%D0%BF%D0%BF&rft.place=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA&rft.pub=%D0%A3%D1%80%D0%B0%D0%BB%D1%8C%D1%81%D0%BA%D0%B8%D0%B9+%D0%B3%D0%BE%D1%81%D1%83%D0%B4%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9+%D1%83%D0%BD%D0%B8%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%82%D0%B5%D1%82&rft.date=1989&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2 cs1-prop-foreign-lang-source"><a rel="nofollow" class="external text" href="http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf"><i>ДНЕСТРОВСКАЯ ТЕТРАДЬ</i></a> [<i>DNIESTER NOTEBOOK</i>] <span class="cs1-format">(PDF)</span> (in Russian), The Russian Academy of Sciences, 1993</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%D0%94%D0%9D%D0%95%D0%A1%D0%A2%D0%A0%D0%9E%D0%92%D0%A1%D0%9A%D0%90%D0%AF+%D0%A2%D0%95%D0%A2%D0%A0%D0%90%D0%94%D0%AC&rft.pub=The+Russian+Academy+of+Sciences&rft.date=1993&rft_id=http%3A%2F%2Fmath.nsc.ru%2FLBRT%2Fa1%2Ffiles%2Fdnestr93.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://math.usask.ca/~bremner/research/publications/dniester.pdf">"DNIESTER NOTEBOOK: Unsolved Problems in the Theory of Rings and Modules"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/University_of_Saskatchewan" title="University of Saskatchewan">University of Saskatchewan</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2019-08-15</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=University+of+Saskatchewan&rft.atitle=DNIESTER+NOTEBOOK%3A+Unsolved+Problems+in+the+Theory+of+Rings+and+Modules&rft_id=https%3A%2F%2Fmath.usask.ca%2F~bremner%2Fresearch%2Fpublications%2Fdniester.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2 cs1-prop-foreign-lang-source"><a rel="nofollow" class="external text" href="http://uamt.conf.nstu.ru/erl_note.pdf"><i>Эрлагольская тетрадь</i></a> [<i>Erlagol notebook</i>] <span class="cs1-format">(PDF)</span> (in Russian), The Novosibirsk State University, 2018</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%D0%AD%D1%80%D0%BB%D0%B0%D0%B3%D0%BE%D0%BB%D1%8C%D1%81%D0%BA%D0%B0%D1%8F+%D1%82%D0%B5%D1%82%D1%80%D0%B0%D0%B4%D1%8C&rft.pub=The+Novosibirsk+State+University&rft.date=2018&rft_id=http%3A%2F%2Fuamt.conf.nstu.ru%2Ferl_note.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDowling1973" class="citation journal cs1">Dowling, T. A. (February 1973). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0095-8956%2873%2980007-3">"A class of geometric lattices based on finite groups"</a>. <i><a href="/wiki/Journal_of_Combinatorial_Theory" title="Journal of Combinatorial Theory">Journal of Combinatorial Theory</a></i>. Series B. <b>14</b> (1): 61–86. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0095-8956%2873%2980007-3">10.1016/S0095-8956(73)80007-3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory&rft.atitle=A+class+of+geometric+lattices+based+on+finite+groups&rft.volume=14&rft.issue=1&rft.pages=61-86&rft.date=1973-02&rft_id=info%3Adoi%2F10.1016%2FS0095-8956%2873%2980007-3&rft.aulast=Dowling&rft.aufirst=T.+A.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0095-8956%252873%252980007-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAschbacher1990" class="citation cs2"><a href="/wiki/Michael_Aschbacher" title="Michael Aschbacher">Aschbacher, Michael</a> (1990), "On Conjectures of Guralnick and Thompson", <i><a href="/wiki/Journal_of_Algebra" title="Journal of Algebra">Journal of Algebra</a></i>, <b>135</b> (2): 277–343, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0021-8693%2890%2990292-V">10.1016/0021-8693(90)90292-V</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Algebra&rft.atitle=On+Conjectures+of+Guralnick+and+Thompson&rft.volume=135&rft.issue=2&rft.pages=277-343&rft.date=1990&rft_id=info%3Adoi%2F10.1016%2F0021-8693%2890%2990292-V&rft.aulast=Aschbacher&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKungTraub1974" class="citation cs2"><a href="/wiki/H._T._Kung" title="H. T. Kung">Kung, H. T.</a>; <a href="/wiki/Joseph_F._Traub" title="Joseph F. Traub">Traub, Joseph Frederick</a> (1974), "Optimal order of one-point and multipoint iteration", <i><a href="/wiki/Journal_of_the_ACM" title="Journal of the ACM">Journal of the ACM</a></i>, <b>21</b> (4): 643–651, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F321850.321860">10.1145/321850.321860</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:74921">74921</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+ACM&rft.atitle=Optimal+order+of+one-point+and+multipoint+iteration&rft.volume=21&rft.issue=4&rft.pages=643-651&rft.date=1974&rft_id=info%3Adoi%2F10.1145%2F321850.321860&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A74921%23id-name%3DS2CID&rft.aulast=Kung&rft.aufirst=H.+T.&rft.au=Traub%2C+Joseph+Frederick&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmyth2008" class="citation cs2">Smyth, Chris (2008), "The Mahler measure of algebraic numbers: a survey", in McKee, James; Smyth, Chris (eds.), <i>Number Theory and Polynomials</i>, London Mathematical Society Lecture Note Series, vol. 352, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, pp. 322–349, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-71467-9" title="Special:BookSources/978-0-521-71467-9"><bdi>978-0-521-71467-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Mahler+measure+of+algebraic+numbers%3A+a+survey&rft.btitle=Number+Theory+and+Polynomials&rft.series=London+Mathematical+Society+Lecture+Note+Series&rft.pages=322-349&rft.pub=Cambridge+University+Press&rft.date=2008&rft.isbn=978-0-521-71467-9&rft.aulast=Smyth&rft.aufirst=Chris&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerenstein2001" class="citation cs2">Berenstein, Carlos A. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Pompeiu_problem">"Pompeiu problem"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Pompeiu+problem&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft.aulast=Berenstein&rft.aufirst=Carlos+A.&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DPompeiu_problem&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrightwellFelsnerTrotter1995" class="citation cs2">Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", <i><a href="/wiki/Order_(journal)" title="Order (journal)">Order</a></i>, <b>12</b> (4): 327–349, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.7841">10.1.1.38.7841</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01110378">10.1007/BF01110378</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1368815">1368815</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14793475">14793475</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Order&rft.atitle=Balancing+pairs+and+the+cross+product+conjecture&rft.volume=12&rft.issue=4&rft.pages=327-349&rft.date=1995&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.38.7841%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1368815%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14793475%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01110378&rft.aulast=Brightwell&rft.aufirst=Graham+R.&rft.au=Felsner%2C+Stefan&rft.au=Trotter%2C+William+T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2018" class="citation journal cs1"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.11575%2Fcdm.v13i2.62728">"Some remarks on the lonely runner conjecture"</a>. <i>Contributions to Discrete Mathematics</i>. <b>13</b> (2): 1–31. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1701.02048">1701.02048</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.11575%2Fcdm.v13i2.62728">10.11575/cdm.v13i2.62728</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Contributions+to+Discrete+Mathematics&rft.atitle=Some+remarks+on+the+lonely+runner+conjecture&rft.volume=13&rft.issue=2&rft.pages=1-31&rft.date=2018&rft_id=info%3Aarxiv%2F1701.02048&rft_id=info%3Adoi%2F10.11575%2Fcdm.v13i2.62728&rft.aulast=Tao&rft.aufirst=Terence&rft_id=https%3A%2F%2Fdoi.org%2F10.11575%252Fcdm.v13i2.62728&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGonzález-Jiménez,_EnriqueXarles,_Xavier2014" class="citation journal cs1">González-Jiménez, Enrique; Xarles, Xavier (2014). "On a conjecture of Rudin on squares in arithmetic progressions". <i>LMS Journal of Computation and Mathematics</i>. <b>17</b> (1): 58–76. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1301.5122">1301.5122</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2FS1461157013000259">10.1112/S1461157013000259</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11615385">11615385</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=LMS+Journal+of+Computation+and+Mathematics&rft.atitle=On+a+conjecture+of+Rudin+on+squares+in+arithmetic+progressions&rft.volume=17&rft.issue=1&rft.pages=58-76&rft.date=2014&rft_id=info%3Aarxiv%2F1301.5122&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11615385%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1112%2FS1461157013000259&rft.au=Gonz%C3%A1lez-Jim%C3%A9nez%2C+Enrique&rft.au=Xarles%2C+Xavier&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruhnSchaudt2015" class="citation cs2">Bruhn, Henning; Schaudt, Oliver (2015), <a rel="nofollow" class="external text" href="http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf">"The journey of the union-closed sets conjecture"</a> <span class="cs1-format">(PDF)</span>, <i>Graphs and Combinatorics</i>, <b>31</b> (6): 2043–2074, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1309.3297">1309.3297</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00373-014-1515-0">10.1007/s00373-014-1515-0</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3417215">3417215</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17531822">17531822</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170808104232/http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2017-08-08<span class="reference-accessdate">, retrieved <span class="nowrap">2017-07-18</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Graphs+and+Combinatorics&rft.atitle=The+journey+of+the+union-closed+sets+conjecture&rft.volume=31&rft.issue=6&rft.pages=2043-2074&rft.date=2015&rft_id=info%3Aarxiv%2F1309.3297&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3417215%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17531822%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00373-014-1515-0&rft.aulast=Bruhn&rft.aufirst=Henning&rft.au=Schaudt%2C+Oliver&rft_id=http%3A%2F%2Fwww.zaik.uni-koeln.de%2F~schaudt%2FUCSurvey.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurnaghan1938" class="citation cs2">Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", <i><a href="/wiki/American_Journal_of_Mathematics" title="American Journal of Mathematics">American Journal of Mathematics</a></i>, <b>60</b> (1): 44–65, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2371542">10.2307/2371542</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2371542">2371542</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1507301">1507301</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076971">1076971</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16577800">16577800</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Mathematics&rft.atitle=The+Analysis+of+the+Direct+Product+of+Irreducible+Representations+of+the+Symmetric+Groups&rft.volume=60&rft.issue=1&rft.pages=44-65&rft.date=1938&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1076971%23id-name%3DPMC&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2371542%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2371542&rft_id=info%3Apmid%2F16577800&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1507301%23id-name%3DMR&rft.aulast=Murnaghan&rft.aufirst=F.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150315021125/http://www.sfu.ca/~tyusun/ThesisDedekind.pdf">"Dedekind Numbers and Related Sequences"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.sfu.ca/~tyusun/ThesisDedekind.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2015-03-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-04-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Dedekind+Numbers+and+Related+Sequences&rft_id=http%3A%2F%2Fwww.sfu.ca%2F~tyusun%2FThesisDedekind.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiśkiewiczOgiharaToda2003" class="citation journal cs1">Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". <i>Theoretical Computer Science</i>. <b>304</b> (1): 129–156. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0304-3975%2803%2900080-X">10.1016/S0304-3975(03)00080-X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:33806100">33806100</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+Computer+Science&rft.atitle=The+complexity+of+counting+self-avoiding+walks+in+subgraphs+of+two-dimensional+grids+and+hypercubes&rft.volume=304&rft.issue=1&rft.pages=129-156&rft.date=2003-07-28&rft_id=info%3Adoi%2F10.1016%2FS0304-3975%2803%2900080-X&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A33806100%23id-name%3DS2CID&rft.aulast=Li%C5%9Bkiewicz&rft.aufirst=Maciej&rft.au=Ogihara%2C+Mitsunori&rft.au=Toda%2C+Seinosuke&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaloshinSorrentino2018" class="citation journal cs1"><a href="/wiki/Vadim_Kaloshin" title="Vadim Kaloshin">Kaloshin, Vadim</a>; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>188</b> (1): 315–380. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.09194">1612.09194</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2018.188.1.6">10.4007/annals.2018.188.1.6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119171182">119171182</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=On+the+local+Birkhoff+conjecture+for+convex+billiards&rft.volume=188&rft.issue=1&rft.pages=315-380&rft.date=2018&rft_id=info%3Aarxiv%2F1612.09194&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119171182%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2018.188.1.6&rft.aulast=Kaloshin&rft.aufirst=Vadim&rft.au=Sorrentino%2C+Alfonso&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSarnak2011" class="citation cs2"><a href="/wiki/Peter_Sarnak" title="Peter Sarnak">Sarnak, Peter</a> (2011), "Recent progress on the quantum unique ergodicity conjecture", <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>, <b>48</b> (2): 211–228, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-2011-01323-4">10.1090/S0273-0979-2011-01323-4</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2774090">2774090</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Recent+progress+on+the+quantum+unique+ergodicity+conjecture&rft.volume=48&rft.issue=2&rft.pages=211-228&rft.date=2011&rft_id=info%3Adoi%2F10.1090%2FS0273-0979-2011-01323-4&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2774090%23id-name%3DMR&rft.aulast=Sarnak&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Paul Halmos, Ergodic theory. Chelsea, New York, 1956.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKari2009" class="citation conference cs1"><a href="/wiki/Jarkko_Kari" title="Jarkko Kari">Kari, Jarkko</a> (2009). "Structure of reversible cellular automata". <i>Structure of Reversible Cellular Automata</i>. International Conference on Unconventional Computation. <a href="/wiki/Lecture_Notes_in_Computer_Science" title="Lecture Notes in Computer Science">Lecture Notes in Computer Science</a>. Vol. 5715. Springer. p. 6. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009LNCS.5715....6K">2009LNCS.5715....6K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-03745-0_5">10.1007/978-3-642-03745-0_5</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-03744-3" title="Special:BookSources/978-3-642-03744-3"><bdi>978-3-642-03744-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Structure+of+reversible+cellular+automata&rft.btitle=Structure+of+Reversible+Cellular+Automata&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=6&rft.pub=Springer&rft.date=2009&rft_id=info%3Adoi%2F10.1007%2F978-3-642-03745-0_5&rft_id=info%3Abibcode%2F2009LNCS.5715....6K&rft.isbn=978-3-642-03744-3&rft.aulast=Kari&rft.aufirst=Jarkko&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-openq-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-openq_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-openq_39-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-openq_39-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20171110030932/http://english.log-it-ex.com/2.html">"Open Q - Solving and rating of hard Sudoku"</a>. <i>english.log-it-ex.com</i>. Archived from <a rel="nofollow" class="external text" href="http://english.log-it-ex.com/2.html">the original</a> on 10 November 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=english.log-it-ex.com&rft.atitle=Open+Q+-+Solving+and+rating+of+hard+Sudoku&rft_id=http%3A%2F%2Fenglish.log-it-ex.com%2F2.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=FwJZa-helig">"Higher-Dimensional Tic-Tac-Toe"</a>. <i><a href="/wiki/PBS_Digital_Studios" title="PBS Digital Studios">PBS Infinite Series</a></i>. <a href="/wiki/YouTube" title="YouTube">YouTube</a>. 2017-09-21. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171011000653/https://www.youtube.com/watch?v=FwJZa-helig">Archived</a> from the original on 2017-10-11<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-07-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PBS+Infinite+Series&rft.atitle=Higher-Dimensional+Tic-Tac-Toe&rft.date=2017-09-21&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFwJZa-helig&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarletPeternellSchneider1990" class="citation journal cs1">Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". <i><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></i>. <b>286</b> (1–3): 13–25. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01453563">10.1007/BF01453563</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122151259">122151259</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematische+Annalen&rft.atitle=On+two+conjectures+of+Hartshorne%27s&rft.volume=286&rft.issue=1%E2%80%933&rft.pages=13-25&rft.date=1990&rft_id=info%3Adoi%2F10.1007%2FBF01453563&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122151259%23id-name%3DS2CID&rft.aulast=Barlet&rft.aufirst=Daniel&rft.au=Peternell%2C+Thomas&rft.au=Schneider%2C+Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaulikNekrasovOkounovPandharipande2004" class="citation cs2">Maulik, Davesh; <a href="/wiki/Nikita_Nekrasov" title="Nikita Nekrasov">Nekrasov, Nikita</a>; <a href="/w/index.php?title=Andrei_Okounov&action=edit&redlink=1" class="new" title="Andrei Okounov (page does not exist)">Okounov, Andrei</a>; <a href="/wiki/Rahul_Pandharipande" title="Rahul Pandharipande">Pandharipande, Rahul</a> (2004-06-05), <i>Gromov–Witten theory and Donaldson–Thomas theory, I</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0312059">math/0312059</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003math.....12059M">2003math.....12059M</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gromov%E2%80%93Witten+theory+and+Donaldson%E2%80%93Thomas+theory%2C+I&rft.date=2004-06-05&rft_id=info%3Aarxiv%2Fmath%2F0312059&rft_id=info%3Abibcode%2F2003math.....12059M&rft.aulast=Maulik&rft.aufirst=Davesh&rft.au=Nekrasov%2C+Nikita&rft.au=Okounov%2C+Andrei&rft.au=Pandharipande%2C+Rahul&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZariski1971" class="citation journal cs1"><a href="/wiki/Oscar_Zariski" title="Oscar Zariski">Zariski, Oscar</a> (1971). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9904-1971-12729-5">"Some open questions in the theory of singularities"</a>. <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>. <b>77</b> (4): 481–491. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9904-1971-12729-5">10.1090/S0002-9904-1971-12729-5</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0277533">0277533</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Some+open+questions+in+the+theory+of+singularities&rft.volume=77&rft.issue=4&rft.pages=481-491&rft.date=1971&rft_id=info%3Adoi%2F10.1090%2FS0002-9904-1971-12729-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0277533%23id-name%3DMR&rft.aulast=Zariski&rft.aufirst=Oscar&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9904-1971-12729-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeregDumitrescuJiang2010" class="citation cs2">Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010), "On covering problems of Rado", <i>Algorithmica</i>, <b>57</b> (3): 538–561, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00453-009-9298-z">10.1007/s00453-009-9298-z</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2609053">2609053</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6511998">6511998</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Algorithmica&rft.atitle=On+covering+problems+of+Rado&rft.volume=57&rft.issue=3&rft.pages=538-561&rft.date=2010&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2609053%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6511998%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00453-009-9298-z&rft.aulast=Bereg&rft.aufirst=Sergey&rft.au=Dumitrescu%2C+Adrian&rft.au=Jiang%2C+Minghui&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMelissen1993" class="citation cs2">Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", <i>American Mathematical Monthly</i>, <b>100</b> (10): 916–925, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2324212">10.2307/2324212</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2324212">2324212</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1252928">1252928</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Densest+packings+of+congruent+circles+in+an+equilateral+triangle&rft.volume=100&rft.issue=10&rft.pages=916-925&rft.date=1993&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1252928%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2324212%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2324212&rft.aulast=Melissen&rft.aufirst=Hans&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConwayNeil_J.A._Sloane1999" class="citation cs2"><a href="/wiki/John_Horton_Conway" title="John Horton Conway">Conway, John H.</a>; <a href="/wiki/Neil_Sloane" title="Neil Sloane">Neil J.A. Sloane</a> (1999), <i>Sphere Packings, Lattices and Groups</i> (3rd ed.), New York: Springer-Verlag, pp. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=upYwZ6cQumoC&pg=PA21">21–22</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-98585-5" title="Special:BookSources/978-0-387-98585-5"><bdi>978-0-387-98585-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sphere+Packings%2C+Lattices+and+Groups&rft.place=New+York&rft.pages=21-22&rft.edition=3rd&rft.pub=Springer-Verlag&rft.date=1999&rft.isbn=978-0-387-98585-5&rft.aulast=Conway&rft.aufirst=John+H.&rft.au=Neil+J.A.+Sloane&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHales2017" class="citation cs2"><a href="/wiki/Thomas_Callister_Hales" title="Thomas Callister Hales">Hales, Thomas</a> (2017), <i>The Reinhardt conjecture as an optimal control problem</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.01352">1703.01352</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Reinhardt+conjecture+as+an+optimal+control+problem&rft.date=2017&rft_id=info%3Aarxiv%2F1703.01352&rft.aulast=Hales&rft.aufirst=Thomas&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrassMoserPach2005" class="citation cs2">Brass, Peter; Moser, William; <a href="/wiki/J%C3%A1nos_Pach" title="János Pach">Pach, János</a> (2005), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WehCspo0Qa0C&pg=PA45"><i>Research Problems in Discrete Geometry</i></a>, New York: Springer, p. 45, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0387-23815-9" title="Special:BookSources/978-0387-23815-9"><bdi>978-0387-23815-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2163782">2163782</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Research+Problems+in+Discrete+Geometry&rft.place=New+York&rft.pages=45&rft.pub=Springer&rft.date=2005&rft.isbn=978-0387-23815-9&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2163782%23id-name%3DMR&rft.aulast=Brass&rft.aufirst=Peter&rft.au=Moser%2C+William&rft.au=Pach%2C+J%C3%A1nos&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWehCspo0Qa0C%26pg%3DPA45&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardner1995" class="citation cs2">Gardner, Martin (1995), <i>New Mathematical Diversions (Revised Edition)</i>, Washington: Mathematical Association of America, p. 251</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=New+Mathematical+Diversions+%28Revised+Edition%29&rft.place=Washington&rft.pages=251&rft.pub=Mathematical+Association+of+America&rft.date=1995&rft.aulast=Gardner&rft.aufirst=Martin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMusinTarasov2015" class="citation journal cs1">Musin, Oleg R.; Tarasov, Alexey S. (2015). "The Tammes Problem for N = 14". <i>Experimental Mathematics</i>. <b>24</b> (4): 460–468. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10586458.2015.1022842">10.1080/10586458.2015.1022842</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:39429109">39429109</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Experimental+Mathematics&rft.atitle=The+Tammes+Problem+for+N+%3D+14&rft.volume=24&rft.issue=4&rft.pages=460-468&rft.date=2015&rft_id=info%3Adoi%2F10.1080%2F10586458.2015.1022842&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A39429109%23id-name%3DS2CID&rft.aulast=Musin&rft.aufirst=Oleg+R.&rft.au=Tarasov%2C+Alexey+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarros1997" class="citation cs2">Barros, Manuel (1997), "General Helices and a Theorem of Lancret", <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>, <b>125</b> (5): 1503–1509, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-97-03692-7">10.1090/S0002-9939-97-03692-7</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2162098">2162098</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=General+Helices+and+a+Theorem+of+Lancret&rft.volume=125&rft.issue=5&rft.pages=1503-1509&rft.date=1997&rft_id=info%3Adoi%2F10.1090%2FS0002-9939-97-03692-7&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2162098%23id-name%3DJSTOR&rft.aulast=Barros&rft.aufirst=Manuel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz2007" class="citation cs2">Katz, Mikhail G. (2007), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=R5_zBwAAQBAJ&pg=PA57"><i>Systolic geometry and topology</i></a>, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, p. 57, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fsurv%2F137">10.1090/surv/137</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4177-8" title="Special:BookSources/978-0-8218-4177-8"><bdi>978-0-8218-4177-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2292367">2292367</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Systolic+geometry+and+topology&rft.series=Mathematical+Surveys+and+Monographs&rft.pages=57&rft.pub=American+Mathematical+Society%2C+Providence%2C+RI&rft.date=2007&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2292367%23id-name%3DMR&rft_id=info%3Adoi%2F10.1090%2Fsurv%2F137&rft.isbn=978-0-8218-4177-8&rft.aulast=Katz&rft.aufirst=Mikhail+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DR5_zBwAAQBAJ%26pg%3DPA57&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosenberg1997" class="citation cs2">Rosenberg, Steven (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gzJ6Vn0y7XQC&pg=PA62"><i>The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds</i></a>, London Mathematical Society Student Texts, vol. 31, Cambridge: Cambridge University Press, pp. 62–63, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511623783">10.1017/CBO9780511623783</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-46300-3" title="Special:BookSources/978-0-521-46300-3"><bdi>978-0-521-46300-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1462892">1462892</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Laplacian+on+a+Riemannian+Manifold%3A+An+introduction+to+analysis+on+manifolds&rft.place=Cambridge&rft.series=London+Mathematical+Society+Student+Texts&rft.pages=62-63&rft.pub=Cambridge+University+Press&rft.date=1997&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1462892%23id-name%3DMR&rft_id=info%3Adoi%2F10.1017%2FCBO9780511623783&rft.isbn=978-0-521-46300-3&rft.aulast=Rosenberg&rft.aufirst=Steven&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgzJ6Vn0y7XQC%26pg%3DPA62&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhoshGoswami2013" class="citation cs2">Ghosh, Subir Kumar; Goswami, Partha P. (2013), "Unsolved problems in visibility graphs of points, segments, and polygons", <i>ACM Computing Surveys</i>, <b>46</b> (2): 22:1–22:29, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1012.5187">1012.5187</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2543581.2543589">10.1145/2543581.2543589</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8747335">8747335</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACM+Computing+Surveys&rft.atitle=Unsolved+problems+in+visibility+graphs+of+points%2C+segments%2C+and+polygons&rft.volume=46&rft.issue=2&rft.pages=22%3A1-22%3A29&rft.date=2013&rft_id=info%3Aarxiv%2F1012.5187&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8747335%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1145%2F2543581.2543589&rft.aulast=Ghosh&rft.aufirst=Subir+Kumar&rft.au=Goswami%2C+Partha+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoltjanskyGohberg1985" class="citation cs2">Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", <i>Results and Problems in Combinatorial Geometry</i>, Cambridge University Press, pp. 44–46</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=11.+Hadwiger%27s+Conjecture&rft.btitle=Results+and+Problems+in+Combinatorial+Geometry&rft.pages=44-46&rft.pub=Cambridge+University+Press&rft.date=1985&rft.aulast=Boltjansky&rft.aufirst=V.&rft.au=Gohberg%2C+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorrisSoltan2000" class="citation cs2">Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", <i>Bull. Amer. Math. Soc.</i>, <b>37</b> (4): 437–458, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-00-00877-6">10.1090/S0273-0979-00-00877-6</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1779413">1779413</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bull.+Amer.+Math.+Soc.&rft.atitle=The+Erd%C5%91s-Szekeres+problem+on+points+in+convex+position%E2%80%94a+survey&rft.volume=37&rft.issue=4&rft.pages=437-458&rft.date=2000&rft_id=info%3Adoi%2F10.1090%2FS0273-0979-00-00877-6&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1779413%23id-name%3DMR&rft.aulast=Morris&rft.aufirst=Walter+D.&rft.au=Soltan%2C+Valeriu&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuk2016" class="citation cs2">Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", <i>J. Amer. Math. Soc.</i>, <b>30</b> (4): 1047–1053, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.08657">1604.08657</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fjams%2F869">10.1090/jams/869</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15732134">15732134</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Amer.+Math.+Soc.&rft.atitle=On+the+Erd%C5%91s%E2%80%93Szekeres+convex+polygon+problem&rft.volume=30&rft.issue=4&rft.pages=1047-1053&rft.date=2016&rft_id=info%3Aarxiv%2F1604.08657&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15732134%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1090%2Fjams%2F869&rft.aulast=Suk&rft.aufirst=Andrew&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-kalai-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-kalai_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKalai1989" class="citation cs2"><a href="/wiki/Gil_Kalai" title="Gil Kalai">Kalai, Gil</a> (1989), "The number of faces of centrally-symmetric polytopes", <i><a href="/wiki/Graphs_and_Combinatorics" title="Graphs and Combinatorics">Graphs and Combinatorics</a></i>, <b>5</b> (1): 389–391, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01788696">10.1007/BF01788696</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1554357">1554357</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8917264">8917264</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Graphs+and+Combinatorics&rft.atitle=The+number+of+faces+of+centrally-symmetric+polytopes&rft.volume=5&rft.issue=1&rft.pages=389-391&rft.date=1989&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1554357%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8917264%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01788696&rft.aulast=Kalai&rft.aufirst=Gil&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorenoPrieto-Martínez2021" class="citation journal cs1 cs1-prop-foreign-lang-source">Moreno, José Pedro; Prieto-Martínez, Luis Felipe (2021). "El problema de los triángulos de Kobon" [The Kobon triangles problem]. <i>La Gaceta de la Real Sociedad Matemática Española</i> (in Spanish). <b>24</b> (1): 111–130. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10486%2F705416">10486/705416</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=4225268">4225268</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=La+Gaceta+de+la+Real+Sociedad+Matem%C3%A1tica+Espa%C3%B1ola&rft.atitle=El+problema+de+los+tri%C3%A1ngulos+de+Kobon&rft.volume=24&rft.issue=1&rft.pages=111-130&rft.date=2021&rft_id=info%3Ahdl%2F10486%2F705416&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D4225268%23id-name%3DMR&rft.aulast=Moreno&rft.aufirst=Jos%C3%A9+Pedro&rft.au=Prieto-Mart%C3%ADnez%2C+Luis+Felipe&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy1983" class="citation cs2"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (1983), "An olla-podrida of open problems, often oddly posed", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>90</b> (3): 196–200, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2975549">10.2307/2975549</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2975549">2975549</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1540158">1540158</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=An+olla-podrida+of+open+problems%2C+often+oddly+posed&rft.volume=90&rft.issue=3&rft.pages=196-200&rft.date=1983&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1540158%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2975549%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2975549&rft.aulast=Guy&rft.aufirst=Richard+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatoušek2002" class="citation cs2"><a href="/wiki/Ji%C5%99%C3%AD_Matou%C5%A1ek_(mathematician)" title="Jiří Matoušek (mathematician)">Matoušek, Jiří</a> (2002), <i>Lectures on discrete geometry</i>, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, p. 206, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4613-0039-7">10.1007/978-1-4613-0039-7</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95373-1" title="Special:BookSources/978-0-387-95373-1"><bdi>978-0-387-95373-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1899299">1899299</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+discrete+geometry&rft.series=Graduate+Texts+in+Mathematics&rft.pages=206&rft.pub=Springer-Verlag%2C+New+York&rft.date=2002&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1899299%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4613-0039-7&rft.isbn=978-0-387-95373-1&rft.aulast=Matou%C5%A1ek&rft.aufirst=Ji%C5%99%C3%AD&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrassMoserPach2005" class="citation cs2">Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", <i>Research problems in discrete geometry</i>, Springer, New York, pp. 183–190, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-23815-9" title="Special:BookSources/978-0-387-23815-9"><bdi>978-0-387-23815-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2163782">2163782</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=5.1+The+Maximum+Number+of+Unit+Distances+in+the+Plane&rft.btitle=Research+problems+in+discrete+geometry&rft.pages=183-190&rft.pub=Springer%2C+New+York&rft.date=2005&rft.isbn=978-0-387-23815-9&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2163782%23id-name%3DMR&rft.aulast=Brass&rft.aufirst=Peter&rft.au=Moser%2C+William&rft.au=Pach%2C+J%C3%A1nos&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDey1998" class="citation cs2"><a href="/wiki/Tamal_Dey" title="Tamal Dey">Dey, Tamal K.</a> (1998), "Improved bounds for planar <i>k</i>-sets and related problems", <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete & Computational Geometry">Discrete & Computational Geometry</a></i>, <b>19</b> (3): 373–382, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FPL00009354">10.1007/PL00009354</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1608878">1608878</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+%26+Computational+Geometry&rft.atitle=Improved+bounds+for+planar+k-sets+and+related+problems&rft.volume=19&rft.issue=3&rft.pages=373-382&rft.date=1998&rft_id=info%3Adoi%2F10.1007%2FPL00009354&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1608878%23id-name%3DMR&rft.aulast=Dey&rft.aufirst=Tamal+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTóth2001" class="citation cs2">Tóth, Gábor (2001), "Point sets with many <i>k</i>-sets", <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete & Computational Geometry">Discrete & Computational Geometry</a></i>, <b>26</b> (2): 187–194, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs004540010022">10.1007/s004540010022</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1843435">1843435</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+%26+Computational+Geometry&rft.atitle=Point+sets+with+many+k-sets&rft.volume=26&rft.issue=2&rft.pages=187-194&rft.date=2001&rft_id=info%3Adoi%2F10.1007%2Fs004540010022&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1843435%23id-name%3DMR&rft.aulast=T%C3%B3th&rft.aufirst=G%C3%A1bor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAronovDujmovićMorinOoms2019" class="citation cs2"><a href="/wiki/Boris_Aronov" title="Boris Aronov">Aronov, Boris</a>; <a href="/wiki/Vida_Dujmovi%C4%87" title="Vida Dujmović">Dujmović, Vida</a>; <a href="/wiki/Pat_Morin" title="Pat Morin">Morin, Pat</a>; Ooms, Aurélien; Schultz Xavier da Silveira, Luís Fernando (2019), <a rel="nofollow" class="external text" href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8">"More Turán-type theorems for triangles in convex point sets"</a>, <i><a href="/wiki/Electronic_Journal_of_Combinatorics" title="Electronic Journal of Combinatorics">Electronic Journal of Combinatorics</a></i>, <b>26</b> (1): P1.8, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1706.10193">1706.10193</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017arXiv170610193A">2017arXiv170610193A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.37236%2F7224">10.37236/7224</a></span>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190218082023/https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8">archived</a> from the original on 2019-02-18<span class="reference-accessdate">, retrieved <span class="nowrap">2019-02-18</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronic+Journal+of+Combinatorics&rft.atitle=More+Tur%C3%A1n-type+theorems+for+triangles+in+convex+point+sets&rft.volume=26&rft.issue=1&rft.pages=P1.8&rft.date=2019&rft_id=info%3Aarxiv%2F1706.10193&rft_id=info%3Adoi%2F10.37236%2F7224&rft_id=info%3Abibcode%2F2017arXiv170610193A&rft.aulast=Aronov&rft.aufirst=Boris&rft.au=Dujmovi%C4%87%2C+Vida&rft.au=Morin%2C+Pat&rft.au=Ooms%2C+Aur%C3%A9lien&rft.au=Schultz+Xavier+da+Silveira%2C+Lu%C3%ADs+Fernando&rft_id=https%3A%2F%2Fwww.combinatorics.org%2Fojs%2Findex.php%2Feljc%2Farticle%2Fview%2Fv26i1p8&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyah2001" class="citation cs2"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael</a> (2001), "Configurations of points", <i>Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences</i>, <b>359</b> (1784): 1375–1387, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001RSPTA.359.1375A">2001RSPTA.359.1375A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.2001.0840">10.1098/rsta.2001.0840</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1364-503X">1364-503X</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1853626">1853626</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55833332">55833332</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+Physical+and+Engineering+Sciences&rft.atitle=Configurations+of+points&rft.volume=359&rft.issue=1784&rft.pages=1375-1387&rft.date=2001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55833332%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2001RSPTA.359.1375A&rft.issn=1364-503X&rft_id=info%3Adoi%2F10.1098%2Frsta.2001.0840&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1853626%23id-name%3DMR&rft.aulast=Atiyah&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFinchWetzel2004" class="citation cs2">Finch, S. R.; Wetzel, J. E. (2004), "Lost in a forest", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>11</b> (8): 645–654, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F4145038">10.2307/4145038</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4145038">4145038</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2091541">2091541</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Lost+in+a+forest&rft.volume=11&rft.issue=8&rft.pages=645-654&rft.date=2004&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2091541%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4145038%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F4145038&rft.aulast=Finch&rft.aufirst=S.+R.&rft.au=Wetzel%2C+J.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowards2013" class="citation cs2">Howards, Hugh Nelson (2013), "Forming the Borromean rings out of arbitrary polygonal unknots", <i>Journal of Knot Theory and Its Ramifications</i>, <b>22</b> (14): 1350083, 15, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.3370">1406.3370</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218216513500831">10.1142/S0218216513500831</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3190121">3190121</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119674622">119674622</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Knot+Theory+and+Its+Ramifications&rft.atitle=Forming+the+Borromean+rings+out+of+arbitrary+polygonal+unknots&rft.volume=22&rft.issue=14&rft.pages=1350083%2C+15&rft.date=2013&rft_id=info%3Aarxiv%2F1406.3370&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3190121%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119674622%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0218216513500831&rft.aulast=Howards&rft.aufirst=Hugh+Nelson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSolomonWeiss2016" class="citation cs2">Solomon, Yaar; Weiss, Barak (2016), "Dense forests and Danzer sets", <i>Annales Scientifiques de l'École Normale Supérieure</i>, <b>49</b> (5): 1053–1074, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.3807">1406.3807</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fasens.2303">10.24033/asens.2303</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3581810">3581810</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:672315">672315</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annales+Scientifiques+de+l%27%C3%89cole+Normale+Sup%C3%A9rieure&rft.atitle=Dense+forests+and+Danzer+sets&rft.volume=49&rft.issue=5&rft.pages=1053-1074&rft.date=2016&rft_id=info%3Aarxiv%2F1406.3807&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3581810%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A672315%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.24033%2Fasens.2303&rft.aulast=Solomon&rft.aufirst=Yaar&rft.au=Weiss%2C+Barak&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConway" class="citation cs2"><a href="/wiki/John_Horton_Conway" title="John Horton Conway">Conway, John H.</a>, <a rel="nofollow" class="external text" href="https://oeis.org/A248380/a248380.pdf"><i>Five $1,000 Problems (Update 2017)</i></a> <span class="cs1-format">(PDF)</span>, <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2019-02-13<span class="reference-accessdate">, retrieved <span class="nowrap">2019-02-12</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Five+%241%2C000+Problems+%28Update+2017%29&rft.pub=On-Line+Encyclopedia+of+Integer+Sequences&rft.aulast=Conway&rft.aufirst=John+H.&rft_id=https%3A%2F%2Foeis.org%2FA248380%2Fa248380.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrandtsKorotovKřížekŠolc2009" class="citation cs2">Brandts, Jan; Korotov, Sergey; Křížek, Michal; Šolc, Jakub (2009), <a rel="nofollow" class="external text" href="https://pure.uva.nl/ws/files/836396/73198_315330.pdf">"On nonobtuse simplicial partitions"</a> <span class="cs1-format">(PDF)</span>, <i>SIAM Review</i>, <b>51</b> (2): 317–335, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009SIAMR..51..317B">2009SIAMR..51..317B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F060669073">10.1137/060669073</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2505583">2505583</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:216078793">216078793</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181104211116/https://pure.uva.nl/ws/files/836396/73198_315330.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2018-11-04<span class="reference-accessdate">, retrieved <span class="nowrap">2018-11-22</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Review&rft.atitle=On+nonobtuse+simplicial+partitions&rft.volume=51&rft.issue=2&rft.pages=317-335&rft.date=2009&rft_id=info%3Adoi%2F10.1137%2F060669073&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2505583%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A216078793%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009SIAMR..51..317B&rft.aulast=Brandts&rft.aufirst=Jan&rft.au=Korotov%2C+Sergey&rft.au=K%C5%99%C3%AD%C5%BEek%2C+Michal&rft.au=%C5%A0olc%2C+Jakub&rft_id=https%3A%2F%2Fpure.uva.nl%2Fws%2Ffiles%2F836396%2F73198_315330.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>. See in particular Conjecture 23, p. 327.</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArutyunyantsIosevich2004" class="citation cs2">Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in <a href="/wiki/J%C3%A1nos_Pach" title="János Pach">Pach, János</a> (ed.), <i>Towards a Theory of Geometric Graphs</i>, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, pp. 15–24, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fconm%2F342%2F06127">10.1090/conm/342/06127</a></span>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-3484-8" title="Special:BookSources/978-0-8218-3484-8"><bdi>978-0-8218-3484-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2065249">2065249</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Falconer+conjecture%2C+spherical+averages+and+discrete+analogs&rft.btitle=Towards+a+Theory+of+Geometric+Graphs&rft.series=Contemp.+Math.&rft.pages=15-24&rft.pub=Amer.+Math.+Soc.%2C+Providence%2C+RI&rft.date=2004&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2065249%23id-name%3DMR&rft_id=info%3Adoi%2F10.1090%2Fconm%2F342%2F06127&rft.isbn=978-0-8218-3484-8&rft.aulast=Arutyunyants&rft.aufirst=G.&rft.au=Iosevich%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-matschke-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-matschke_70-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatschke2014" class="citation cs2">Matschke, Benjamin (2014), "A survey on the square peg problem", <i><a href="/wiki/Notices_of_the_American_Mathematical_Society" title="Notices of the American Mathematical Society">Notices of the American Mathematical Society</a></i>, <b>61</b> (4): 346–352, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1100">10.1090/noti1100</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+American+Mathematical+Society&rft.atitle=A+survey+on+the+square+peg+problem&rft.volume=61&rft.issue=4&rft.pages=346-352&rft.date=2014&rft_id=info%3Adoi%2F10.1090%2Fnoti1100&rft.aulast=Matschke&rft.aufirst=Benjamin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzTao2002" class="citation cs2"><a href="/wiki/Nets_Katz" title="Nets Katz">Katz, Nets</a>; <a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2002), "Recent progress on the Kakeya conjecture", <i>Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000)</i>, Publicacions Matemàtiques, pp. 161–179, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.241.5335">10.1.1.241.5335</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5565%2FPUBLMAT_Esco02_07">10.5565/PUBLMAT_Esco02_07</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1964819">1964819</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:77088">77088</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Recent+progress+on+the+Kakeya+conjecture&rft.btitle=Proceedings+of+the+6th+International+Conference+on+Harmonic+Analysis+and+Partial+Differential+Equations+%28El+Escorial%2C+2000%29&rft.series=Publicacions+Matem%C3%A0tiques&rft.pages=161-179&rft.date=2002&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.241.5335%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1964819%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A77088%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.5565%2FPUBLMAT_Esco02_07&rft.aulast=Katz&rft.aufirst=Nets&rft.au=Tao%2C+Terence&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeaire1997" class="citation cs2"><a href="/wiki/Denis_Weaire" title="Denis Weaire">Weaire, Denis</a>, ed. (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=otokU4KQnXIC&pg=PA1"><i>The Kelvin Problem</i></a>, CRC Press, p. 1, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7484-0632-6" title="Special:BookSources/978-0-7484-0632-6"><bdi>978-0-7484-0632-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Kelvin+Problem&rft.pages=1&rft.pub=CRC+Press&rft.date=1997&rft.isbn=978-0-7484-0632-6&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DotokU4KQnXIC%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrassMoserPach2005" class="citation cs2">Brass, Peter; Moser, William; Pach, János (2005), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cT7TB20y3A8C&pg=PA457"><i>Research problems in discrete geometry</i></a>, New York: Springer, p. 457, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-29929-7" title="Special:BookSources/978-0-387-29929-7"><bdi>978-0-387-29929-7</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2163782">2163782</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Research+problems+in+discrete+geometry&rft.place=New+York&rft.pages=457&rft.pub=Springer&rft.date=2005&rft.isbn=978-0-387-29929-7&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2163782%23id-name%3DMR&rft.aulast=Brass&rft.aufirst=Peter&rft.au=Moser%2C+William&rft.au=Pach%2C+J%C3%A1nos&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcT7TB20y3A8C%26pg%3DPA457&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMahler1939" class="citation journal cs1">Mahler, Kurt (1939). "Ein Minimalproblem für konvexe Polygone". <i>Mathematica (Zutphen) B</i>: 118–127.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematica+%28Zutphen%29+B&rft.atitle=Ein+Minimalproblem+f%C3%BCr+konvexe+Polygone&rft.pages=118-127&rft.date=1939&rft.aulast=Mahler&rft.aufirst=Kurt&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNorwoodPooleLaidacker1992" class="citation cs2"><a href="/w/index.php?title=Rick_Norwood&action=edit&redlink=1" class="new" title="Rick Norwood (page does not exist)">Norwood, Rick</a>; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete & Computational Geometry">Discrete & Computational Geometry</a></i>, <b>7</b> (2): 153–162, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02187832">10.1007/BF02187832</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1139077">1139077</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+%26+Computational+Geometry&rft.atitle=The+worm+problem+of+Leo+Moser&rft.volume=7&rft.issue=2&rft.pages=153-162&rft.date=1992&rft_id=info%3Adoi%2F10.1007%2FBF02187832&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1139077%23id-name%3DMR&rft.aulast=Norwood&rft.aufirst=Rick&rft.au=Poole%2C+George&rft.au=Laidacker%2C+Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagner1976" class="citation cs2">Wagner, Neal R. (1976), <a rel="nofollow" class="external text" href="http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf">"The Sofa Problem"</a> <span class="cs1-format">(PDF)</span>, <i>The American Mathematical Monthly</i>, <b>83</b> (3): 188–189, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2977022">10.2307/2977022</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2977022">2977022</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150420160001/http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2015-04-20<span class="reference-accessdate">, retrieved <span class="nowrap">2014-05-14</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=The+Sofa+Problem&rft.volume=83&rft.issue=3&rft.pages=188-189&rft.date=1976&rft_id=info%3Adoi%2F10.2307%2F2977022&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2977022%23id-name%3DJSTOR&rft.aulast=Wagner&rft.aufirst=Neal+R.&rft_id=http%3A%2F%2Fwww.cs.utsa.edu%2F~wagner%2Fpubs%2Fcorner%2Fcorner_final.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-cyz-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-cyz_77-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChaiYuanZamfirescu2018" class="citation cs2">Chai, Ying; Yuan, Liping; Zamfirescu, Tudor (June–July 2018), "Rupert Property of Archimedean Solids", <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>, <b>125</b> (6): 497–504, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.2018.1449505">10.1080/00029890.2018.1449505</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125508192">125508192</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=Rupert+Property+of+Archimedean+Solids&rft.volume=125&rft.issue=6&rft.pages=497-504&rft.date=2018-06%2F2018-07&rft_id=info%3Adoi%2F10.1080%2F00029890.2018.1449505&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125508192%23id-name%3DS2CID&rft.aulast=Chai&rft.aufirst=Ying&rft.au=Yuan%2C+Liping&rft.au=Zamfirescu%2C+Tudor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-styu-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-styu_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteiningerYurkevich2021" class="citation cs2">Steininger, Jakob; Yurkevich, Sergey (December 27, 2021), <i>An algorithmic approach to Rupert's problem</i>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2112.13754">2112.13754</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+algorithmic+approach+to+Rupert%27s+problem&rft.date=2021-12-27&rft_id=info%3Aarxiv%2F2112.13754&rft.aulast=Steininger&rft.aufirst=Jakob&rft.au=Yurkevich%2C+Sergey&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDemaineO'Rourke2007" class="citation cs2"><a href="/wiki/Erik_Demaine" title="Erik Demaine">Demaine, Erik D.</a>; <a href="/wiki/Joseph_O%27Rourke_(professor)" title="Joseph O'Rourke (professor)">O'Rourke, Joseph</a> (2007), "Chapter 22. Edge Unfolding of Polyhedra", <a href="/wiki/Geometric_Folding_Algorithms" title="Geometric Folding Algorithms"><i>Geometric Folding Algorithms: Linkages, Origami, Polyhedra</i></a>, Cambridge University Press, pp. 306–338</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+22.+Edge+Unfolding+of+Polyhedra&rft.btitle=Geometric+Folding+Algorithms%3A+Linkages%2C+Origami%2C+Polyhedra&rft.pages=306-338&rft.pub=Cambridge+University+Press&rft.date=2007&rft.aulast=Demaine&rft.aufirst=Erik+D.&rft.au=O%27Rourke%2C+Joseph&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhomi2018" class="citation journal cs1">Ghomi, Mohammad (2018-01-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1609">"Dürer's Unfolding Problem for Convex Polyhedra"</a>. <i>Notices of the American Mathematical Society</i>. <b>65</b> (1): 25–27. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1609">10.1090/noti1609</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9920">0002-9920</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+American+Mathematical+Society&rft.atitle=D%C3%BCrer%27s+Unfolding+Problem+for+Convex+Polyhedra&rft.volume=65&rft.issue=1&rft.pages=25-27&rft.date=2018-01-01&rft_id=info%3Adoi%2F10.1090%2Fnoti1609&rft.issn=0002-9920&rft.aulast=Ghomi&rft.aufirst=Mohammad&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fnoti1609&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhyte1952" class="citation cs2">Whyte, L. L. (1952), "Unique arrangements of points on a sphere", <i>The American Mathematical Monthly</i>, <b>59</b> (9): 606–611, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2306764">10.2307/2306764</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2306764">2306764</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0050303">0050303</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=Unique+arrangements+of+points+on+a+sphere&rft.volume=59&rft.issue=9&rft.pages=606-611&rft.date=1952&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0050303%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2306764%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2306764&rft.aulast=Whyte&rft.aufirst=L.+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFACW2012" class="citation cs2">ACW (May 24, 2012), <a rel="nofollow" class="external text" href="http://www.openproblemgarden.org/op/convex_uniform_5_polytopes">"Convex uniform 5-polytopes"</a>, <i>Open Problem Garden</i>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161005164840/http://www.openproblemgarden.org/op/convex_uniform_5_polytopes">archived</a> from the original on October 5, 2016<span class="reference-accessdate">, retrieved <span class="nowrap">2016-10-04</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Open+Problem+Garden&rft.atitle=Convex+uniform+5-polytopes&rft.date=2012-05-24&rft.au=ACW&rft_id=http%3A%2F%2Fwww.openproblemgarden.org%2Fop%2Fconvex_uniform_5_polytopes&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPleanmani2019" class="citation cs2">Pleanmani, Nopparat (2019), "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph", <i>Discrete Mathematics, Algorithms and Applications</i>, <b>11</b> (6): 1950068, 7, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs179383091950068x">10.1142/s179383091950068x</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=4044549">4044549</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:204207428">204207428</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Mathematics%2C+Algorithms+and+Applications&rft.atitle=Graham%27s+pebbling+conjecture+holds+for+the+product+of+a+graph+and+a+sufficiently+large+complete+bipartite+graph&rft.volume=11&rft.issue=6&rft.pages=1950068%2C+7&rft.date=2019&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D4044549%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A204207428%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2Fs179383091950068x&rft.aulast=Pleanmani&rft.aufirst=Nopparat&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBairdBonato2012" class="citation cs2">Baird, William; Bonato, Anthony (2012), "Meyniel's conjecture on the cop number: a survey", <i>Journal of Combinatorics</i>, <b>3</b> (2): 225–238, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1308.3385">1308.3385</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FJOC.2012.v3.n2.a6">10.4310/JOC.2012.v3.n2.a6</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2980752">2980752</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18942362">18942362</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorics&rft.atitle=Meyniel%27s+conjecture+on+the+cop+number%3A+a+survey&rft.volume=3&rft.issue=2&rft.pages=225-238&rft.date=2012&rft_id=info%3Aarxiv%2F1308.3385&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2980752%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18942362%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4310%2FJOC.2012.v3.n2.a6&rft.aulast=Baird&rft.aufirst=William&rft.au=Bonato%2C+Anthony&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBousquetBartier2019" class="citation cs2">Bousquet, Nicolas; Bartier, Valentin (2019), "Linear Transformations Between Colorings in Chordal Graphs", in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.), <i>27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany</i>, LIPIcs, vol. 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:15, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4230%2FLIPIcs.ESA.2019.24">10.4230/LIPIcs.ESA.2019.24</a></span>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-95977-124-5" title="Special:BookSources/978-3-95977-124-5"><bdi>978-3-95977-124-5</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:195791634">195791634</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Linear+Transformations+Between+Colorings+in+Chordal+Graphs&rft.btitle=27th+Annual+European+Symposium+on+Algorithms%2C+ESA+2019%2C+September+9-11%2C+2019%2C+Munich%2FGarching%2C+Germany&rft.series=LIPIcs&rft.pages=24%3A1-24%3A15&rft.pub=Schloss+Dagstuhl+-+Leibniz-Zentrum+f%C3%BCr+Informatik&rft.date=2019&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A195791634%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4230%2FLIPIcs.ESA.2019.24&rft.isbn=978-3-95977-124-5&rft.aulast=Bousquet&rft.aufirst=Nicolas&rft.au=Bartier%2C+Valentin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGethner2018" class="citation cs2"><a href="/wiki/Ellen_Gethner" title="Ellen Gethner">Gethner, Ellen</a> (2018), "To the Moon and beyond", in <a href="/wiki/Ralucca_Gera" title="Ralucca Gera">Gera, Ralucca</a>; <a href="/wiki/Teresa_W._Haynes" title="Teresa W. Haynes">Haynes, Teresa W.</a>; Hedetniemi, Stephen T. (eds.), <i>Graph Theory: Favorite Conjectures and Open Problems, II</i>, Problem Books in Mathematics, Springer International Publishing, pp. 115–133, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-97686-0_11">10.1007/978-3-319-97686-0_11</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-97684-6" title="Special:BookSources/978-3-319-97684-6"><bdi>978-3-319-97684-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3930641">3930641</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=To+the+Moon+and+beyond&rft.btitle=Graph+Theory%3A+Favorite+Conjectures+and+Open+Problems%2C+II&rft.series=Problem+Books+in+Mathematics&rft.pages=115-133&rft.pub=Springer+International+Publishing&rft.date=2018&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3930641%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-319-97686-0_11&rft.isbn=978-3-319-97684-6&rft.aulast=Gethner&rft.aufirst=Ellen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChungGraham1998" class="citation cs2"><a href="/wiki/Fan_Chung" title="Fan Chung">Chung, Fan</a>; <a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ron</a> (1998), <i>Erdős on Graphs: His Legacy of Unsolved Problems</i>, A K Peters, pp. 97–99</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Erd%C5%91s+on+Graphs%3A+His+Legacy+of+Unsolved+Problems&rft.pages=97-99&rft.pub=A+K+Peters&rft.date=1998&rft.aulast=Chung&rft.aufirst=Fan&rft.au=Graham%2C+Ron&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChudnovskySeymour2014" class="citation cs2"><a href="/wiki/Maria_Chudnovsky" title="Maria Chudnovsky">Chudnovsky, Maria</a>; <a href="/wiki/Paul_Seymour_(mathematician)" title="Paul Seymour (mathematician)">Seymour, Paul</a> (2014), "Extending the Gyárfás-Sumner conjecture", <i><a href="/wiki/Journal_of_Combinatorial_Theory" title="Journal of Combinatorial Theory">Journal of Combinatorial Theory</a></i>, Series B, <b>105</b>: 11–16, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2013.11.002">10.1016/j.jctb.2013.11.002</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3171779">3171779</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory&rft.atitle=Extending+the+Gy%C3%A1rf%C3%A1s-Sumner+conjecture&rft.volume=105&rft.pages=11-16&rft.date=2014&rft_id=info%3Adoi%2F10.1016%2Fj.jctb.2013.11.002&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3171779%23id-name%3DMR&rft.aulast=Chudnovsky&rft.aufirst=Maria&rft.au=Seymour%2C+Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFToft1996" class="citation cs2">Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", <i>Congressus Numerantium</i>, <b>115</b>: 249–283, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1411244">1411244</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Congressus+Numerantium&rft.atitle=A+survey+of+Hadwiger%27s+conjecture&rft.volume=115&rft.pages=249-283&rft.date=1996&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1411244%23id-name%3DMR&rft.aulast=Toft&rft.aufirst=Bjarne&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCroftFalconerGuy1991" class="citation cs2">Croft, Hallard T.; Falconer, Kenneth J.; <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (1991), <i>Unsolved Problems in Geometry</i>, Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+in+Geometry&rft.pub=Springer-Verlag&rft.date=1991&rft.aulast=Croft&rft.aufirst=Hallard+T.&rft.au=Falconer%2C+Kenneth+J.&rft.au=Guy%2C+Richard+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>, Problem G10.</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHägglundSteffen2014" class="citation cs2">Hägglund, Jonas; Steffen, Eckhard (2014), <a rel="nofollow" class="external text" href="http://amc-journal.eu/index.php/amc/article/viewFile/288/247">"Petersen-colorings and some families of snarks"</a>, <i>Ars Mathematica Contemporanea</i>, <b>7</b> (1): 161–173, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.26493%2F1855-3974.288.11a">10.26493/1855-3974.288.11a</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3047618">3047618</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161003070647/http://amc-journal.eu/index.php/amc/article/viewFile/288/247">archived</a> from the original on 2016-10-03<span class="reference-accessdate">, retrieved <span class="nowrap">2016-09-30</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ars+Mathematica+Contemporanea&rft.atitle=Petersen-colorings+and+some+families+of+snarks&rft.volume=7&rft.issue=1&rft.pages=161-173&rft.date=2014&rft_id=info%3Adoi%2F10.26493%2F1855-3974.288.11a&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3047618%23id-name%3DMR&rft.aulast=H%C3%A4gglund&rft.aufirst=Jonas&rft.au=Steffen%2C+Eckhard&rft_id=http%3A%2F%2Famc-journal.eu%2Findex.php%2Famc%2Farticle%2FviewFile%2F288%2F247&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJensenToft1995" class="citation cs2">Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", <i>Graph Coloring Problems</i>, New York: Wiley-Interscience, pp. 201–202, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-02865-9" title="Special:BookSources/978-0-471-02865-9"><bdi>978-0-471-02865-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=12.20+List-Edge-Chromatic+Numbers&rft.btitle=Graph+Coloring+Problems&rft.place=New+York&rft.pages=201-202&rft.pub=Wiley-Interscience&rft.date=1995&rft.isbn=978-0-471-02865-9&rft.aulast=Jensen&rft.aufirst=Tommy+R.&rft.au=Toft%2C+Bjarne&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMolloyReed1998" class="citation cs2"><a href="/wiki/Bruce_Reed_(mathematician)" title="Bruce Reed (mathematician)">Molloy, Michael</a>; Reed, Bruce (1998), "A bound on the total chromatic number", <i><a href="/wiki/Combinatorica" title="Combinatorica">Combinatorica</a></i>, <b>18</b> (2): 241–280, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6514">10.1.1.24.6514</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FPL00009820">10.1007/PL00009820</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1656544">1656544</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9600550">9600550</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Combinatorica&rft.atitle=A+bound+on+the+total+chromatic+number&rft.volume=18&rft.issue=2&rft.pages=241-280&rft.date=1998&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.24.6514%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1656544%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9600550%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FPL00009820&rft.aulast=Molloy&rft.aufirst=Michael&rft.au=Reed%2C+Bruce&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarátTóth2010" class="citation cs2">Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", <i>Electronic Journal of Combinatorics</i>, <b>17</b> (1): R73, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.0413">0909.0413</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0909.0413B">2009arXiv0909.0413B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.37236%2F345">10.37236/345</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronic+Journal+of+Combinatorics&rft.atitle=Towards+the+Albertson+Conjecture&rft.volume=17&rft.issue=1&rft.pages=R73&rft.date=2010&rft_id=info%3Aarxiv%2F0909.0413&rft_id=info%3Adoi%2F10.37236%2F345&rft_id=info%3Abibcode%2F2009arXiv0909.0413B&rft.aulast=Bar%C3%A1t&rft.aufirst=J%C3%A1nos&rft.au=T%C3%B3th%2C+G%C3%A9za&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFulekPach2011" class="citation cs2">Fulek, Radoslav; <a href="/wiki/J%C3%A1nos_Pach" title="János Pach">Pach, János</a> (2011), "A computational approach to Conway's thrackle conjecture", <i><a href="/wiki/Computational_Geometry_(journal)" title="Computational Geometry (journal)">Computational Geometry</a></i>, <b>44</b> (6–7): 345–355, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1002.3904">1002.3904</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.comgeo.2011.02.001">10.1016/j.comgeo.2011.02.001</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2785903">2785903</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Computational+Geometry&rft.atitle=A+computational+approach+to+Conway%27s+thrackle+conjecture&rft.volume=44&rft.issue=6%E2%80%937&rft.pages=345-355&rft.date=2011&rft_id=info%3Aarxiv%2F1002.3904&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2785903%23id-name%3DMR&rft_id=info%3Adoi%2F10.1016%2Fj.comgeo.2011.02.001&rft.aulast=Fulek&rft.aufirst=Radoslav&rft.au=Pach%2C+J%C3%A1nos&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuptaNewmanRabinovichSinclair2004" class="citation cs2">Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; <a href="/wiki/Alistair_Sinclair" title="Alistair Sinclair">Sinclair, Alistair</a> (2004), "Cuts, trees and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/361ddd720474aa41cb05453e03424fb7999d3b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.024ex; height:2.509ex;" alt="{\displaystyle \ell _{1}}"></span>-embeddings of graphs", <i><a href="/wiki/Combinatorica" title="Combinatorica">Combinatorica</a></i>, <b>24</b> (2): 233–269, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.698.8978">10.1.1.698.8978</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00493-004-0015-x">10.1007/s00493-004-0015-x</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2071334">2071334</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46133408">46133408</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Combinatorica&rft.atitle=Cuts%2C+trees+and+MATH+RENDER+ERROR-embeddings+of+graphs&rft.volume=24&rft.issue=2&rft.pages=233-269&rft.date=2004&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.698.8978%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2071334%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46133408%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00493-004-0015-x&rft.aulast=Gupta&rft.aufirst=Anupam&rft.au=Newman%2C+Ilan&rft.au=Rabinovich%2C+Yuri&rft.au=Sinclair%2C+Alistair&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartsfieldRingel2013" class="citation cs2">Hartsfield, Nora; <a href="/wiki/Gerhard_Ringel" title="Gerhard Ringel">Ringel, Gerhard</a> (2013), <a href="/wiki/Pearls_in_Graph_Theory" title="Pearls in Graph Theory"><i>Pearls in Graph Theory: A Comprehensive Introduction</i></a>, Dover Books on Mathematics, Courier Dover Publications, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VMjDAgAAQBAJ&pg=PA247">p. 247</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-31552-2" title="Special:BookSources/978-0-486-31552-2"><bdi>978-0-486-31552-2</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2047103">2047103</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Pearls+in+Graph+Theory%3A+A+Comprehensive+Introduction&rft.series=Dover+Books+on+Mathematics&rft.pages=p.+247&rft.pub=Courier+Dover+Publications&rft.date=2013&rft.isbn=978-0-486-31552-2&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2047103%23id-name%3DMR&rft.aulast=Hartsfield&rft.aufirst=Nora&rft.au=Ringel%2C+Gerhard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHliněný2010" class="citation cs2">Hliněný, Petr (2010), <a rel="nofollow" class="external text" href="http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf">"20 years of Negami's planar cover conjecture"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Graphs_and_Combinatorics" title="Graphs and Combinatorics">Graphs and Combinatorics</a></i>, <b>26</b> (4): 525–536, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.605.4932">10.1.1.605.4932</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00373-010-0934-9">10.1007/s00373-010-0934-9</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2669457">2669457</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121645">121645</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304030722/http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-04<span class="reference-accessdate">, retrieved <span class="nowrap">2016-10-04</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Graphs+and+Combinatorics&rft.atitle=20+years+of+Negami%27s+planar+cover+conjecture&rft.volume=26&rft.issue=4&rft.pages=525-536&rft.date=2010&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.605.4932%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2669457%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121645%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00373-010-0934-9&rft.aulast=Hlin%C4%9Bn%C3%BD&rft.aufirst=Petr&rft_id=http%3A%2F%2Fwww.fi.muni.cz%2F~hlineny%2Fpapers%2Fplcover20-gc.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNöllenburgPrutkinRutter2016" class="citation cs2">Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", <i><a href="/wiki/Journal_of_Computational_Geometry" title="Journal of Computational Geometry">Journal of Computational Geometry</a></i>, <b>7</b> (1): 47–69, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.0315">1409.0315</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.20382%2Fjocg.v7i1a3">10.20382/jocg.v7i1a3</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3463906">3463906</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1500695">1500695</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Computational+Geometry&rft.atitle=On+self-approaching+and+increasing-chord+drawings+of+3-connected+planar+graphs&rft.volume=7&rft.issue=1&rft.pages=47-69&rft.date=2016&rft_id=info%3Aarxiv%2F1409.0315&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3463906%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1500695%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.20382%2Fjocg.v7i1a3&rft.aulast=N%C3%B6llenburg&rft.aufirst=Martin&rft.au=Prutkin%2C+Roman&rft.au=Rutter%2C+Ignaz&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPachSharir2009" class="citation cs2"><a href="/wiki/J%C3%A1nos_Pach" title="János Pach">Pach, János</a>; <a href="/wiki/Micha_Sharir" title="Micha Sharir">Sharir, Micha</a> (2009), "5.1 Crossings—the Brick Factory Problem", <i>Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures</i>, Mathematical Surveys and Monographs, vol. 152, <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, pp. 126–127</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=5.1+Crossings%E2%80%94the+Brick+Factory+Problem&rft.btitle=Combinatorial+Geometry+and+Its+Algorithmic+Applications%3A+The+Alcal%C3%A1+Lectures&rft.series=Mathematical+Surveys+and+Monographs&rft.pages=126-127&rft.pub=American+Mathematical+Society&rft.date=2009&rft.aulast=Pach&rft.aufirst=J%C3%A1nos&rft.au=Sharir%2C+Micha&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDemaineO'Rourke2002–2012" class="citation cs2"><a href="/wiki/Erik_Demaine" title="Erik Demaine">Demaine, E.</a>; <a href="/wiki/Joseph_O%27Rourke_(professor)" title="Joseph O'Rourke (professor)">O'Rourke, J.</a> (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", <a rel="nofollow" class="external text" href="http://cs.smith.edu/~orourke/TOPP/P45.html"><i>The Open Problems Project</i></a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120814154255/http://cs.smith.edu/~orourke/TOPP/P45.html">archived</a> from the original on 2012-08-14<span class="reference-accessdate">, retrieved <span class="nowrap">2013-03-19</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Problem+45%3A+Smallest+Universal+Set+of+Points+for+Planar+Graphs&rft.btitle=The+Open+Problems+Project&rft.date=2002%2F2012&rft.aulast=Demaine&rft.aufirst=E.&rft.au=O%27Rourke%2C+J.&rft_id=http%3A%2F%2Fcs.smith.edu%2F~orourke%2FTOPP%2FP45.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConway" class="citation cs2"><a href="/wiki/John_Horton_Conway" title="John Horton Conway">Conway, John H.</a>, <a rel="nofollow" class="external text" href="https://oeis.org/A248380/a248380.pdf"><i>Five $1,000 Problems (Update 2017)</i></a> <span class="cs1-format">(PDF)</span>, Online Encyclopedia of Integer Sequences, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2019-02-13<span class="reference-accessdate">, retrieved <span class="nowrap">2019-02-12</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Five+%241%2C000+Problems+%28Update+2017%29&rft.pub=Online+Encyclopedia+of+Integer+Sequences&rft.aulast=Conway&rft.aufirst=John+H.&rft_id=https%3A%2F%2Foeis.org%2FA248380%2Fa248380.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFmdevosWood2019" class="citation cs2">mdevos; Wood, David (December 7, 2019), <a rel="nofollow" class="external text" href="http://www.openproblemgarden.org/op/jorgensens_conjecture">"Jorgensen's Conjecture"</a>, <i>Open Problem Garden</i>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161114232136/http://www.openproblemgarden.org/op/jorgensens_conjecture">archived</a> from the original on 2016-11-14<span class="reference-accessdate">, retrieved <span class="nowrap">2016-11-13</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Open+Problem+Garden&rft.atitle=Jorgensen%27s+Conjecture&rft.date=2019-12-07&rft.au=mdevos&rft.au=Wood%2C+David&rft_id=http%3A%2F%2Fwww.openproblemgarden.org%2Fop%2Fjorgensens_conjecture&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDucey2017" class="citation cs2">Ducey, Joshua E. (2017), "On the critical group of the missing Moore graph", <i><a href="/wiki/Discrete_Mathematics_(journal)" title="Discrete Mathematics (journal)">Discrete Mathematics</a></i>, <b>340</b> (5): 1104–1109, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1509.00327">1509.00327</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2016.10.001">10.1016/j.disc.2016.10.001</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3612450">3612450</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:28297244">28297244</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Mathematics&rft.atitle=On+the+critical+group+of+the+missing+Moore+graph&rft.volume=340&rft.issue=5&rft.pages=1104-1109&rft.date=2017&rft_id=info%3Aarxiv%2F1509.00327&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3612450%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A28297244%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.disc.2016.10.001&rft.aulast=Ducey&rft.aufirst=Joshua+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlokhuisBrouwer1988" class="citation cs2"><a href="/wiki/Andries_Brouwer" title="Andries Brouwer">Blokhuis, A.</a>; Brouwer, A. E. (1988), "Geodetic graphs of diameter two", <i><a href="/wiki/Geometriae_Dedicata" title="Geometriae Dedicata">Geometriae Dedicata</a></i>, <b>25</b> (1–3): 527–533, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00191941">10.1007/BF00191941</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0925851">0925851</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189890651">189890651</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geometriae+Dedicata&rft.atitle=Geodetic+graphs+of+diameter+two&rft.volume=25&rft.issue=1%E2%80%933&rft.pages=527-533&rft.date=1988&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D925851%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189890651%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00191941&rft.aulast=Blokhuis&rft.aufirst=A.&rft.au=Brouwer%2C+A.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlorek2010" class="citation cs2">Florek, Jan (2010), "On Barnette's conjecture", <i><a href="/wiki/Discrete_Mathematics_(journal)" title="Discrete Mathematics (journal)">Discrete Mathematics</a></i>, <b>310</b> (10–11): 1531–1535, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2010.01.018">10.1016/j.disc.2010.01.018</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2601261">2601261</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Mathematics&rft.atitle=On+Barnette%27s+conjecture&rft.volume=310&rft.issue=10%E2%80%9311&rft.pages=1531-1535&rft.date=2010&rft_id=info%3Adoi%2F10.1016%2Fj.disc.2010.01.018&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2601261%23id-name%3DMR&rft.aulast=Florek&rft.aufirst=Jan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBroersmaPatelPyatkin2014" class="citation cs2">Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), <a rel="nofollow" class="external text" href="https://ris.utwente.nl/ws/files/6416631/jgt21734.pdf">"On toughness and Hamiltonicity of $2K_2$-free graphs"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Journal_of_Graph_Theory" title="Journal of Graph Theory">Journal of Graph Theory</a></i>, <b>75</b> (3): 244–255, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjgt.21734">10.1002/jgt.21734</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3153119">3153119</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1377980">1377980</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Graph+Theory&rft.atitle=On+toughness+and+Hamiltonicity+of+%242K_2%24-free+graphs&rft.volume=75&rft.issue=3&rft.pages=244-255&rft.date=2014&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3153119%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1377980%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fjgt.21734&rft.aulast=Broersma&rft.aufirst=Hajo&rft.au=Patel%2C+Viresh&rft.au=Pyatkin%2C+Artem&rft_id=https%3A%2F%2Fris.utwente.nl%2Fws%2Ffiles%2F6416631%2Fjgt21734.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaeger1985" class="citation cs2">Jaeger, F. (1985), "A survey of the cycle double cover conjecture", <i>Annals of Discrete Mathematics 27 – Cycles in Graphs</i>, North-Holland Mathematics Studies, vol. 27, pp. 1–12, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0304-0208%2808%2972993-1">10.1016/S0304-0208(08)72993-1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-87803-8" title="Special:BookSources/978-0-444-87803-8"><bdi>978-0-444-87803-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=A+survey+of+the+cycle+double+cover+conjecture&rft.btitle=Annals+of+Discrete+Mathematics+27+%E2%80%93+Cycles+in+Graphs&rft.series=North-Holland+Mathematics+Studies&rft.pages=1-12&rft.date=1985&rft_id=info%3Adoi%2F10.1016%2FS0304-0208%2808%2972993-1&rft.isbn=978-0-444-87803-8&rft.aulast=Jaeger&rft.aufirst=F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeckmanKrakovski2013" class="citation cs2">Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", <i>Electronic Journal of Combinatorics</i>, <b>20</b> (2), P7, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.37236%2F3252">10.37236/3252</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronic+Journal+of+Combinatorics&rft.atitle=Erd%C3%B6s-Gy%C3%A1rf%C3%A1s+conjecture+for+cubic+planar+graphs&rft.volume=20&rft.issue=2&rft.pages=P7&rft.date=2013&rft_id=info%3Adoi%2F10.37236%2F3252&rft.aulast=Heckman&rft.aufirst=Christopher+Carl&rft.au=Krakovski%2C+Roi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChudnovsky2014" class="citation cs2"><a href="/wiki/Maria_Chudnovsky" title="Maria Chudnovsky">Chudnovsky, Maria</a> (2014), <a rel="nofollow" class="external text" href="http://www.columbia.edu/~mc2775/EHsurvey.pdf">"The Erdös–Hajnal conjecture—a survey"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Journal_of_Graph_Theory" title="Journal of Graph Theory">Journal of Graph Theory</a></i>, <b>75</b> (2): 178–190, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1606.08827">1606.08827</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjgt.21730">10.1002/jgt.21730</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3150572">3150572</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:985458">985458</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1280.05086">1280.05086</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304102611/http://www.columbia.edu/~mc2775/EHsurvey.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-04<span class="reference-accessdate">, retrieved <span class="nowrap">2016-09-22</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Graph+Theory&rft.atitle=The+Erd%C3%B6s%E2%80%93Hajnal+conjecture%E2%80%94a+survey&rft.volume=75&rft.issue=2&rft.pages=178-190&rft.date=2014&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1280.05086%23id-name%3DZbl&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A985458%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fjgt.21730&rft_id=info%3Aarxiv%2F1606.08827&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3150572%23id-name%3DMR&rft.aulast=Chudnovsky&rft.aufirst=Maria&rft_id=http%3A%2F%2Fwww.columbia.edu%2F~mc2775%2FEHsurvey.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAkiyamaExooHarary1981" class="citation cs2"><a href="/wiki/Jin_Akiyama" title="Jin Akiyama">Akiyama, Jin</a>; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", <i>Networks</i>, <b>11</b> (1): 69–72, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fnet.3230110108">10.1002/net.3230110108</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0608921">0608921</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Networks&rft.atitle=Covering+and+packing+in+graphs.+IV.+Linear+arboricity&rft.volume=11&rft.issue=1&rft.pages=69-72&rft.date=1981&rft_id=info%3Adoi%2F10.1002%2Fnet.3230110108&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D608921%23id-name%3DMR&rft.aulast=Akiyama&rft.aufirst=Jin&rft.au=Exoo%2C+Geoffrey&rft.au=Harary%2C+Frank&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBabai1994" class="citation book cs1"><a href="/wiki/L%C3%A1szl%C3%B3_Babai" title="László Babai">Babai, László</a> (June 9, 1994). "Automorphism groups, isomorphism, reconstruction". <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070613201449/http://www.cs.uchicago.edu/research/publications/techreports/TR-94-10"><i>Handbook of Combinatorics</i></a>. Archived from <a rel="nofollow" class="external text" href="http://newtraell.cs.uchicago.edu/files/tr_authentic/TR-94-10.ps">the original</a> <span class="cs1-format">(PostScript)</span> on 13 June 2007.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Automorphism+groups%2C+isomorphism%2C+reconstruction&rft.btitle=Handbook+of+Combinatorics&rft.date=1994-06-09&rft.aulast=Babai&rft.aufirst=L%C3%A1szl%C3%B3&rft_id=http%3A%2F%2Fnewtraell.cs.uchicago.edu%2Ffiles%2Ftr_authentic%2FTR-94-10.ps&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLenzRingel1991" class="citation cs2">Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", <i><a href="/wiki/Discrete_Mathematics_(journal)" title="Discrete Mathematics (journal)">Discrete Mathematics</a></i>, <b>97</b> (1–3): 3–16, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2891%2990416-Y">10.1016/0012-365X(91)90416-Y</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1140782">1140782</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Mathematics&rft.atitle=A+brief+review+on+Egmont+K%C3%B6hler%27s+mathematical+work&rft.volume=97&rft.issue=1%E2%80%933&rft.pages=3-16&rft.date=1991&rft_id=info%3Adoi%2F10.1016%2F0012-365X%2891%2990416-Y&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1140782%23id-name%3DMR&rft.aulast=Lenz&rft.aufirst=Hanfried&rft.au=Ringel%2C+Gerhard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFominHøie2006" class="citation cs2">Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms", <i>Information Processing Letters</i>, <b>97</b> (5): 191–196, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ipl.2005.10.012">10.1016/j.ipl.2005.10.012</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2195217">2195217</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Information+Processing+Letters&rft.atitle=Pathwidth+of+cubic+graphs+and+exact+algorithms&rft.volume=97&rft.issue=5&rft.pages=191-196&rft.date=2006&rft_id=info%3Adoi%2F10.1016%2Fj.ipl.2005.10.012&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2195217%23id-name%3DMR&rft.aulast=Fomin&rft.aufirst=Fedor+V.&rft.au=H%C3%B8ie%2C+Kjartan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwenk2012" class="citation conference cs1">Schwenk, Allen (2012). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150409233306/http://faculty.nps.edu/rgera/Conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf"><i>Some History on the Reconstruction Conjecture</i></a> <span class="cs1-format">(PDF)</span>. Joint Mathematics Meetings. Archived from <a rel="nofollow" class="external text" href="http://faculty.nps.edu/rgera/conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2015-04-09<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-11-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Some+History+on+the+Reconstruction+Conjecture&rft.date=2012&rft.aulast=Schwenk&rft.aufirst=Allen&rft_id=http%3A%2F%2Ffaculty.nps.edu%2Frgera%2Fconjectures%2Fjmm2012%2FSchwenk%2C%2520%2520Some%2520History%2520on%2520the%2520RC.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamachandran1981" class="citation cs2">Ramachandran, S. (1981), "On a new digraph reconstruction conjecture", <i><a href="/wiki/Journal_of_Combinatorial_Theory" title="Journal of Combinatorial Theory">Journal of Combinatorial Theory</a></i>, Series B, <b>31</b> (2): 143–149, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0095-8956%2881%2980019-6">10.1016/S0095-8956(81)80019-6</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0630977">0630977</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory&rft.atitle=On+a+new+digraph+reconstruction+conjecture&rft.volume=31&rft.issue=2&rft.pages=143-149&rft.date=1981&rft_id=info%3Adoi%2F10.1016%2FS0095-8956%2881%2980019-6&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D630977%23id-name%3DMR&rft.aulast=Ramachandran&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKühnMycroftOsthus2011" class="citation cs2"><a href="/wiki/Daniela_K%C3%BChn" title="Daniela Kühn">Kühn, Daniela</a>; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", <i>Proceedings of the London Mathematical Society</i>, Third Series, <b>102</b> (4): 731–766, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1010.4430">1010.4430</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fpdq035">10.1112/plms/pdq035</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2793448">2793448</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119169562">119169562</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1218.05034">1218.05034</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+London+Mathematical+Society&rft.atitle=A+proof+of+Sumner%27s+universal+tournament+conjecture+for+large+tournaments&rft.volume=102&rft.issue=4&rft.pages=731-766&rft.date=2011&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1218.05034%23id-name%3DZbl&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119169562%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1112%2Fplms%2Fpdq035&rft_id=info%3Aarxiv%2F1010.4430&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2793448%23id-name%3DMR&rft.aulast=K%C3%BChn&rft.aufirst=Daniela&rft.au=Mycroft%2C+Richard&rft.au=Osthus%2C+Deryk&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTuza1990" class="citation journal cs1">Tuza, Zsolt (1990). "A conjecture on triangles of graphs". <i>Graphs and Combinatorics</i>. <b>6</b> (4): 373–380. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01787705">10.1007/BF01787705</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1092587">1092587</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:38821128">38821128</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Graphs+and+Combinatorics&rft.atitle=A+conjecture+on+triangles+of+graphs&rft.volume=6&rft.issue=4&rft.pages=373-380&rft.date=1990&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1092587%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A38821128%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01787705&rft.aulast=Tuza&rft.aufirst=Zsolt&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrešarDorbecGoddardHartnell2012" class="citation cs2">Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", <i><a href="/wiki/Journal_of_Graph_Theory" title="Journal of Graph Theory">Journal of Graph Theory</a></i>, <b>69</b> (1): 46–76, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.7029">10.1.1.159.7029</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjgt.20565">10.1002/jgt.20565</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2864622">2864622</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9120720">9120720</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Graph+Theory&rft.atitle=Vizing%27s+conjecture%3A+a+survey+and+recent+results&rft.volume=69&rft.issue=1&rft.pages=46-76&rft.date=2012&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.159.7029%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2864622%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9120720%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fjgt.20565&rft.aulast=Bre%C5%A1ar&rft.aufirst=Bo%C5%A1tjan&rft.au=Dorbec%2C+Paul&rft.au=Goddard%2C+Wayne&rft.au=Hartnell%2C+Bert+L.&rft.au=Henning%2C+Michael+A.&rft.au=Klav%C5%BEar%2C+Sandi&rft.au=Rall%2C+Douglas+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-KL15-120"><span class="mw-cite-backlink">^ <a href="#cite_ref-KL15_120-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KL15_120-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KL15_120-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KL15_120-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-KL15_120-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaevLozin2015" class="citation book cs1"><a href="/wiki/Sergey_Kitaev" title="Sergey Kitaev">Kitaev, Sergey</a>; Lozin, Vadim (2015). <a rel="nofollow" class="external text" href="https://link.springer.com/book/10.1007/978-3-319-25859-1"><i>Words and Graphs</i></a>. Monographs in Theoretical Computer Science. An EATCS Series. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-25859-1">10.1007/978-3-319-25859-1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-25857-7" title="Special:BookSources/978-3-319-25857-7"><bdi>978-3-319-25857-7</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7727433">7727433</a> – via link.springer.com.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Words+and+Graphs&rft.series=Monographs+in+Theoretical+Computer+Science.+An+EATCS+Series&rft.date=2015&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7727433%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2F978-3-319-25859-1&rft.isbn=978-3-319-25857-7&rft.aulast=Kitaev&rft.aufirst=Sergey&rft.au=Lozin%2C+Vadim&rft_id=https%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-25859-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-K17-121"><span class="mw-cite-backlink">^ <a href="#cite_ref-K17_121-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-K17_121-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-K17_121-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-K17_121-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-K17_121-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaev2017" class="citation conference cs1">Kitaev, Sergey (2017-05-16). <i>A Comprehensive Introduction to the Theory of Word-Representable Graphs</i>. <a href="/wiki/International_Conference_on_Developments_in_Language_Theory" title="International Conference on Developments in Language Theory">International Conference on Developments in Language Theory</a>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1705.05924v1">1705.05924v1</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-62809-7_2">10.1007/978-3-319-62809-7_2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=A+Comprehensive+Introduction+to+the+Theory+of+Word-Representable+Graphs&rft.date=2017-05-16&rft_id=info%3Aarxiv%2F1705.05924v1&rft_id=info%3Adoi%2F10.1007%2F978-3-319-62809-7_2&rft.aulast=Kitaev&rft.aufirst=Sergey&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-KP18-122"><span class="mw-cite-backlink">^ <a href="#cite_ref-KP18_122-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KP18_122-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KP18_122-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KP18_122-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-KP18_122-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaevPyatkin2018" class="citation journal cs1">Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". <i>Journal of Applied and Industrial Mathematics</i>. <b>12</b> (2): 278–296. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1134%2FS1990478918020084">10.1134/S1990478918020084</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125814097">125814097</a> – via Springer Link.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+and+Industrial+Mathematics&rft.atitle=Word-Representable+Graphs%3A+a+Survey&rft.volume=12&rft.issue=2&rft.pages=278-296&rft.date=2018-04-01&rft_id=info%3Adoi%2F10.1134%2FS1990478918020084&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125814097%23id-name%3DS2CID&rft.aulast=Kitaev&rft.aufirst=S.+V.&rft.au=Pyatkin%2C+A.+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-KP18-2-123"><span class="mw-cite-backlink">^ <a href="#cite_ref-KP18-2_123-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KP18-2_123-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KP18-2_123-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KP18-2_123-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-KP18-2_123-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaevPyatkin2018" class="citation journal cs1 cs1-prop-foreign-lang-source">Kitaev, Sergey V.; Pyatkin, Artem V. (2018). <a rel="nofollow" class="external text" href="https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus">"Графы, представимые в виде слов. Обзор результатов"</a> [Word-representable graphs: A survey]. <i>Дискретн. анализ и исслед. опер.</i> (in Russian). <b>25</b> (2): 19–53. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.17377%2Fdaio.2018.25.588">10.17377/daio.2018.25.588</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD.+%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7+%D0%B8+%D0%B8%D1%81%D1%81%D0%BB%D0%B5%D0%B4.+%D0%BE%D0%BF%D0%B5%D1%80.&rft.atitle=%D0%93%D1%80%D0%B0%D1%84%D1%8B%2C+%D0%BF%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%B8%D0%BC%D1%8B%D0%B5+%D0%B2+%D0%B2%D0%B8%D0%B4%D0%B5+%D1%81%D0%BB%D0%BE%D0%B2.+%D0%9E%D0%B1%D0%B7%D0%BE%D1%80+%D1%80%D0%B5%D0%B7%D1%83%D0%BB%D1%8C%D1%82%D0%B0%D1%82%D0%BE%D0%B2&rft.volume=25&rft.issue=2&rft.pages=19-53&rft.date=2018&rft_id=info%3Adoi%2F10.17377%2Fdaio.2018.25.588&rft.aulast=Kitaev&rft.aufirst=Sergey+V.&rft.au=Pyatkin%2C+Artem+V.&rft_id=http%3A%2F%2Fwww.mathnet.ru%2Fphp%2Farchive.phtml%3Fwshow%3Dpaper%26jrnid%3Dda%26paperid%3D894%26option_lang%3Drus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Glen2019-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-Glen2019_124-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarc_Elliot_Glen2016" class="citation arxiv cs1">Marc Elliot Glen (2016). "Colourability and word-representability of near-triangulations". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.01688">1605.01688</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Colourability+and+word-representability+of+near-triangulations&rft.date=2016&rft_id=info%3Aarxiv%2F1605.01688&rft.au=Marc+Elliot+Glen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Kit2013-3-repr-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kit2013-3-repr_125-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaev2014" class="citation arxiv cs1">Kitaev, Sergey (2014-03-06). "On graphs with representation number 3". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1403.1616v1">1403.1616v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=On+graphs+with+representation+number+3&rft.date=2014-03-06&rft_id=info%3Aarxiv%2F1403.1616v1&rft.aulast=Kitaev&rft.aufirst=Sergey&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-GKP18-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-GKP18_126-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlenKitaevPyatkin2018" class="citation journal cs1">Glen, Marc; Kitaev, Sergey; Pyatkin, Artem (2018). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0166218X18301045">"On the representation number of a crown graph"</a>. <i>Discrete Applied Mathematics</i>. <b>244</b>: 89–93. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1609.00674">1609.00674</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.dam.2018.03.013">10.1016/j.dam.2018.03.013</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46925617">46925617</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Applied+Mathematics&rft.atitle=On+the+representation+number+of+a+crown+graph&rft.volume=244&rft.pages=89-93&rft.date=2018&rft_id=info%3Aarxiv%2F1609.00674&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46925617%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.dam.2018.03.013&rft.aulast=Glen&rft.aufirst=Marc&rft.au=Kitaev%2C+Sergey&rft.au=Pyatkin%2C+Artem&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0166218X18301045&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpinrad2003" class="citation cs2">Spinrad, Jeremy P. (2003), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RrtXSKMAmWgC&pg=PA17">"2. Implicit graph representation"</a>, <i>Efficient Graph Representations</i>, American Mathematical Soc., pp. 17–30, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-2815-1" title="Special:BookSources/978-0-8218-2815-1"><bdi>978-0-8218-2815-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=2.+Implicit+graph+representation&rft.btitle=Efficient+Graph+Representations&rft.pages=17-30&rft.pub=American+Mathematical+Soc.&rft.date=2003&rft.isbn=978-0-8218-2815-1&rft.aulast=Spinrad&rft.aufirst=Jeremy+P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRrtXSKMAmWgC%26pg%3DPA17&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html">"Seymour's 2nd Neighborhood Conjecture"</a>. <i>faculty.math.illinois.edu</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190111175310/https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html">Archived</a> from the original on 11 January 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">17 August</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=faculty.math.illinois.edu&rft.atitle=Seymour%27s+2nd+Neighborhood+Conjecture&rft_id=https%3A%2F%2Ffaculty.math.illinois.edu%2F~west%2Fopenp%2F2ndnbhd.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFmdevos2007" class="citation web cs1">mdevos (May 4, 2007). <a rel="nofollow" class="external text" href="http://www.openproblemgarden.org/op/5_flow_conjecture">"5-flow conjecture"</a>. <i>Open Problem Garden</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181126134833/http://www.openproblemgarden.org/op/5_flow_conjecture">Archived</a> from the original on November 26, 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Open+Problem+Garden&rft.atitle=5-flow+conjecture&rft.date=2007-05-04&rft.au=mdevos&rft_id=http%3A%2F%2Fwww.openproblemgarden.org%2Fop%2F5_flow_conjecture&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFmdevos2010" class="citation web cs1">mdevos (March 31, 2010). <a rel="nofollow" class="external text" href="http://www.openproblemgarden.org/op/4_flow_conjecture">"4-flow conjecture"</a>. <i>Open Problem Garden</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181126134908/http://www.openproblemgarden.org/op/4_flow_conjecture">Archived</a> from the original on November 26, 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Open+Problem+Garden&rft.atitle=4-flow+conjecture&rft.date=2010-03-31&rft.au=mdevos&rft_id=http%3A%2F%2Fwww.openproblemgarden.org%2Fop%2F4_flow_conjecture&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHrushovski1989" class="citation journal cs1">Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". <i>Journal of Symbolic Logic</i>. <b>54</b> (1): 207–220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2275025">10.2307/2275025</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2275025">2275025</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41940041">41940041</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Symbolic+Logic&rft.atitle=Kueker%27s+conjecture+for+stable+theories&rft.volume=54&rft.issue=1&rft.pages=207-220&rft.date=1989&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41940041%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2275025%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2275025&rft.aulast=Hrushovski&rft.aufirst=Ehud&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-:0-132"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_132-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_132-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_132-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShelah1990" class="citation book cs1">Shelah S (1990). <i>Classification Theory</i>. North-Holland.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classification+Theory&rft.pub=North-Holland&rft.date=1990&rft.aulast=Shelah&rft.aufirst=S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShelah2009" class="citation book cs1">Shelah, Saharon (2009). <i>Classification theory for abstract elementary classes</i>. College Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-904987-71-0" title="Special:BookSources/978-1-904987-71-0"><bdi>978-1-904987-71-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classification+theory+for+abstract+elementary+classes&rft.pub=College+Publications&rft.date=2009&rft.isbn=978-1-904987-71-0&rft.aulast=Shelah&rft.aufirst=Saharon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeretz2006" class="citation journal cs1">Peretz, Assaf (2006). "Geometry of forking in simple theories". <i>Journal of Symbolic Logic</i>. <b>71</b> (1): 347–359. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0412356">math/0412356</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2178%2Fjsl%2F1140641179">10.2178/jsl/1140641179</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9380215">9380215</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Symbolic+Logic&rft.atitle=Geometry+of+forking+in+simple+theories&rft.volume=71&rft.issue=1&rft.pages=347-359&rft.date=2006&rft_id=info%3Aarxiv%2Fmath%2F0412356&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9380215%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.2178%2Fjsl%2F1140641179&rft.aulast=Peretz&rft.aufirst=Assaf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCherlinShelah2007" class="citation journal cs1">Cherlin, Gregory; <a href="/wiki/Saharon_Shelah" title="Saharon Shelah">Shelah, Saharon</a> (May 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2006.05.008">"Universal graphs with a forbidden subtree"</a>. <i><a href="/wiki/Journal_of_Combinatorial_Theory" title="Journal of Combinatorial Theory">Journal of Combinatorial Theory</a></i>. Series B. <b>97</b> (3): 293–333. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0512218">math/0512218</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2006.05.008">10.1016/j.jctb.2006.05.008</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10425739">10425739</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory&rft.atitle=Universal+graphs+with+a+forbidden+subtree&rft.volume=97&rft.issue=3&rft.pages=293-333&rft.date=2007-05&rft_id=info%3Aarxiv%2Fmath%2F0512218&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10425739%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.jctb.2006.05.008&rft.aulast=Cherlin&rft.aufirst=Gregory&rft.au=Shelah%2C+Saharon&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jctb.2006.05.008&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text">Džamonja, Mirna, "Club guessing and the universal models." <i>On PCF</i>, ed. M. Foreman, (Banff, Alberta, 2004).</span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShelah1999" class="citation journal cs1"><a href="/wiki/Saharon_Shelah" title="Saharon Shelah">Shelah, Saharon</a> (1999). "Borel sets with large squares". <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i>. <b>159</b> (1): 1–50. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9802134">math/9802134</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998math......2134S">1998math......2134S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-159-1-1-50">10.4064/fm-159-1-1-50</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8846429">8846429</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fundamenta+Mathematicae&rft.atitle=Borel+sets+with+large+squares&rft.volume=159&rft.issue=1&rft.pages=1-50&rft.date=1999&rft_id=info%3Aarxiv%2Fmath%2F9802134&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8846429%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4064%2Ffm-159-1-1-50&rft_id=info%3Abibcode%2F1998math......2134S&rft.aulast=Shelah&rft.aufirst=Saharon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaldwin2009" class="citation book cs1">Baldwin, John T. (July 24, 2009). <a rel="nofollow" class="external text" href="http://www.math.uic.edu/~jbaldwin/pub/AEClec.pdf"><i>Categoricity</i></a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4893-7" title="Special:BookSources/978-0-8218-4893-7"><bdi>978-0-8218-4893-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100729073738/http://www.math.uic.edu/%7Ejbaldwin/pub/AEClec.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on July 29, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">February 20,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Categoricity&rft.pub=American+Mathematical+Society&rft.date=2009-07-24&rft.isbn=978-0-8218-4893-7&rft.aulast=Baldwin&rft.aufirst=John+T.&rft_id=http%3A%2F%2Fwww.math.uic.edu%2F~jbaldwin%2Fpub%2FAEClec.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShelah2009" class="citation arxiv cs1">Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0903.3428">0903.3428</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.LO">math.LO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Introduction+to+classification+theory+for+abstract+elementary+classes&rft.date=2009&rft_id=info%3Aarxiv%2F0903.3428&rft.aulast=Shelah&rft.aufirst=Saharon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text">Gurevich, Yuri, "Monadic Second-Order Theories," in <a href="/wiki/Jon_Barwise" title="Jon Barwise">J. Barwise</a>, <a href="/wiki/Solomon_Feferman" title="Solomon Feferman">S. Feferman</a>, eds., <i>Model-Theoretic Logics</i> (New York: Springer-Verlag, 1985), 479–506.</span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text">Makowsky J, "Compactness, embeddings and definability," in <i>Model-Theoretic Logics</i>, eds Barwise and Feferman, Springer 1985 pps. 645–715.</span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeisler1967" class="citation journal cs1">Keisler, HJ (1967). "Ultraproducts which are not saturated". <i>J. Symb. Log</i>. <b>32</b> (1): 23–46. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2271240">10.2307/2271240</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2271240">2271240</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250345806">250345806</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Symb.+Log.&rft.atitle=Ultraproducts+which+are+not+saturated&rft.volume=32&rft.issue=1&rft.pages=23-46&rft.date=1967&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250345806%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2271240%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2271240&rft.aulast=Keisler&rft.aufirst=HJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalliarisShelah2012" class="citation arxiv cs1"><a href="/wiki/Maryanthe_Malliaris" title="Maryanthe Malliaris">Malliaris, Maryanthe</a>; <a href="/wiki/Saharon_Shelah" title="Saharon Shelah">Shelah, Saharon</a> (10 August 2012). "A Dividing Line Within Simple Unstable Theories". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1208.2140">1208.2140</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.LO">math.LO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+Dividing+Line+Within+Simple+Unstable+Theories&rft.date=2012-08-10&rft_id=info%3Aarxiv%2F1208.2140&rft.aulast=Malliaris&rft.aufirst=Maryanthe&rft.au=Shelah%2C+Saharon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalliarisShelah2012" class="citation arxiv cs1">Malliaris, M.; Shelah, S. (2012). "A Dividing Line within Simple Unstable Theories". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1208.2140">1208.2140</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.LO">math.LO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+Dividing+Line+within+Simple+Unstable+Theories&rft.date=2012&rft_id=info%3Aarxiv%2F1208.2140&rft.aulast=Malliaris&rft.aufirst=M.&rft.au=Shelah%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConrey2016" class="citation cs2"><a href="/wiki/Brian_Conrey" title="Brian Conrey">Conrey, Brian</a> (2016), "Lectures on the Riemann zeta function (book review)", <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>, <b>53</b> (3): 507–512, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fbull%2F1525">10.1090/bull/1525</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Lectures+on+the+Riemann+zeta+function+%28book+review%29&rft.volume=53&rft.issue=3&rft.pages=507-512&rft.date=2016&rft_id=info%3Adoi%2F10.1090%2Fbull%2F1525&rft.aulast=Conrey&rft.aufirst=Brian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingmaster1971" class="citation cs2"><a href="/wiki/David_Singmaster" title="David Singmaster">Singmaster, David</a> (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>78</b> (4): 385–386, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2316907">10.2307/2316907</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2316907">2316907</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1536288">1536288</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Research+Problems%3A+How+often+does+an+integer+occur+as+a+binomial+coefficient%3F&rft.volume=78&rft.issue=4&rft.pages=385-386&rft.date=1971&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1536288%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2316907%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2316907&rft.aulast=Singmaster&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuoSun2005" class="citation cs2">Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", <i>Advances in Applied Mathematics</i>, <b>35</b> (2): 182–187, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0412217">math/0412217</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aam.2005.01.004">10.1016/j.aam.2005.01.004</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2152886">2152886</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:835158">835158</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Applied+Mathematics&rft.atitle=On+odd+covering+systems+with+distinct+moduli&rft.volume=35&rft.issue=2&rft.pages=182-187&rft.date=2005&rft_id=info%3Aarxiv%2Fmath%2F0412217&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2152886%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A835158%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.aam.2005.01.004&rft.aulast=Guo&rft.aufirst=Song&rft.au=Sun%2C+Zhi-Wei&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www2.lbl.gov/Science-Articles/Archive/pi-random.html">"Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160327035021/http://www2.lbl.gov/Science-Articles/Archive/pi-random.html">Archived</a> from the original on 2016-03-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Are+the+Digits+of+Pi+Random%3F+Berkeley+Lab+Researcher+May+Hold+Key&rft_id=http%3A%2F%2Fwww2.lbl.gov%2FScience-Articles%2FArchive%2Fpi-random.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertson1996" class="citation journal cs1">Robertson, John P. (1996-10-01). "Magic Squares of Squares". <i>Mathematics Magazine</i>. <b>69</b> (4): 289–293. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0025570X.1996.11996457">10.1080/0025570X.1996.11996457</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-570X">0025-570X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Magazine&rft.atitle=Magic+Squares+of+Squares&rft.volume=69&rft.issue=4&rft.pages=289-293&rft.date=1996-10-01&rft_id=info%3Adoi%2F10.1080%2F0025570X.1996.11996457&rft.issn=0025-570X&rft.aulast=Robertson&rft.aufirst=John+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-waldschmidt-149"><span class="mw-cite-backlink">^ <a href="#cite_ref-waldschmidt_149-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-waldschmidt_149-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldschmidt2013" class="citation cs2">Waldschmidt, Michel (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Wrj0CAAAQBAJ&pg=PA14"><i>Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables</i></a>, Springer, pp. 14, 16, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-662-11569-5" title="Special:BookSources/978-3-662-11569-5"><bdi>978-3-662-11569-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Diophantine+Approximation+on+Linear+Algebraic+Groups%3A+Transcendence+Properties+of+the+Exponential+Function+in+Several+Variables&rft.pages=14%2C+16&rft.pub=Springer&rft.date=2013&rft.isbn=978-3-662-11569-5&rft.aulast=Waldschmidt&rft.aufirst=Michel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWrj0CAAAQBAJ%26pg%3DPA14&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldschmidt2008" class="citation conference cs1">Waldschmidt, Michel (2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141216004531/http://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf"><i>An introduction to irrationality and transcendence methods</i></a> <span class="cs1-format">(PDF)</span>. 2008 Arizona Winter School. Archived from <a rel="nofollow" class="external text" href="https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 16 December 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">15 December</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=An+introduction+to+irrationality+and+transcendence+methods.&rft.date=2008&rft.aulast=Waldschmidt&rft.aufirst=Michel&rft_id=https%3A%2F%2Fwebusers.imj-prg.fr%2F~michel.waldschmidt%2Farticles%2Fpdf%2FAWSLecture5.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlbert" class="citation cs2">Albert, John, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140117150133/http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf"><i>Some unsolved problems in number theory</i></a> <span class="cs1-format">(PDF)</span>, archived from <a rel="nofollow" class="external text" href="http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 17 January 2014<span class="reference-accessdate">, retrieved <span class="nowrap">15 December</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Some+unsolved+problems+in+number+theory&rft.aulast=Albert&rft.aufirst=John&rft_id=http%3A%2F%2Fwww2.math.ou.edu%2F~jalbert%2Fcourses%2Fopenprob2.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text">For some background on the numbers in this problem, see articles by <a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Eric W. Weisstein</a> at <a href="/wiki/Wolfram_MathWorld" class="mw-redirect" title="Wolfram MathWorld"><i>Wolfram</i> <i>MathWorld</i></a> (all articles accessed 22 August 2024): <ul><li><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Euler-MascheroniConstant.html">Euler's Constant</a></li> <li><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/CatalansConstant.html">Catalan's Constant</a></li> <li><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/AperysConstant.html">Apéry's Constant</a></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/IrrationalNumber.html">irrational numbers</a> (<a rel="nofollow" class="external text" href="https://web.archive.org/web/20150327024040/http://mathworld.wolfram.com/IrrationalNumber.html">Archived</a> 2015-03-27 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>)</li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/TranscendentalNumber.html">transcendental numbers</a> (<a rel="nofollow" class="external text" href="https://web.archive.org/web/20141113174913/http://mathworld.wolfram.com/TranscendentalNumber.html">Archived</a> 2014-11-13 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>)</li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/IrrationalityMeasure.html">irrationality measures</a> (<a rel="nofollow" class="external text" href="https://web.archive.org/web/20150421203736/http://mathworld.wolfram.com/IrrationalityMeasure.html">Archived</a> 2015-04-21 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>)</li></ul> </span></li> <li id="cite_note-:1-153"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_153-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_153-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldschmidt2003" class="citation arxiv cs1">Waldschmidt, Michel (2003-12-24). "Open Diophantine Problems". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0312440">math/0312440</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Open+Diophantine+Problems&rft.date=2003-12-24&rft_id=info%3Aarxiv%2Fmath%2F0312440&rft.aulast=Waldschmidt&rft.aufirst=Michel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKontsevichZagier2001" class="citation cs2">Kontsevich, Maxim; Zagier, Don (2001), Engquist, Björn; Schmid, Wilfried (eds.), <a rel="nofollow" class="external text" href="https://link.springer.com/chapter/10.1007/978-3-642-56478-9_39">"Periods"</a>, <i>Mathematics Unlimited — 2001 and Beyond</i>, Berlin, Heidelberg: Springer, pp. 771–808, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-56478-9_39">10.1007/978-3-642-56478-9_39</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-56478-9" title="Special:BookSources/978-3-642-56478-9"><bdi>978-3-642-56478-9</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2024-08-22</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Unlimited+%E2%80%94+2001+and+Beyond&rft.atitle=Periods&rft.pages=771-808&rft.date=2001&rft_id=info%3Adoi%2F10.1007%2F978-3-642-56478-9_39&rft.isbn=978-3-642-56478-9&rft.aulast=Kontsevich&rft.aufirst=Maxim&rft.au=Zagier%2C+Don&rft_id=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-3-642-56478-9_39&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/KhinchinsConstant.html">"Khinchin's Constant"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-09-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Khinchin%27s+Constant&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FKhinchinsConstant.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAigner2013" class="citation cs2">Aigner, Martin (2013), <i>Markov's theorem and 100 years of the uniqueness conjecture</i>, Cham: Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-00888-2">10.1007/978-3-319-00888-2</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-00887-5" title="Special:BookSources/978-3-319-00887-5"><bdi>978-3-319-00887-5</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3098784">3098784</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Markov%27s+theorem+and+100+years+of+the+uniqueness+conjecture&rft.place=Cham&rft.pub=Springer&rft.date=2013&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3098784%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-319-00888-2&rft.isbn=978-3-319-00887-5&rft.aulast=Aigner&rft.aufirst=Martin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuisman2016" class="citation arxiv cs1">Huisman, Sander G. (2016). "Newer sums of three cubes". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.07746">1604.07746</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Newer+sums+of+three+cubes&rft.date=2016&rft_id=info%3Aarxiv%2F1604.07746&rft.aulast=Huisman&rft.aufirst=Sander+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDobson2017" class="citation arxiv cs2">Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1103.3907v6">1103.3907v6</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=On+Lerch%27s+formula+for+the+Fermat+quotient&rft.pages=23&rft.date=2017-04-01&rft_id=info%3Aarxiv%2F1103.3907v6&rft.aulast=Dobson&rft.aufirst=J.+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibenboim2006" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Paulo_Ribenboim" title="Paulo Ribenboim">Ribenboim, P.</a> (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XMyzh-2SClUC&q=die+folgenden+probleme+sind+ungel%C3%B6st&pg=PA242"><i>Die Welt der Primzahlen</i></a>. Springer-Lehrbuch (in German) (2nd ed.). Springer. pp. 242–243. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-18079-8">10.1007/978-3-642-18079-8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-18078-1" title="Special:BookSources/978-3-642-18078-1"><bdi>978-3-642-18078-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Die+Welt+der+Primzahlen&rft.series=Springer-Lehrbuch&rft.pages=242-243&rft.edition=2nd&rft.pub=Springer&rft.date=2006&rft_id=info%3Adoi%2F10.1007%2F978-3-642-18079-8&rft.isbn=978-3-642-18078-1&rft.aulast=Ribenboim&rft.aufirst=P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXMyzh-2SClUC%26q%3Ddie%2Bfolgenden%2Bprobleme%2Bsind%2Bungel%25C3%25B6st%26pg%3DPA242&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMazur1992" class="citation cs2"><a href="/wiki/Barry_Mazur" title="Barry Mazur">Mazur, Barry</a> (1992), <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.em/1048709114">"The topology of rational points"</a>, <i><a href="/wiki/Experimental_Mathematics_(journal)" title="Experimental Mathematics (journal)">Experimental Mathematics</a></i>, <b>1</b> (1): 35–45, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10586458.1992.10504244">10.1080/10586458.1992.10504244</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17372107">17372107</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190407161124/https://projecteuclid.org/euclid.em/1048709114">archived</a> from the original on 2019-04-07<span class="reference-accessdate">, retrieved <span class="nowrap">2019-04-07</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Experimental+Mathematics&rft.atitle=The+topology+of+rational+points&rft.volume=1&rft.issue=1&rft.pages=35-45&rft.date=1992&rft_id=info%3Adoi%2F10.1080%2F10586458.1992.10504244&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17372107%23id-name%3DS2CID&rft.aulast=Mazur&rft.aufirst=Barry&rft_id=https%3A%2F%2Fprojecteuclid.org%2Feuclid.em%2F1048709114&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuperberg1994" class="citation cs2"><a href="/wiki/Greg_Kuperberg" title="Greg Kuperberg">Kuperberg, Greg</a> (1994), "Quadrisecants of knots and links", <i><a href="/wiki/Journal_of_Knot_Theory_and_Its_Ramifications" title="Journal of Knot Theory and Its Ramifications">Journal of Knot Theory and Its Ramifications</a></i>, <b>3</b>: 41–50, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9712205">math/9712205</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS021821659400006X">10.1142/S021821659400006X</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1265452">1265452</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6103528">6103528</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Knot+Theory+and+Its+Ramifications&rft.atitle=Quadrisecants+of+knots+and+links&rft.volume=3&rft.pages=41-50&rft.date=1994&rft_id=info%3Aarxiv%2Fmath%2F9712205&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1265452%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6103528%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS021821659400006X&rft.aulast=Kuperberg&rft.aufirst=Greg&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurklundHahnLevySchlank2023" class="citation arxiv cs1">Burklund, Robert; Hahn, Jeremy; Levy, Ishan; Schlank, Tomer (2023). "K-theoretic counterexamples to Ravenel's telescope conjecture". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2310.17459">2310.17459</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.AT">math.AT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=K-theoretic+counterexamples+to+Ravenel%27s+telescope+conjecture&rft.date=2023&rft_id=info%3Aarxiv%2F2310.17459&rft.aulast=Burklund&rft.aufirst=Robert&rft.au=Hahn%2C+Jeremy&rft.au=Levy%2C+Ishan&rft.au=Schlank%2C+Tomer&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDimitrovGaoHabegger2021" class="citation journal cs1">Dimitrov, Vessilin; Gao, Ziyang; Habegger, Philipp (2021). <a rel="nofollow" class="external text" href="https://hal.sorbonne-universite.fr/hal-03374335/file/Dimitrov%20et%20al.%20-%202021%20-%20Uniformity%20in%20Mordell%E2%80%93Lang%20for%20curves.pdf">"Uniformity in Mordell–Lang for curves"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>194</b>: 237–298. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2001.10276">2001.10276</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2021.194.1.4">10.4007/annals.2021.194.1.4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:210932420">210932420</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Uniformity+in+Mordell%E2%80%93Lang+for+curves&rft.volume=194&rft.pages=237-298&rft.date=2021&rft_id=info%3Aarxiv%2F2001.10276&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A210932420%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2021.194.1.4&rft.aulast=Dimitrov&rft.aufirst=Vessilin&rft.au=Gao%2C+Ziyang&rft.au=Habegger%2C+Philipp&rft_id=https%3A%2F%2Fhal.sorbonne-universite.fr%2Fhal-03374335%2Ffile%2FDimitrov%2520et%2520al.%2520-%25202021%2520-%2520Uniformity%2520in%2520Mordell%25E2%2580%2593Lang%2520for%2520curves.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuanZhou2015" class="citation journal cs1">Guan, Qi'an; <a href="/wiki/Xiangyu_Zhou" title="Xiangyu Zhou">Zhou, Xiangyu</a> (2015). "A solution of an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span> extension problem with optimal estimate and applications". <i>Annals of Mathematics</i>. <b>181</b> (3): 1139–1208. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1310.7169">1310.7169</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.181.3.6">10.4007/annals.2015.181.3.6</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24523356">24523356</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56205818">56205818</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=A+solution+of+an+MATH+RENDER+ERROR+extension+problem+with+optimal+estimate+and+applications&rft.volume=181&rft.issue=3&rft.pages=1139-1208&rft.date=2015&rft_id=info%3Aarxiv%2F1310.7169&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56205818%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24523356%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.4007%2Fannals.2015.181.3.6&rft.aulast=Guan&rft.aufirst=Qi%27an&rft.au=Zhou%2C+Xiangyu&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMerel1996" class="citation journal cs1">Merel, Loïc (1996). "<span class="cs1-kern-left"></span>"Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]". <i>Inventiones Mathematicae</i>. <b>124</b> (1): 437–449. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996InMat.124..437M">1996InMat.124..437M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs002220050059">10.1007/s002220050059</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1369424">1369424</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3590991">3590991</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Inventiones+Mathematicae&rft.atitle=%22Bornes+pour+la+torsion+des+courbes+elliptiques+sur+les+corps+de+nombres%22+%5BBounds+for+the+torsion+of+elliptic+curves+over+number+fields%5D&rft.volume=124&rft.issue=1&rft.pages=437-449&rft.date=1996&rft_id=info%3Adoi%2F10.1007%2Fs002220050059&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1369424%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3590991%23id-name%3DS2CID&rft_id=info%3Abibcode%2F1996InMat.124..437M&rft.aulast=Merel&rft.aufirst=Lo%C3%AFc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohenFried1995" class="citation cs2">Cohen, Stephen D.; <a href="/wiki/Michael_D._Fried" title="Michael D. Fried">Fried, Michael D.</a> (1995), "Lenstra's proof of the Carlitz–Wan conjecture on exceptional polynomials: an elementary version", <i>Finite Fields and Their Applications</i>, <b>1</b> (3): 372–375, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fffta.1995.1027">10.1006/ffta.1995.1027</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1341953">1341953</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Finite+Fields+and+Their+Applications&rft.atitle=Lenstra%27s+proof+of+the+Carlitz%E2%80%93Wan+conjecture+on+exceptional+polynomials%3A+an+elementary+version&rft.volume=1&rft.issue=3&rft.pages=372-375&rft.date=1995&rft_id=info%3Adoi%2F10.1006%2Fffta.1995.1027&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1341953%23id-name%3DMR&rft.aulast=Cohen&rft.aufirst=Stephen+D.&rft.au=Fried%2C+Michael+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Casazza2006-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-Casazza2006_168-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasazzaFickusTremainWeber2006" class="citation book cs1">Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9b-4uqEGJdoC&pg=PA299">"The Kadison-Singer problem in mathematics and engineering: A detailed account"</a>. In Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal (eds.). <i>Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida</i>. Contemporary Mathematics. Vol. 414. American Mathematical Society. pp. 299–355. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fconm%2F414%2F07820">10.1090/conm/414/07820</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-3923-2" title="Special:BookSources/978-0-8218-3923-2"><bdi>978-0-8218-3923-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Kadison-Singer+problem+in+mathematics+and+engineering%3A+A+detailed+account&rft.btitle=Large+Deviations+for+Additive+Functionals+of+Markov+Chains%3A+The+25th+Great+Plains+Operator+Theory+Symposium%2C+June+7%E2%80%9312%2C+2005%2C+University+of+Central+Florida%2C+Florida&rft.series=Contemporary+Mathematics&rft.pages=299-355&rft.pub=American+Mathematical+Society.&rft.date=2006&rft_id=info%3Adoi%2F10.1090%2Fconm%2F414%2F07820&rft.isbn=978-0-8218-3923-2&rft.aulast=Casazza&rft.aufirst=Peter+G.&rft.au=Fickus%2C+Matthew&rft.au=Tremain%2C+Janet+C.&rft.au=Weber%2C+Eric&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9b-4uqEGJdoC%26pg%3DPA299&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-SIAM02.2014-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-SIAM02.2014_169-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMackenzie" class="citation news cs1">Mackenzie, Dana. <a rel="nofollow" class="external text" href="https://www.siam.org/pdf/news/2123.pdf">"Kadison–Singer Problem Solved"</a> <span class="cs1-format">(PDF)</span>. <i>SIAM News</i>. No. January/February 2014. <a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">Society for Industrial and Applied Mathematics</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141023120958/http://www.siam.org/pdf/news/2123.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 23 October 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">24 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+News&rft.atitle=Kadison%E2%80%93Singer+Problem+Solved&rft.issue=January%2FFebruary+2014&rft.aulast=Mackenzie&rft.aufirst=Dana&rft_id=https%3A%2F%2Fwww.siam.org%2Fpdf%2Fnews%2F2123.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Agol-170"><span class="mw-cite-backlink">^ <a href="#cite_ref-Agol_170-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Agol_170-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgol2004" class="citation arxiv cs1">Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0405568">math/0405568</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Tameness+of+hyperbolic+3-manifolds&rft.date=2004&rft_id=info%3Aarxiv%2Fmath%2F0405568&rft.aulast=Agol&rft.aufirst=Ian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurdykaMostowskiParusiński2000" class="citation journal cs1">Kurdyka, Krzysztof; Mostowski, Tadeusz; Parusiński, Adam (2000). "Proof of the gradient conjecture of R. Thom". <i>Annals of Mathematics</i>. <b>152</b> (3): 763–792. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9906212">math/9906212</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2661354">10.2307/2661354</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2661354">2661354</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119137528">119137528</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Proof+of+the+gradient+conjecture+of+R.+Thom&rft.volume=152&rft.issue=3&rft.pages=763-792&rft.date=2000&rft_id=info%3Aarxiv%2Fmath%2F9906212&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119137528%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2661354%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2661354&rft.aulast=Kurdyka&rft.aufirst=Krzysztof&rft.au=Mostowski%2C+Tadeusz&rft.au=Parusi%C5%84ski%2C+Adam&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoreiraRichterRobertson2019" class="citation journal cs1">Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of Erdős". <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>189</b> (2): 605–652. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1803.00498">1803.00498</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2019.189.2.4">10.4007/annals.2019.189.2.4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119158401">119158401</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=A+proof+of+a+sumset+conjecture+of+Erd%C5%91s&rft.volume=189&rft.issue=2&rft.pages=605-652&rft.date=2019&rft_id=info%3Aarxiv%2F1803.00498&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119158401%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2019.189.2.4&rft.aulast=Moreira&rft.aufirst=Joel&rft.au=Richter%2C+Florian+K.&rft.au=Robertson%2C+Donald&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStanley1994" class="citation cs2">Stanley, Richard P. (1994), "A survey of Eulerian posets", in Bisztriczky, T.; McMullen, P.; Schneider, R.; Weiss, A. Ivić (eds.), <i>Polytopes: abstract, convex and computational (Scarborough, ON, 1993)</i>, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 440, Dordrecht: Kluwer Academic Publishers, pp. 301–333, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1322068">1322068</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=A+survey+of+Eulerian+posets&rft.btitle=Polytopes%3A+abstract%2C+convex+and+computational+%28Scarborough%2C+ON%2C+1993%29&rft.place=Dordrecht&rft.series=NATO+Advanced+Science+Institutes+Series+C%3A+Mathematical+and+Physical+Sciences&rft.pages=301-333&rft.pub=Kluwer+Academic+Publishers&rft.date=1994&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1322068%23id-name%3DMR&rft.aulast=Stanley&rft.aufirst=Richard+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>. See in particular <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gHjrCAAAQBAJ&pg=PA316">p. 316</a>.</span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKalai2018" class="citation web cs1">Kalai, Gil (2018-12-25). <a rel="nofollow" class="external text" href="https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/">"Amazing: Karim Adiprasito proved the g-conjecture for spheres!"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190216031650/https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/">Archived</a> from the original on 2019-02-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-02-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Amazing%3A+Karim+Adiprasito+proved+the+g-conjecture+for+spheres%21&rft.date=2018-12-25&rft.aulast=Kalai&rft.aufirst=Gil&rft_id=https%3A%2F%2Fgilkalai.wordpress.com%2F2018%2F12%2F25%2Famazing-karim-adiprasito-proved-the-g-conjecture-for-spheres%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSantos2012" class="citation journal cs1">Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". <i>Annals of Mathematics</i>. <b>176</b> (1): 383–412. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1006.2814">1006.2814</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2012.176.1.7">10.4007/annals.2012.176.1.7</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15325169">15325169</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=A+counterexample+to+the+Hirsch+conjecture&rft.volume=176&rft.issue=1&rft.pages=383-412&rft.date=2012&rft_id=info%3Aarxiv%2F1006.2814&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15325169%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2012.176.1.7&rft.aulast=Santos&rft.aufirst=Franciscos&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZiegler2012" class="citation journal cs1">Ziegler, Günter M. (2012). <a rel="nofollow" class="external text" href="https://www.math.uni-bielefeld.de/documenta/vol-ismp/22_ziegler-guenter.html">"Who solved the Hirsch conjecture?"</a>. <i>Documenta Mathematica</i>. Documenta Mathematica Series. <b>6</b> (Extra Volume "Optimization Stories"): 75–85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4171%2Fdms%2F6%2F13">10.4171/dms/6/13</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-936609-58-5" title="Special:BookSources/978-3-936609-58-5"><bdi>978-3-936609-58-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Documenta+Mathematica&rft.atitle=Who+solved+the+Hirsch+conjecture%3F&rft.volume=6&rft.issue=Extra+Volume+%22Optimization+Stories%22&rft.pages=75-85&rft.date=2012&rft_id=info%3Adoi%2F10.4171%2Fdms%2F6%2F13&rft.isbn=978-3-936609-58-5&rft.aulast=Ziegler&rft.aufirst=G%C3%BCnter+M.&rft_id=https%3A%2F%2Fwww.math.uni-bielefeld.de%2Fdocumenta%2Fvol-ismp%2F22_ziegler-guenter.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKauersKoutschanZeilberger2009" class="citation journal cs1"><a href="/wiki/Manuel_Kauers" title="Manuel Kauers">Kauers, Manuel</a>; <a href="/wiki/Christoph_Koutschan" title="Christoph Koutschan">Koutschan, Christoph</a>; <a href="/wiki/Doron_Zeilberger" title="Doron Zeilberger">Zeilberger, Doron</a> (2009-07-14). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710637">"Proof of Ira Gessel's lattice path conjecture"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>106</b> (28): 11502–11505. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0806.4300">0806.4300</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PNAS..10611502K">2009PNAS..10611502K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0901678106">10.1073/pnas.0901678106</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710637">2710637</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&rft.atitle=Proof+of+Ira+Gessel%27s+lattice+path+conjecture&rft.volume=106&rft.issue=28&rft.pages=11502-11505&rft.date=2009-07-14&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2710637%23id-name%3DPMC&rft_id=info%3Abibcode%2F2009PNAS..10611502K&rft_id=info%3Aarxiv%2F0806.4300&rft.issn=0027-8424&rft_id=info%3Adoi%2F10.1073%2Fpnas.0901678106&rft.aulast=Kauers&rft.aufirst=Manuel&rft.au=Koutschan%2C+Christoph&rft.au=Zeilberger%2C+Doron&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2710637&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChungGreeneHutchinson2015" class="citation journal cs1">Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1247">"Herbert S. Wilf (1931–2012)"</a>. <i><a href="/wiki/Notices_of_the_AMS" class="mw-redirect" title="Notices of the AMS">Notices of the AMS</a></i>. <b>62</b> (4): 358. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fnoti1247">10.1090/noti1247</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1088-9477">1088-9477</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/34550461">34550461</a>. <q>The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+AMS&rft.atitle=Herbert+S.+Wilf+%281931%E2%80%932012%29&rft.volume=62&rft.issue=4&rft.pages=358&rft.date=2015-04&rft_id=info%3Aoclcnum%2F34550461&rft.issn=1088-9477&rft_id=info%3Adoi%2F10.1090%2Fnoti1247&rft.aulast=Chung&rft.aufirst=Fan&rft.au=Greene%2C+Curtis&rft.au=Hutchinson%2C+Joan&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fnoti1247&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavchev2005" class="citation journal cs1">Savchev, Svetoslav (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2005.02.018">"Kemnitz' conjecture revisited"</a>. <i>Discrete Mathematics</i>. <b>297</b> (1–3): 196–201. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2005.02.018">10.1016/j.disc.2005.02.018</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Mathematics&rft.atitle=Kemnitz%27+conjecture+revisited&rft.volume=297&rft.issue=1%E2%80%933&rft.pages=196-201&rft.date=2005&rft_id=info%3Adoi%2F10.1016%2Fj.disc.2005.02.018&rft.aulast=Savchev&rft.aufirst=Svetoslav&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.disc.2005.02.018&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreen2004" class="citation journal cs1"><a href="/wiki/Ben_J._Green" class="mw-redirect" title="Ben J. Green">Green, Ben</a> (2004). "The Cameron–Erdős conjecture". <i>The Bulletin of the London Mathematical Society</i>. <b>36</b> (6): 769–778. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.NT/0304058">math.NT/0304058</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2FS0024609304003650">10.1112/S0024609304003650</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2083752">2083752</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119615076">119615076</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Bulletin+of+the+London+Mathematical+Society&rft.atitle=The+Cameron%E2%80%93Erd%C5%91s+conjecture&rft.volume=36&rft.issue=6&rft.pages=769-778&rft.date=2004&rft_id=info%3Aarxiv%2Fmath.NT%2F0304058&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2083752%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119615076%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1112%2FS0024609304003650&rft.aulast=Green&rft.aufirst=Ben&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ams.org/news?news_id=155">"News from 2007"</a>. <i>American Mathematical Society</i>. AMS. 31 December 2007. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151117030726/http://www.ams.org/news?news_id=155">Archived</a> from the original on 17 November 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-11-13</span></span>. <q>The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."<span class="cs1-kern-right"></span></q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=American+Mathematical+Society&rft.atitle=News+from+2007&rft.date=2007-12-31&rft_id=https%3A%2F%2Fwww.ams.org%2Fnews%3Fnews_id%3D155&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownFisherHurtado2017" class="citation arxiv cs1">Brown, Aaron; Fisher, David; Hurtado, Sebastian (2017-10-07). "Zimmer's conjecture for actions of SL(𝑚,ℤ)". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1710.02735">1710.02735</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.DS">math.DS</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Zimmer%27s+conjecture+for+actions+of+SL%28%F0%9D%91%9A%2C%E2%84%A4%29&rft.date=2017-10-07&rft_id=info%3Aarxiv%2F1710.02735&rft.aulast=Brown&rft.aufirst=Aaron&rft.au=Fisher%2C+David&rft.au=Hurtado%2C+Sebastian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Xue1-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-Xue1_183-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXue2014" class="citation arxiv cs1">Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.0048">1409.0048</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.DS">math.DS</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Noncollision+Singularities+in+a+Planar+Four-body+Problem&rft.date=2014&rft_id=info%3Aarxiv%2F1409.0048&rft.aulast=Xue&rft.aufirst=Jinxin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-Xue2-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-Xue2_184-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXue2020" class="citation journal cs1">Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". <i><a href="/wiki/Acta_Mathematica" title="Acta Mathematica">Acta Mathematica</a></i>. <b>224</b> (2): 253–388. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FACTA.2020.v224.n2.a2">10.4310/ACTA.2020.v224.n2.a2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226420221">226420221</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Mathematica&rft.atitle=Non-collision+singularities+in+a+planar+4-body+problem&rft.volume=224&rft.issue=2&rft.pages=253-388&rft.date=2020&rft_id=info%3Adoi%2F10.4310%2FACTA.2020.v224.n2.a2&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226420221%23id-name%3DS2CID&rft.aulast=Xue&rft.aufirst=Jinxin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-185">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_P_Mann" class="citation web cs1">Richard P Mann. <a rel="nofollow" class="external text" href="https://richardpmann.com/beggar-my-neighbour-records.html">"Known Historical Beggar-My-Neighbour Records"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-02-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Known+Historical+Beggar-My-Neighbour+Records&rft.au=Richard+P+Mann&rft_id=https%3A%2F%2Frichardpmann.com%2Fbeggar-my-neighbour-records.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBowditch2006" class="citation web cs1">Bowditch, Brian H. (2006). <a rel="nofollow" class="external text" href="http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf">"The angel game in the plane"</a> <span class="cs1-format">(PDF)</span>. School of Mathematics, <a href="/wiki/University_of_Southampton" title="University of Southampton">University of Southampton</a>: warwick.ac.uk <a href="/wiki/Warwick_University" class="mw-redirect" title="Warwick University">Warwick University</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304185616/http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+angel+game+in+the+plane&rft.place=School+of+Mathematics%2C+University+of+Southampton&rft.pub=warwick.ac.uk+Warwick+University&rft.date=2006&rft.aulast=Bowditch&rft.aufirst=Brian+H.&rft_id=http%3A%2F%2Fhomepages.warwick.ac.uk%2F~masgak%2Fpapers%2Fbhb-angel.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKloster" class="citation web cs1">Kloster, Oddvar. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160107125925/http://home.broadpark.no/~oddvark/angel/Angel.pdf">"A Solution to the Angel Problem"</a> <span class="cs1-format">(PDF)</span>. Oslo, Norway: SINTEF ICT. Archived from <a rel="nofollow" class="external text" href="http://home.broadpark.no/~oddvark/angel/Angel.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-01-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+Solution+to+the+Angel+Problem&rft.place=Oslo%2C+Norway&rft.pub=SINTEF+ICT&rft.aulast=Kloster&rft.aufirst=Oddvar&rft_id=http%3A%2F%2Fhome.broadpark.no%2F~oddvark%2Fangel%2FAngel.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMathe2007" class="citation journal cs1">Mathe, Andras (2007). <a rel="nofollow" class="external text" href="http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf">"The Angel of power 2 wins"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Combinatorics,_Probability_and_Computing" title="Combinatorics, Probability and Computing">Combinatorics, Probability and Computing</a></i>. <b>16</b> (3): 363–374. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0963548306008303">10.1017/S0963548306008303</a> (inactive 1 November 2024). <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16892955">16892955</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161013034302/http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-10-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Combinatorics%2C+Probability+and+Computing&rft.atitle=The+Angel+of+power+2+wins&rft.volume=16&rft.issue=3&rft.pages=363-374&rft.date=2007&rft_id=info%3Adoi%2F10.1017%2FS0963548306008303&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16892955%23id-name%3DS2CID&rft.aulast=Mathe&rft.aufirst=Andras&rft_id=http%3A%2F%2Fhomepages.warwick.ac.uk%2F~masibe%2Fangel-mathe.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: DOI inactive as of November 2024 (<a href="/wiki/Category:CS1_maint:_DOI_inactive_as_of_November_2024" title="Category:CS1 maint: DOI inactive as of November 2024">link</a>)</span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGacs2007" class="citation web cs1">Gacs, Peter (June 19, 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304030433/http://www.cs.bu.edu/~gacs/papers/angel.pdf">"THE ANGEL WINS"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.cs.bu.edu/~gacs/papers/angel.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=THE+ANGEL+WINS&rft.date=2007-06-19&rft.aulast=Gacs&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.cs.bu.edu%2F~gacs%2Fpapers%2Fangel.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-190">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithMyersKaplanGoodman-Strauss2024" class="citation journal cs1">Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2024). <a rel="nofollow" class="external text" href="https://escholarship.org/uc/item/3317z9z9">"An aperiodic monotile"</a>. <i>Combinatorial Theory</i>. <b>4</b> (1). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5070%2FC64163843">10.5070/C64163843</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2766-1334">2766-1334</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Combinatorial+Theory&rft.atitle=An+aperiodic+monotile&rft.volume=4&rft.issue=1&rft.date=2024&rft_id=info%3Adoi%2F10.5070%2FC64163843&rft.issn=2766-1334&rft.aulast=Smith&rft.aufirst=David&rft.au=Myers%2C+Joseph+Samuel&rft.au=Kaplan%2C+Craig+S.&rft.au=Goodman-Strauss%2C+Chaim&rft_id=https%3A%2F%2Fescholarship.org%2Fuc%2Fitem%2F3317z9z9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarson2017" class="citation arxiv cs1">Larson, Eric (2017). "The Maximal Rank Conjecture". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1711.04906">1711.04906</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.AG">math.AG</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=The+Maximal+Rank+Conjecture&rft.date=2017&rft_id=info%3Aarxiv%2F1711.04906&rft.aulast=Larson&rft.aufirst=Eric&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-192">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKerzStrunkTamme2018" class="citation cs2">Kerz, Moritz; Strunk, Florian; Tamme, Georg (2018), "Algebraic <i>K</i>-theory and descent for blow-ups", <i><a href="/wiki/Inventiones_Mathematicae" title="Inventiones Mathematicae">Inventiones Mathematicae</a></i>, <b>211</b> (2): 523–577, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.08466">1611.08466</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018InMat.211..523K">2018InMat.211..523K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00222-017-0752-2">10.1007/s00222-017-0752-2</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3748313">3748313</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253741858">253741858</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Inventiones+Mathematicae&rft.atitle=Algebraic+K-theory+and+descent+for+blow-ups&rft.volume=211&rft.issue=2&rft.pages=523-577&rft.date=2018&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253741858%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2018InMat.211..523K&rft_id=info%3Aarxiv%2F1611.08466&rft_id=info%3Adoi%2F10.1007%2Fs00222-017-0752-2&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3748313%23id-name%3DMR&rft.aulast=Kerz&rft.aufirst=Moritz&rft.au=Strunk%2C+Florian&rft.au=Tamme%2C+Georg&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-193">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSong,_Antoine" class="citation web cs1">Song, Antoine. <a rel="nofollow" class="external text" href="https://www.ams.org/amsmtgs/2251_abstracts/1147-53-499.pdf">"Existence of infinitely many minimal hypersurfaces in closed manifolds"</a> <span class="cs1-format">(PDF)</span>. <i>www.ams.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 June</span> 2021</span>. <q>..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves..</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.ams.org&rft.atitle=Existence+of+infinitely+many+minimal+hypersurfaces+in+closed+manifolds.&rft.au=Song%2C+Antoine&rft_id=https%3A%2F%2Fwww.ams.org%2Famsmtgs%2F2251_abstracts%2F1147-53-499.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-194">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.claymath.org/people/antoine-song">"Antoine Song | Clay Mathematics Institute"</a>. <q>...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Antoine+Song+%26%23124%3B+Clay+Mathematics+Institute&rft_id=https%3A%2F%2Fwww.claymath.org%2Fpeople%2Fantoine-song&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2017" class="citation cs2">Wolchover, Natalie (July 11, 2017), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170806093353/https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/">"Pentagon Tiling Proof Solves Century-Old Math Problem"</a>, <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i>, archived from <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/">the original</a> on August 6, 2017<span class="reference-accessdate">, retrieved <span class="nowrap">July 18,</span> 2017</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quanta+Magazine&rft.atitle=Pentagon+Tiling+Proof+Solves+Century-Old+Math+Problem&rft.date=2017-07-11&rft.aulast=Wolchover&rft.aufirst=Natalie&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fpentagon-tiling-proof-solves-century-old-math-problem-20170711%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarquesNeves2013" class="citation journal cs1">Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". <i>Annals of Mathematics</i>. <b>179</b> (2): 683–782. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1202.6036">1202.6036</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2014.179.2.6">10.4007/annals.2014.179.2.6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:50742102">50742102</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Min-max+theory+and+the+Willmore+conjecture&rft.volume=179&rft.issue=2&rft.pages=683-782&rft.date=2013&rft_id=info%3Aarxiv%2F1202.6036&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A50742102%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2014.179.2.6&rft.aulast=Marques&rft.aufirst=Fernando+C.&rft.au=Neves%2C+Andr%C3%A9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-197">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuthKatz2015" class="citation journal cs1">Guth, Larry; Katz, Nets Hawk (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.181.1.2">"On the Erdos distinct distance problem in the plane"</a>. <i>Annals of Mathematics</i>. <b>181</b> (1): 155–190. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1011.4105">1011.4105</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.181.1.2">10.4007/annals.2015.181.1.2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=On+the+Erdos+distinct+distance+problem+in+the+plane&rft.volume=181&rft.issue=1&rft.pages=155-190&rft.date=2015&rft_id=info%3Aarxiv%2F1011.4105&rft_id=info%3Adoi%2F10.4007%2Fannals.2015.181.1.2&rft.aulast=Guth&rft.aufirst=Larry&rft.au=Katz%2C+Nets+Hawk&rft_id=https%3A%2F%2Fdoi.org%2F10.4007%252Fannals.2015.181.1.2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-198"><span class="mw-cite-backlink"><b><a href="#cite_ref-198">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenleHenle" class="citation web cs1">Henle, Frederick V.; Henle, James M. <a rel="nofollow" class="external text" href="http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf">"Squaring the Plane"</a> <span class="cs1-format">(PDF)</span>. www.maa.org <a href="/wiki/Mathematics_Association_of_America" class="mw-redirect" title="Mathematics Association of America">Mathematics Association of America</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160324074609/http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Squaring+the+Plane&rft.pub=www.maa.org+Mathematics+Association+of+America&rft.aulast=Henle&rft.aufirst=Frederick+V.&rft.au=Henle%2C+James+M.&rft_id=http%3A%2F%2Fwww.ww.amc12.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2Fpubs%2FSquaringThePlane.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-199">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrockCanaryMinsky2012" class="citation journal cs1">Brock, Jeffrey F.; Canary, Richard D.; <a href="/wiki/Yair_Minsky" title="Yair Minsky">Minsky, Yair N.</a> (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2012.176.1.1">"The classification of Kleinian surface groups, II: The Ending Lamination Conjecture"</a>. <i>Annals of Mathematics</i>. <b>176</b> (1): 1–149. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0412006">math/0412006</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2012.176.1.1">10.4007/annals.2012.176.1.1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+classification+of+Kleinian+surface+groups%2C+II%3A+The+Ending+Lamination+Conjecture&rft.volume=176&rft.issue=1&rft.pages=1-149&rft.date=2012&rft_id=info%3Aarxiv%2Fmath%2F0412006&rft_id=info%3Adoi%2F10.4007%2Fannals.2012.176.1.1&rft.aulast=Brock&rft.aufirst=Jeffrey+F.&rft.au=Canary%2C+Richard+D.&rft.au=Minsky%2C+Yair+N.&rft_id=https%3A%2F%2Fdoi.org%2F10.4007%252Fannals.2012.176.1.1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-200">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConnellyDemaineRote2003" class="citation cs2"><a href="/wiki/Robert_Connelly" title="Robert Connelly">Connelly, Robert</a>; <a href="/wiki/Erik_Demaine" title="Erik Demaine">Demaine, Erik D.</a>; Rote, Günter (2003), <a rel="nofollow" class="external text" href="http://page.mi.fu-berlin.de/~rote/Papers/pdf/Straightening+polygonal+arcs+and+convexifying+polygonal+cycles-DCG.pdf">"Straightening polygonal arcs and convexifying polygonal cycles"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete & Computational Geometry">Discrete & Computational Geometry</a></i>, <b>30</b> (2): 205–239, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00454-003-0006-7">10.1007/s00454-003-0006-7</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1931840">1931840</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:40382145">40382145</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+%26+Computational+Geometry&rft.atitle=Straightening+polygonal+arcs+and+convexifying+polygonal+cycles&rft.volume=30&rft.issue=2&rft.pages=205-239&rft.date=2003&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1931840%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A40382145%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00454-003-0006-7&rft.aulast=Connelly&rft.aufirst=Robert&rft.au=Demaine%2C+Erik+D.&rft.au=Rote%2C+G%C3%BCnter&rft_id=http%3A%2F%2Fpage.mi.fu-berlin.de%2F~rote%2FPapers%2Fpdf%2FStraightening%2Bpolygonal%2Barcs%2Band%2Bconvexifying%2Bpolygonal%2Bcycles-DCG.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-201">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaberPandharipande2003" class="citation cs2">Faber, C.; <a href="/wiki/Rahul_Pandharipande" title="Rahul Pandharipande">Pandharipande, R.</a> (2003), "Hodge integrals, partition matrices, and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb316d397662f2d3ba0d0abff10317bcd22de130" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.377ex; height:2.843ex;" alt="{\displaystyle \lambda _{g}}"></span> conjecture", <i>Ann. of Math.</i>, 2, <b>157</b> (1): 97–124, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.AG/9908052">math.AG/9908052</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2003.157.97">10.4007/annals.2003.157.97</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ann.+of+Math.&rft.atitle=Hodge+integrals%2C+partition+matrices%2C+and+the+MATH+RENDER+ERROR+conjecture&rft.volume=157&rft.issue=1&rft.pages=97-124&rft.date=2003&rft_id=info%3Aarxiv%2Fmath.AG%2F9908052&rft_id=info%3Adoi%2F10.4007%2Fannals.2003.157.97&rft.aulast=Faber&rft.aufirst=C.&rft.au=Pandharipande%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-202">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShestakovUmirbaev2004" class="citation journal cs1">Shestakov, Ivan P.; Umirbaev, Ualbai U. (2004). "The tame and the wild automorphisms of polynomial rings in three variables". <i>Journal of the American Mathematical Society</i>. <b>17</b> (1): 197–227. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-03-00440-5">10.1090/S0894-0347-03-00440-5</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2015334">2015334</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Mathematical+Society&rft.atitle=The+tame+and+the+wild+automorphisms+of+polynomial+rings+in+three+variables&rft.volume=17&rft.issue=1&rft.pages=197-227&rft.date=2004&rft_id=info%3Adoi%2F10.1090%2FS0894-0347-03-00440-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2015334%23id-name%3DMR&rft.aulast=Shestakov&rft.aufirst=Ivan+P.&rft.au=Umirbaev%2C+Ualbai+U.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-203">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHutchingsMorganRitoréRos2002" class="citation journal cs1">Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002). "Proof of the double bubble conjecture". <i>Annals of Mathematics</i>. Second Series. <b>155</b> (2): 459–489. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0406017">math/0406017</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3062123">10.2307/3062123</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10481%2F32449">10481/32449</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3062123">3062123</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1906593">1906593</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Proof+of+the+double+bubble+conjecture&rft.volume=155&rft.issue=2&rft.pages=459-489&rft.date=2002&rft_id=info%3Ahdl%2F10481%2F32449&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3062123%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3062123&rft_id=info%3Aarxiv%2Fmath%2F0406017&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1906593%23id-name%3DMR&rft.aulast=Hutchings&rft.aufirst=Michael&rft.au=Morgan%2C+Frank&rft.au=Ritor%C3%A9%2C+Manuel&rft.au=Ros%2C+Antonio&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-204">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHales2001" class="citation journal cs1"><a href="/wiki/Thomas_Callister_Hales" title="Thomas Callister Hales">Hales, Thomas C.</a> (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs004540010071">"The Honeycomb Conjecture"</a>. <i><a href="/wiki/Discrete_%26_Computational_Geometry" title="Discrete & Computational Geometry">Discrete & Computational Geometry</a></i>. <b>25</b>: 1–22. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9906042">math/9906042</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs004540010071">10.1007/s004540010071</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+%26+Computational+Geometry&rft.atitle=The+Honeycomb+Conjecture&rft.volume=25&rft.pages=1-22&rft.date=2001&rft_id=info%3Aarxiv%2Fmath%2F9906042&rft_id=info%3Adoi%2F10.1007%2Fs004540010071&rft.aulast=Hales&rft.aufirst=Thomas+C.&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs004540010071&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeixidor_i_BigasRusso1999" class="citation journal cs1"><a href="/wiki/Montserrat_Teixidor_i_Bigas" title="Montserrat Teixidor i Bigas">Teixidor i Bigas, Montserrat</a>; Russo, Barbara (1999). "On a conjecture of Lange". <i>Journal of Algebraic Geometry</i>. <b>8</b> (3): 483–496. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/alg-geom/9710019">alg-geom/9710019</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997alg.geom.10019R">1997alg.geom.10019R</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1056-3911">1056-3911</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1689352">1689352</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Algebraic+Geometry&rft.atitle=On+a+conjecture+of+Lange&rft.volume=8&rft.issue=3&rft.pages=483-496&rft.date=1999&rft_id=info%3Aarxiv%2Falg-geom%2F9710019&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1689352%23id-name%3DMR&rft.issn=1056-3911&rft_id=info%3Abibcode%2F1997alg.geom.10019R&rft.aulast=Teixidor+i+Bigas&rft.aufirst=Montserrat&rft.au=Russo%2C+Barbara&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-206">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUllmo1998" class="citation journal cs1">Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". <i>Annals of Mathematics</i>. <b>147</b> (1): 167–179. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/alg-geom/9606017">alg-geom/9606017</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F120987">10.2307/120987</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/120987">120987</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119717506">119717506</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0934.14013">0934.14013</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Positivit%C3%A9+et+Discr%C3%A9tion+des+Points+Alg%C3%A9briques+des+Courbes&rft.volume=147&rft.issue=1&rft.pages=167-179&rft.date=1998&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0934.14013%23id-name%3DZbl&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F120987%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F120987&rft_id=info%3Aarxiv%2Falg-geom%2F9606017&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119717506%23id-name%3DS2CID&rft.aulast=Ullmo&rft.aufirst=E&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang1998" class="citation journal cs1">Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". <i>Annals of Mathematics</i>. <b>147</b> (1): 159–165. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F120986">10.2307/120986</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/120986">120986</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Equidistribution+of+small+points+on+abelian+varieties&rft.volume=147&rft.issue=1&rft.pages=159-165&rft.date=1998&rft_id=info%3Adoi%2F10.2307%2F120986&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F120986%23id-name%3DJSTOR&rft.aulast=Zhang&rft.aufirst=S.-W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-208">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalesAdamsBauerDang2017" class="citation journal cs1">Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Ky, Vu; Zumkeller, Roland (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Ffmp.2017.1">"A formal proof of the Kepler conjecture"</a>. <i>Forum of Mathematics, Pi</i>. <b>5</b>: e2. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1501.02155">1501.02155</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Ffmp.2017.1">10.1017/fmp.2017.1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+of+Mathematics%2C+Pi&rft.atitle=A+formal+proof+of+the+Kepler+conjecture&rft.volume=5&rft.pages=e2&rft.date=2017&rft_id=info%3Aarxiv%2F1501.02155&rft_id=info%3Adoi%2F10.1017%2Ffmp.2017.1&rft.aulast=Hales&rft.aufirst=Thomas&rft.au=Adams%2C+Mark&rft.au=Bauer%2C+Gertrud&rft.au=Dang%2C+Dat+Tat&rft.au=Harrison%2C+John&rft.au=Hoang%2C+Le+Truong&rft.au=Kaliszyk%2C+Cezary&rft.au=Magron%2C+Victor&rft.au=McLaughlin%2C+Sean&rft.au=Nguyen%2C+Tat+Thang&rft.au=Nguyen%2C+Quang+Truong&rft.au=Nipkow%2C+Tobias&rft.au=Obua%2C+Steven&rft.au=Pleso%2C+Joseph&rft.au=Rute%2C+Jason&rft.au=Solovyev%2C+Alexey&rft.au=Ta%2C+Thi+Hoai+An&rft.au=Tran%2C+Nam+Trung&rft.au=Trieu%2C+Thi+Diep&rft.au=Urban%2C+Josef&rft.au=Ky%2C+Vu&rft.au=Zumkeller%2C+Roland&rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252Ffmp.2017.1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-209">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalesMcLaughlin2010" class="citation journal cs1">Hales, Thomas C.; McLaughlin, Sean (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-09-00647-X">"The dodecahedral conjecture"</a>. <i>Journal of the American Mathematical Society</i>. <b>23</b> (2): 299–344. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9811079">math/9811079</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JAMS...23..299H">2010JAMS...23..299H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-09-00647-X">10.1090/S0894-0347-09-00647-X</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Mathematical+Society&rft.atitle=The+dodecahedral+conjecture&rft.volume=23&rft.issue=2&rft.pages=299-344&rft.date=2010&rft_id=info%3Aarxiv%2Fmath%2F9811079&rft_id=info%3Adoi%2F10.1090%2FS0894-0347-09-00647-X&rft_id=info%3Abibcode%2F2010JAMS...23..299H&rft.aulast=Hales&rft.aufirst=Thomas+C.&rft.au=McLaughlin%2C+Sean&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0894-0347-09-00647-X&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkPham2022" class="citation arxiv cs1">Park, Jinyoung; Pham, Huy Tuan (2022-03-31). "A Proof of the Kahn-Kalai Conjecture". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2203.17207">2203.17207</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+Proof+of+the+Kahn-Kalai+Conjecture&rft.date=2022-03-31&rft_id=info%3Aarxiv%2F2203.17207&rft.aulast=Park&rft.aufirst=Jinyoung&rft.au=Pham%2C+Huy+Tuan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-211">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDujmovićEppsteinHickingbothamMorin2021" class="citation journal cs1"><a href="/wiki/Vida_Dujmovi%C4%87" title="Vida Dujmović">Dujmović, Vida</a>; <a href="/wiki/David_Eppstein" title="David Eppstein">Eppstein, David</a>; Hickingbotham, Robert; <a href="/wiki/Pat_Morin" title="Pat Morin">Morin, Pat</a>; <a href="/wiki/David_Wood_(mathematician)" title="David Wood (mathematician)">Wood, David R.</a> (August 2021). "Stack-number is not bounded by queue-number". <i><a href="/wiki/Combinatorica" title="Combinatorica">Combinatorica</a></i>. <b>42</b> (2): 151–164. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2011.04195">2011.04195</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00493-021-4585-7">10.1007/s00493-021-4585-7</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226281691">226281691</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Combinatorica&rft.atitle=Stack-number+is+not+bounded+by+queue-number&rft.volume=42&rft.issue=2&rft.pages=151-164&rft.date=2021-08&rft_id=info%3Aarxiv%2F2011.04195&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226281691%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00493-021-4585-7&rft.aulast=Dujmovi%C4%87&rft.aufirst=Vida&rft.au=Eppstein%2C+David&rft.au=Hickingbotham%2C+Robert&rft.au=Morin%2C+Pat&rft.au=Wood%2C+David+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-212">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangKotzigRosa1982" class="citation journal cs1">Huang, C.; <a href="/wiki/Anton_Kotzig" title="Anton Kotzig">Kotzig, A.</a>; Rosa, A. (1982). "Further results on tree labellings". <i>Utilitas Mathematica</i>. <b>21</b>: 31–48. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0668845">0668845</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Utilitas+Mathematica&rft.atitle=Further+results+on+tree+labellings&rft.volume=21&rft.pages=31-48&rft.date=1982&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D668845%23id-name%3DMR&rft.aulast=Huang&rft.aufirst=C.&rft.au=Kotzig%2C+A.&rft.au=Rosa%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span>.</span> </li> <li id="cite_note-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-213">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartnett2020" class="citation web cs1">Hartnett, Kevin (19 February 2020). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/">"Rainbow Proof Shows Graphs Have Uniform Parts"</a>. <i>Quanta Magazine</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-02-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Quanta+Magazine&rft.atitle=Rainbow+Proof+Shows+Graphs+Have+Uniform+Parts&rft.date=2020-02-19&rft.aulast=Hartnett&rft.aufirst=Kevin&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fmathematicians-prove-ringels-graph-theory-conjecture-20200219%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-214">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShitov2019" class="citation journal cs1">Shitov, Yaroslav (1 September 2019). <a rel="nofollow" class="external text" href="https://annals.math.princeton.edu/2019/190-2/p06">"Counterexamples to Hedetniemi's conjecture"</a>. <i>Annals of Mathematics</i>. <b>190</b> (2): 663–667. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1905.02167">1905.02167</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2019.190.2.6">10.4007/annals.2019.190.2.6</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/10.4007/annals.2019.190.2.6">10.4007/annals.2019.190.2.6</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3997132">3997132</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:146120733">146120733</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1451.05087">1451.05087</a><span class="reference-accessdate">. Retrieved <span class="nowrap">19 July</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Counterexamples+to+Hedetniemi%27s+conjecture&rft.volume=190&rft.issue=2&rft.pages=663-667&rft.date=2019-09-01&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1451.05087%23id-name%3DZbl&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A146120733%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2019.190.2.6&rft_id=info%3Aarxiv%2F1905.02167&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F10.4007%2Fannals.2019.190.2.6%23id-name%3DJSTOR&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3997132%23id-name%3DMR&rft.aulast=Shitov&rft.aufirst=Yaroslav&rft_id=https%3A%2F%2Fannals.math.princeton.edu%2F2019%2F190-2%2Fp06&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-215">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeWangYu2019" class="citation journal cs1">He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0095895619301224">"The Kelmans-Seymour conjecture I: Special separations"</a>. <i>Journal of Combinatorial Theory, Series B</i>. <b>144</b>: 197–224. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1511.05020">1511.05020</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2019.11.008">10.1016/j.jctb.2019.11.008</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0095-8956">0095-8956</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:29791394">29791394</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory%2C+Series+B&rft.atitle=The+Kelmans-Seymour+conjecture+I%3A+Special+separations&rft.volume=144&rft.pages=197-224&rft.date=2019-12-11&rft_id=info%3Aarxiv%2F1511.05020&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A29791394%23id-name%3DS2CID&rft.issn=0095-8956&rft_id=info%3Adoi%2F10.1016%2Fj.jctb.2019.11.008&rft.aulast=He&rft.aufirst=Dawei&rft.au=Wang%2C+Yan&rft.au=Yu%2C+Xingxing&rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0095895619301224&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-216">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeWangYu2019" class="citation journal cs1">He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0095895619301212">"The Kelmans-Seymour conjecture II: 2-Vertices in K4−"</a>. <i>Journal of Combinatorial Theory, Series B</i>. <b>144</b>: 225–264. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.07557">1602.07557</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2019.11.007">10.1016/j.jctb.2019.11.007</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0095-8956">0095-8956</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220369443">220369443</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory%2C+Series+B&rft.atitle=The+Kelmans-Seymour+conjecture+II%3A+2-Vertices+in+K4%E2%88%92&rft.volume=144&rft.pages=225-264&rft.date=2019-12-11&rft_id=info%3Aarxiv%2F1602.07557&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220369443%23id-name%3DS2CID&rft.issn=0095-8956&rft_id=info%3Adoi%2F10.1016%2Fj.jctb.2019.11.007&rft.aulast=He&rft.aufirst=Dawei&rft.au=Wang%2C+Yan&rft.au=Yu%2C+Xingxing&rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0095895619301212&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeWangYu2019" class="citation journal cs1">He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-09). <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0095895619301200">"The Kelmans-Seymour conjecture III: 3-vertices in K4−"</a>. <i>Journal of Combinatorial Theory, Series B</i>. <b>144</b>: 265–308. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1609.05747">1609.05747</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2019.11.006">10.1016/j.jctb.2019.11.006</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0095-8956">0095-8956</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119625722">119625722</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory%2C+Series+B&rft.atitle=The+Kelmans-Seymour+conjecture+III%3A+3-vertices+in+K4%E2%88%92&rft.volume=144&rft.pages=265-308&rft.date=2019-12-09&rft_id=info%3Aarxiv%2F1609.05747&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119625722%23id-name%3DS2CID&rft.issn=0095-8956&rft_id=info%3Adoi%2F10.1016%2Fj.jctb.2019.11.006&rft.aulast=He&rft.aufirst=Dawei&rft.au=Wang%2C+Yan&rft.au=Yu%2C+Xingxing&rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0095895619301200&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeWangYu2019" class="citation journal cs1">He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-19). <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0095895619301248">"The Kelmans-Seymour conjecture IV: A proof"</a>. <i>Journal of Combinatorial Theory, Series B</i>. <b>144</b>: 309–358. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.07189">1612.07189</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jctb.2019.12.002">10.1016/j.jctb.2019.12.002</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0095-8956">0095-8956</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119175309">119175309</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Combinatorial+Theory%2C+Series+B&rft.atitle=The+Kelmans-Seymour+conjecture+IV%3A+A+proof&rft.volume=144&rft.pages=309-358&rft.date=2019-12-19&rft_id=info%3Aarxiv%2F1612.07189&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119175309%23id-name%3DS2CID&rft.issn=0095-8956&rft_id=info%3Adoi%2F10.1016%2Fj.jctb.2019.12.002&rft.aulast=He&rft.aufirst=Dawei&rft.au=Wang%2C+Yan&rft.au=Yu%2C+Xingxing&rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0095895619301248&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-219">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZangJingChen2019" class="citation arxiv cs1">Zang, Wenan; Jing, Guangming; Chen, Guantao (2019-01-29). "Proof of the Goldberg–Seymour Conjecture on Edge-Colorings of Multigraphs". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1901.10316v1">1901.10316v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Proof+of+the+Goldberg%E2%80%93Seymour+Conjecture+on+Edge-Colorings+of+Multigraphs&rft.date=2019-01-29&rft_id=info%3Aarxiv%2F1901.10316v1&rft.aulast=Zang&rft.aufirst=Wenan&rft.au=Jing%2C+Guangming&rft.au=Chen%2C+Guantao&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-220">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbdollahi_A.2015" class="citation journal cs1">Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". <i>Communications in Algebra</i>. <b>43</b> (12): 5159–5167. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00927872.2014.967398">10.1080/00927872.2014.967398</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117651702">117651702</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Communications+in+Algebra&rft.atitle=Character+sums+for+Cayley+graphs&rft.volume=43&rft.issue=12&rft.pages=5159-5167&rft.date=2015&rft_id=info%3Adoi%2F10.1080%2F00927872.2014.967398&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117651702%23id-name%3DS2CID&rft.aulast=Abdollahi+A.&rft.aufirst=Zallaghi+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuh2012" class="citation journal cs1"><a href="/wiki/June_Huh" title="June Huh">Huh, June</a> (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-2012-00731-0">"Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs"</a>. <i>Journal of the American Mathematical Society</i>. <b>25</b> (3): 907–927. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1008.4749">1008.4749</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-2012-00731-0">10.1090/S0894-0347-2012-00731-0</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Mathematical+Society&rft.atitle=Milnor+numbers+of+projective+hypersurfaces+and+the+chromatic+polynomial+of+graphs&rft.volume=25&rft.issue=3&rft.pages=907-927&rft.date=2012&rft_id=info%3Aarxiv%2F1008.4749&rft_id=info%3Adoi%2F10.1090%2FS0894-0347-2012-00731-0&rft.aulast=Huh&rft.aufirst=June&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0894-0347-2012-00731-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-222">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChalopinGonçalves2009" class="citation conference cs1">Chalopin, Jérémie; Gonçalves, Daniel (2009). "Every planar graph is the intersection graph of segments in the plane: extended abstract". In Mitzenmacher, Michael (ed.). <i>Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009</i>. ACM. pp. 631–638. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1536414.1536500">10.1145/1536414.1536500</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Every+planar+graph+is+the+intersection+graph+of+segments+in+the+plane%3A+extended+abstract&rft.btitle=Proceedings+of+the+41st+Annual+ACM+Symposium+on+Theory+of+Computing%2C+STOC+2009%2C+Bethesda%2C+MD%2C+USA%2C+May+31+-+June+2%2C+2009&rft.pages=631-638&rft.pub=ACM&rft.date=2009&rft_id=info%3Adoi%2F10.1145%2F1536414.1536500&rft.aulast=Chalopin&rft.aufirst=J%C3%A9r%C3%A9mie&rft.au=Gon%C3%A7alves%2C+Daniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-223">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAharoniBerger2009" class="citation journal cs1"><a href="/wiki/Ron_Aharoni" title="Ron Aharoni">Aharoni, Ron</a>; Berger, Eli (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00222-008-0157-3">"Menger's theorem for infinite graphs"</a>. <i>Inventiones Mathematicae</i>. <b>176</b> (1): 1–62. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0509397">math/0509397</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009InMat.176....1A">2009InMat.176....1A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00222-008-0157-3">10.1007/s00222-008-0157-3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Inventiones+Mathematicae&rft.atitle=Menger%27s+theorem+for+infinite+graphs&rft.volume=176&rft.issue=1&rft.pages=1-62&rft.date=2009&rft_id=info%3Aarxiv%2Fmath%2F0509397&rft_id=info%3Adoi%2F10.1007%2Fs00222-008-0157-3&rft_id=info%3Abibcode%2F2009InMat.176....1A&rft.aulast=Aharoni&rft.aufirst=Ron&rft.au=Berger%2C+Eli&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00222-008-0157-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-224">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeigel-Itzkovich2008" class="citation news cs1">Seigel-Itzkovich, Judy (2008-02-08). <a rel="nofollow" class="external text" href="http://www.jpost.com/Home/Article.aspx?id=91431">"Russian immigrant solves math puzzle"</a>. <i>The Jerusalem Post</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2015-11-12</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Jerusalem+Post&rft.atitle=Russian+immigrant+solves+math+puzzle&rft.date=2008-02-08&rft.aulast=Seigel-Itzkovich&rft.aufirst=Judy&rft_id=http%3A%2F%2Fwww.jpost.com%2FHome%2FArticle.aspx%3Fid%3D91431&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-225">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiestel2005" class="citation book cs1">Diestel, Reinhard (2005). <a rel="nofollow" class="external text" href="http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/preview/Ch12.pdf">"Minors, Trees, and WQO"</a> <span class="cs1-format">(PDF)</span>. <i>Graph Theory</i> (Electronic Edition 2005 ed.). Springer. pp. 326–367.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Minors%2C+Trees%2C+and+WQO&rft.btitle=Graph+Theory&rft.pages=326-367&rft.edition=Electronic+Edition+2005&rft.pub=Springer&rft.date=2005&rft.aulast=Diestel&rft.aufirst=Reinhard&rft_id=http%3A%2F%2Fwww.math.uni-hamburg.de%2Fhome%2Fdiestel%2Fbooks%2Fgraph.theory%2Fpreview%2FCh12.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-226">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChudnovskyRobertsonSeymourThomas2002" class="citation journal cs1">Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). <a rel="nofollow" class="external text" href="https://annals.math.princeton.edu/2006/164-1/p02">"The strong perfect graph theorem"</a>. <i>Annals of Mathematics</i>. <b>164</b>: 51–229. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0212070">math/0212070</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002math.....12070C">2002math.....12070C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2006.164.51">10.4007/annals.2006.164.51</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119151552">119151552</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+strong+perfect+graph+theorem&rft.volume=164&rft.pages=51-229&rft.date=2002&rft_id=info%3Aarxiv%2Fmath%2F0212070&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119151552%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2006.164.51&rft_id=info%3Abibcode%2F2002math.....12070C&rft.aulast=Chudnovsky&rft.aufirst=Maria&rft.au=Robertson%2C+Neil&rft.au=Seymour%2C+Paul&rft.au=Thomas%2C+Robin&rft_id=https%3A%2F%2Fannals.math.princeton.edu%2F2006%2F164-1%2Fp02&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-227">^</a></b></span> <span class="reference-text">Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.</span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen1996" class="citation journal cs1">Chen, Zhibo (1996). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/220188021">"Harary's conjectures on integral sum graphs"</a>. <i><a href="/wiki/Discrete_Mathematics_(journal)" title="Discrete Mathematics (journal)">Discrete Mathematics</a></i>. <b>160</b> (1–3): 241–244. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2895%2900163-Q">10.1016/0012-365X(95)00163-Q</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discrete+Mathematics&rft.atitle=Harary%27s+conjectures+on+integral+sum+graphs&rft.volume=160&rft.issue=1%E2%80%933&rft.pages=241-244&rft.date=1996&rft_id=info%3Adoi%2F10.1016%2F0012-365X%2895%2900163-Q&rft.aulast=Chen&rft.aufirst=Zhibo&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220188021&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedman2015" class="citation journal cs1">Friedman, Joel (January 2015). <a rel="nofollow" class="external text" href="https://www.cs.ubc.ca/~jf/pubs/web_stuff/shnc_memoirs.pdf">"Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: with an Appendix by Warren Dicks"</a> <span class="cs1-format">(PDF)</span>. <i>Memoirs of the American Mathematical Society</i>. <b>233</b> (1100): 0. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fmemo%2F1100">10.1090/memo/1100</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0065-9266">0065-9266</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117941803">117941803</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Memoirs+of+the+American+Mathematical+Society&rft.atitle=Sheaves+on+Graphs%2C+Their+Homological+Invariants%2C+and+a+Proof+of+the+Hanna+Neumann+Conjecture%3A+with+an+Appendix+by+Warren+Dicks&rft.volume=233&rft.issue=1100&rft.pages=0&rft.date=2015-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117941803%23id-name%3DS2CID&rft.issn=0065-9266&rft_id=info%3Adoi%2F10.1090%2Fmemo%2F1100&rft.aulast=Friedman&rft.aufirst=Joel&rft_id=https%3A%2F%2Fwww.cs.ubc.ca%2F~jf%2Fpubs%2Fweb_stuff%2Fshnc_memoirs.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-230">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMineyev2012" class="citation journal cs1">Mineyev, Igor (2012). "Submultiplicativity and the Hanna Neumann conjecture". <i>Annals of Mathematics</i>. Second Series. <b>175</b> (1): 393–414. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2012.175.1.11">10.4007/annals.2012.175.1.11</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2874647">2874647</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Submultiplicativity+and+the+Hanna+Neumann+conjecture&rft.volume=175&rft.issue=1&rft.pages=393-414&rft.date=2012&rft_id=info%3Adoi%2F10.4007%2Fannals.2012.175.1.11&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2874647%23id-name%3DMR&rft.aulast=Mineyev&rft.aufirst=Igor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-231">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNamaziSouto2012" class="citation journal cs1">Namazi, Hossein; Souto, Juan (2012). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/228365532">"Non-realizability and ending laminations: Proof of the density conjecture"</a>. <i>Acta Mathematica</i>. <b>209</b> (2): 323–395. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11511-012-0088-0">10.1007/s11511-012-0088-0</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Mathematica&rft.atitle=Non-realizability+and+ending+laminations%3A+Proof+of+the+density+conjecture&rft.volume=209&rft.issue=2&rft.pages=323-395&rft.date=2012&rft_id=info%3Adoi%2F10.1007%2Fs11511-012-0088-0&rft.aulast=Namazi&rft.aufirst=Hossein&rft.au=Souto%2C+Juan&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228365532&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-232">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPilaShankarTsimermanEsnault2021" class="citation arxiv cs1">Pila, Jonathan; Shankar, Ananth; Tsimerman, Jacob; Esnault, Hélène; Groechenig, Michael (2021-09-17). "Canonical Heights on Shimura Varieties and the André-Oort Conjecture". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2109.08788">2109.08788</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Canonical+Heights+on+Shimura+Varieties+and+the+Andr%C3%A9-Oort+Conjecture&rft.date=2021-09-17&rft_id=info%3Aarxiv%2F2109.08788&rft.aulast=Pila&rft.aufirst=Jonathan&rft.au=Shankar%2C+Ananth&rft.au=Tsimerman%2C+Jacob&rft.au=Esnault%2C+H%C3%A9l%C3%A8ne&rft.au=Groechenig%2C+Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-233">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourgainCiprianLarry2015" class="citation journal cs1">Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". <i>Annals of Mathematics</i>. <b>184</b> (2): 633–682. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1512.01565">1512.01565</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015arXiv151201565B">2015arXiv151201565B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2016.184.2.7">10.4007/annals.2016.184.2.7</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F115568">1721.1/115568</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43929329">43929329</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Proof+of+the+main+conjecture+in+Vinogradov%27s+Mean+Value+Theorem+for+degrees+higher+than+three&rft.volume=184&rft.issue=2&rft.pages=633-682&rft.date=2015&rft_id=info%3Ahdl%2F1721.1%2F115568&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43929329%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2015arXiv151201565B&rft_id=info%3Aarxiv%2F1512.01565&rft_id=info%3Adoi%2F10.4007%2Fannals.2016.184.2.7&rft.aulast=Bourgain&rft.aufirst=Jean&rft.au=Ciprian%2C+Demeter&rft.au=Larry%2C+Guth&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-234">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHelfgott2013" class="citation arxiv cs1">Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1305.2897">1305.2897</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Major+arcs+for+Goldbach%27s+theorem&rft.date=2013&rft_id=info%3Aarxiv%2F1305.2897&rft.aulast=Helfgott&rft.aufirst=Harald+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-235">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHelfgott2012" class="citation arxiv cs1">Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1205.5252">1205.5252</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Minor+arcs+for+Goldbach%27s+problem&rft.date=2012&rft_id=info%3Aarxiv%2F1205.5252&rft.aulast=Helfgott&rft.aufirst=Harald+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-236"><span class="mw-cite-backlink"><b><a href="#cite_ref-236">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHelfgott2013" class="citation arxiv cs1">Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1312.7748">1312.7748</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=The+ternary+Goldbach+conjecture+is+true&rft.date=2013&rft_id=info%3Aarxiv%2F1312.7748&rft.aulast=Helfgott&rft.aufirst=Harald+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-237"><span class="mw-cite-backlink"><b><a href="#cite_ref-237">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang2014" class="citation journal cs1">Zhang, Yitang (2014-05-01). "Bounded gaps between primes". <i>Annals of Mathematics</i>. <b>179</b> (3): 1121–1174. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2014.179.3.7">10.4007/annals.2014.179.3.7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-486X">0003-486X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Bounded+gaps+between+primes&rft.volume=179&rft.issue=3&rft.pages=1121-1174&rft.date=2014-05-01&rft_id=info%3Adoi%2F10.4007%2Fannals.2014.179.3.7&rft.issn=0003-486X&rft.aulast=Zhang&rft.aufirst=Yitang&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-238"><span class="mw-cite-backlink"><b><a href="#cite_ref-238">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20201208045925/https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes">"Bounded gaps between primes - Polymath Wiki"</a>. <i>asone.ai</i>. Archived from <a rel="nofollow" class="external text" href="https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes">the original</a> on 2020-12-08<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-08-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=asone.ai&rft.atitle=Bounded+gaps+between+primes+-+Polymath+Wiki&rft_id=https%3A%2F%2Fasone.ai%2Fpolymath%2Findex.php%3Ftitle%3DBounded_gaps_between_primes&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-239"><span class="mw-cite-backlink"><b><a href="#cite_ref-239">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaynard2015" class="citation journal cs1">Maynard, James (2015-01-01). "Small gaps between primes". <i>Annals of Mathematics</i>: 383–413. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1311.4600">1311.4600</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.181.1.7">10.4007/annals.2015.181.1.7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-486X">0003-486X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55175056">55175056</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Small+gaps+between+primes&rft.pages=383-413&rft.date=2015-01-01&rft_id=info%3Aarxiv%2F1311.4600&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55175056%23id-name%3DS2CID&rft.issn=0003-486X&rft_id=info%3Adoi%2F10.4007%2Fannals.2015.181.1.7&rft.aulast=Maynard&rft.aufirst=James&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-240"><span class="mw-cite-backlink"><b><a href="#cite_ref-240">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCilleruelo2010" class="citation journal cs1">Cilleruelo, Javier (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aim.2010.05.010">"Generalized Sidon sets"</a>. <i><a href="/wiki/Advances_in_Mathematics" title="Advances in Mathematics">Advances in Mathematics</a></i>. <b>225</b> (5): 2786–2807. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aim.2010.05.010">10.1016/j.aim.2010.05.010</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10261%2F31032">10261/31032</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7385280">7385280</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Mathematics&rft.atitle=Generalized+Sidon+sets&rft.volume=225&rft.issue=5&rft.pages=2786-2807&rft.date=2010&rft_id=info%3Ahdl%2F10261%2F31032&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7385280%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.aim.2010.05.010&rft.aulast=Cilleruelo&rft.aufirst=Javier&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.aim.2010.05.010&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-241"><span class="mw-cite-backlink"><b><a href="#cite_ref-241">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhareWintenberger2009" class="citation cs2">Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", <i>Inventiones Mathematicae</i>, <b>178</b> (3): 485–504, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009InMat.178..485K">2009InMat.178..485K</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.518.4611">10.1.1.518.4611</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00222-009-0205-7">10.1007/s00222-009-0205-7</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14846347">14846347</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Inventiones+Mathematicae&rft.atitle=Serre%27s+modularity+conjecture+%28I%29&rft.volume=178&rft.issue=3&rft.pages=485-504&rft.date=2009&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.518.4611%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14846347%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00222-009-0205-7&rft_id=info%3Abibcode%2F2009InMat.178..485K&rft.aulast=Khare&rft.aufirst=Chandrashekhar&rft.au=Wintenberger%2C+Jean-Pierre&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-242"><span class="mw-cite-backlink"><b><a href="#cite_ref-242">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhareWintenberger2009" class="citation cs2">Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", <i>Inventiones Mathematicae</i>, <b>178</b> (3): 505–586, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009InMat.178..505K">2009InMat.178..505K</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.8022">10.1.1.228.8022</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00222-009-0206-6">10.1007/s00222-009-0206-6</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189820189">189820189</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Inventiones+Mathematicae&rft.atitle=Serre%27s+modularity+conjecture+%28II%29&rft.volume=178&rft.issue=3&rft.pages=505-586&rft.date=2009&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.228.8022%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189820189%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00222-009-0206-6&rft_id=info%3Abibcode%2F2009InMat.178..505K&rft.aulast=Khare&rft.aufirst=Chandrashekhar&rft.au=Wintenberger%2C+Jean-Pierre&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-243"><span class="mw-cite-backlink"><b><a href="#cite_ref-243">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://www.ams.org/notices/201104/rtx110400610p.pdf">"2011 Cole Prize in Number Theory"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Notices_of_the_AMS" class="mw-redirect" title="Notices of the AMS">Notices of the AMS</a></i>. <b>58</b> (4): 610–611. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1088-9477">1088-9477</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/34550461">34550461</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151106051835/http://www.ams.org/notices/201104/rtx110400610p.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2015-11-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-11-12</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+AMS&rft.atitle=2011+Cole+Prize+in+Number+Theory&rft.volume=58&rft.issue=4&rft.pages=610-611&rft_id=info%3Aoclcnum%2F34550461&rft.issn=1088-9477&rft_id=https%3A%2F%2Fwww.ams.org%2Fnotices%2F201104%2Frtx110400610p.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-244"><span class="mw-cite-backlink"><b><a href="#cite_ref-244">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://www.ams.org/notices/201005/rtx100500642p.pdf">"Bombieri and Tao Receive King Faisal Prize"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Notices_of_the_AMS" class="mw-redirect" title="Notices of the AMS">Notices of the AMS</a></i>. <b>57</b> (5): 642–643. May 2010. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1088-9477">1088-9477</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/34550461">34550461</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304063504/http://www.ams.org/notices/201005/rtx100500642p.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>. <q>Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+AMS&rft.atitle=Bombieri+and+Tao+Receive+King+Faisal+Prize&rft.volume=57&rft.issue=5&rft.pages=642-643&rft.date=2010-05&rft_id=info%3Aoclcnum%2F34550461&rft.issn=1088-9477&rft_id=https%3A%2F%2Fwww.ams.org%2Fnotices%2F201005%2Frtx100500642p.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-245"><span class="mw-cite-backlink"><b><a href="#cite_ref-245">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMetsänkylä2003" class="citation journal cs1">Metsänkylä, Tauno (5 September 2003). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf">"Catalan's conjecture: another old diophantine problem solved"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>. <b>41</b> (1): 43–57. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0273-0979-03-00993-5">10.1090/s0273-0979-03-00993-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0273-0979">0273-0979</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304082755/http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 4 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">13 November</span> 2015</span>. <q>The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Catalan%27s+conjecture%3A+another+old+diophantine+problem+solved&rft.volume=41&rft.issue=1&rft.pages=43-57&rft.date=2003-09-05&rft_id=info%3Adoi%2F10.1090%2Fs0273-0979-03-00993-5&rft.issn=0273-0979&rft.aulast=Mets%C3%A4nkyl%C3%A4&rft.aufirst=Tauno&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fbull%2F2004-41-01%2FS0273-0979-03-00993-5%2FS0273-0979-03-00993-5.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-246"><span class="mw-cite-backlink"><b><a href="#cite_ref-246">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCroot2000" class="citation book cs1"><a href="/wiki/Ernest_S._Croot_III" title="Ernest S. Croot III">Croot, Ernest S. III</a> (2000). <i>Unit Fractions</i>. Ph.D. thesis. <a href="/wiki/University_of_Georgia" title="University of Georgia">University of Georgia</a>, Athens.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unit+Fractions&rft.series=Ph.D.+thesis&rft.pub=University+of+Georgia%2C+Athens&rft.date=2000&rft.aulast=Croot&rft.aufirst=Ernest+S.+III&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCroot2003" class="citation journal cs1"><a href="/wiki/Ernest_S._Croot_III" title="Ernest S. Croot III">Croot, Ernest S. III</a> (2003). "On a coloring conjecture about unit fractions". <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>157</b> (2): 545–556. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.NT/0311421">math.NT/0311421</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003math.....11421C">2003math.....11421C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2003.157.545">10.4007/annals.2003.157.545</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13514070">13514070</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=On+a+coloring+conjecture+about+unit+fractions&rft.volume=157&rft.issue=2&rft.pages=545-556&rft.date=2003&rft_id=info%3Aarxiv%2Fmath.NT%2F0311421&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13514070%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2003.157.545&rft_id=info%3Abibcode%2F2003math.....11421C&rft.aulast=Croot&rft.aufirst=Ernest+S.+III&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-247"><span class="mw-cite-backlink"><b><a href="#cite_ref-247">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLafforgue1998" class="citation cs2 cs1-prop-foreign-lang-source">Lafforgue, Laurent (1998), <a rel="nofollow" class="external text" href="http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html">"Chtoucas de Drinfeld et applications"</a> [Drinfelʹd shtukas and applications], <i>Documenta Mathematica</i> (in French), <b>II</b>: 563–570, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-0635">1431-0635</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1648105">1648105</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180427200241/https://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html">archived</a> from the original on 2018-04-27<span class="reference-accessdate">, retrieved <span class="nowrap">2016-03-18</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Documenta+Mathematica&rft.atitle=Chtoucas+de+Drinfeld+et+applications&rft.volume=II&rft.pages=563-570&rft.date=1998&rft.issn=1431-0635&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1648105%23id-name%3DMR&rft.aulast=Lafforgue&rft.aufirst=Laurent&rft_id=http%3A%2F%2Fwww.math.uni-bielefeld.de%2Fdocumenta%2Fxvol-icm%2F07%2FLafforgue.MAN.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-248"><span class="mw-cite-backlink"><b><a href="#cite_ref-248">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiles1995" class="citation journal cs1"><a href="/wiki/Andrew_Wiles" title="Andrew Wiles">Wiles, Andrew</a> (1995). <a rel="nofollow" class="external text" href="http://math.stanford.edu/~lekheng/flt/wiles.pdf">"Modular elliptic curves and Fermat's Last Theorem"</a> <span class="cs1-format">(PDF)</span>. <i>Annals of Mathematics</i>. <b>141</b> (3): 443–551. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.169.9076">10.1.1.169.9076</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2118559">10.2307/2118559</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2118559">2118559</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/37032255">37032255</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110510062158/http://math.stanford.edu/%7Elekheng/flt/wiles.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2011-05-10<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Modular+elliptic+curves+and+Fermat%27s+Last+Theorem&rft.volume=141&rft.issue=3&rft.pages=443-551&rft.date=1995&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.169.9076%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2118559%23id-name%3DJSTOR&rft_id=info%3Aoclcnum%2F37032255&rft_id=info%3Adoi%2F10.2307%2F2118559&rft.aulast=Wiles&rft.aufirst=Andrew&rft_id=http%3A%2F%2Fmath.stanford.edu%2F~lekheng%2Fflt%2Fwiles.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-249"><span class="mw-cite-backlink"><b><a href="#cite_ref-249">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor_R,_Wiles_A1995" class="citation journal cs1"><a href="/wiki/Richard_Taylor_(mathematician)" title="Richard Taylor (mathematician)">Taylor R</a>, <a href="/wiki/Andrew_Wiles" title="Andrew Wiles">Wiles A</a> (1995). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20000916161311/http://www.math.harvard.edu/~rtaylor/hecke.ps">"Ring theoretic properties of certain Hecke algebras"</a>. <i>Annals of Mathematics</i>. <b>141</b> (3): 553–572. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.531">10.1.1.128.531</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2118560">10.2307/2118560</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2118560">2118560</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/37032255">37032255</a>. Archived from <a rel="nofollow" class="external text" href="http://www.math.harvard.edu/~rtaylor/hecke.ps">the original</a> on 16 September 2000.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Ring+theoretic+properties+of+certain+Hecke+algebras&rft.volume=141&rft.issue=3&rft.pages=553-572&rft.date=1995&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.128.531%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2118560%23id-name%3DJSTOR&rft_id=info%3Aoclcnum%2F37032255&rft_id=info%3Adoi%2F10.2307%2F2118560&rft.au=Taylor+R%2C+Wiles+A&rft_id=http%3A%2F%2Fwww.math.harvard.edu%2F~rtaylor%2Fhecke.ps&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-250"><span class="mw-cite-backlink"><b><a href="#cite_ref-250">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLee2017" class="citation journal cs1">Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". <i>Annals of Mathematics</i>. <b>185</b> (3): 791–829. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1505.04773">1505.04773</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2017.185.3.2">10.4007/annals.2017.185.3.2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7974973">7974973</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Ramsey+numbers+of+degenerate+graphs&rft.volume=185&rft.issue=3&rft.pages=791-829&rft.date=2017&rft_id=info%3Aarxiv%2F1505.04773&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7974973%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2017.185.3.2&rft.aulast=Lee&rft.aufirst=Choongbum&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-251"><span class="mw-cite-backlink"><b><a href="#cite_ref-251">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLamb2016" class="citation journal cs1">Lamb, Evelyn (26 May 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature.2016.19990">"Two-hundred-terabyte maths proof is largest ever"</a>. <i>Nature</i>. <b>534</b> (7605): 17–18. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016Natur.534...17L">2016Natur.534...17L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature.2016.19990">10.1038/nature.2016.19990</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27251254">27251254</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Two-hundred-terabyte+maths+proof+is+largest+ever&rft.volume=534&rft.issue=7605&rft.pages=17-18&rft.date=2016-05-26&rft_id=info%3Apmid%2F27251254&rft_id=info%3Adoi%2F10.1038%2Fnature.2016.19990&rft_id=info%3Abibcode%2F2016Natur.534...17L&rft.aulast=Lamb&rft.aufirst=Evelyn&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fnature.2016.19990&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-252"><span class="mw-cite-backlink"><b><a href="#cite_ref-252">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeuleKullmannMarek2016" class="citation book cs1"><a href="/wiki/Marijn_Heule" title="Marijn Heule">Heule, Marijn J. H.</a>; Kullmann, Oliver; <a href="/wiki/Victor_W._Marek" title="Victor W. Marek">Marek, Victor W.</a> (2016). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". In Creignou, N.; Le Berre, D. (eds.). <i>Theory and Applications of Satisfiability Testing – SAT 2016</i>. Lecture Notes in Computer Science. Vol. 9710. Springer, [Cham]. pp. 228–245. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.00723">1605.00723</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-40970-2_15">10.1007/978-3-319-40970-2_15</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-40969-6" title="Special:BookSources/978-3-319-40969-6"><bdi>978-3-319-40969-6</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3534782">3534782</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7912943">7912943</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Solving+and+Verifying+the+Boolean+Pythagorean+Triples+Problem+via+Cube-and-Conquer&rft.btitle=Theory+and+Applications+of+Satisfiability+Testing+%E2%80%93+SAT+2016&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=228-245&rft.pub=Springer%2C+%5BCham%5D&rft.date=2016&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7912943%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2F978-3-319-40970-2_15&rft_id=info%3Aarxiv%2F1605.00723&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3534782%23id-name%3DMR&rft.isbn=978-3-319-40969-6&rft.aulast=Heule&rft.aufirst=Marijn+J.+H.&rft.au=Kullmann%2C+Oliver&rft.au=Marek%2C+Victor+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-253"><span class="mw-cite-backlink"><b><a href="#cite_ref-253">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinkletter,_David2019" class="citation web cs1">Linkletter, David (27 December 2019). <a rel="nofollow" class="external text" href="https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/">"The 10 Biggest Math Breakthroughs of 2019"</a>. <i><a href="/wiki/Popular_Mechanics" title="Popular Mechanics">Popular Mechanics</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">20 June</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Popular+Mechanics&rft.atitle=The+10+Biggest+Math+Breakthroughs+of+2019&rft.date=2019-12-27&rft.au=Linkletter%2C+David&rft_id=https%3A%2F%2Fwww.popularmechanics.com%2Fscience%2Fmath%2Fg30346822%2Fbiggest-math-breakthroughs-2019%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-254"><span class="mw-cite-backlink"><b><a href="#cite_ref-254">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPiccirillo2020" class="citation journal cs1">Piccirillo, Lisa (2020). <a rel="nofollow" class="external text" href="https://annals.math.princeton.edu/2020/191-2/p05">"The Conway knot is not slice"</a>. <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>191</b> (2): 581–591. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2020.191.2.5">10.4007/annals.2020.191.2.5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52398890">52398890</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+Conway+knot+is+not+slice&rft.volume=191&rft.issue=2&rft.pages=581-591&rft.date=2020&rft_id=info%3Adoi%2F10.4007%2Fannals.2020.191.2.5&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52398890%23id-name%3DS2CID&rft.aulast=Piccirillo&rft.aufirst=Lisa&rft_id=https%3A%2F%2Fannals.math.princeton.edu%2F2020%2F191-2%2Fp05&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-255"><span class="mw-cite-backlink"><b><a href="#cite_ref-255">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlarreich2020" class="citation web cs1"><a href="/wiki/Erica_Klarreich" title="Erica Klarreich">Klarreich, Erica</a> (2020-05-19). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/graduate-student-solves-decades-old-conway-knot-problem-20200519/">"Graduate Student Solves Decades-Old Conway Knot Problem"</a>. <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-08-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Quanta+Magazine&rft.atitle=Graduate+Student+Solves+Decades-Old+Conway+Knot+Problem&rft.date=2020-05-19&rft.aulast=Klarreich&rft.aufirst=Erica&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fgraduate-student-solves-decades-old-conway-knot-problem-20200519%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-256"><span class="mw-cite-backlink"><b><a href="#cite_ref-256">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgol2013" class="citation journal cs1">Agol, Ian (2013). <a rel="nofollow" class="external text" href="https://www.math.uni-bielefeld.de/documenta/vol-18/33.pdf">"The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)"</a> <span class="cs1-format">(PDF)</span>. <i>Documenta Mathematica</i>. <b>18</b>: 1045–1087. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1204.2810v1">1204.2810v1</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4171%2Fdm%2F421">10.4171/dm/421</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:255586740">255586740</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Documenta+Mathematica&rft.atitle=The+virtual+Haken+conjecture+%28with+an+appendix+by+Ian+Agol%2C+Daniel+Groves%2C+and+Jason+Manning%29&rft.volume=18&rft.pages=1045-1087&rft.date=2013&rft_id=info%3Aarxiv%2F1204.2810v1&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A255586740%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4171%2Fdm%2F421&rft.aulast=Agol&rft.aufirst=Ian&rft_id=https%3A%2F%2Fwww.math.uni-bielefeld.de%2Fdocumenta%2Fvol-18%2F33.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-257"><span class="mw-cite-backlink"><b><a href="#cite_ref-257">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrendle2013" class="citation journal cs1"><a href="/wiki/Simon_Brendle" title="Simon Brendle">Brendle, Simon</a> (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11511-013-0101-2">"Embedded minimal tori in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01e57c690f890937838c10ba57853ff21bf30ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{3}}"></span> and the Lawson conjecture"</a>. <i>Acta Mathematica</i>. <b>211</b> (2): 177–190. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1203.6597">1203.6597</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11511-013-0101-2">10.1007/s11511-013-0101-2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Mathematica&rft.atitle=Embedded+minimal+tori+in+MATH+RENDER+ERROR+and+the+Lawson+conjecture&rft.volume=211&rft.issue=2&rft.pages=177-190&rft.date=2013&rft_id=info%3Aarxiv%2F1203.6597&rft_id=info%3Adoi%2F10.1007%2Fs11511-013-0101-2&rft.aulast=Brendle&rft.aufirst=Simon&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs11511-013-0101-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-258"><span class="mw-cite-backlink"><b><a href="#cite_ref-258">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKahnMarkovic2015" class="citation journal cs1"><a href="/wiki/Jeremy_Kahn" title="Jeremy Kahn">Kahn, Jeremy</a>; <a href="/wiki/Vladimir_Markovic" title="Vladimir Markovic">Markovic, Vladimir</a> (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.182.1.1">"The good pants homology and the Ehrenpreis conjecture"</a>. <i>Annals of Mathematics</i>. <b>182</b> (1): 1–72. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1101.1330">1101.1330</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.182.1.1">10.4007/annals.2015.182.1.1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+good+pants+homology+and+the+Ehrenpreis+conjecture&rft.volume=182&rft.issue=1&rft.pages=1-72&rft.date=2015&rft_id=info%3Aarxiv%2F1101.1330&rft_id=info%3Adoi%2F10.4007%2Fannals.2015.182.1.1&rft.aulast=Kahn&rft.aufirst=Jeremy&rft.au=Markovic%2C+Vladimir&rft_id=https%3A%2F%2Fdoi.org%2F10.4007%252Fannals.2015.182.1.1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-259"><span class="mw-cite-backlink"><b><a href="#cite_ref-259">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAustin2013" class="citation journal cs1">Austin, Tim (December 2013). "Rational group ring elements with kernels having irrational dimension". <i>Proceedings of the London Mathematical Society</i>. <b>107</b> (6): 1424–1448. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.2360">0909.2360</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0909.2360A">2009arXiv0909.2360A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fpdt029">10.1112/plms/pdt029</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115160094">115160094</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+London+Mathematical+Society&rft.atitle=Rational+group+ring+elements+with+kernels+having+irrational+dimension&rft.volume=107&rft.issue=6&rft.pages=1424-1448&rft.date=2013-12&rft_id=info%3Aarxiv%2F0909.2360&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115160094%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1112%2Fplms%2Fpdt029&rft_id=info%3Abibcode%2F2009arXiv0909.2360A&rft.aulast=Austin&rft.aufirst=Tim&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-260"><span class="mw-cite-backlink"><b><a href="#cite_ref-260">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLurie2009" class="citation journal cs1">Lurie, Jacob (2009). "On the classification of topological field theories". <i>Current Developments in Mathematics</i>. <b>2008</b>: 129–280. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0905.0465">0905.0465</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0905.0465L">2009arXiv0905.0465L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2Fcdm.2008.v2008.n1.a3">10.4310/cdm.2008.v2008.n1.a3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115162503">115162503</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Current+Developments+in+Mathematics&rft.atitle=On+the+classification+of+topological+field+theories&rft.volume=2008&rft.pages=129-280&rft.date=2009&rft_id=info%3Aarxiv%2F0905.0465&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115162503%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4310%2Fcdm.2008.v2008.n1.a3&rft_id=info%3Abibcode%2F2009arXiv0905.0465L&rft.aulast=Lurie&rft.aufirst=Jacob&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-auto-261"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto_261-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto_261-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://www.claymath.org/sites/default/files/millenniumprizefull.pdf">"Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman"</a> <span class="cs1-format">(PDF)</span> (Press release). <a href="/wiki/Clay_Mathematics_Institute" title="Clay Mathematics Institute">Clay Mathematics Institute</a>. March 18, 2010. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100322192115/http://www.claymath.org/poincare/">Archived</a> from the original on March 22, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">November 13,</span> 2015</span>. <q>The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Prize+for+Resolution+of+the+Poincar%C3%A9+Conjecture+Awarded+to+Dr.+Grigoriy+Perelman&rft.pub=Clay+Mathematics+Institute&rft.date=2010-03-18&rft_id=http%3A%2F%2Fwww.claymath.org%2Fsites%2Fdefault%2Ffiles%2Fmillenniumprizefull.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-262"><span class="mw-cite-backlink"><b><a href="#cite_ref-262">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorganTian2008" class="citation arxiv cs1">Morgan, John; Tian, Gang (2008). "Completion of the Proof of the Geometrization Conjecture". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0809.4040">0809.4040</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.DG">math.DG</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Completion+of+the+Proof+of+the+Geometrization+Conjecture&rft.date=2008&rft_id=info%3Aarxiv%2F0809.4040&rft.aulast=Morgan&rft.aufirst=John&rft.au=Tian%2C+Gang&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-263"><span class="mw-cite-backlink"><b><a href="#cite_ref-263">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin2001" class="citation journal cs1"><a href="/wiki/Mary_Ellen_Rudin" title="Mary Ellen Rudin">Rudin, M.E.</a> (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0166-8641%2801%2900218-8">"Nikiel's Conjecture"</a>. <i>Topology and Its Applications</i>. <b>116</b> (3): 305–331. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0166-8641%2801%2900218-8">10.1016/S0166-8641(01)00218-8</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Topology+and+Its+Applications&rft.atitle=Nikiel%27s+Conjecture&rft.volume=116&rft.issue=3&rft.pages=305-331&rft.date=2001&rft_id=info%3Adoi%2F10.1016%2FS0166-8641%2801%2900218-8&rft.aulast=Rudin&rft.aufirst=M.E.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0166-8641%252801%252900218-8&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-264"><span class="mw-cite-backlink"><b><a href="#cite_ref-264">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNorio_Iwase1998" class="citation web cs1">Norio Iwase (1 November 1998). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/220032558">"Ganea's Conjecture on Lusternik-Schnirelmann Category"</a>. <i>ResearchGate</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ResearchGate&rft.atitle=Ganea%27s+Conjecture+on+Lusternik-Schnirelmann+Category&rft.date=1998-11-01&rft.au=Norio+Iwase&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220032558&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-265"><span class="mw-cite-backlink"><b><a href="#cite_ref-265">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2015" class="citation arxiv cs1"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2015). "The Erdős discrepancy problem". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1509.05363v5">1509.05363v5</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=The+Erd%C5%91s+discrepancy+problem&rft.date=2015&rft_id=info%3Aarxiv%2F1509.05363v5&rft.aulast=Tao&rft.aufirst=Terence&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-266"><span class="mw-cite-backlink"><b><a href="#cite_ref-266">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuncanGriffinOno2015" class="citation journal cs1">Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs40687-015-0044-7">"Proof of the umbral moonshine conjecture"</a>. <i>Research in the Mathematical Sciences</i>. <b>2</b> (1): 26. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1503.01472">1503.01472</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015arXiv150301472D">2015arXiv150301472D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs40687-015-0044-7">10.1186/s40687-015-0044-7</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43589605">43589605</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Research+in+the+Mathematical+Sciences&rft.atitle=Proof+of+the+umbral+moonshine+conjecture&rft.volume=2&rft.issue=1&rft.pages=26&rft.date=2015-12-01&rft_id=info%3Aarxiv%2F1503.01472&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43589605%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1186%2Fs40687-015-0044-7&rft_id=info%3Abibcode%2F2015arXiv150301472D&rft.aulast=Duncan&rft.aufirst=John+F.+R.&rft.au=Griffin%2C+Michael+J.&rft.au=Ono%2C+Ken&rft_id=https%3A%2F%2Fdoi.org%2F10.1186%252Fs40687-015-0044-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-267"><span class="mw-cite-backlink"><b><a href="#cite_ref-267">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCheegerNaber2015" class="citation journal cs1">Cheeger, Jeff; Naber, Aaron (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.182.3.5">"Regularity of Einstein Manifolds and the Codimension 4 Conjecture"</a>. <i>Annals of Mathematics</i>. <b>182</b> (3): 1093–1165. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.6534">1406.6534</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2015.182.3.5">10.4007/annals.2015.182.3.5</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Regularity+of+Einstein+Manifolds+and+the+Codimension+4+Conjecture&rft.volume=182&rft.issue=3&rft.pages=1093-1165&rft.date=2015&rft_id=info%3Aarxiv%2F1406.6534&rft_id=info%3Adoi%2F10.4007%2Fannals.2015.182.3.5&rft.aulast=Cheeger&rft.aufirst=Jeff&rft.au=Naber%2C+Aaron&rft_id=https%3A%2F%2Fdoi.org%2F10.4007%252Fannals.2015.182.3.5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-268"><span class="mw-cite-backlink"><b><a href="#cite_ref-268">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2017" class="citation magazine cs1">Wolchover, Natalie (March 28, 2017). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/">"A Long-Sought Proof, Found and Almost Lost"</a>. <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170424133433/https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/">Archived</a> from the original on April 24, 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">May 2,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quanta+Magazine&rft.atitle=A+Long-Sought+Proof%2C+Found+and+Almost+Lost&rft.date=2017-03-28&rft.aulast=Wolchover&rft.aufirst=Natalie&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2F20170328-statistician-proves-gaussian-correlation-inequality%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-269"><span class="mw-cite-backlink"><b><a href="#cite_ref-269">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewmanNikolov2011" class="citation arxiv cs1">Newman, Alantha; Nikolov, Aleksandar (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1104.2922">1104.2922</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.DM">cs.DM</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+counterexample+to+Beck%27s+conjecture+on+the+discrepancy+of+three+permutations&rft.date=2011&rft_id=info%3Aarxiv%2F1104.2922&rft.aulast=Newman&rft.aufirst=Alantha&rft.au=Nikolov%2C+Aleksandar&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-270"><span class="mw-cite-backlink"><b><a href="#cite_ref-270">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVoevodsky2011" class="citation web cs1">Voevodsky, Vladimir (1 July 2011). <a rel="nofollow" class="external text" href="https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf">"On motivic cohomology with Z/<i>l</i>-coefficients"</a> <span class="cs1-format">(PDF)</span>. <i>annals.math.princeton.edu</i>. Princeton, NJ: <a href="/wiki/Princeton_University" title="Princeton University">Princeton University</a>. pp. 401–438. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160327035457/http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=annals.math.princeton.edu&rft.atitle=On+motivic+cohomology+with+Z%2Fl-coefficients&rft.pages=401-438&rft.date=2011-07-01&rft.aulast=Voevodsky&rft.aufirst=Vladimir&rft_id=https%3A%2F%2Fannals.math.princeton.edu%2Fwp-content%2Fuploads%2Fannals-v174-n1-p11-p.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-271"><span class="mw-cite-backlink"><b><a href="#cite_ref-271">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeisserLevine2001" class="citation journal cs1">Geisser, Thomas; Levine, Marc (2001). "The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky". <i>Journal für die Reine und Angewandte Mathematik</i>. <b>2001</b> (530): 55–103. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fcrll.2001.006">10.1515/crll.2001.006</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1807268">1807268</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+Reine+und+Angewandte+Mathematik&rft.atitle=The+Bloch-Kato+conjecture+and+a+theorem+of+Suslin-Voevodsky&rft.volume=2001&rft.issue=530&rft.pages=55-103&rft.date=2001&rft_id=info%3Adoi%2F10.1515%2Fcrll.2001.006&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1807268%23id-name%3DMR&rft.aulast=Geisser&rft.aufirst=Thomas&rft.au=Levine%2C+Marc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-272"><span class="mw-cite-backlink"><b><a href="#cite_ref-272">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKahn" class="citation web cs1">Kahn, Bruno. <a rel="nofollow" class="external text" href="https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf">"Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry"</a> <span class="cs1-format">(PDF)</span>. <i>webusers.imj-prg.fr</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160327035553/https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=webusers.imj-prg.fr&rft.atitle=Algebraic+K-Theory%2C+Algebraic+Cycles+and+Arithmetic+Geometry&rft.aulast=Kahn&rft.aufirst=Bruno&rft_id=https%3A%2F%2Fwebusers.imj-prg.fr%2F~bruno.kahn%2Fpreprints%2Fkcag.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-273"><span class="mw-cite-backlink"><b><a href="#cite_ref-273">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathoverflow.net/q/87162">"motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=motivic+cohomology+%E2%80%93+Milnor%E2%80%93Bloch%E2%80%93Kato+conjecture+implies+the+Beilinson-Lichtenbaum+conjecture+%E2%80%93+MathOverflow&rft_id=https%3A%2F%2Fmathoverflow.net%2Fq%2F87162&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-274"><span class="mw-cite-backlink"><b><a href="#cite_ref-274">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMattmanSolis2009" class="citation journal cs1">Mattman, Thomas W.; Solis, Pablo (2009). "A proof of the Kauffman-Harary Conjecture". <i>Algebraic & Geometric Topology</i>. <b>9</b> (4): 2027–2039. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0906.1612">0906.1612</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0906.1612M">2009arXiv0906.1612M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2140%2Fagt.2009.9.2027">10.2140/agt.2009.9.2027</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8447495">8447495</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Algebraic+%26+Geometric+Topology&rft.atitle=A+proof+of+the+Kauffman-Harary+Conjecture&rft.volume=9&rft.issue=4&rft.pages=2027-2039&rft.date=2009&rft_id=info%3Aarxiv%2F0906.1612&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8447495%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.2140%2Fagt.2009.9.2027&rft_id=info%3Abibcode%2F2009arXiv0906.1612M&rft.aulast=Mattman&rft.aufirst=Thomas+W.&rft.au=Solis%2C+Pablo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-275"><span class="mw-cite-backlink"><b><a href="#cite_ref-275">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKahnMarkovic2012" class="citation journal cs1">Kahn, Jeremy; Markovic, Vladimir (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2012.175.3.4">"Immersing almost geodesic surfaces in a closed hyperbolic three manifold"</a>. <i>Annals of Mathematics</i>. <b>175</b> (3): 1127–1190. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0910.5501">0910.5501</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2012.175.3.4">10.4007/annals.2012.175.3.4</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Immersing+almost+geodesic+surfaces+in+a+closed+hyperbolic+three+manifold&rft.volume=175&rft.issue=3&rft.pages=1127-1190&rft.date=2012&rft_id=info%3Aarxiv%2F0910.5501&rft_id=info%3Adoi%2F10.4007%2Fannals.2012.175.3.4&rft.aulast=Kahn&rft.aufirst=Jeremy&rft.au=Markovic%2C+Vladimir&rft_id=https%3A%2F%2Fdoi.org%2F10.4007%252Fannals.2012.175.3.4&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-276"><span class="mw-cite-backlink"><b><a href="#cite_ref-276">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLu2011" class="citation journal cs1">Lu, Zhiqin (September 2011) [2007]. <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jfa.2011.05.002">"Normal Scalar Curvature Conjecture and its applications"</a>. <i>Journal of Functional Analysis</i>. <b>261</b> (5): 1284–1308. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0711.3510">0711.3510</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jfa.2011.05.002">10.1016/j.jfa.2011.05.002</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Functional+Analysis&rft.atitle=Normal+Scalar+Curvature+Conjecture+and+its+applications&rft.volume=261&rft.issue=5&rft.pages=1284-1308&rft.date=2011-09&rft_id=info%3Aarxiv%2F0711.3510&rft_id=info%3Adoi%2F10.1016%2Fj.jfa.2011.05.002&rft.aulast=Lu&rft.aufirst=Zhiqin&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jfa.2011.05.002&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-277"><span class="mw-cite-backlink"><b><a href="#cite_ref-277">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDencker2006" class="citation cs2"><a href="/wiki/Nils_Dencker" title="Nils Dencker">Dencker, Nils</a> (2006), <a rel="nofollow" class="external text" href="https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf">"The resolution of the Nirenberg–Treves conjecture"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>, <b>163</b> (2): 405–444, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2006.163.405">10.4007/annals.2006.163.405</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16630732">16630732</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180720145723/http://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2018-07-20<span class="reference-accessdate">, retrieved <span class="nowrap">2019-04-07</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+resolution+of+the+Nirenberg%E2%80%93Treves+conjecture&rft.volume=163&rft.issue=2&rft.pages=405-444&rft.date=2006&rft_id=info%3Adoi%2F10.4007%2Fannals.2006.163.405&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16630732%23id-name%3DS2CID&rft.aulast=Dencker&rft.aufirst=Nils&rft_id=https%3A%2F%2Fannals.math.princeton.edu%2Fwp-content%2Fuploads%2Fannals-v163-n2-p02.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-278"><span class="mw-cite-backlink"><b><a href="#cite_ref-278">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.claymath.org/research">"Research Awards"</a>. <i><a href="/wiki/Clay_Mathematics_Institute" title="Clay Mathematics Institute">Clay Mathematics Institute</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190407160116/https://www.claymath.org/research">Archived</a> from the original on 2019-04-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-04-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Clay+Mathematics+Institute&rft.atitle=Research+Awards&rft_id=https%3A%2F%2Fwww.claymath.org%2Fresearch&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-279"><span class="mw-cite-backlink"><b><a href="#cite_ref-279">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLewisParriloRamana2005" class="citation journal cs1">Lewis, A. S.; Parrilo, P. A.; Ramana, M. V. (2005). "The Lax conjecture is true". <i>Proceedings of the American Mathematical Society</i>. <b>133</b> (9): 2495–2499. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-05-07752-X">10.1090/S0002-9939-05-07752-X</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2146191">2146191</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17436983">17436983</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=The+Lax+conjecture+is+true&rft.volume=133&rft.issue=9&rft.pages=2495-2499&rft.date=2005&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2146191%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17436983%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1090%2FS0002-9939-05-07752-X&rft.aulast=Lewis&rft.aufirst=A.+S.&rft.au=Parrilo%2C+P.+A.&rft.au=Ramana%2C+M.+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-280"><span class="mw-cite-backlink"><b><a href="#cite_ref-280">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau">"Fields Medal – Ngô Bảo Châu"</a>. <i>International Congress of Mathematicians 2010</i>. ICM. 19 August 2010. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150924032610/http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau">Archived</a> from the original on 24 September 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-11-12</span></span>. <q>Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=International+Congress+of+Mathematicians+2010&rft.atitle=Fields+Medal+%E2%80%93+Ng%C3%B4+B%E1%BA%A3o+Ch%C3%A2u&rft.date=2010-08-19&rft_id=http%3A%2F%2Fwww.icm2010.in%2Fprize-winners-2010%2Ffields-medal-ngo-bao-chau&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-281"><span class="mw-cite-backlink"><b><a href="#cite_ref-281">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVoevodsky2003" class="citation journal cs1">Voevodsky, Vladimir (2003). <a rel="nofollow" class="external text" href="http://archive.numdam.org/item/PMIHES_2003__98__1_0/">"Reduced power operations in motivic cohomology"</a>. <i>Publications Mathématiques de l'IHÉS</i>. <b>98</b>: 1–57. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0107109">math/0107109</a></span>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.170.4427">10.1.1.170.4427</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10240-003-0009-z">10.1007/s10240-003-0009-z</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8172797">8172797</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170728114725/http://archive.numdam.org/item/PMIHES_2003__98__1_0">Archived</a> from the original on 2017-07-28<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+Math%C3%A9matiques+de+l%27IH%C3%89S&rft.atitle=Reduced+power+operations+in+motivic+cohomology&rft.volume=98&rft.pages=1-57&rft.date=2003&rft_id=info%3Aarxiv%2Fmath%2F0107109&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8172797%23id-name%3DS2CID&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.170.4427%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1007%2Fs10240-003-0009-z&rft.aulast=Voevodsky&rft.aufirst=Vladimir&rft_id=http%3A%2F%2Farchive.numdam.org%2Fitem%2FPMIHES_2003__98__1_0%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-282"><span class="mw-cite-backlink"><b><a href="#cite_ref-282">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaruch2003" class="citation journal cs1">Baruch, Ehud Moshe (2003). "A proof of Kirillov's conjecture". <i>Annals of Mathematics</i>. Second Series. <b>158</b> (1): 207–252. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2003.158.207">10.4007/annals.2003.158.207</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1999922">1999922</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=A+proof+of+Kirillov%27s+conjecture&rft.volume=158&rft.issue=1&rft.pages=207-252&rft.date=2003&rft_id=info%3Adoi%2F10.4007%2Fannals.2003.158.207&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1999922%23id-name%3DMR&rft.aulast=Baruch&rft.aufirst=Ehud+Moshe&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-283"><span class="mw-cite-backlink"><b><a href="#cite_ref-283">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaas2002" class="citation journal cs1">Haas, Bertrand (2002). <a rel="nofollow" class="external text" href="https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf">"A Simple Counterexample to Kouchnirenko's Conjecture"</a> <span class="cs1-format">(PDF)</span>. <i>Beiträge zur Algebra und Geometrie</i>. <b>43</b> (1): 1–8. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161007091417/http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-10-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Beitr%C3%A4ge+zur+Algebra+und+Geometrie&rft.atitle=A+Simple+Counterexample+to+Kouchnirenko%27s+Conjecture&rft.volume=43&rft.issue=1&rft.pages=1-8&rft.date=2002&rft.aulast=Haas&rft.aufirst=Bertrand&rft_id=https%3A%2F%2Fwww.emis.de%2Fjournals%2FBAG%2Fvol.43%2Fno.1%2Fb43h1haa.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-284"><span class="mw-cite-backlink"><b><a href="#cite_ref-284">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaiman2001" class="citation journal cs1">Haiman, Mark (2001). "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". <i>Journal of the American Mathematical Society</i>. <b>14</b> (4): 941–1006. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-01-00373-3">10.1090/S0894-0347-01-00373-3</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1839919">1839919</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9253880">9253880</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Mathematical+Society&rft.atitle=Hilbert+schemes%2C+polygraphs+and+the+Macdonald+positivity+conjecture&rft.volume=14&rft.issue=4&rft.pages=941-1006&rft.date=2001&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1839919%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9253880%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1090%2FS0894-0347-01-00373-3&rft.aulast=Haiman&rft.aufirst=Mark&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-285"><span class="mw-cite-backlink"><b><a href="#cite_ref-285">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAuscherHofmannLaceyMcIntosh2002" class="citation journal cs1">Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Ph. (2002). "The solution of the Kato square root problem for second order elliptic operators on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>". <i>Annals of Mathematics</i>. Second Series. <b>156</b> (2): 633–654. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3597201">10.2307/3597201</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3597201">3597201</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1933726">1933726</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+solution+of+the+Kato+square+root+problem+for+second+order+elliptic+operators+on+MATH+RENDER+ERROR&rft.volume=156&rft.issue=2&rft.pages=633-654&rft.date=2002&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1933726%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3597201%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3597201&rft.aulast=Auscher&rft.aufirst=Pascal&rft.au=Hofmann%2C+Steve&rft.au=Lacey%2C+Michael&rft.au=McIntosh%2C+Alan&rft.au=Tchamitchian%2C+Ph.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-286"><span class="mw-cite-backlink"><b><a href="#cite_ref-286">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbieri-VialeRosenschonSaito2003" class="citation journal cs1">Barbieri-Viale, Luca; Rosenschon, Andreas; Saito, Morihiko (2003). <a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2003.158.593">"Deligne's Conjecture on 1-Motives"</a>. <i>Annals of Mathematics</i>. <b>158</b> (2): 593–633. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0102150">math/0102150</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2003.158.593">10.4007/annals.2003.158.593</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Deligne%27s+Conjecture+on+1-Motives&rft.volume=158&rft.issue=2&rft.pages=593-633&rft.date=2003&rft_id=info%3Aarxiv%2Fmath%2F0102150&rft_id=info%3Adoi%2F10.4007%2Fannals.2003.158.593&rft.aulast=Barbieri-Viale&rft.aufirst=Luca&rft.au=Rosenschon%2C+Andreas&rft.au=Saito%2C+Morihiko&rft_id=https%3A%2F%2Fdoi.org%2F10.4007%252Fannals.2003.158.593&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-287"><span class="mw-cite-backlink"><b><a href="#cite_ref-287">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBreuilConradDiamondTaylor2001" class="citation cs2">Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over <b>Q</b>: wild 3-adic exercises", <i><a href="/wiki/Journal_of_the_American_Mathematical_Society" title="Journal of the American Mathematical Society">Journal of the American Mathematical Society</a></i>, <b>14</b> (4): 843–939, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0894-0347-01-00370-8">10.1090/S0894-0347-01-00370-8</a></span>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0894-0347">0894-0347</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1839918">1839918</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Mathematical+Society&rft.atitle=On+the+modularity+of+elliptic+curves+over+Q%3A+wild+3-adic+exercises&rft.volume=14&rft.issue=4&rft.pages=843-939&rft.date=2001&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1839918%23id-name%3DMR&rft.issn=0894-0347&rft_id=info%3Adoi%2F10.1090%2FS0894-0347-01-00370-8&rft.aulast=Breuil&rft.aufirst=Christophe&rft.au=Conrad%2C+Brian&rft.au=Diamond%2C+Fred&rft.au=Taylor%2C+Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-288"><span class="mw-cite-backlink"><b><a href="#cite_ref-288">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuca2000" class="citation journal cs1">Luca, Florian (2000). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf">"On a conjecture of Erdős and Stewart"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>70</b> (234): 893–897. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001MaCom..70..893L">2001MaCom..70..893L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0025-5718-00-01178-9">10.1090/s0025-5718-00-01178-9</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160402030443/http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-04-02<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=On+a+conjecture+of+Erd%C5%91s+and+Stewart&rft.volume=70&rft.issue=234&rft.pages=893-897&rft.date=2000&rft_id=info%3Adoi%2F10.1090%2Fs0025-5718-00-01178-9&rft_id=info%3Abibcode%2F2001MaCom..70..893L&rft.aulast=Luca&rft.aufirst=Florian&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F2001-70-234%2FS0025-5718-00-01178-9%2FS0025-5718-00-01178-9.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> <li id="cite_note-289"><span class="mw-cite-backlink"><b><a href="#cite_ref-289">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyah2000" class="citation book cs1"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael</a> (2000). "The geometry of classical particles". In <a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau, Shing-Tung</a> (ed.). <i>Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer</i>. Surveys in Differential Geometry. Vol. 7. Somerville, Massachusetts: International Press. pp. 1–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FSDG.2002.v7.n1.a1">10.4310/SDG.2002.v7.n1.a1</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1919420">1919420</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+geometry+of+classical+particles&rft.btitle=Papers+dedicated+to+Atiyah%2C+Bott%2C+Hirzebruch%2C+and+Singer&rft.place=Somerville%2C+Massachusetts&rft.series=Surveys+in+Differential+Geometry&rft.pages=1-15&rft.pub=International+Press&rft.date=2000&rft_id=info%3Adoi%2F10.4310%2FSDG.2002.v7.n1.a1&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1919420%23id-name%3DMR&rft.aulast=Atiyah&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2></div> <div class="mw-heading mw-heading3"><h3 id="Books_discussing_problems_solved_since_1995">Books discussing problems solved since 1995</h3></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingh2002" class="citation book cs1"><a href="/wiki/Simon_Singh" title="Simon Singh">Singh, Simon</a> (2002). <a href="/wiki/Fermat%27s_Last_Theorem_(book)" title="Fermat's Last Theorem (book)"><i>Fermat's Last Theorem</i></a>. Fourth Estate. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84115-791-7" title="Special:BookSources/978-1-84115-791-7"><bdi>978-1-84115-791-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fermat%27s+Last+Theorem&rft.pub=Fourth+Estate&rft.date=2002&rft.isbn=978-1-84115-791-7&rft.aulast=Singh&rft.aufirst=Simon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'Shea2007" class="citation book cs1"><a href="/wiki/Donal_O%27Shea" title="Donal O'Shea">O'Shea, Donal</a> (2007). <i>The Poincaré Conjecture</i>. Penguin. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84614-012-9" title="Special:BookSources/978-1-84614-012-9"><bdi>978-1-84614-012-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Poincar%C3%A9+Conjecture&rft.pub=Penguin&rft.date=2007&rft.isbn=978-1-84614-012-9&rft.aulast=O%27Shea&rft.aufirst=Donal&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSzpiro2003" class="citation book cs1"><a href="/wiki/George_Szpiro" title="George Szpiro">Szpiro, George G.</a> (2003). <i>Kepler's Conjecture</i>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-08601-7" title="Special:BookSources/978-0-471-08601-7"><bdi>978-0-471-08601-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Kepler%27s+Conjecture&rft.pub=Wiley&rft.date=2003&rft.isbn=978-0-471-08601-7&rft.aulast=Szpiro&rft.aufirst=George+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRonan2006" class="citation book cs1"><a href="/wiki/Mark_Ronan" title="Mark Ronan">Ronan, Mark</a> (2006). <i>Symmetry and the Monster</i>. Oxford. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-280722-9" title="Special:BookSources/978-0-19-280722-9"><bdi>978-0-19-280722-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Symmetry+and+the+Monster&rft.pub=Oxford&rft.date=2006&rft.isbn=978-0-19-280722-9&rft.aulast=Ronan&rft.aufirst=Mark&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Books_discussing_unsolved_problems">Books discussing unsolved problems</h3></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChungGraham1999" class="citation book cs1"><a href="/wiki/Fan_Chung" title="Fan Chung">Chung, Fan</a>; <a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ron</a> (1999). <a href="/wiki/Erd%C5%91s_on_Graphs" title="Erdős on Graphs"><i>Erdös on Graphs: His Legacy of Unsolved Problems</i></a>. AK Peters. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56881-111-6" title="Special:BookSources/978-1-56881-111-6"><bdi>978-1-56881-111-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Erd%C3%B6s+on+Graphs%3A+His+Legacy+of+Unsolved+Problems&rft.pub=AK+Peters&rft.date=1999&rft.isbn=978-1-56881-111-6&rft.aulast=Chung&rft.aufirst=Fan&rft.au=Graham%2C+Ron&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCroftFalconerGuy1994" class="citation book cs1">Croft, Hallard T.; <a href="/wiki/Kenneth_Falconer_(mathematician)" title="Kenneth Falconer (mathematician)">Falconer, Kenneth J.</a>; <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (1994). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/unsolvedproblems0000crof"><i>Unsolved Problems in Geometry</i></a></span>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-97506-1" title="Special:BookSources/978-0-387-97506-1"><bdi>978-0-387-97506-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+in+Geometry&rft.pub=Springer&rft.date=1994&rft.isbn=978-0-387-97506-1&rft.aulast=Croft&rft.aufirst=Hallard+T.&rft.au=Falconer%2C+Kenneth+J.&rft.au=Guy%2C+Richard+K.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Funsolvedproblems0000crof&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy2004" class="citation book cs1"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (2004). <i>Unsolved Problems in Number Theory</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-20860-2" title="Special:BookSources/978-0-387-20860-2"><bdi>978-0-387-20860-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+Problems+in+Number+Theory&rft.pub=Springer&rft.date=2004&rft.isbn=978-0-387-20860-2&rft.aulast=Guy&rft.aufirst=Richard+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleeWagon1996" class="citation book cs1"><a href="/wiki/Victor_Klee" title="Victor Klee">Klee, Victor</a>; <a href="/wiki/Stan_Wagon" title="Stan Wagon">Wagon, Stan</a> (1996). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/oldnewunsolvedpr0000klee"><i>Old and New Unsolved Problems in Plane Geometry and Number Theory</i></a></span>. The Mathematical Association of America. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-315-3" title="Special:BookSources/978-0-88385-315-3"><bdi>978-0-88385-315-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Old+and+New+Unsolved+Problems+in+Plane+Geometry+and+Number+Theory&rft.pub=The+Mathematical+Association+of+America&rft.date=1996&rft.isbn=978-0-88385-315-3&rft.aulast=Klee&rft.aufirst=Victor&rft.au=Wagon%2C+Stan&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Foldnewunsolvedpr0000klee&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFdu_Sautoy2003" class="citation book cs1"><a href="/wiki/Marcus_du_Sautoy" title="Marcus du Sautoy">du Sautoy, Marcus</a> (2003). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/musicofprimes00marc"><i>The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics</i></a></span>. Harper Collins. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-06-093558-0" title="Special:BookSources/978-0-06-093558-0"><bdi>978-0-06-093558-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Music+of+the+Primes%3A+Searching+to+Solve+the+Greatest+Mystery+in+Mathematics&rft.pub=Harper+Collins&rft.date=2003&rft.isbn=978-0-06-093558-0&rft.aulast=du+Sautoy&rft.aufirst=Marcus&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmusicofprimes00marc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDerbyshire2003" class="citation book cs1"><a href="/wiki/John_Derbyshire" title="John Derbyshire">Derbyshire, John</a> (2003). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/primeobsessionbe00derb_0"><i>Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics</i></a></span>. Joseph Henry Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-309-08549-6" title="Special:BookSources/978-0-309-08549-6"><bdi>978-0-309-08549-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Prime+Obsession%3A+Bernhard+Riemann+and+the+Greatest+Unsolved+Problem+in+Mathematics&rft.pub=Joseph+Henry+Press&rft.date=2003&rft.isbn=978-0-309-08549-6&rft.aulast=Derbyshire&rft.aufirst=John&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprimeobsessionbe00derb_0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevlin2006" class="citation book cs1"><a href="/wiki/Keith_Devlin" title="Keith Devlin">Devlin, Keith</a> (2006). <i>The Millennium Problems – The Seven Greatest Unsolved* Mathematical Puzzles Of Our Time</i>. Barnes & Noble. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7607-8659-8" title="Special:BookSources/978-0-7607-8659-8"><bdi>978-0-7607-8659-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Millennium+Problems+%E2%80%93+The+Seven+Greatest+Unsolved%2A+Mathematical+Puzzles+Of+Our+Time&rft.pub=Barnes+%26+Noble&rft.date=2006&rft.isbn=978-0-7607-8659-8&rft.aulast=Devlin&rft.aufirst=Keith&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlondelMegrestski2004" class="citation book cs1"><a href="/wiki/Vincent_Blondel" title="Vincent Blondel">Blondel, Vincent D.</a>; Megrestski, Alexandre (2004). <i>Unsolved problems in mathematical systems and control theory</i>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-11748-5" title="Special:BookSources/978-0-691-11748-5"><bdi>978-0-691-11748-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unsolved+problems+in+mathematical+systems+and+control+theory&rft.pub=Princeton+University+Press&rft.date=2004&rft.isbn=978-0-691-11748-5&rft.aulast=Blondel&rft.aufirst=Vincent+D.&rft.au=Megrestski%2C+Alexandre&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJiPoonYau2013" class="citation book cs1"><a href="/wiki/Lizhen_Ji" title="Lizhen Ji">Ji, Lizhen</a>; Poon, Yat-Sun; <a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau, Shing-Tung</a> (2013). <i>Open Problems and Surveys of Contemporary Mathematics (volume 6 in the Surveys in Modern Mathematics series) (Surveys of Modern Mathematics)</i>. International Press of Boston. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-57146-278-7" title="Special:BookSources/978-1-57146-278-7"><bdi>978-1-57146-278-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Open+Problems+and+Surveys+of+Contemporary+Mathematics+%28volume+6+in+the+Surveys+in+Modern+Mathematics+series%29+%28Surveys+of+Modern+Mathematics%29&rft.pub=International+Press+of+Boston&rft.date=2013&rft.isbn=978-1-57146-278-7&rft.aulast=Ji&rft.aufirst=Lizhen&rft.au=Poon%2C+Yat-Sun&rft.au=Yau%2C+Shing-Tung&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldschmidt2004" class="citation journal cs1"><a href="/wiki/Michel_Waldschmidt" title="Michel Waldschmidt">Waldschmidt, Michel</a> (2004). <a rel="nofollow" class="external text" href="http://www.math.jussieu.fr/~miw/articles/pdf/odp.pdf">"Open Diophantine Problems"</a> <span class="cs1-format">(PDF)</span>. <i>Moscow Mathematical Journal</i>. <b>4</b> (1): 245–305. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0312440">math/0312440</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.17323%2F1609-4514-2004-4-1-245-305">10.17323/1609-4514-2004-4-1-245-305</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1609-3321">1609-3321</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11845578">11845578</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1066.11030">1066.11030</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Moscow+Mathematical+Journal&rft.atitle=Open+Diophantine+Problems&rft.volume=4&rft.issue=1&rft.pages=245-305&rft.date=2004&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1066.11030%23id-name%3DZbl&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11845578%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.17323%2F1609-4514-2004-4-1-245-305&rft_id=info%3Aarxiv%2Fmath%2F0312440&rft.issn=1609-3321&rft.aulast=Waldschmidt&rft.aufirst=Michel&rft_id=http%3A%2F%2Fwww.math.jussieu.fr%2F~miw%2Farticles%2Fpdf%2Fodp.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMazurovKhukhro2015" class="citation arxiv cs1"><a href="/wiki/Victor_Mazurov" title="Victor Mazurov">Mazurov, V. D.</a>; Khukhro, E. I. (1 Jun 2015). "Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version)". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.0300v6">1401.0300v6</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.GR">math.GR</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Unsolved+Problems+in+Group+Theory.+The+Kourovka+Notebook.+No.+18+%28English+version%29&rft.date=2015-06-01&rft_id=info%3Aarxiv%2F1401.0300v6&rft.aulast=Mazurov&rft.aufirst=V.+D.&rft.au=Khukhro%2C+E.+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2></div> <ul><li><a rel="nofollow" class="external text" href="http://faculty.evansville.edu/ck6/integer/unsolved.html">24 Unsolved Problems and Rewards for them</a></li> <li><a rel="nofollow" class="external text" href="http://www.openproblems.net/">List of links to unsolved problems in mathematics, prizes and research</a></li> <li><a rel="nofollow" class="external text" href="http://garden.irmacs.sfu.ca/">Open Problem Garden</a></li> <li><a rel="nofollow" class="external text" href="http://aimpl.org/">AIM Problem Lists</a></li> <li><a rel="nofollow" class="external text" href="http://cage.ugent.be/~hvernaev/problems/archive.html">Unsolved Problem of the Week Archive</a>. MathPro Press.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBall" class="citation web cs1"><a href="/wiki/John_M._Ball" title="John M. Ball">Ball, John M.</a> <a rel="nofollow" class="external text" href="https://people.maths.ox.ac.uk/ball/Articles%20in%20Conference%20Proceedings%20and%20Books/JMB%202002%20re%20Marsden%2060th.pdf">"Some Open Problems in Elasticity"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Some+Open+Problems+in+Elasticity&rft.aulast=Ball&rft.aufirst=John+M.&rft_id=https%3A%2F%2Fpeople.maths.ox.ac.uk%2Fball%2FArticles%2520in%2520Conference%2520Proceedings%2520and%2520Books%2FJMB%25202002%2520re%2520Marsden%252060th.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConstantin" class="citation web cs1"><a href="/w/index.php?title=Peter_Constantin&action=edit&redlink=1" class="new" title="Peter Constantin (page does not exist)">Constantin, Peter</a>. <a rel="nofollow" class="external text" href="https://web.math.princeton.edu/~const/2k.pdf">"Some open problems and research directions in the mathematical study of fluid dynamics"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Some+open+problems+and+research+directions+in+the+mathematical+study+of+fluid+dynamics&rft.aulast=Constantin&rft.aufirst=Peter&rft_id=https%3A%2F%2Fweb.math.princeton.edu%2F~const%2F2k.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerre" class="citation web cs1"><a href="/wiki/Denis_Serre" title="Denis Serre">Serre, Denis</a>. <a rel="nofollow" class="external text" href="http://www.umpa.ens-lyon.fr/~serre/DPF/Ouverts.pdf">"Five Open Problems in Compressible Mathematical Fluid Dynamics"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Five+Open+Problems+in+Compressible+Mathematical+Fluid+Dynamics&rft.aulast=Serre&rft.aufirst=Denis&rft_id=http%3A%2F%2Fwww.umpa.ens-lyon.fr%2F~serre%2FDPF%2FOuverts.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://unsolvedproblems.org/">Unsolved Problems in Number Theory, Logic and Cryptography</a></li> <li><a rel="nofollow" class="external text" href="http://www.sci.ccny.cuny.edu/~shpil/gworld/problems/oproblems.html">200 open problems in graph theory</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170515145908/http://www.sci.ccny.cuny.edu/~shpil/gworld/problems/oproblems.html">Archived</a> 2017-05-15 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://cs.smith.edu/~orourke/TOPP/">The Open Problems Project (TOPP)</a>, discrete and computational geometry problems</li> <li><a rel="nofollow" class="external text" href="http://math.berkeley.edu/~kirby/problems.ps.gz">Kirby's list of unsolved problems in low-dimensional topology</a></li> <li><a rel="nofollow" class="external text" href="http://www.math.ucsd.edu/~erdosproblems/">Erdös' Problems on Graphs</a></li> <li><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.2823">Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory</a></li> <li><a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0165011414003194">Open problems from the 12th International Conference on Fuzzy Set Theory and Its Applications</a></li> <li><a rel="nofollow" class="external text" href="http://wwwmath.uni-muenster.de/logik/Personen/rds/list.html">List of open problems in inner model theory</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAizenman" class="citation web cs1"><a href="/wiki/Michael_Aizenman" title="Michael Aizenman">Aizenman, Michael</a>. <a rel="nofollow" class="external text" href="https://web.math.princeton.edu/~aizenman/OpenProblems_MathPhys/OPlist.html">"Open Problems in Mathematical Physics"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Open+Problems+in+Mathematical+Physics&rft.aulast=Aizenman&rft.aufirst=Michael&rft_id=https%3A%2F%2Fweb.math.princeton.edu%2F~aizenman%2FOpenProblems_MathPhys%2FOPlist.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+unsolved+problems+in+mathematics" class="Z3988"></span></li> <li><a href="/wiki/Barry_Simon" title="Barry Simon">Barry Simon</a>'s <a rel="nofollow" class="external text" href="http://math.caltech.edu/SimonPapers/R27.pdf">15 Problems in Mathematical Physics</a></li> <li><a href="/wiki/Alexandre_Eremenko" title="Alexandre Eremenko">Alexandre Eremenko</a>. <a rel="nofollow" class="external text" href="https://www.math.purdue.edu/~eremenko/uns1.html">Unsolved problems in Function Theory</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Well-known_unsolved_problems_by_discipline" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Unsolved_problems" title="Template:Unsolved problems"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Unsolved_problems" title="Template talk:Unsolved problems"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Unsolved_problems" title="Special:EditPage/Template:Unsolved problems"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Well-known_unsolved_problems_by_discipline" style="font-size:114%;margin:0 4em">Well-known <a href="/wiki/Lists_of_unsolved_problems" title="Lists of unsolved problems">unsolved problems</a> by discipline</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_unsolved_problems_in_astronomy" title="List of unsolved problems in astronomy">Astronomy</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_biology" title="List of unsolved problems in biology">Biology</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_chemistry" title="List of unsolved problems in chemistry">Chemistry</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_computer_science" title="List of unsolved problems in computer science">Computer science</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_economics" title="List of unsolved problems in economics">Economics</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_fair_division" title="List of unsolved problems in fair division">Fair division</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_geoscience" title="List of unsolved problems in geoscience">Geoscience</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_information_theory" title="List of unsolved problems in information theory">Information theory</a></li> <li><a class="mw-selflink selflink">Mathematics</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_medicine" class="mw-redirect" title="List of unsolved problems in medicine">Medicine</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_neuroscience" title="List of unsolved problems in neuroscience">Neuroscience</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_physics" title="List of unsolved problems in physics">Physics</a></li> <li><a href="/wiki/List_of_unsolved_problems_in_statistics" title="List of unsolved problems in statistics">Statistics</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐gll7b Cached time: 20241122140633 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 3.492 seconds Real time usage: 3.879 seconds Preprocessor visited node count: 19805/1000000 Post‐expand include size: 719192/2097152 bytes Template argument size: 2192/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 31/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 1172198/5000000 bytes Lua time usage: 1.958/10.000 seconds Lua memory usage: 15063766/52428800 bytes Lua Profile: dataWrapper <mw.lua:672> 440 ms 23.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 260 ms 13.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 200 ms 10.5% ? 160 ms 8.4% type 100 ms 5.3% <mw.lua:694> 100 ms 5.3% recursiveClone <mwInit.lua:45> 40 ms 2.1% (for generator) <mw.lua:684> 40 ms 2.1% (for generator) 40 ms 2.1% chunk <Module:Citation/CS1> 40 ms 2.1% [others] 480 ms 25.3% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2777.973 1 -total 70.00% 1944.699 2 Template:Reflist 25.87% 718.751 107 Template:Citation 19.53% 542.542 98 Template:Cite_journal 6.06% 168.435 39 Template:Cite_web 5.80% 161.238 28 Template:Cite_book 4.68% 130.133 4 Template:Langx 4.12% 114.357 1 Template:Prime_number_conjectures 4.07% 113.190 2 Template:Navbox 4.01% 111.488 23 Template:Cite_arXiv --> <!-- Saved in parser cache with key enwiki:pcache:idhash:183091-0!canonical and timestamp 20241122140633 and revision id 1258699358. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=List_of_unsolved_problems_in_mathematics&oldid=1258699358">https://en.wikipedia.org/w/index.php?title=List_of_unsolved_problems_in_mathematics&oldid=1258699358</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Unsolved_problems_in_mathematics" title="Category:Unsolved problems in mathematics">Unsolved problems in mathematics</a></li><li><a href="/wiki/Category:Conjectures" title="Category:Conjectures">Conjectures</a></li><li><a href="/wiki/Category:Lists_of_unsolved_problems" title="Category:Lists of unsolved problems">Lists of unsolved problems</a></li><li><a href="/wiki/Category:Lists_of_problems" title="Category:Lists of problems">Lists of problems</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_Russian-language_sources_(ru)" title="Category:CS1 Russian-language sources (ru)">CS1 Russian-language sources (ru)</a></li><li><a href="/wiki/Category:CS1_Spanish-language_sources_(es)" title="Category:CS1 Spanish-language sources (es)">CS1 Spanish-language sources (es)</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_maint:_DOI_inactive_as_of_November_2024" title="Category:CS1 maint: DOI inactive as of November 2024">CS1 maint: DOI inactive as of November 2024</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Wikipedia_semi-protected_pages" title="Category:Wikipedia semi-protected pages">Wikipedia semi-protected pages</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Dynamic_lists" title="Category:Dynamic lists">Dynamic lists</a></li><li><a href="/wiki/Category:Articles_containing_Russian-language_text" title="Category:Articles containing Russian-language text">Articles containing Russian-language text</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 03:03<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=List_of_unsolved_problems_in_mathematics&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-nv2q5","wgBackendResponseTime":231,"wgPageParseReport":{"limitreport":{"cputime":"3.492","walltime":"3.879","ppvisitednodes":{"value":19805,"limit":1000000},"postexpandincludesize":{"value":719192,"limit":2097152},"templateargumentsize":{"value":2192,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":31,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":1172198,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 2777.973 1 -total"," 70.00% 1944.699 2 Template:Reflist"," 25.87% 718.751 107 Template:Citation"," 19.53% 542.542 98 Template:Cite_journal"," 6.06% 168.435 39 Template:Cite_web"," 5.80% 161.238 28 Template:Cite_book"," 4.68% 130.133 4 Template:Langx"," 4.12% 114.357 1 Template:Prime_number_conjectures"," 4.07% 113.190 2 Template:Navbox"," 4.01% 111.488 23 Template:Cite_arXiv"]},"scribunto":{"limitreport-timeusage":{"value":"1.958","limit":"10.000"},"limitreport-memusage":{"value":15063766,"limit":52428800},"limitreport-profile":[["dataWrapper \u003Cmw.lua:672\u003E","440","23.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","13.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","200","10.5"],["?","160","8.4"],["type","100","5.3"],["\u003Cmw.lua:694\u003E","100","5.3"],["recursiveClone \u003CmwInit.lua:45\u003E","40","2.1"],["(for generator) \u003Cmw.lua:684\u003E","40","2.1"],["(for generator)","40","2.1"],["chunk \u003CModule:Citation/CS1\u003E","40","2.1"],["[others]","480","25.3"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-gll7b","timestamp":"20241122140633","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"List of unsolved problems in mathematics","url":"https:\/\/en.wikipedia.org\/wiki\/List_of_unsolved_problems_in_mathematics","sameAs":"http:\/\/www.wikidata.org\/entity\/Q848034","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q848034","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-02-14T10:34:42Z","dateModified":"2024-11-21T03:03:54Z","headline":"Wikimedia list article"}</script> </body> </html>