CINXE.COM
Logarithme — Wikipédia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Logarithme — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"387f955a-38df-4818-b370-b166627fae9f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Logarithme","wgTitle":"Logarithme","wgCurRevisionId":219477454,"wgRevisionId":219477454,"wgArticleId":12042,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Article contenant un appel à traduction en anglais","Catégorie Commons avec lien local identique sur Wikidata","Page utilisant un modèle Bases inactif","Page utilisant P1417","Page utilisant P8313","Page utilisant P4223","Page utilisant P6706","Page utilisant P7305","Page utilisant P6058","Page utilisant P4342","Page utilisant P3365","Page pointant vers des bases externes","Page pointant vers des dictionnaires ou encyclopédies généralistes", "Article de Wikipédia avec notice d'autorité","Portail:Analyse/Articles liés","Portail:Mathématiques/Articles liés","Portail:Sciences/Articles liés","Article de qualité en macédonien","Article de qualité en anglais","Article de qualité en vietnamien","Article de qualité en hongrois","Article de qualité en russe","Article de qualité en portugais","Logarithme"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Logarithme","wgRelevantArticleId":12042,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true}, "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11197","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/1200px-Logarithm_plots.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="910"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/800px-Logarithm_plots.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="607"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/640px-Logarithm_plots.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="485"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Logarithme — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/Logarithme"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Logarithme&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Logarithme"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Logarithme rootpage-Logarithme skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l'encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l'apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=Logarithme" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=Logarithme" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=Logarithme" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=Logarithme" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Motivation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Motivation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Motivation</span> </div> </a> <ul id="toc-Motivation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Historique" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Historique"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Historique</span> </div> </a> <ul id="toc-Historique-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Propriétés_des_fonctions_logarithmes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Propriétés_des_fonctions_logarithmes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Propriétés des fonctions logarithmes</span> </div> </a> <button aria-controls="toc-Propriétés_des_fonctions_logarithmes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Propriétés des fonctions logarithmes</span> </button> <ul id="toc-Propriétés_des_fonctions_logarithmes-sublist" class="vector-toc-list"> <li id="toc-Propriétés_algébriques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Propriétés_algébriques"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Propriétés algébriques</span> </div> </a> <ul id="toc-Propriétés_algébriques-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Changement_de_base" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Changement_de_base"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Changement de base</span> </div> </a> <ul id="toc-Changement_de_base-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dérivée" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dérivée"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Dérivée</span> </div> </a> <ul id="toc-Dérivée-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nombre_de_chiffres_avant_la_virgule" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nombre_de_chiffres_avant_la_virgule"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Nombre de chiffres avant la virgule</span> </div> </a> <ul id="toc-Nombre_de_chiffres_avant_la_virgule-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fonction_réciproque_(antilogarithme)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fonction_réciproque_(antilogarithme)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Fonction réciproque (antilogarithme)</span> </div> </a> <ul id="toc-Fonction_réciproque_(antilogarithme)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fonctions_logarithme_courantes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fonctions_logarithme_courantes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Fonctions logarithme courantes</span> </div> </a> <button aria-controls="toc-Fonctions_logarithme_courantes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Fonctions logarithme courantes</span> </button> <ul id="toc-Fonctions_logarithme_courantes-sublist" class="vector-toc-list"> <li id="toc-Logarithme_népérien" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logarithme_népérien"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Logarithme népérien</span> </div> </a> <ul id="toc-Logarithme_népérien-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logarithme_décimal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logarithme_décimal"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Logarithme décimal</span> </div> </a> <ul id="toc-Logarithme_décimal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logarithme_binaire" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logarithme_binaire"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Logarithme binaire</span> </div> </a> <ul id="toc-Logarithme_binaire-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cologarithme" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cologarithme"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Cologarithme</span> </div> </a> <ul id="toc-Cologarithme-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Généralisations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Généralisations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Généralisations</span> </div> </a> <ul id="toc-Généralisations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes_et_références" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes_et_références"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes et références</span> </div> </a> <ul id="toc-Notes_et_références-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voir_aussi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voir_aussi"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Voir aussi</span> </div> </a> <button aria-controls="toc-Voir_aussi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Voir aussi</span> </button> <ul id="toc-Voir_aussi-sublist" class="vector-toc-list"> <li id="toc-Articles_connexes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Articles_connexes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Articles connexes</span> </div> </a> <ul id="toc-Articles_connexes-sublist" class="vector-toc-list"> <li id="toc-Applications_pratiques" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Applications_pratiques"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1.1</span> <span>Applications pratiques</span> </div> </a> <ul id="toc-Applications_pratiques-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Liens_externes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Liens_externes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Liens externes</span> </div> </a> <ul id="toc-Liens_externes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Logarithme</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Aller à un article dans une autre langue. Disponible en 109 langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-109" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">109 langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Logaritme" title="Logaritme – afrikaans" lang="af" hreflang="af" data-title="Logaritme" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Logarithmus" title="Logarithmus – alémanique" lang="gsw" hreflang="gsw" data-title="Logarithmus" data-language-autonym="Alemannisch" data-language-local-name="alémanique" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8E%E1%8C%8B%E1%88%AA%E1%8B%9D%E1%88%9D" title="ሎጋሪዝም – amharique" lang="am" hreflang="am" data-title="ሎጋሪዝም" data-language-autonym="አማርኛ" data-language-local-name="amharique" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Logaritmo" title="Logaritmo – aragonais" lang="an" hreflang="an" data-title="Logaritmo" data-language-autonym="Aragonés" data-language-local-name="aragonais" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%84%D9%88%D8%BA%D8%A7%D8%B1%D9%8A%D8%AA%D9%85" title="لوغاريتم – arabe" lang="ar" hreflang="ar" data-title="لوغاريتم" data-language-autonym="العربية" data-language-local-name="arabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D9%84%D9%88%DA%AD%D8%A7%D8%B1%D9%8A%D8%AA%D9%85" title="لوڭاريتم – arabe marocain" lang="ary" hreflang="ary" data-title="لوڭاريتم" data-language-autonym="الدارجة" data-language-local-name="arabe marocain" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%98%E0%A6%BE%E0%A6%A4%E0%A6%BE%E0%A6%82%E0%A6%95" title="ঘাতাংক – assamais" lang="as" hreflang="as" data-title="ঘাতাংক" data-language-autonym="অসমীয়া" data-language-local-name="assamais" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Logaritmu" title="Logaritmu – asturien" lang="ast" hreflang="ast" data-title="Logaritmu" data-language-autonym="Asturianu" data-language-local-name="asturien" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Loqarifm" title="Loqarifm – azerbaïdjanais" lang="az" hreflang="az" data-title="Loqarifm" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaïdjanais" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – bachkir" lang="ba" hreflang="ba" data-title="Логарифм" data-language-autonym="Башҡортса" data-language-local-name="bachkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Luogar%C4%97tmos" title="Luogarėtmos – samogitien" lang="sgs" hreflang="sgs" data-title="Luogarėtmos" data-language-autonym="Žemaitėška" data-language-local-name="samogitien" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – Central Bikol" lang="bcl" hreflang="bcl" data-title="Logaritmo" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B3%D0%B0%D1%80%D1%8B%D1%84%D0%BC" title="Лагарыфм – biélorusse" lang="be" hreflang="be" data-title="Лагарыфм" data-language-autonym="Беларуская" data-language-local-name="biélorusse" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9B%D1%8F%D0%B3%D0%B0%D1%80%D1%8B%D1%82%D0%BC" title="Лягарытм – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Лягарытм" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D1%8A%D0%BC" title="Логаритъм – bulgare" lang="bg" hreflang="bg" data-title="Логаритъм" data-language-autonym="Български" data-language-local-name="bulgare" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bjn mw-list-item"><a href="https://bjn.wikipedia.org/wiki/Logaritma" title="Logaritma – banjar" lang="bjn" hreflang="bjn" data-title="Logaritma" data-language-autonym="Banjar" data-language-local-name="banjar" class="interlanguage-link-target"><span>Banjar</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B2%E0%A6%97%E0%A6%BE%E0%A6%B0%E0%A6%BF%E0%A6%A6%E0%A6%AE" title="লগারিদম – bengali" lang="bn" hreflang="bn" data-title="লগারিদম" data-language-autonym="বাংলা" data-language-local-name="bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Logaritm" title="Logaritm – breton" lang="br" hreflang="br" data-title="Logaritm" data-language-autonym="Brezhoneg" data-language-local-name="breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Logaritam" title="Logaritam – bosniaque" lang="bs" hreflang="bs" data-title="Logaritam" data-language-autonym="Bosanski" data-language-local-name="bosniaque" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Логарифм" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Logaritme" title="Logaritme – catalan" lang="ca" hreflang="ca" data-title="Logaritme" data-language-autonym="Català" data-language-local-name="catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%84%DB%86%DA%AF%D8%A7%D8%B1%DB%8C%D8%AA%D9%85" title="لۆگاریتم – sorani" lang="ckb" hreflang="ckb" data-title="لۆگاریتم" data-language-autonym="کوردی" data-language-local-name="sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Logaritmus" title="Logaritmus – tchèque" lang="cs" hreflang="cs" data-title="Logaritmus" data-language-autonym="Čeština" data-language-local-name="tchèque" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – tchouvache" lang="cv" hreflang="cv" data-title="Логарифм" data-language-autonym="Чӑвашла" data-language-local-name="tchouvache" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Logarithm" title="Logarithm – gallois" lang="cy" hreflang="cy" data-title="Logarithm" data-language-autonym="Cymraeg" data-language-local-name="gallois" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Logaritme" title="Logaritme – danois" lang="da" hreflang="da" data-title="Logaritme" data-language-autonym="Dansk" data-language-local-name="danois" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Logarithmus" title="Logarithmus – allemand" lang="de" hreflang="de" data-title="Logarithmus" data-language-autonym="Deutsch" data-language-local-name="allemand" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Logaritma" title="Logaritma – Zazaki" lang="diq" hreflang="diq" data-title="Logaritma" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%AC%CF%81%CE%B9%CE%B8%CE%BC%CE%BF%CF%82" title="Λογάριθμος – grec" lang="el" hreflang="el" data-title="Λογάριθμος" data-language-autonym="Ελληνικά" data-language-local-name="grec" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Logar%C3%ACtem" title="Logarìtem – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Logarìtem" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualité"><a href="https://en.wikipedia.org/wiki/Logarithm" title="Logarithm – anglais" lang="en" hreflang="en" data-title="Logarithm" data-language-autonym="English" data-language-local-name="anglais" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Logaritmo" title="Logaritmo – espéranto" lang="eo" hreflang="eo" data-title="Logaritmo" data-language-autonym="Esperanto" data-language-local-name="espéranto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Logaritmo" title="Logaritmo – espagnol" lang="es" hreflang="es" data-title="Logaritmo" data-language-autonym="Español" data-language-local-name="espagnol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Logaritm" title="Logaritm – estonien" lang="et" hreflang="et" data-title="Logaritm" data-language-autonym="Eesti" data-language-local-name="estonien" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Logaritmo" title="Logaritmo – basque" lang="eu" hreflang="eu" data-title="Logaritmo" data-language-autonym="Euskara" data-language-local-name="basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Logaritmu" title="Logaritmu – estrémègne" lang="ext" hreflang="ext" data-title="Logaritmu" data-language-autonym="Estremeñu" data-language-local-name="estrémègne" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%84%DA%AF%D8%A7%D8%B1%DB%8C%D8%AA%D9%85" title="لگاریتم – persan" lang="fa" hreflang="fa" data-title="لگاریتم" data-language-autonym="فارسی" data-language-local-name="persan" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Logaritmi" title="Logaritmi – finnois" lang="fi" hreflang="fi" data-title="Logaritmi" data-language-autonym="Suomi" data-language-local-name="finnois" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Logaritma" title="Logaritma – féroïen" lang="fo" hreflang="fo" data-title="Logaritma" data-language-autonym="Føroyskt" data-language-local-name="féroïen" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Logartam" title="Logartam – irlandais" lang="ga" hreflang="ga" data-title="Logartam" data-language-autonym="Gaeilge" data-language-local-name="irlandais" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8" title="對數 – gan" lang="gan" hreflang="gan" data-title="對數" data-language-autonym="贛語" data-language-local-name="gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Logaritm" title="Logaritm – créole guyanais" lang="gcr" hreflang="gcr" data-title="Logaritm" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="créole guyanais" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – galicien" lang="gl" hreflang="gl" data-title="Logaritmo" data-language-autonym="Galego" data-language-local-name="galicien" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9C%D7%95%D7%92%D7%A8%D7%99%D7%AA%D7%9D" title="לוגריתם – hébreu" lang="he" hreflang="he" data-title="לוגריתם" data-language-autonym="עברית" data-language-local-name="hébreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B2%E0%A4%98%E0%A5%81%E0%A4%97%E0%A4%A3%E0%A4%95" title="लघुगणक – hindi" lang="hi" hreflang="hi" data-title="लघुगणक" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Logarithm" title="Logarithm – hindi fidjien" lang="hif" hreflang="hif" data-title="Logarithm" data-language-autonym="Fiji Hindi" data-language-local-name="hindi fidjien" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Logaritam" title="Logaritam – croate" lang="hr" hreflang="hr" data-title="Logaritam" data-language-autonym="Hrvatski" data-language-local-name="croate" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualité"><a href="https://hu.wikipedia.org/wiki/Logaritmus" title="Logaritmus – hongrois" lang="hu" hreflang="hu" data-title="Logaritmus" data-language-autonym="Magyar" data-language-local-name="hongrois" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BC%D5%B8%D5%A3%D5%A1%D6%80%D5%AB%D5%A9%D5%B4" title="Լոգարիթմ – arménien" lang="hy" hreflang="hy" data-title="Լոգարիթմ" data-language-autonym="Հայերեն" data-language-local-name="arménien" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Logarithmo" title="Logarithmo – interlingua" lang="ia" hreflang="ia" data-title="Logarithmo" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Logaritma" title="Logaritma – indonésien" lang="id" hreflang="id" data-title="Logaritma" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonésien" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Logaritmo" title="Logaritmo – ido" lang="io" hreflang="io" data-title="Logaritmo" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Logri" title="Logri – islandais" lang="is" hreflang="is" data-title="Logri" data-language-autonym="Íslenska" data-language-local-name="islandais" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Logaritmo" title="Logaritmo – italien" lang="it" hreflang="it" data-title="Logaritmo" data-language-autonym="Italiano" data-language-local-name="italien" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0" title="対数 – japonais" lang="ja" hreflang="ja" data-title="対数" data-language-autonym="日本語" data-language-local-name="japonais" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Lagaridim" title="Lagaridim – créole jamaïcain" lang="jam" hreflang="jam" data-title="Lagaridim" data-language-autonym="Patois" data-language-local-name="créole jamaïcain" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9A%E1%83%9D%E1%83%92%E1%83%90%E1%83%A0%E1%83%98%E1%83%97%E1%83%9B%E1%83%98" title="ლოგარითმი – géorgien" lang="ka" hreflang="ka" data-title="ლოგარითმი" data-language-autonym="ქართული" data-language-local-name="géorgien" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – kazakh" lang="kk" hreflang="kk" data-title="Логарифм" data-language-autonym="Қазақша" data-language-local-name="kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A1%9C%EA%B7%B8_(%EC%88%98%ED%95%99)" title="로그 (수학) – coréen" lang="ko" hreflang="ko" data-title="로그 (수학)" data-language-autonym="한국어" data-language-local-name="coréen" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Logarithmus" title="Logarithmus – latin" lang="la" hreflang="la" data-title="Logarithmus" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Logaritmo" title="Logaritmo – lingua franca nova" lang="lfn" hreflang="lfn" data-title="Logaritmo" data-language-autonym="Lingua Franca Nova" data-language-local-name="lingua franca nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Logaritm" title="Logaritm – lombard" lang="lmo" hreflang="lmo" data-title="Logaritm" data-language-autonym="Lombard" data-language-local-name="lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Logaritmas" title="Logaritmas – lituanien" lang="lt" hreflang="lt" data-title="Logaritmas" data-language-autonym="Lietuvių" data-language-local-name="lituanien" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Logaritms" title="Logaritms – letton" lang="lv" hreflang="lv" data-title="Logaritms" data-language-autonym="Latviešu" data-language-local-name="letton" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Anisa" title="Anisa – malgache" lang="mg" hreflang="mg" data-title="Anisa" data-language-autonym="Malagasy" data-language-local-name="malgache" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualité"><a href="https://mk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – macédonien" lang="mk" hreflang="mk" data-title="Логаритам" data-language-autonym="Македонски" data-language-local-name="macédonien" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B2%E0%B5%8B%E0%B4%97%E0%B4%B0%E0%B4%BF%E0%B4%A4%E0%B4%82" title="ലോഗരിതം – malayalam" lang="ml" hreflang="ml" data-title="ലോഗരിതം" data-language-autonym="മലയാളം" data-language-local-name="malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B2%E0%A5%89%E0%A4%97%E0%A5%85%E0%A4%B0%E0%A4%BF%E0%A4%A6%E0%A4%AE" title="लॉगॅरिदम – marathi" lang="mr" hreflang="mr" data-title="लॉगॅरिदम" data-language-autonym="मराठी" data-language-local-name="marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Logaritma" title="Logaritma – malais" lang="ms" hreflang="ms" data-title="Logaritma" data-language-autonym="Bahasa Melayu" data-language-local-name="malais" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9C%E1%80%B1%E1%80%AC%E1%80%B7%E1%80%82%E1%80%9B%E1%80%85%E1%80%BA%E1%80%9E%E1%80%99%E1%80%BA" title="လော့ဂရစ်သမ် – birman" lang="my" hreflang="my" data-title="လော့ဂရစ်သမ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="birman" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Logarithmus" title="Logarithmus – bas-allemand" lang="nds" hreflang="nds" data-title="Logarithmus" data-language-autonym="Plattdüütsch" data-language-local-name="bas-allemand" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Logaritme" title="Logaritme – néerlandais" lang="nl" hreflang="nl" data-title="Logaritme" data-language-autonym="Nederlands" data-language-local-name="néerlandais" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Logaritme" title="Logaritme – norvégien nynorsk" lang="nn" hreflang="nn" data-title="Logaritme" data-language-autonym="Norsk nynorsk" data-language-local-name="norvégien nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Logaritme" title="Logaritme – norvégien bokmål" lang="nb" hreflang="nb" data-title="Logaritme" data-language-autonym="Norsk bokmål" data-language-local-name="norvégien bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Logaritme" title="Logaritme – occitan" lang="oc" hreflang="oc" data-title="Logaritme" data-language-autonym="Occitan" data-language-local-name="occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Loogarizimii" title="Loogarizimii – oromo" lang="om" hreflang="om" data-title="Loogarizimii" data-language-autonym="Oromoo" data-language-local-name="oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B2%E0%A8%98%E0%A9%82%E0%A8%97%E0%A8%A3%E0%A8%95" title="ਲਘੂਗਣਕ – pendjabi" lang="pa" hreflang="pa" data-title="ਲਘੂਗਣਕ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="pendjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Logarytm" title="Logarytm – polonais" lang="pl" hreflang="pl" data-title="Logarytm" data-language-autonym="Polski" data-language-local-name="polonais" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%84%D8%A7%DA%AF%D8%B1%D8%AA%DA%BE%D9%85" title="لاگرتھم – Western Punjabi" lang="pnb" hreflang="pnb" data-title="لاگرتھم" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualité"><a href="https://pt.wikipedia.org/wiki/Logaritmo" title="Logaritmo – portugais" lang="pt" hreflang="pt" data-title="Logaritmo" data-language-autonym="Português" data-language-local-name="portugais" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Logaritm" title="Logaritm – roumain" lang="ro" hreflang="ro" data-title="Logaritm" data-language-autonym="Română" data-language-local-name="roumain" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualité"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – russe" lang="ru" hreflang="ru" data-title="Логарифм" data-language-autonym="Русский" data-language-local-name="russe" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – iakoute" lang="sah" hreflang="sah" data-title="Логарифм" data-language-autonym="Саха тыла" data-language-local-name="iakoute" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Logaritmu" title="Logaritmu – sicilien" lang="scn" hreflang="scn" data-title="Logaritmu" data-language-autonym="Sicilianu" data-language-local-name="sicilien" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh badge-Q70893996 mw-list-item" title=""><a href="https://sh.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – serbo-croate" lang="sh" hreflang="sh" data-title="Логаритам" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbo-croate" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BD%E0%B6%9D%E0%B7%94_%E0%B6%9C%E0%B6%AB%E0%B6%9A" title="ලඝු ගණක – cingalais" lang="si" hreflang="si" data-title="ලඝු ගණක" data-language-autonym="සිංහල" data-language-local-name="cingalais" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Logarithm" title="Logarithm – Simple English" lang="en-simple" hreflang="en-simple" data-title="Logarithm" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Logaritmus" title="Logaritmus – slovaque" lang="sk" hreflang="sk" data-title="Logaritmus" data-language-autonym="Slovenčina" data-language-local-name="slovaque" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Logaritem" title="Logaritem – slovène" lang="sl" hreflang="sl" data-title="Logaritem" data-language-autonym="Slovenščina" data-language-local-name="slovène" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Daraunene" title="Daraunene – shona" lang="sn" hreflang="sn" data-title="Daraunene" data-language-autonym="ChiShona" data-language-local-name="shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Logaritmet" title="Logaritmet – albanais" lang="sq" hreflang="sq" data-title="Logaritmet" data-language-autonym="Shqip" data-language-local-name="albanais" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Логаритам – serbe" lang="sr" hreflang="sr" data-title="Логаритам" data-language-autonym="Српски / srpski" data-language-local-name="serbe" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Logaritm" title="Logaritm – suédois" lang="sv" hreflang="sv" data-title="Logaritm" data-language-autonym="Svenska" data-language-local-name="suédois" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Logi" title="Logi – swahili" lang="sw" hreflang="sw" data-title="Logi" data-language-autonym="Kiswahili" data-language-local-name="swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%9F%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%88" title="மடக்கை – tamoul" lang="ta" hreflang="ta" data-title="மடக்கை" data-language-autonym="தமிழ்" data-language-local-name="tamoul" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A5%E0%B8%AD%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%B4%E0%B8%97%E0%B8%B6%E0%B8%A1" title="ลอการิทึม – thaï" lang="th" hreflang="th" data-title="ลอการิทึม" data-language-autonym="ไทย" data-language-local-name="thaï" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Logaritmo" title="Logaritmo – tagalog" lang="tl" hreflang="tl" data-title="Logaritmo" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Logaritma" title="Logaritma – turc" lang="tr" hreflang="tr" data-title="Logaritma" data-language-autonym="Türkçe" data-language-local-name="turc" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – tatar" lang="tt" hreflang="tt" data-title="Логарифм" data-language-autonym="Татарча / tatarça" data-language-local-name="tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC" title="Логарифм – ukrainien" lang="uk" hreflang="uk" data-title="Логарифм" data-language-autonym="Українська" data-language-local-name="ukrainien" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%84%D8%A7%DA%AF%D8%B1%D8%AA%DA%BE%D9%85" title="لاگرتھم – ourdou" lang="ur" hreflang="ur" data-title="لاگرتھم" data-language-autonym="اردو" data-language-local-name="ourdou" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Logarifm" title="Logarifm – ouzbek" lang="uz" hreflang="uz" data-title="Logarifm" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="ouzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437796 badge-featuredarticle mw-list-item" title="article de qualité"><a href="https://vi.wikipedia.org/wiki/Logarit" title="Logarit – vietnamien" lang="vi" hreflang="vi" data-title="Logarit" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamien" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Logaritmo" title="Logaritmo – waray" lang="war" hreflang="war" data-title="Logaritmo" data-language-autonym="Winaray" data-language-local-name="waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0" title="对数 – wu" lang="wuu" hreflang="wuu" data-title="对数" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%9C%D7%90%D7%92%D7%90%D7%A8%D7%99%D7%98%D7%9D" title="לאגאריטם – yiddish" lang="yi" hreflang="yi" data-title="לאגאריטם" data-language-autonym="ייִדיש" data-language-local-name="yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0" title="对数 – chinois" lang="zh" hreflang="zh" data-title="对数" data-language-autonym="中文" data-language-local-name="chinois" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/T%C3%B9i-s%C3%B2%CD%98" title="Tùi-sò͘ – minnan" lang="nan" hreflang="nan" data-title="Tùi-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8" title="對數 – cantonais" lang="yue" hreflang="yue" data-title="對數" data-language-autonym="粵語" data-language-local-name="cantonais" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11197#sitelinks-wikipedia" title="Modifier les liens interlangues" class="wbc-editpage">Modifier les liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logarithme" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:Logarithme" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Logarithme"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logarithme&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logarithme&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Logarithme&action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Logarithme"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logarithme&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logarithme&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Logarithme&action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/Logarithme" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/Logarithme" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales" title="Liste de toutes les pages spéciales [q]" accesskey="q"><span>Pages spéciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Logarithme&oldid=219477454" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Logarithme&action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&page=Logarithme&id=219477454&wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FLogarithme"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FLogarithme"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&bookcmd=book_creator&referer=Logarithme"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&page=Logarithme&action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Logarithme&printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Logarithm" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://fr.wikiversity.org/wiki/Fonction_logarithme" hreflang="fr"><span>Wikiversité</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11197" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l'encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Logo_disambig-homophone.svg/20px-Logo_disambig-homophone.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Logo_disambig-homophone.svg/30px-Logo_disambig-homophone.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Logo_disambig-homophone.svg/40px-Logo_disambig-homophone.svg.png 2x" data-file-width="512" data-file-height="375" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Pour l’article ayant un titre homophone, voir <a href="/wiki/Loga-Rythme" title="Loga-Rythme">Loga-Rythme</a>. </p> </div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Logarithm_plots.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/220px-Logarithm_plots.png" decoding="async" width="220" height="167" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/330px-Logarithm_plots.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/81/Logarithm_plots.png/440px-Logarithm_plots.png 2x" data-file-width="1706" data-file-height="1294" /></a><figcaption>Tracés des courbes des fonctions logarithmes en base 2, <a href="/wiki/E_(nombre)" title="E (nombre)"><span class="texhtml">e</span></a> et 10.</figcaption></figure> <p>En <a href="/wiki/Math%C3%A9matiques" title="Mathématiques">mathématiques</a>, un <b>logarithme</b> est la <a href="/wiki/Fonction_r%C3%A9ciproque" class="mw-redirect" title="Fonction réciproque">fonction réciproque</a> d'une <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a>, c'est-à-dire que le logarithme de base <span class="texhtml mvar" style="font-style:italic;">b</span> d'un <a href="/wiki/Nombre_r%C3%A9el" title="Nombre réel">nombre réel</a> strictement positif est la <a href="/wiki/Puissance_d%27un_nombre" title="Puissance d'un nombre">puissance</a> à laquelle il faut élever la base <span class="texhtml mvar" style="font-style:italic;">b</span> pour obtenir ce nombre. </p> <div style="margin:0.5em 2em;"><strong>Exemple :</strong> <div style="padding-left:2em; border-left:1px dotted #999;"> <p>Le logarithme en base dix de 1000 est 3 car 10<sup>3</sup> = 10×10×10 = 1000. </p> </div></div> <p>Dans ce cas, le plus simple, le logarithme est le nombre entier qui compte les répétitions de la base multipliée par elle-même. Dans cette opération, multiplier un nombre par la base équivaut à ajouter 1 à son logarithme. L'<a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a> généralise cette opération de multiplication par soi-même à des puissances intermédiaires entre les entiers, qu'on exprime en nombres réels. </p> <div style="margin:0.5em 2em;"><strong>Exemple :</strong> <div style="padding-left:2em; border-left:1px dotted #999;"> <p>Le logarithme en base dix de la racine de 10, notée <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {10}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {10}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7409b0ddbc1f90280265e7bc95dd20626ebf1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:2.843ex;" alt="{\displaystyle {\sqrt {10}}}"></span>, est 0,5 car </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {10}}^{2}={\sqrt {10}}\times {\sqrt {10}}=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {10}}^{2}={\sqrt {10}}\times {\sqrt {10}}=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd5d49eb7f6671d60d284b6041c6f8ddef673a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.199ex; height:3.343ex;" alt="{\displaystyle {\sqrt {10}}^{2}={\sqrt {10}}\times {\sqrt {10}}=10}"></span>, donc <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\log _{10}{\sqrt {10}})+(\log _{10}{\sqrt {10}})=\log _{10}{10}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\log _{10}{\sqrt {10}})+(\log _{10}{\sqrt {10}})=\log _{10}{10}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a2214842dc00b74f6b6f19013b83a47f3183305" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.37ex; height:3.009ex;" alt="{\displaystyle (\log _{10}{\sqrt {10}})+(\log _{10}{\sqrt {10}})=\log _{10}{10}=1}"></span> </p> </div></div> <p>Le logarithme de base <span class="texhtml mvar" style="font-style:italic;">b</span> du nombre <span class="texhtml mvar" style="font-style:italic;">x</span> se note <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span>. Si la base est évidente d'après le contexte, ou si elle n'a pas d'importance, on peut écrire simplement <span class="texhtml">log <i>x</i></span>. Par définition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{\log _{b}x}=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{\log _{b}x}=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/743feead70714b2186ce987a71837976e168dc67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.824ex; height:2.676ex;" alt="{\displaystyle b^{\log _{b}x}=x}"></span>. </p><p><a href="/wiki/John_Napier" title="John Napier">John Napier</a> a développé les logarithmes au début du <abbr class="abbr" title="17ᵉ siècle"><span class="romain">XVII</span><sup style="font-size:72%">e</sup></abbr> siècle. L'utilité du logarithme pour le calcul vient du fait que la fonction logarithme transforme un produit en somme : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x\cdot y)=\log _{b}x+\log _{b}y\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x\cdot y)=\log _{b}x+\log _{b}y\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7536d0a3b53e44fd3a7c88e07e50549011d5800" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.287ex; height:2.843ex;" alt="{\displaystyle \log _{b}(x\cdot y)=\log _{b}x+\log _{b}y\,}"></span>. Pendant trois siècles, la <a href="/wiki/Table_de_logarithmes" title="Table de logarithmes">table de logarithmes</a> et la <a href="/wiki/R%C3%A8gle_%C3%A0_calcul" title="Règle à calcul">règle à calcul</a>, fondée sur une échelle logarithmique, ont servi pour le calcul, jusqu'à leur remplacement, dans le dernier quart du <abbr class="abbr" title="20ᵉ siècle"><span class="romain">XX</span><sup style="font-size:72%">e</sup></abbr> siècle, par des <a href="/wiki/Calculatrice" title="Calculatrice">calculatrices</a> électroniques. </p><p>Le logarithme permet en outre de présenter sous une forme concise des relations entre nombres d'<a href="/wiki/Ordre_de_grandeur" title="Ordre de grandeur">ordre de grandeur</a> très différents. </p><p>Trois fonctions logarithmes sont d'usage courant : </p> <ul><li>le <a href="/wiki/Logarithme_naturel" class="mw-redirect" title="Logarithme naturel">logarithme népérien</a> (ou <i>naturel</i>) dont la base est le <a href="/wiki/E_(nombre)" title="E (nombre)">nombre <span class="texhtml">e</span></a>, est fondamental en <a href="/wiki/Analyse_math%C3%A9matique" class="mw-redirect" title="Analyse mathématique">analyse mathématique</a> car il est la <a href="/wiki/Primitive" title="Primitive">primitive</a> de la fonction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto {\tfrac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto {\tfrac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aba4b386a9233453fbdf76a72b0e675b17383c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.72ex; height:3.343ex;" alt="{\displaystyle x\mapsto {\tfrac {1}{x}}}"></span> s’annulant en 1 et la fonction réciproque de la <a href="/wiki/Fonction_exponentielle" title="Fonction exponentielle">fonction exponentielle</a> ; il est souvent noté <span class="texhtml">ln</span> sauf en <a href="/wiki/Informatique" title="Informatique">informatique</a> ou en <a href="/wiki/Th%C3%A9orie_des_nombres" title="Théorie des nombres">théorie des nombres</a> où <span class="texhtml">log</span> sans autre précision signifie en général logarithme népérien ;</li> <li>le <a href="/wiki/Logarithme_d%C3%A9cimal" title="Logarithme décimal">logarithme décimal</a>, dont la base est 10, reste le plus communément utilisé pour les calculs dans le domaine <a href="/wiki/Technologie" title="Technologie">technologique</a> ainsi qu'en chimie pour le calcul de <a href="/wiki/Potentiel_hydrog%C3%A8ne" title="Potentiel hydrogène">pH</a> ;</li> <li>le <a href="/wiki/Logarithme_binaire" title="Logarithme binaire">logarithme binaire</a>, dont la base est 2, est utile en <a href="/wiki/Informatique_th%C3%A9orique" title="Informatique théorique">informatique théorique</a> et pour certains calculs appliqués.</li></ul> <p>Le <a href="/wiki/Logarithme_complexe" title="Logarithme complexe">logarithme complexe</a> généralise la notion de logarithme aux <a href="/wiki/Nombre_complexe" title="Nombre complexe">nombres complexes</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Motivation">Motivation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=1" title="Modifier la section : Motivation" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=1" title="Modifier le code source de la section : Motivation"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Une <a href="/wiki/%C3%89chelle_logarithmique" title="Échelle logarithmique">échelle logarithmique</a> permet de représenter sur un même graphique des nombres dont l'<a href="/wiki/Ordre_de_grandeur" title="Ordre de grandeur">ordre de grandeur</a> est très différent. Les <a href="/wiki/Science_appliqu%C3%A9e" title="Science appliquée">sciences appliquées</a> les utilisent fréquemment dans les formules, comme celles qui évaluent la <a href="/wiki/Complexit%C3%A9" title="Complexité">complexité</a> des <a href="/wiki/Algorithmes" class="mw-redirect" title="Algorithmes">algorithmes</a> ou des <a href="/wiki/Fractale" title="Fractale">fractales</a> et celles qui dénombrent les <a href="/wiki/Nombre_premier" title="Nombre premier">nombres premiers</a>. Ils décrivent les <a href="/wiki/Intervalle_(musique)" title="Intervalle (musique)">intervalles musicaux</a> et selon le modèle de <a href="/wiki/Loi_de_Weber-Fechner" title="Loi de Weber-Fechner">Weber-Fechner</a> s'appliquent généralement en <a href="/wiki/Psychophysique" title="Psychophysique">psychophysique</a>. </p><p>Tout logarithme transforme </p> <ul><li>un <a href="/wiki/Multiplication" title="Multiplication">produit</a> en <a href="/wiki/Addition" title="Addition">somme</a> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x\cdot y)=\log _{b}x+\log _{b}y\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x\cdot y)=\log _{b}x+\log _{b}y\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7536d0a3b53e44fd3a7c88e07e50549011d5800" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.287ex; height:2.843ex;" alt="{\displaystyle \log _{b}(x\cdot y)=\log _{b}x+\log _{b}y\,}"></span></li> <li>un <a href="/wiki/Division" title="Division">quotient</a> en <a href="/wiki/Soustraction" title="Soustraction">différence</a> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}\left({\frac {x}{y}}\right)=\log _{b}x-\log _{b}y\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>y</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}\left({\frac {x}{y}}\right)=\log _{b}x-\log _{b}y\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65cd1c52e5444fedf71c7767d66c9f79c150ade8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.9ex; height:6.176ex;" alt="{\displaystyle \log _{b}\left({\frac {x}{y}}\right)=\log _{b}x-\log _{b}y\,}"></span></li> <li>une puissance en produit : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x^{y})=y\log _{b}x.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x^{y})=y\log _{b}x.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1540554df73879e6f067c02a46e7a9c79c658ee6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.399ex; height:2.843ex;" alt="{\displaystyle \log _{b}(x^{y})=y\log _{b}x.\,}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Historique">Historique</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=2" title="Modifier la section : Historique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=2" title="Modifier le code source de la section : Historique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Histoire_des_logarithmes_et_des_exponentielles" title="Histoire des logarithmes et des exponentielles">Histoire des logarithmes et des exponentielles</a>.</div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Mirifici_Logarithmorum_canonis_Descriptio.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Mirifici_Logarithmorum_canonis_Descriptio.jpg/220px-Mirifici_Logarithmorum_canonis_Descriptio.jpg" decoding="async" width="220" height="305" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Mirifici_Logarithmorum_canonis_Descriptio.jpg/330px-Mirifici_Logarithmorum_canonis_Descriptio.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Mirifici_Logarithmorum_canonis_Descriptio.jpg/440px-Mirifici_Logarithmorum_canonis_Descriptio.jpg 2x" data-file-width="2301" data-file-height="3193" /></a><figcaption>Page de garde du livre de John Napier de 1614 : Mirifici Logarithmorum Canonis Descriptio</figcaption></figure> <p>La présentation de correspondances entre suites arithmétiques et suites géométriques avec l'observation qu'une somme dans une suite correspond à un produit dans l'autre est ancienne et on la voit déjà chez <a href="/wiki/Archim%C3%A8de" title="Archimède">Archimède</a> (<abbr class="abbr" title="3ᵉ siècle"><span class="romain">III</span><sup style="font-size:72%">e</sup></abbr> siècle <abbr class="abbr nowrap" title="avant Jésus-Christ">av. J.-C.</abbr>), <a href="/wiki/Nicolas_Chuquet" title="Nicolas Chuquet">Chuquet</a> (<abbr class="abbr" title="15ᵉ siècle"><span class="romain">XV</span><sup style="font-size:72%">e</sup></abbr> siècle) et <a href="/wiki/Michael_Stifel" title="Michael Stifel">Stifel</a> (début du <abbr class="abbr" title="16ᵉ siècle"><span class="romain">XVI</span><sup style="font-size:72%">e</sup></abbr> siècle) en Europe<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup>, <a href="/wiki/Ibn_Yahy%C4%81_al-Maghrib%C4%AB_al-Samaw%27al" title="Ibn Yahyā al-Maghribī al-Samaw'al">al-Samaw'al</a><sup id="cite_ref-Kouteynoff200620_2-0" class="reference"><a href="#cite_note-Kouteynoff200620-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup> (<abbr class="abbr" title="12ᵉ siècle"><span class="romain">XII</span><sup style="font-size:72%">e</sup></abbr> siècle) et <a href="/wiki/Ibn_Hamza_al-Maghribi" title="Ibn Hamza al-Maghribi">Ibn Hamza al-Maghribi</a><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup> (fin du <abbr class="abbr" title="16ᵉ siècle"><span class="romain">XVI</span><sup style="font-size:72%">e</sup></abbr> siècle) dans le monde arabe , mais l'observation est plutôt tournée vers une utilisation algébrique<sup id="cite_ref-Kouteynikoff200611_4-0" class="reference"><a href="#cite_note-Kouteynikoff200611-4"><span class="cite_crochet">[</span>4<span class="cite_crochet">]</span></a></sup>. </p><p>Vers la fin du <abbr class="abbr" title="16ᵉ siècle"><span class="romain">XVI</span><sup style="font-size:72%">e</sup></abbr> siècle, le développement de l'<a href="/wiki/Astronomie" title="Astronomie">astronomie</a> et de la <a href="/wiki/Navigation_maritime" title="Navigation maritime">navigation maritime</a> d'une part et les calculs bancaires d'<a href="/wiki/Int%C3%A9r%C3%AAts_compos%C3%A9s" title="Intérêts composés">intérêts composés</a> d'autre part poussent les mathématiciens à chercher des méthodes de simplification de calculs et en particulier le remplacement des multiplications par des sommes<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite_crochet">[</span>5<span class="cite_crochet">]</span></a></sup>. L'invention de tables dites logarithmique permettant de faciliter les calculs comportant des produits est l’œuvre de mathématiciens du début du <abbr class="abbr" title="17ᵉ siècle"><span class="romain">XVII</span><sup style="font-size:72%">e</sup></abbr> siècle: <a href="/wiki/Jost_B%C3%BCrgi" title="Jost Bürgi">Jost Bürgi</a><sup id="cite_ref-pedm_6-0" class="reference"><a href="#cite_note-pedm-6"><span class="cite_crochet">[</span>6<span class="cite_crochet">]</span></a></sup>, <a href="/wiki/John_Napier" title="John Napier">Neper</a> et <a href="/wiki/Henry_Briggs" title="Henry Briggs">Briggs</a><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite_crochet">[</span>7<span class="cite_crochet">]</span></a></sup>, travail poursuivi par <a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite_crochet">[</span>8<span class="cite_crochet">]</span></a></sup>, <a href="/wiki/Ezechiel_de_Decker" title="Ezechiel de Decker">Ezechiel de Decker</a> et <a href="/wiki/Adriaan_Vlacq" title="Adriaan Vlacq">Adriaan Vlacq</a><sup id="cite_ref-pedm_6-1" class="reference"><a href="#cite_note-pedm-6"><span class="cite_crochet">[</span>6<span class="cite_crochet">]</span></a></sup>. </p><p>En 1647, <a href="/wiki/Gr%C3%A9goire_de_Saint-Vincent" title="Grégoire de Saint-Vincent">Grégoire de Saint-Vincent</a>, travaillant sur la quadrature de l’<a href="/wiki/Hyperbole_(math%C3%A9matiques)" title="Hyperbole (mathématiques)">hyperbole</a>, définit la fonction primitive de la fonction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto {\tfrac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto {\tfrac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aba4b386a9233453fbdf76a72b0e675b17383c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.72ex; height:3.343ex;" alt="{\displaystyle x\mapsto {\tfrac {1}{x}}}"></span> s’annulant en 1. <a href="/wiki/Christian_Huygens" title="Christian Huygens">Huygens</a> remarquera en 1661 que cette fonction se trouve être une fonction logarithme particulière : le <a href="/wiki/Logarithme_naturel" class="mw-redirect" title="Logarithme naturel">logarithme naturel</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite_crochet">[</span>9<span class="cite_crochet">]</span></a></sup>. </p><p>La correspondance entre les fonctions exponentielles et logarithmes n’apparaît qu'après le travail de <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Leibniz</a> sur la notion de <a href="/wiki/Fonction_(math%C3%A9matiques)" title="Fonction (mathématiques)">fonction</a>, en 1697, et se développe au cours du <a href="/wiki/XVIIIe_si%C3%A8cle" title="XVIIIe siècle"><abbr class="abbr" title="18ᵉ siècle"><span class="romain">XVIII</span><sup style="font-size:72%">e</sup></abbr> siècle</a> dans les écrits d'<a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a><sup id="cite_ref-Barbin20067_10-0" class="reference"><a href="#cite_note-Barbin20067-10"><span class="cite_crochet">[</span>10<span class="cite_crochet">]</span></a></sup>. </p><p>La tentative d'application de la <a href="/wiki/Logarithme_complexe" title="Logarithme complexe">fonction logarithmique à la variable complexe</a> date du <abbr class="abbr" title="18ᵉ siècle"><span class="romain">XVIII</span><sup style="font-size:72%">e</sup></abbr> siècle et donne lieu à une controverse entre <a href="/wiki/Jean_Bernoulli" title="Jean Bernoulli">Bernoulli</a> et <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Leibniz</a> résolue par Euler<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite_crochet">[</span>11<span class="cite_crochet">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Propriétés_des_fonctions_logarithmes"><span id="Propri.C3.A9t.C3.A9s_des_fonctions_logarithmes"></span>Propriétés des fonctions logarithmes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=3" title="Modifier la section : Propriétés des fonctions logarithmes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=3" title="Modifier le code source de la section : Propriétés des fonctions logarithmes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dans cette section, nous donnons des propriétés d'une fonction logarithme, quelle que soit sa base <span class="texhtml mvar" style="font-style:italic;">b</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Propriétés_algébriques"><span id="Propri.C3.A9t.C3.A9s_alg.C3.A9briques"></span>Propriétés algébriques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=4" title="Modifier la section : Propriétés algébriques" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=4" title="Modifier le code source de la section : Propriétés algébriques"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Identit%C3%A9s_logarithmiques" title="Identités logarithmiques">Identités logarithmiques</a>.</div></div> <p>Les fonctions logarithme sont par définition les <a href="/wiki/Morphisme_de_groupes" title="Morphisme de groupes">morphismes</a> <a href="/wiki/Continuit%C3%A9_(math%C3%A9matiques)" title="Continuité (mathématiques)">continus</a> non <a href="/wiki/Fonction_nulle" title="Fonction nulle">constamment nuls</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} _{+}^{*},\times )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo>,</mo> <mo>×<!-- × --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} _{+}^{*},\times )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c438f4e9fa664c88a2acfe45d1bb48ac15d8145" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.84ex; height:3.009ex;" alt="{\displaystyle (\mathbb {R} _{+}^{*},\times )}"></span> vers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b33b2c9358cbd7bad20aa0b18651d3bba582c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ,+)}"></span>. </p><p>Pour tout réel <span class="texhtml mvar" style="font-style:italic;">b</span> strictement positif et différent de 1, le logarithme de base <span class="texhtml mvar" style="font-style:italic;">b</span> : <span class="texhtml">log<sub><i>b</i></sub></span> est la fonction continue définie sur <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{+}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{+}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef42e5e064679de6752f88a8a2ab8f1e1b6185b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.189ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} _{+}^{*}}"></span> vérifiant l'<a href="/wiki/%C3%89quation_fonctionnelle" title="Équation fonctionnelle">équation fonctionnelle</a> : </p> <dl><dd>pour tous <span class="texhtml mvar" style="font-style:italic;">x</span> et <span class="texhtml mvar" style="font-style:italic;">y</span> réels strictement positifs,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(xy)=\log _{b}(x)+\log _{b}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(xy)=\log _{b}(x)+\log _{b}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a72b4b7ba4c487ba5c15587d2eff610355605901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.065ex; height:2.843ex;" alt="{\displaystyle \log _{b}(xy)=\log _{b}(x)+\log _{b}(y)}"></span></dd></dl> <p>et </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(b)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(b)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3a58a8d06818394825efc588fa84970424b75f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.977ex; height:2.843ex;" alt="{\displaystyle \log _{b}(b)=1}"></span></dd></dl> <p>Cette définition permet de déduire rapidement les propriétés suivantes : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(1)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(1)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901f6efd3f7b26aa95b855e884a8c2c620ef1fe0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.142ex; height:2.843ex;" alt="{\displaystyle \log _{b}(1)=0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x/y)=\log _{b}(x)-\log _{b}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x/y)=\log _{b}(x)-\log _{b}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b760df3fe4794a5497f2a573c1940ee4727c8d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.228ex; height:2.843ex;" alt="{\displaystyle \log _{b}(x/y)=\log _{b}(x)-\log _{b}(y)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x^{y})=y\log _{b}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x^{y})=y\log _{b}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ba26d51e494fe01d74e0e39a55404cc852ee08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.787ex; height:2.843ex;" alt="{\displaystyle \log _{b}(x^{y})=y\log _{b}(x)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(b^{n})=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(b^{n})=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ece2cb3acff9e97e175ca6ccc9f694be8d32a3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.428ex; height:2.843ex;" alt="{\displaystyle \log _{b}(b^{n})=n}"></span> pour tout entier naturel <span class="texhtml mvar" style="font-style:italic;">n</span>, puis pour tout entier relatif <span class="texhtml mvar" style="font-style:italic;">n</span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(b^{r})=r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(b^{r})=r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfdf5e80986c7298d2af7cb1b3b44e5db5a37dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.837ex; height:2.843ex;" alt="{\displaystyle \log _{b}(b^{r})=r}"></span> pour tout rationnel <span class="texhtml mvar" style="font-style:italic;">r</span>.</dd></dl> <p>Comme tout réel strictement positif <span class="texhtml mvar" style="font-style:italic;">x</span> est la <a href="/wiki/Limite_d%27une_suite" title="Limite d'une suite">limite d'une suite</a> dont le terme général est de la forme <span class="texhtml mvar" style="font-style:italic;">b<sup>r<sub>n</sub></sup></span>, où <span class="texhtml">(<i>r<sub>n</sub></i>)</span> est une suite de rationnels convergeant vers un réel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span>, on détermine <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span> comme étant la limite de <span class="texhtml mvar" style="font-style:italic;">r<sub>n</sub></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Changement_de_base">Changement de base</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=5" title="Modifier la section : Changement de base" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=5" title="Modifier le code source de la section : Changement de base"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Deux fonctions logarithmes ne diffèrent que d’une constante multiplicative : pour tous réels strictement positifs <span class="texhtml mvar" style="font-style:italic;">a</span> et <span class="texhtml mvar" style="font-style:italic;">b</span> différents de 1 et pour tout réel <span class="texhtml"><i>x</i> > 0</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x)={\frac {\log _{a}(x)}{\log _{a}(b)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x)={\frac {\log _{a}(x)}{\log _{a}(b)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc2d1396dcd579a41d083caa7d5e221889337526" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.196ex; height:6.509ex;" alt="{\displaystyle \log _{b}(x)={\frac {\log _{a}(x)}{\log _{a}(b)}}}"></span>.</dd></dl> <p>Toutes les fonctions logarithmes peuvent donc s’exprimer à l’aide d’une seule, par exemple la fonction logarithme népérien : pour tout réel strictement positif <span class="texhtml mvar" style="font-style:italic;">b</span> différent de 1 et pour tout réel <span class="texhtml"><i>x</i> > 0</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x)={\frac {\ln(x)}{\ln(b)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x)={\frac {\ln(x)}{\ln(b)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52a93d813551fae4ee9a530804b1ca385e094c01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.061ex; height:6.509ex;" alt="{\displaystyle \log _{b}(x)={\frac {\ln(x)}{\ln(b)}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Dérivée"><span id="D.C3.A9riv.C3.A9e"></span>Dérivée</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=6" title="Modifier la section : Dérivée" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=6" title="Modifier le code source de la section : Dérivée"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La fonction <span class="texhtml">log<sub><i>b</i></sub></span> est <a href="/wiki/D%C3%A9riv%C3%A9e" title="Dérivée">dérivable</a> sur <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{+}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{+}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef42e5e064679de6752f88a8a2ab8f1e1b6185b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.189ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} _{+}^{*}}"></span> de dérivée : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}'(x)={\frac {1}{x\ln(b)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> <mo>′</mo> </msubsup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}'(x)={\frac {1}{x\ln(b)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbda63e2ee151f62ebaeb0050a0d7bf088d1ba59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.446ex; height:6.009ex;" alt="{\displaystyle \log _{b}'(x)={\frac {1}{x\ln(b)}}}"></span> qui a même signe que <span class="texhtml">ln(<i>b</i>)</span>.</dd></dl> <p>Donc la fonction <span class="texhtml">log<sub><i>b</i></sub></span> est strictement monotone, croissante quand <span class="texhtml mvar" style="font-style:italic;">b</span> est supérieur à 1, décroissante dans le cas contraire. </p> <div class="mw-heading mw-heading3"><h3 id="Nombre_de_chiffres_avant_la_virgule">Nombre de chiffres avant la virgule</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=7" title="Modifier la section : Nombre de chiffres avant la virgule" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=7" title="Modifier le code source de la section : Nombre de chiffres avant la virgule"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si <span class="texhtml mvar" style="font-style:italic;">b</span> est un entier supérieur ou égal à 2 et <span class="texhtml"><i>x</i> > 0</span>, la <a href="/wiki/Base_(arithm%C3%A9tique)#Développement_en_base_entière" title="Base (arithmétique)">représentation propre de <span class="texhtml mvar" style="font-style:italic;">x</span> en base</a> <i><span class="texhtml mvar" style="font-style:italic;">b</span></i> possède <span class="texhtml mvar" style="font-style:italic;">n</span> chiffres avant la virgule si et seulement si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n-1}\leqslant x<b^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>⩽<!-- ⩽ --></mo> <mi>x</mi> <mo><</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n-1}\leqslant x<b^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48b1b148953961b9ebbaf06ac850ff7702ab9aa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.059ex; height:2.843ex;" alt="{\displaystyle b^{n-1}\leqslant x<b^{n}}"></span>, soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1\leqslant \log _{b}x<n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⩽<!-- ⩽ --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo><</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1\leqslant \log _{b}x<n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd33b395f8c2a9294ffeb49f60ffbff596cffdcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.615ex; height:2.676ex;" alt="{\displaystyle n-1\leqslant \log _{b}x<n}"></span>. Le nombre de chiffres <span class="texhtml mvar" style="font-style:italic;">n</span> est donc égal à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\lfloor {\log _{b}x}\right\rfloor +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mo>⌋</mo> </mrow> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\lfloor {\log _{b}x}\right\rfloor +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee8bb8787724fd620844c0c76486ee8aa7cdb49f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.694ex; height:2.843ex;" alt="{\displaystyle \left\lfloor {\log _{b}x}\right\rfloor +1}"></span>. </p><p>Et lorsque <span class="texhtml mvar" style="font-style:italic;">x</span> tend vers l'infini, on a donc <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}x\sim n(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>∼<!-- ∼ --></mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}x\sim n(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5040ee932b39b413bd47ac8eaf40f9dc19cda795" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.258ex; height:2.843ex;" alt="{\displaystyle \log _{b}x\sim n(x)}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Fonction_réciproque_(antilogarithme)"><span id="Fonction_r.C3.A9ciproque_.28antilogarithme.29"></span>Fonction réciproque (<a href="/wiki/Antilogarithme" title="Antilogarithme">antilogarithme</a>)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=8" title="Modifier la section : Fonction réciproque (antilogarithme)" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=8" title="Modifier le code source de la section : Fonction réciproque (antilogarithme)"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Exponentielle_de_base_a" title="Exponentielle de base a">Exponentielle de base <span class="texhtml mvar" style="font-style:italic;">b</span></a>.</div></div> <p><span id="Fonction_inverse"></span> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Logarithm_inversefunctiontoexp.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/220px-Logarithm_inversefunctiontoexp.svg.png" decoding="async" width="220" height="256" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/330px-Logarithm_inversefunctiontoexp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/Logarithm_inversefunctiontoexp.svg/440px-Logarithm_inversefunctiontoexp.svg.png 2x" data-file-width="240" data-file-height="279" /></a><figcaption>Représentation dans le cas <span class="texhtml"><i>b</i> > 1</span>. Le graphe de la fonction logarithmique <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span> (bleu) est obtenu en <a href="/wiki/R%C3%A9flexion_(math%C3%A9matiques)" title="Réflexion (mathématiques)">reflétant</a> celui de la fonction <span class="texhtml mvar" style="font-style:italic;">b<sup>x</sup></span> (rouge) par rapport à la diagonale <span class="nowrap"><i>x = y.</i></span></figcaption></figure> <p>La fonction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}:\mathbb {R} _{+}^{*}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>:</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}:\mathbb {R} _{+}^{*}\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07209bb023d0635e6343f622a9a0f263c9d1574a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.328ex; height:3.009ex;" alt="{\displaystyle \log _{b}:\mathbb {R} _{+}^{*}\to \mathbb {R} }"></span> est la <a href="/wiki/Bijection" title="Bijection">bijection</a> <a href="/wiki/Bijection_r%C3%A9ciproque" title="Bijection réciproque">réciproque</a> de la fonction exponentielle de base <span class="texhtml mvar" style="font-style:italic;">b</span><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite_crochet">[</span>12<span class="cite_crochet">]</span></a></sup>, parfois appelée antilogarithme de base <span class="texhtml mvar" style="font-style:italic;">b</span> : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {antilog_{b}} :\mathbb {R} \to \mathbb {R} _{+}^{*},\;x\mapsto b^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">o</mi> <msub> <mi mathvariant="normal">g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">b</mi> </mrow> </msub> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo>,</mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {antilog_{b}} :\mathbb {R} \to \mathbb {R} _{+}^{*},\;x\mapsto b^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54d3acd11206551f915c1d0f6a2eab4a5987a43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.336ex; height:3.009ex;" alt="{\displaystyle \operatorname {antilog_{b}} :\mathbb {R} \to \mathbb {R} _{+}^{*},\;x\mapsto b^{x}}"></span>.</dd></dl> <p>Autrement dit, les deux façons possibles de combiner (ou <a href="/wiki/Composition_de_fonctions" title="Composition de fonctions">composer</a>) les logarithmes et l’élévation à des puissances redonnent le nombre original : </p> <ul><li>pour tout réel <span class="texhtml"><i>x</i></span>, prendre la puissance <span class="nowrap"><span class="texhtml"><i>x</i></span>-ième</span> de <span class="texhtml"><i>b</i></span>, puis le logarithme en base <span class="texhtml"><i>b</i></span> de cette puissance, redonne <span class="texhtml"><i>x</i></span> :<center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\in \mathbb {R} _{+}^{*}\quad \log _{b}(b^{x})=x\log _{b}(b)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mspace width="1em" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\in \mathbb {R} _{+}^{*}\quad \log _{b}(b^{x})=x\log _{b}(b)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1909a8c402f18b46a20890d71137c94d4970eed2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.21ex; height:3.009ex;" alt="{\displaystyle \forall x\in \mathbb {R} _{+}^{*}\quad \log _{b}(b^{x})=x\log _{b}(b)=x}"></span> ;</center></li> <li>inversement, pour tout réel <span class="texhtml"><i>y</i></span> strictement positif, prendre d'abord le logarithme en base <span class="texhtml"><i>b</i></span>, puis élever <span class="texhtml"><i>b</i></span> à sa puissance, redonne <span class="texhtml"><i>y</i></span> :<center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{\log _{b}(y)}=y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{\log _{b}(y)}=y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dee1975e870ed438a4fc27318eda5220dc335b0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.065ex; height:3.176ex;" alt="{\displaystyle b^{\log _{b}(y)}=y.}"></span></center></li></ul> <p>Les fonctions réciproques sont étroitement liées aux fonctions originales. Leurs <a href="/wiki/Graphe_d%27une_fonction" title="Graphe d'une fonction">graphes</a>, qui se correspondent lorsqu’on échange les coordonnées <span class="texhtml"><i>x</i></span> et <span class="texhtml"><i>y</i></span> (ou par réflexion par rapport à la diagonale <span class="texhtml"><i>x</i> = <i>y</i></span>), sont montrés à droite dans le cas où <span class="texhtml"><i>b</i></span> est un réel strictement supérieur à 1 : un point <span class="texhtml">(<i>u</i>, <i>t</i> = <i>b<sup>u</sup></i>)</span> sur le graphe (rouge) de la fonction antilogarithme <span class="texhtml"><i>x</i> ↦ <i>b<sup>x</sup></i></span> fournit un point <span class="texhtml">(<i>t</i>, <i>u</i> = log<sub><i>b</i></sub>(<i>t</i>))</span> sur le graphe (bleu) du logarithme et vice versa. Comme <span class="texhtml"><i>b</i> > 1</span>, la fonction <span class="texhtml">log<sub><i>b</i></sub></span> est <a href="/wiki/Fonction_monotone" title="Fonction monotone">croissante</a> et quand <span class="texhtml"><i>x</i></span> tend vers <span class="texhtml">+∞</span>, <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span> <a href="/wiki/Limite_(math%C3%A9matiques)" title="Limite (mathématiques)">tend vers</a> <span class="texhtml">+∞</span>, tandis que lorsque <span class="texhtml"><i>x</i></span> approche zéro, <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span> tend vers <span class="texhtml">–∞</span>. Dans le cas où le réel <span class="texhtml"><i>b</i></span> est strictement compris entre 0 et 1, la fonction <span class="texhtml">log<sub><i>b</i></sub></span> est décroissante et ces limites sont interverties. </p><p>En matière de calcul, l'antilog ramène des logarithmes aux valeurs. Soit à évaluer une formule <span class="texhtml mvar" style="font-style:italic;">F</span> combinant multiplications, divisions et exponentiations, et soit <span class="texhtml mvar" style="font-style:italic;">f</span> la formule définissant le logarithme de <span class="texhtml mvar" style="font-style:italic;">F</span> en combinant sommes, différences et produits des (logarithmes) des données. La valeur de <span class="texhtml mvar" style="font-style:italic;">F</span> peut s'obtenir comme l'antilog de la valeur de <span class="texhtml mvar" style="font-style:italic;">f</span>, ce qui conclut le calcul. On peut ainsi remplacer l'évaluation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=(x\times y\times z)^{1/3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>×<!-- × --></mo> <mi>y</mi> <mo>×<!-- × --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=(x\times y\times z)^{1/3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51129b961cffd73fe831f5f7529d744fd74a6c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.601ex; height:3.343ex;" alt="{\displaystyle F=(x\times y\times z)^{1/3}}"></span> </p><p> par </p><center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=\operatorname {antilog} _{b}\left({\frac {\log _{b}(x)+\log _{b}(y)+\log _{b}(z)}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <msub> <mi>antilog</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=\operatorname {antilog} _{b}\left({\frac {\log _{b}(x)+\log _{b}(y)+\log _{b}(z)}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f9bb943358f66c5295a498d868ea8eda728265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:43.423ex; height:6.343ex;" alt="{\displaystyle F=\operatorname {antilog} _{b}\left({\frac {\log _{b}(x)+\log _{b}(y)+\log _{b}(z)}{3}}\right)}"></span>.</center> <div class="mw-heading mw-heading2"><h2 id="Fonctions_logarithme_courantes">Fonctions logarithme courantes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=9" title="Modifier la section : Fonctions logarithme courantes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=9" title="Modifier le code source de la section : Fonctions logarithme courantes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Logarithme_népérien"><span id="Logarithme_n.C3.A9p.C3.A9rien"></span>Logarithme népérien</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=10" title="Modifier la section : Logarithme népérien" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=10" title="Modifier le code source de la section : Logarithme népérien"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Logarithme_n%C3%A9p%C3%A9rien" title="Logarithme népérien">Logarithme népérien</a>.</div></div> <p>Le logarithme népérien, ou logarithme naturel, est la fonction logarithme dont la <a href="/wiki/D%C3%A9riv%C3%A9e" title="Dérivée">dérivée</a> est la <a href="/wiki/Fonction_inverse" title="Fonction inverse">fonction inverse</a> définie de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} _{+}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} _{+}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef42e5e064679de6752f88a8a2ab8f1e1b6185b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.189ex; height:3.009ex;" alt="{\displaystyle \mathbb {R} _{+}^{*}}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto {\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto {\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d207e4d6d9278902dd0e1a54b1dab01f5b5037fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.11ex; height:5.176ex;" alt="{\displaystyle x\mapsto {\frac {1}{x}}}"></span>. </p> <dl><dd>La fonction de Neper est par convention notée « <span class="texhtml">ln</span> »<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite_crochet">[</span>13<span class="cite_crochet">]</span></a></sup> ou « <span class="texhtml">log</span> », notation couramment utilisée en <a href="/wiki/Th%C3%A9orie_des_nombres" title="Théorie des nombres">théorie des nombres</a> et en informatique<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite_crochet">[</span>14<span class="cite_crochet">]</span></a></sup>.</dd></dl> <dl><dd>La base de la fonction logarithme népérien, notée <a href="/wiki/E_(nombre)" title="E (nombre)">e</a>, est appelée nombre de Néper<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite_crochet">[</span>15<span class="cite_crochet">]</span></a></sup> ou nombre d'Euler<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite_crochet">[</span>16<span class="cite_crochet">]</span></a></sup><sup class="reference cite_virgule">,</sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite_crochet">[</span>17<span class="cite_crochet">]</span></a></sup>.</dd></dl> <p>Une <a href="/wiki/Valeur_approch%C3%A9e" title="Valeur approchée">valeur approchée</a> est : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {e} \approx 2{,}718}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mo>≈<!-- ≈ --></mo> <mn>2,718</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {e} \approx 2{,}718}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c844baeb87bbd5589acbfe876caf5c35f939407e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.428ex; height:2.509ex;" alt="{\displaystyle \mathrm {e} \approx 2{,}718}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Logarithme_décimal"><span id="Logarithme_d.C3.A9cimal"></span>Logarithme décimal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=11" title="Modifier la section : Logarithme décimal" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=11" title="Modifier le code source de la section : Logarithme décimal"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Logarithme_d%C3%A9cimal" title="Logarithme décimal">Logarithme décimal</a>.</div></div> <p>C’est le logarithme le plus pratique dans les calculs numériques manuels, il est noté <span class="texhtml">log</span> ou <span class="texhtml">log<sub>10</sub></span>. La norme ISO 80000-2<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite_crochet">[</span>18<span class="cite_crochet">]</span></a></sup> indique que log<sub>10</sub> devrait être noté <i>lg</i>, mais cette notation est rarement utilisée. </p><p>On le retrouve dans la création des <a href="/wiki/%C3%89chelle_logarithmique" title="Échelle logarithmique">échelles logarithmiques</a>, les <a href="/wiki/Rep%C3%A8re_semi-logarithmique" title="Repère semi-logarithmique">repères semi-logarithmiques</a> ou <a href="/wiki/Rep%C3%A8re_log-log" title="Repère log-log">log-log</a>, dans la <a href="/wiki/R%C3%A8gle_%C3%A0_calcul" title="Règle à calcul">règle à calcul</a>, dans le calcul du <a href="/wiki/Potentiel_hydrog%C3%A8ne" title="Potentiel hydrogène">pH</a>, dans l’unité du <a href="/wiki/D%C3%A9cibel" title="Décibel">décibel</a>. </p><p>Il précise à quelle puissance il faut élever 10 pour retrouver le nombre de départ : l'<a href="/wiki/Image_(math%C3%A9matiques)" title="Image (mathématiques)">image</a> d'un nombre par <span class="texhtml">log</span> est l'<a href="/wiki/Entier_relatif" title="Entier relatif">entier relatif</a> auquel il faut élever 10 pour obtenir l'<a href="/wiki/Ant%C3%A9c%C3%A9dent_(math%C3%A9matiques)" title="Antécédent (mathématiques)">antécédent</a>. Par exemple : </p> <dl><dd>En base dix :</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{10}(10)=1{\text{ car }}10^{1}=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> car </mtext> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{10}(10)=1{\text{ car }}10^{1}=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7dee6fbc2e98052ff964200e913caac2ba003c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.313ex; height:3.176ex;" alt="{\displaystyle \log _{10}(10)=1{\text{ car }}10^{1}=10}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{10}(100)=2{\text{ car }}10^{2}=100}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>100</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> car </mtext> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>100</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{10}(100)=2{\text{ car }}10^{2}=100}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5b10b46514c14008b5616453943105080daefbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.638ex; height:3.176ex;" alt="{\displaystyle \log _{10}(100)=2{\text{ car }}10^{2}=100}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{10}(1000)=3{\text{ car }}10^{3}=1000}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1000</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> car </mtext> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mn>1000</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{10}(1000)=3{\text{ car }}10^{3}=1000}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9194d98c9dce5708e6579f1a2ccfe779c034aaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.963ex; height:3.176ex;" alt="{\displaystyle \log _{10}(1000)=3{\text{ car }}10^{3}=1000}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{10}(0,01)=-2{\text{ car }}10^{-2}=0,01}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>01</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> car </mtext> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>01</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{10}(0,01)=-2{\text{ car }}10^{-2}=0,01}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aeed3f9bff30d46b6b1c41953d8227da43f5830" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.793ex; height:3.176ex;" alt="{\displaystyle \log _{10}(0,01)=-2{\text{ car }}10^{-2}=0,01}"></span></dd></dl> <p>La valeur du logarithme d’autres nombres que des puissances de 10 demande un calcul approché. Le calcul de <span class="texhtml">log(2)</span> par exemple peut se faire à la main, en remarquant que 2<sup>10</sup> ≈ 1000 donc <span class="texhtml">10 log<sub>10</sub>(2) ≈ 3</span> donc <span class="texhtml">log<sub>10</sub>(2) ≈ 0,3</span>. </p><p>Pour tout réel strictement positif <span class="texhtml mvar" style="font-style:italic;">b</span> différent de 1 et pour tout réel <span class="texhtml"><i>x</i> > 0</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x)={\frac {\log _{10}(x)}{\log _{10}(b)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x)={\frac {\log _{10}(x)}{\log _{10}(b)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/148103ad3a4cfff9c7d030a3352dc9363aab3617" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.97ex; height:6.509ex;" alt="{\displaystyle \log _{b}(x)={\frac {\log _{10}(x)}{\log _{10}(b)}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Logarithme_binaire">Logarithme binaire</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=12" title="Modifier la section : Logarithme binaire" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=12" title="Modifier le code source de la section : Logarithme binaire"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Logarithme_binaire" title="Logarithme binaire">Logarithme binaire</a>.</div></div> <p>La norme ISO 80 000 recommande de noter <span class="texhtml">lb</span> le logarithme en base 2<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite_crochet">[</span>19<span class="cite_crochet">]</span></a></sup>. </p><p>Le <a href="/wiki/Logarithme_binaire" title="Logarithme binaire">logarithme binaire</a>, d'usage spécialisé dans le calcul des <a href="/wiki/Intervalle_(musique)" title="Intervalle (musique)">intervalles musicaux</a> à partir d'un rapport de <a href="/wiki/Fr%C3%A9quence" title="Fréquence">fréquences</a>, pour obtenir des <a href="/wiki/Octave_(musique)" title="Octave (musique)">octaves</a>, des <a href="/wiki/Demi-ton" title="Demi-ton">demi-tons</a> ou des <a href="/wiki/Cent_et_savart" class="mw-redirect" title="Cent et savart">cents</a>, a trouvé beaucoup plus d'application en <a href="/wiki/Informatique" title="Informatique">informatique</a>. Les <a href="/wiki/Ordinateur" title="Ordinateur">ordinateurs</a> travaillant en <a href="/wiki/Syst%C3%A8me_binaire" title="Système binaire">système binaire</a>, le calcul d'un logarithme en base 2 se fait par l'algorithme le plus précis et le plus efficace. </p><p>Un nombre <i>x</i> codé en <a href="/wiki/Virgule_flottante" title="Virgule flottante">virgule flottante</a> binaire se décompose en une <a href="/wiki/Mantisse" title="Mantisse">mantisse</a> <i>m</i>, comprise entre 1 (inclus) et 2 (exclu) et un <a href="/wiki/Exposant_(math%C3%A9matiques)" title="Exposant (mathématiques)">exposant</a> <i>p</i>, indiquant la <a href="/wiki/Puissance_de_deux" title="Puissance de deux">puissance de 2</a> qui multiplie la mantisse pour obtenir le nombre. L'exposant est la <a href="/wiki/Partie_enti%C3%A8re_et_partie_fractionnaire" title="Partie entière et partie fractionnaire">partie entière</a> du logarithme binaire, tandis que le logarithme binaire de la mantisse est compris entre 0 (inclus) et 1 (exclu). </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=2^{p}\times m\Longrightarrow {\textrm {lb}}(x)=p+{\textrm {lb}}(m).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>×<!-- × --></mo> <mi>m</mi> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>lb</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>lb</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=2^{p}\times m\Longrightarrow {\textrm {lb}}(x)=p+{\textrm {lb}}(m).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/798e9a08d212aac76f98a78cbe111fa64654f2db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.249ex; height:2.843ex;" alt="{\displaystyle x=2^{p}\times m\Longrightarrow {\textrm {lb}}(x)=p+{\textrm {lb}}(m).}"></span></dd></dl> <p>Ce qui ramène le calcul à celui du logarithme binaire d'un nombre entre 1 (inclus) et 2 (exclu). Si on multiplie ce nombre par lui-même, et que le résultat dépasse 2, c'est que le nombre est supérieur à <span class="racine">√<span style="border-top:1px solid; padding:0 0.1em;">2</span></span> : le chiffre suivant, après la virgule, est un 1, dans le cas contraire, c'est un 0. On continue par <a href="/wiki/It%C3%A9ration" title="Itération">itération</a> jusqu'à la précision souhaitée. </p><p>Les deux logarithmes précédents se déduisent de celui-ci par : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(x)={\frac {\mathrm {lb} (x)}{\mathrm {lb} (\mathrm {e} )}}{\text{ et }}\log _{10}(x)={\frac {\mathrm {lb} (x)}{\mathrm {lb} (10)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">b</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">b</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> et </mtext> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">b</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">b</mi> </mrow> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(x)={\frac {\mathrm {lb} (x)}{\mathrm {lb} (\mathrm {e} )}}{\text{ et }}\log _{10}(x)={\frac {\mathrm {lb} (x)}{\mathrm {lb} (10)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78491bf15a7a9cdfbfeaade0dba8fb069060c890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.572ex; height:6.509ex;" alt="{\displaystyle \ln(x)={\frac {\mathrm {lb} (x)}{\mathrm {lb} (\mathrm {e} )}}{\text{ et }}\log _{10}(x)={\frac {\mathrm {lb} (x)}{\mathrm {lb} (10)}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Cologarithme">Cologarithme</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=13" title="Modifier la section : Cologarithme" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=13" title="Modifier le code source de la section : Cologarithme"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Cologarithme" title="Cologarithme">Cologarithme</a>.</div></div> <p>Le <a href="/wiki/Cologarithme" title="Cologarithme">cologarithme</a> d'un nombre est l'opposé du logarithme de ce nombre et le logarithme de son inverse<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite_crochet">[</span>20<span class="cite_crochet">]</span></a></sup> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {colog} _{b}x=-\log _{b}x=\log _{b}{\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>colog</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {colog} _{b}x=-\log _{b}x=\log _{b}{\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/793823f9a8aeab235f52aa39ca84e68d26a24429" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.302ex; height:5.176ex;" alt="{\displaystyle \operatorname {colog} _{b}x=-\log _{b}x=\log _{b}{\frac {1}{x}}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Généralisations"><span id="G.C3.A9n.C3.A9ralisations"></span>Généralisations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=14" title="Modifier la section : Généralisations" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=14" title="Modifier le code source de la section : Généralisations"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Le <a href="/wiki/Logarithme_complexe" title="Logarithme complexe">logarithme complexe</a> est la fonction réciproque de l'<a href="/wiki/Exponentielle_complexe" title="Exponentielle complexe">exponentielle complexe</a> et généralise ainsi la notion de logarithme aux <a href="/wiki/Nombre_complexe" title="Nombre complexe">nombres complexes</a>. Le <a href="/wiki/Logarithme_discret" title="Logarithme discret">logarithme discret</a> généralise les logarithmes aux <a href="/wiki/Groupe_cyclique" title="Groupe cyclique">groupes cycliques</a> et a des applications en <a href="/wiki/Cryptographie_%C3%A0_cl%C3%A9_publique" class="mw-redirect" title="Cryptographie à clé publique">cryptographie à clé publique</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Notes_et_références"><span id="Notes_et_r.C3.A9f.C3.A9rences"></span>Notes et références</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=15" title="Modifier la section : Notes et références" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=15" title="Modifier le code source de la section : Notes et références"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé <span class="plainlinks">« <a class="external text" href="https://en.wikipedia.org/wiki/Logarithm?oldid=408909865">Logarithm</a> » <small>(<a class="external text" href="https://en.wikipedia.org/wiki/Logarithm?action=history">voir la liste des auteurs</a>)</small></span>.</li></ul> <div class="references-small decimal" style=""><div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink noprint"><a href="#cite_ref-1">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Kouteynikoff2006"><span class="ouvrage" id="Odile_Kouteynikoff2006">Odile Kouteynikoff, <cite style="font-style:normal">« Invention de nombres : calculs ou résolutions »</cite>, dans Commissionn inter-Irem d'Épistémologie et d'histoire des mathématiques, <cite class="italique">Histoire de logarithmes</cite>, Ellipses, <time>2006</time>, <abbr class="abbr" title="pages">p.</abbr> <span class="nowrap">11-38</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Histoire+de+logarithmes&rft.atitle=Invention+de+nombres+%3A+calculs+ou+r%C3%A9solutions&rft.pub=Ellipses&rft.aulast=Kouteynikoff&rft.aufirst=Odile&rft.date=2006&rft.pages=11-38&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span></span>, p. 11</span> </li> <li id="cite_note-Kouteynoff200620-2"><span class="mw-cite-backlink noprint"><a href="#cite_ref-Kouteynoff200620_2-0">↑</a> </span><span class="reference-text"><a href="#Kouteynoff2006">Kouteynoff 2006</a>, <abbr class="abbr" title="page(s)">p.</abbr> 20. </span> </li> <li id="cite_note-3"><span class="mw-cite-backlink noprint"><a href="#cite_ref-3">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Ageron"><span class="ouvrage" id="Pierre_Ageron">Pierre Ageron, « <a rel="nofollow" class="external text" href="https://ageron.users.lmno.cnrs.fr/34%20-%20Actes%20-%20Section%20II-1%20-%2016%20Pierre%20Ageron%20-%20339-359#:~:text=Ibn%20Hamza%20s'intéressait%20aux,de%20la%20science%20des%20logarithmes."><cite style="font-style:normal;">Ibn Hamza a-t-il découvert les logarithmes ? Constitution et circulation du discours islamocentré sur l’histoire des mathématiques</cite></a> » <abbr class="abbr indicateur-format format-pdf" title="Document au format Portable Document Format (PDF) d'Adobe">[PDF]</abbr>, sur <span class="italique">IREM de Basse-Normandie & Université de Caen</span></span></span></span> </li> <li id="cite_note-Kouteynikoff200611-4"><span class="mw-cite-backlink noprint"><a href="#cite_ref-Kouteynikoff200611_4-0">↑</a> </span><span class="reference-text"><a href="#Kouteynikoff2006">Kouteynikoff 2006</a>, <abbr class="abbr" title="page(s)">p.</abbr> 11. </span> </li> <li id="cite_note-5"><span class="mw-cite-backlink noprint"><a href="#cite_ref-5">↑</a> </span><span class="reference-text">Jean-Pierre Friedelmeyer, <a rel="nofollow" class="external text" href="https://lewebpedagogique.com/h4mathsts1/files/2013/12/105_122_AM61-4-1.pdf">L'invention des logarithmes par Neper et le calcul des logarithmes décimaux par Briggs</a>.</span> </li> <li id="cite_note-pedm-6"><span class="mw-cite-backlink noprint">↑ <sup><a href="#cite_ref-pedm_6-0">a</a> et <a href="#cite_ref-pedm_6-1">b</a></sup> </span><span class="reference-text"><i>Petite encyclopédie de mathématiques</i>, <a href="/wiki/Didier_(maison_d%27%C3%A9dition)" title="Didier (maison d'édition)">Didier</a>, 1980, <abbr class="abbr" title="page">p.</abbr> 72</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink noprint"><a href="#cite_ref-7">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Barbin2006"><span class="ouvrage" id="Évelyne_Barbin2006">Évelyne Barbin, <cite style="font-style:normal">« Présentation: pour une approche historique des logarithmes et des exponentielles »</cite>, dans Commissionn inter-Irem d'Épistémologie et d'histoire des mathématiques, <cite class="italique">Histoire de logarithmes</cite>, Ellipses, <time>2006</time>, <abbr class="abbr" title="pages">p.</abbr> <span class="nowrap">5-10</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Histoire+de+logarithmes&rft.atitle=Pr%C3%A9sentation%3A+pour+une+approche+historique+des+logarithmes+et+des+exponentielles&rft.pub=Ellipses&rft.aulast=Barbin&rft.aufirst=%C3%89velyne&rft.date=2006&rft.pages=5-10&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span></span>, p.6</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink noprint"><a href="#cite_ref-8">↑</a> </span><span class="reference-text"><span class="ouvrage">« <a rel="nofollow" class="external text" href="https://www.e-rara.ch/zut/wihibe/content/titleinfo/1405839"><cite style="font-style:normal;">Chilias Logarithmorum</cite></a> », sur <span class="italique">e-rara.ch</span></span>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink noprint"><a href="#cite_ref-9">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Ferrand,_Laurent_Koelblen,_Matthieu_Romagny2008"><span class="ouvrage" id="Emmanuel_Ferrand,_Laurent_Koelblen,_Matthieu_Romagny2008">Emmanuel Ferrand, Laurent Koelblen, Matthieu Romagny, « <a rel="nofollow" class="external text" href="https://perso.univ-rennes1.fr/matthieu.romagny/capes_0809/histoire.pdf"><cite style="font-style:normal;">Un peu d’histoire</cite></a> », <time class="nowrap" datetime="2008-09-17" data-sort-value="2008-09-17">17 septembre 2008</time></span></span></span> </li> <li id="cite_note-Barbin20067-10"><span class="mw-cite-backlink noprint"><a href="#cite_ref-Barbin20067_10-0">↑</a> </span><span class="reference-text"><a href="#Barbin2006">Barbin 2006</a>, <abbr class="abbr" title="page(s)">p.</abbr> 7. </span> </li> <li id="cite_note-11"><span class="mw-cite-backlink noprint"><a href="#cite_ref-11">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Verley2006"><span class="ouvrage" id="Jean-Luc_Verley2006">Jean-Luc Verley, <cite style="font-style:normal">« La controverse des logarithmes des nombres négatifs et imagianires »</cite>, dans Commissionn inter-Irem d'Épistémologie et d'histoire des mathématiques, <cite class="italique">Histoire de logarithmes</cite>, Ellipses, <time>2006</time>, <abbr class="abbr" title="pages">p.</abbr> <span class="nowrap">269-288</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Histoire+de+logarithmes&rft.atitle=La+controverse+des+logarithmes+des+nombres+n%C3%A9gatifs+et+imagianires&rft.pub=Ellipses&rft.aulast=Verley&rft.aufirst=Jean-Luc&rft.date=2006&rft.pages=269-288&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink noprint"><a href="#cite_ref-12">↑</a> </span><span class="reference-text"><span class="ouvrage" id="James_Stewart_(en)Catégorie:Article_contenant_un_appel_à_traduction_en_anglais2012"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <span class="nom_auteur"><a href="/w/index.php?title=James_Stewart_(math%C3%A9maticien)&action=edit&redlink=1" class="new" title="James Stewart (mathématicien) (page inexistante)">James Stewart</a> <a href="https://en.wikipedia.org/wiki/James_Stewart_(mathematician)" class="extiw" title="en:James Stewart (mathematician)"><span class="indicateur-langue" title="Article en anglais : « James Stewart (mathematician) »">(en)</span></a></span>, <cite class="italique" lang="en">Single Variable Calculus : Early Transcendentals</cite>, Thomson Brooks/Cole, <time>2012</time>, <abbr class="abbr" title="septième">7<sup>e</sup></abbr> <abbr class="abbr" title="édition">éd.</abbr> <small style="line-height:1em;">(<a rel="nofollow" class="external text" href="//books.google.com/books?id=h4Auk70bJogC&pg=PA58">lire en ligne</a>)</small><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Single+Variable+Calculus&rft.pub=Thomson+Brooks%2FCole&rft.edition=7&rft.stitle=Early+Transcendentals&rft.aulast=James+Stewart&rft.date=2012&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span>, section 1.6.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink noprint"><a href="#cite_ref-13">↑</a> </span><span class="reference-text">La norme AFNOR NF X 02-1 01, de 1961, recommande la notation ln (<i>Tables numériques</i> de J. Laborde, 1976, p. VI).</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink noprint"><a href="#cite_ref-14">↑</a> </span><span class="reference-text">Langages <a href="/wiki/C_(langage)" title="C (langage)">C</a>, <a href="/wiki/Java_(technique)" title="Java (technique)">Java</a>, <a href="/wiki/Javascript" class="mw-redirect" title="Javascript">Javascript</a>, <abbr class="abbr" title="et cetera">etc.</abbr></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink noprint"><a href="#cite_ref-15">↑</a> </span><span class="reference-text"><span class="ouvrage" id="GuininJoppin2003"><span class="ouvrage" id="D._GuininB._Joppin2003">D. Guinin et B. Joppin, <cite class="italique">Mathématiques <a href="/wiki/MPSI" class="mw-redirect" title="MPSI">MPSI</a>: Exercices</cite>, <a href="/wiki/%C3%89ditions_Br%C3%A9al" title="Éditions Bréal">Bréal</a>, <time>2003</time> <small style="line-height:1em;">(<a rel="nofollow" class="external text" href="//books.google.com/books?id=iePuAqUjGoQC&pg=PA33">lire en ligne</a>)</small>, <abbr class="abbr" title="page">p.</abbr> 33<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Math%C3%A9matiques+MPSI%3A+Exercices&rft.pub=Br%C3%A9al&rft.aulast=Guinin&rft.aufirst=D.&rft.au=B.+Joppin&rft.date=2003&rft.pages=33&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span></span>.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink noprint"><a href="#cite_ref-16">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Ferrier2006"><span class="ouvrage" id="O._Ferrier2006">O. Ferrier, <cite class="italique">Maths pour économistes : L'Analyse en économie</cite>, <abbr class="abbr" title="volume">vol.</abbr> 1, <a href="/wiki/De_Boeck_Sup%C3%A9rieur" class="mw-redirect" title="De Boeck Supérieur">De Boeck Université</a>, <time>2006</time> <small style="line-height:1em;">(<a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a> <a href="/wiki/Sp%C3%A9cial:Ouvrages_de_r%C3%A9f%C3%A9rence/978-2-8041-4354-1" title="Spécial:Ouvrages de référence/978-2-8041-4354-1"><span class="nowrap">978-2-8041-4354-1</span></a>)</small>, <abbr class="abbr" title="page">p.</abbr> 275<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Maths+pour+%C3%A9conomistes&rft.pub=De+Boeck+Universit%C3%A9&rft.stitle=L%27Analyse+en+%C3%A9conomie&rft.aulast=Ferrier&rft.aufirst=O.&rft.date=2006&rft.volume=1&rft.pages=275&rft.isbn=978-2-8041-4354-1&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span></span>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink noprint"><a href="#cite_ref-17">↑</a> </span><span class="reference-text">Ne pas confondre avec divers <a href="/wiki/Liste_des_sujets_nomm%C3%A9s_d%27apr%C3%A8s_Leonhard_Euler#Nombres" class="mw-redirect" title="Liste des sujets nommés d'après Leonhard Euler">autres « nombres d'Euler »</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink noprint"><a href="#cite_ref-18">↑</a> </span><span class="reference-text"><a rel="nofollow" class="external text" href="http://www.iso.org/iso/fr/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=31887">ISO 80000-2:2009</a>. <a href="/wiki/Organisation_internationale_de_normalisation" title="Organisation internationale de normalisation">Organisation internationale de normalisation</a>. Consulté le 19 janvier 2012.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink noprint"><a href="#cite_ref-19">↑</a> </span><span class="reference-text"><span class="ouvrage" id="internationale_de_normalisation"><span class="ouvrage" id="Organisation_internationale_de_normalisation"><a href="/wiki/Organisation_internationale_de_normalisation" title="Organisation internationale de normalisation">Organisation internationale de normalisation</a>, « <a rel="nofollow" class="external text" href="https://www.iso.org/fr/standard/64973.html"><cite style="font-style:normal;">ISO 80000-2:2019</cite></a> » <small style="line-height:1em;">(consulté le <time class="nowrap" datetime="2012-09-16" data-sort-value="2012-09-16">16 septembre 2012</time>)</small></span></span>.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink noprint"><a href="#cite_ref-20">↑</a> </span><span class="reference-text"><span class="ouvrage" id="BouvierGeorgeLe_Lionnais2001"><span class="ouvrage" id="Alain_BouvierMichel_GeorgeFrançois_Le_Lionnais2001"><a href="/wiki/Alain_Bouvier" title="Alain Bouvier">Alain <span class="nom_auteur">Bouvier</span></a>, Michel <span class="nom_auteur">George</span> et <a href="/wiki/Fran%C3%A7ois_Le_Lionnais" title="François Le Lionnais">François <span class="nom_auteur">Le Lionnais</span></a>, <cite class="italique">Dictionnaire des mathématiques</cite>, <a href="/wiki/Presses_universitaires_de_France" title="Presses universitaires de France">Presses universitaires de France</a>, <time>2001</time> (<abbr class="abbr" title="première">1<sup>re</sup></abbr> <abbr class="abbr" title="édition">éd.</abbr> 1979), <abbr class="abbr" title="page">p.</abbr> 159<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dictionnaire+des+math%C3%A9matiques&rft.pub=Presses+universitaires+de+France&rft.aulast=Bouvier&rft.aufirst=Alain&rft.au=George%2C+Michel&rft.au=Le+Lionnais%2C+Fran%C3%A7ois&rft.date=2001&rft.pages=159&rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogarithme"></span></span></span>.</span> </li> </ol></div> </div> <div class="mw-heading mw-heading2"><h2 id="Voir_aussi">Voir aussi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=16" title="Modifier la section : Voir aussi" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=16" title="Modifier le code source de la section : Voir aussi"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="noprint boite-grise boite-a-droite" style="text-align:left;"> <div style="float:left;"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Circle-icons-frames.svg/45px-Circle-icons-frames.svg.png" decoding="async" width="45" height="45" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Circle-icons-frames.svg/68px-Circle-icons-frames.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Circle-icons-frames.svg/90px-Circle-icons-frames.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div style="margin-left:60px;">Une <a href="/wiki/Aide:Cat%C3%A9gorie" title="Aide:Catégorie">catégorie</a> est consacrée à ce sujet : <i><a href="/wiki/Cat%C3%A9gorie:Logarithme" title="Catégorie:Logarithme">Logarithme</a></i>.</div> <div style="clear:left;"></div> </div> <style data-mw-deduplicate="TemplateStyles:r194021218">.mw-parser-output .autres-projets>.titre{text-align:center;margin:0.2em 0}.mw-parser-output .autres-projets>ul{margin:0;padding:0}.mw-parser-output .autres-projets>ul>li{list-style:none;margin:0.2em 0;text-indent:0;padding-left:24px;min-height:20px;text-align:left;display:block}.mw-parser-output .autres-projets>ul>li>a{font-style:italic}@media(max-width:720px){.mw-parser-output .autres-projets{float:none}}</style><div class="autres-projets boite-grise boite-a-droite noprint js-interprojets"> <p class="titre">Sur les autres projets Wikimedia :</p> <ul class="noarchive plainlinks"> <li class="commons"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Logarithm?uselang=fr">Les logarithmes</a>, sur <span class="project">Wikimedia Commons</span></li><li class="wiktionary"><a href="https://fr.wiktionary.org/wiki/logarithme" class="extiw" title="wikt:logarithme">logarithme</a>, <span class="nowrap">sur le <span class="project">Wiktionnaire</span></span></li><li class="wikiversity"><a href="https://fr.wikiversity.org/wiki/Fonction_logarithme" class="extiw" title="v:Fonction logarithme">Logarithme</a>, <span class="nowrap">sur <span class="project">Wikiversity</span></span></li><li class="wikibooks"><a href="https://fr.wikibooks.org/wiki/Photographie/Math%C3%A9matiques" class="extiw" title="b:Photographie/Mathématiques">Photographie/Mathématiques (sections "Découverte des logarithmes" et "Que fait-on avec les logarithmes ?")</a>, <span class="nowrap">sur <span class="project">Wikibooks</span></span></li> </ul> </div> <div class="mw-heading mw-heading3"><h3 id="Articles_connexes">Articles connexes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=17" title="Modifier la section : Articles connexes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=17" title="Modifier le code source de la section : Articles connexes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div style="column-width:15em;column-gap:1em;" class="colonnes"> <ul><li><a href="/wiki/Logarithme_complexe" title="Logarithme complexe">Logarithme complexe</a></li> <li><a href="/wiki/Fonction_polylogarithme" title="Fonction polylogarithme">Fonction polylogarithme</a></li> <li><a href="/wiki/Fonction_holomorphe" title="Fonction holomorphe">Fonction holomorphe</a></li> <li><a href="/wiki/Loi_de_Benford" title="Loi de Benford">Loi de Benford</a></li></ul> </div> <div class="mw-heading mw-heading4"><h4 id="Applications_pratiques">Applications pratiques</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=18" title="Modifier la section : Applications pratiques" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=18" title="Modifier le code source de la section : Applications pratiques"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div style="column-width:15em;column-gap:1em;" class="colonnes"> <ul><li><a href="/wiki/R%C3%A8gle_%C3%A0_calcul" title="Règle à calcul">Règle à calcul</a></li> <li><a href="/wiki/%C3%89chelle_logarithmique" title="Échelle logarithmique">Échelle logarithmique</a></li> <li><a href="/wiki/Table_de_logarithmes" title="Table de logarithmes">Table de logarithmes</a></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Liens_externes">Liens externes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Logarithme&veaction=edit&section=19" title="Modifier la section : Liens externes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Logarithme&action=edit&section=19" title="Modifier le code source de la section : Liens externes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p class="mw-empty-elt"> </p> <ul><li class="mw-empty-elt"></li> <li class="mw-empty-elt"></li> <li><div class="liste-horizontale"><span class="wd_identifiers">Notices dans des dictionnaires ou encyclopédies généralistes<span class="noprint wikidata-linkback skin-invert"><span class="mw-valign-baseline noviewer" typeof="mw:File"><a href="https://www.wikidata.org/wiki/Q11197?uselang=fr#identifiers" title="Voir et modifier les données sur Wikidata"><img alt="Voir et modifier les données sur Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></span></span> : <ul><li><a rel="nofollow" class="external text" href="https://www.britannica.com/science/logarithm"><i>Britannica</i></a></li> <li><a rel="nofollow" class="external text" href="https://denstoredanske.lex.dk//logaritme/"><i>Den Store Danske Encyklopædi</i></a></li> <li><a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/logaritmo_(Enciclopedia-Italiana)/"><i>Enciclopedia italiana</i></a></li> <li><a rel="nofollow" class="external text" href="http://www.sapere.it/enciclopedia/logaritmo.html"><i>Enciclopedia De Agostini</i></a></li> <li><a rel="nofollow" class="external text" href="https://encyklopedia.pwn.pl/haslo/;3933548"><i>Internetowa encyklopedia PWN</i></a></li> <li><a rel="nofollow" class="external text" href="https://www.larousse.fr/encyclopedie/images/Logarithmes/1012284"><i>Larousse</i></a></li> <li><a rel="nofollow" class="external text" href="https://snl.no/logaritme"><i>Store norske leksikon</i></a></li> <li><a rel="nofollow" class="external text" href="http://www.treccani.it/enciclopedia/logaritmo"><i>Treccani</i></a></li> </ul></div></li> <li><div class="liste-horizontale"><span class="wd_identifiers"><a href="/wiki/Autorit%C3%A9_(sciences_de_l%27information)" title="Autorité (sciences de l'information)">Notices d'autorité</a><span class="noprint wikidata-linkback skin-invert"><span class="mw-valign-baseline noviewer" typeof="mw:File"><a href="https://www.wikidata.org/wiki/Q11197?uselang=fr#identifiers" title="Voir et modifier les données sur Wikidata"><img alt="Voir et modifier les données sur Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></span></span> : <ul><li><span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11941516p">BnF</a></span> (<span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11941516p">données</a></span>)</li> <li><span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="http://id.loc.gov/authorities/sh85078091">LCCN</a></span></li> <li><span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="http://d-nb.info/gnd/4168047-9">GND</a></span></li> <li><span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00572566">Japon</a></span></li> <li><span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX527539">Espagne</a></span></li> <li><span class="nowrap uid noarchive"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007533701405171">Israël</a></span></li> </ul></div></li> <li>Simone Trompler, <a rel="nofollow" class="external text" href="https://sonocreatica.org.ve/wp-content/uploads/2018/03/Histoire_Logarithme.pdf">Histoire des logarithmes</a>, publié en ligne en 2002 par l’<a href="/wiki/Universit%C3%A9_libre_de_Bruxelles" title="Université libre de Bruxelles">Université libre de Bruxelles</a></li></ul> <div class="navbox-container" style="clear:both;"> <table class="navbox collapsible noprint autocollapse" style=""> <tbody><tr><th class="navbox-title" colspan="2" style=""><div style="float:left; width:6em; text-align:left"><div class="noprint plainlinks nowrap tnavbar" style="padding:0; font-size:xx-small; color:var(--color-emphasized, #000000);"><a href="/wiki/Mod%C3%A8le:Palette_Fonctions_math%C3%A9matiques_usuelles" title="Modèle:Palette Fonctions mathématiques usuelles"><abbr class="abbr" title="Voir ce modèle.">v</abbr></a> · <a class="external text" href="https://fr.wikipedia.org/w/index.php?title=Mod%C3%A8le:Palette_Fonctions_math%C3%A9matiques_usuelles&action=edit"><abbr class="abbr" title="Modifier ce modèle. Merci de prévisualiser avant de sauvegarder.">m</abbr></a></div></div><div style="font-size:110%"><a href="/wiki/Fonction_(math%C3%A9matiques)" title="Fonction (mathématiques)">Fonctions mathématiques usuelles</a></div></th> </tr> <tr> <th class="navbox-group" style="width:200px"><a href="/wiki/Fonction_alg%C3%A9brique" title="Fonction algébrique">Fonction algébrique</a> <a href="/wiki/Fonction_rationnelle" title="Fonction rationnelle">rationnelle</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Fonction_polynomiale" title="Fonction polynomiale">Fonction polynomiale</a></li> <li><a href="/wiki/Fraction_rationnelle" title="Fraction rationnelle">Fonction fractionnaire</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:200px">Fonction algébrique irrationnelle</th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Fonction_puissance" title="Fonction puissance">Fonction puissance</a> / <a href="/wiki/Racine_d%27un_nombre" title="Racine d'un nombre">Fonction racine</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:200px"><a href="/wiki/Fonction_transcendante" title="Fonction transcendante">Fonction transcendante</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a class="mw-selflink selflink">Fonction logarithmique</a> / <a href="/wiki/Exponentielle_de_base_a" title="Exponentielle de base a">Fonction exponentielle de base a</a> <ul><li><a href="/wiki/Logarithme_n%C3%A9p%C3%A9rien" title="Logarithme népérien">Fonction logarithme naturel</a> / <a href="/wiki/Fonction_exponentielle" title="Fonction exponentielle">Fonction exponentielle</a></li></ul></li> <li><a href="/wiki/Fonction_trigonom%C3%A9trique" title="Fonction trigonométrique">Fonction circulaire</a> / <a href="/wiki/Fonction_circulaire_r%C3%A9ciproque" title="Fonction circulaire réciproque">Fonction circulaire réciproque</a></li> <li><a href="/wiki/Fonction_hyperbolique" title="Fonction hyperbolique">Fonction hyperbolique</a> / <a href="/wiki/Fonction_hyperbolique#Applications_réciproques" title="Fonction hyperbolique">Fonction hyperbolique réciproque</a></li> <li><a href="/wiki/Fonction_elliptique" title="Fonction elliptique">Fonction elliptique</a> / <a href="/wiki/Int%C3%A9grale_elliptique" title="Intégrale elliptique">Fonction intégrale elliptique</a></li></ul> </div></td> </tr> </tbody></table> </div> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer" typeof="mw:File"><a href="/wiki/Portail:Analyse" title="Portail de l'analyse"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/24px-Nuvola_apps_kmplot.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/36px-Nuvola_apps_kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/48px-Nuvola_apps_kmplot.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Analyse" title="Portail:Analyse">Portail de l'analyse</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐69c9bb5b64‐49p5v Cached time: 20241128120221 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.628 seconds Real time usage: 0.892 seconds Preprocessor visited node count: 5761/1000000 Post‐expand include size: 74035/2097152 bytes Template argument size: 7004/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 19501/5000000 bytes Lua time usage: 0.346/10.000 seconds Lua memory usage: 7339774/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 686.488 1 -total 50.43% 346.186 1 Modèle:Liens 13.56% 93.099 1 Modèle:Références 4.93% 33.869 1 Modèle:Homophone 4.93% 33.816 3 Modèle:Chapitre 4.65% 31.912 1 Modèle:Traduction/Référence 4.59% 31.516 1 Modèle:Autres_projets 4.38% 30.072 1 Modèle:Méta_bandeau_de_note 4.03% 27.648 1 Modèle:Méta_bandeau 3.39% 23.305 1 Modèle:Portail --> <!-- Saved in parser cache with key frwiki:pcache:12042:|#|:idhash:canonical and timestamp 20241128120221 and revision id 219477454. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de « <a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Logarithme&oldid=219477454">https://fr.wikipedia.org/w/index.php?title=Logarithme&oldid=219477454</a> ».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégorie</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Logarithme" title="Catégorie:Logarithme">Logarithme</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Article_contenant_un_appel_%C3%A0_traduction_en_anglais" title="Catégorie:Article contenant un appel à traduction en anglais">Article contenant un appel à traduction en anglais</a></li><li><a href="/wiki/Cat%C3%A9gorie:Cat%C3%A9gorie_Commons_avec_lien_local_identique_sur_Wikidata" title="Catégorie:Catégorie Commons avec lien local identique sur Wikidata">Catégorie Commons avec lien local identique sur Wikidata</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_un_mod%C3%A8le_Bases_inactif" title="Catégorie:Page utilisant un modèle Bases inactif">Page utilisant un modèle Bases inactif</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P1417" title="Catégorie:Page utilisant P1417">Page utilisant P1417</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P8313" title="Catégorie:Page utilisant P8313">Page utilisant P8313</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P4223" title="Catégorie:Page utilisant P4223">Page utilisant P4223</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P6706" title="Catégorie:Page utilisant P6706">Page utilisant P6706</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P7305" title="Catégorie:Page utilisant P7305">Page utilisant P7305</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P6058" title="Catégorie:Page utilisant P6058">Page utilisant P6058</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P4342" title="Catégorie:Page utilisant P4342">Page utilisant P4342</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_utilisant_P3365" title="Catégorie:Page utilisant P3365">Page utilisant P3365</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_pointant_vers_des_bases_externes" title="Catégorie:Page pointant vers des bases externes">Page pointant vers des bases externes</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_pointant_vers_des_dictionnaires_ou_encyclop%C3%A9dies_g%C3%A9n%C3%A9ralistes" title="Catégorie:Page pointant vers des dictionnaires ou encyclopédies généralistes">Page pointant vers des dictionnaires ou encyclopédies généralistes</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_Wikip%C3%A9dia_avec_notice_d%27autorit%C3%A9" title="Catégorie:Article de Wikipédia avec notice d'autorité">Article de Wikipédia avec notice d'autorité</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Analyse/Articles_li%C3%A9s" title="Catégorie:Portail:Analyse/Articles liés">Portail:Analyse/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Math%C3%A9matiques/Articles_li%C3%A9s" title="Catégorie:Portail:Mathématiques/Articles liés">Portail:Mathématiques/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9_en_mac%C3%A9donien" title="Catégorie:Article de qualité en macédonien">Article de qualité en macédonien</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9_en_anglais" title="Catégorie:Article de qualité en anglais">Article de qualité en anglais</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9_en_vietnamien" title="Catégorie:Article de qualité en vietnamien">Article de qualité en vietnamien</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9_en_hongrois" title="Catégorie:Article de qualité en hongrois">Article de qualité en hongrois</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9_en_russe" title="Catégorie:Article de qualité en russe">Article de qualité en russe</a></li><li><a href="/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9_en_portugais" title="Catégorie:Article de qualité en portugais">Article de qualité en portugais</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 15 octobre 2024 à 15:02.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a> : les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a> ; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/Logarithme" title="Spécial:Citer/Logarithme">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=Logarithme&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-4746t","wgBackendResponseTime":154,"wgPageParseReport":{"limitreport":{"cputime":"0.628","walltime":"0.892","ppvisitednodes":{"value":5761,"limit":1000000},"postexpandincludesize":{"value":74035,"limit":2097152},"templateargumentsize":{"value":7004,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":19501,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 686.488 1 -total"," 50.43% 346.186 1 Modèle:Liens"," 13.56% 93.099 1 Modèle:Références"," 4.93% 33.869 1 Modèle:Homophone"," 4.93% 33.816 3 Modèle:Chapitre"," 4.65% 31.912 1 Modèle:Traduction/Référence"," 4.59% 31.516 1 Modèle:Autres_projets"," 4.38% 30.072 1 Modèle:Méta_bandeau_de_note"," 4.03% 27.648 1 Modèle:Méta_bandeau"," 3.39% 23.305 1 Modèle:Portail"]},"scribunto":{"limitreport-timeusage":{"value":"0.346","limit":"10.000"},"limitreport-memusage":{"value":7339774,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.eqiad.main-69c9bb5b64-49p5v","timestamp":"20241128120221","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Logarithme","url":"https:\/\/fr.wikipedia.org\/wiki\/Logarithme","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11197","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11197","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-03-16T13:34:01Z","dateModified":"2024-10-15T14:02:27Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/81\/Logarithm_plots.png","headline":"famille de fonction math\u00e9matiques pour lesquelles l'image d'un produit est la somme des images"}</script> </body> </html>