CINXE.COM
Search results for: high-performance liquid chromatography (HPLC)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: high-performance liquid chromatography (HPLC)</title> <meta name="description" content="Search results for: high-performance liquid chromatography (HPLC)"> <meta name="keywords" content="high-performance liquid chromatography (HPLC)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="high-performance liquid chromatography (HPLC)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="high-performance liquid chromatography (HPLC)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2584</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: high-performance liquid chromatography (HPLC)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2584</span> Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonida%20Canaj">Jonida Canaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title="high performance liquid chromatography">high performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20validation" title=" method validation"> method validation</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title=" polycyclic aromatic hydrocarbons"> polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/131378/parameters-of-validation-method-of-determining-polycyclic-aromatic-hydrocarbons-in-drinking-water-by-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2583</span> An Investigation of How Salad Rocket May Provide Its Own Defence Against Spoilage Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huda%20Aldossari">Huda Aldossari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Members of the Brassicaceae family, such as rocket species, have high concentrations of glucosinolates (GLSs). GSLs and isothiocyanates (ITCs), the product of GLSs hydrolysis, are the most influential compounds that affect flavour in rocket species. Aside from their contribution to the flavour, GSLs and ITCs are of particular interest due to their potential ability to inhibit the growth of human pathogenic bacteria such as E. coli O157. Quantitative and qualitative analysis of glucosinolate compounds in rocket extracts was obtained by Liquid Chromatography-Mass Spectrometry (LC–MS).Each individual component of non-volatile GLSs and ITCs was isolated by High-Performance Liquid Chromatography (HPLC) fractionation. The identity and purity of each fraction were confirmed using Ultra High-Performance Liquid Chromatography (UPLC). The separation of glucosinolates in the complex rocket extractions was performed by optimizing a HPLC fractionation method through changing the mobile phase composition, solvent gradient, and the flow rate. As a result, six glucosinolates compounds (Glucosativin, 4-Methoxyglucobrassicin, Glucotropaeolin GTP, Glucoiberin GIB, Diglucothiobenin, and Sinigrin) have been isolated, identified and quantified in the complex samples. This step aims to evaluate the antibacterial activity of glucosinolates and their enzymatic hydrolysis against bacterial growth of E.coli k12. Therefore, fractions from this study will be used to determine the most active compounds by investigating the efficacy of each component of GLSs and ITCs at inhibiting bacterial growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket" title="rocket">rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosinolates" title=" glucosinolates"> glucosinolates</a>, <a href="https://publications.waset.org/abstracts/search?q=E.coli%20k12." title=" E.coli k12."> E.coli k12.</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC%20fractionatio" title=" HPLC fractionatio"> HPLC fractionatio</a> </p> <a href="https://publications.waset.org/abstracts/158926/an-investigation-of-how-salad-rocket-may-provide-its-own-defence-against-spoilage-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2582</span> Indigo-Reducing Activity by Microorganisms from the Fermented Indigo Dyeing Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Tachibana">Yuta Tachibana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki"> Ayuko Itsuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three strains of bacteria (Lysinibacillus xylanilyticus, Bacillus kochii, and Enterococcus sp.) were isolated from the fermented Indigo (Polygonum tinctorium) dyeing solution using the dilution plate method and some fermentation conditions were determined. High-Performance Liquid Chromatography (HPLC) was used to determine the indigo concentration. When the isolated bacteria were cultured in the indigo liquid culture containing various sugars, starch, and ethanol, the indigo culture solutions containing galactose, mannose, ribose, and ethanol were remarkably decreased. Comparison of decreasing indigo between three strains showed that Enterococcus sp. had the fastest growth and decrease of indigo. However, decreasing indigo per unit micro biomass did not correspond to the results of decreasing indigo―Bacillus kochii had higher indigo-reducing activity than Enterococcus sp. and Lysinibacillus xylanilyticus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation%20condition" title="fermentation condition">fermentation condition</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29" title=" high-performance liquid chromatography (HPLC)"> high-performance liquid chromatography (HPLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=indigo%20dyeing%20solution" title=" indigo dyeing solution"> indigo dyeing solution</a>, <a href="https://publications.waset.org/abstracts/search?q=indigo-reducing%20activity" title=" indigo-reducing activity"> indigo-reducing activity</a> </p> <a href="https://publications.waset.org/abstracts/146786/indigo-reducing-activity-by-microorganisms-from-the-fermented-indigo-dyeing-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2581</span> Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Layla%20El%20Gaini">Layla El Gaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Majdouline%20Belaqziz"> Majdouline Belaqziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Outaki"> Meriem Outaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Minhaj"> Mariam Minhaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC-DAD%29" title="high-performance liquid chromatography (HPLC-DAD)">high-performance liquid chromatography (HPLC-DAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeic%20acid%20analysis" title=" caffeic acid analysis"> caffeic acid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20wastewater%20phenolics" title=" olive mill wastewater phenolics"> olive mill wastewater phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method%20validation" title=" analytical method validation"> analytical method validation</a> </p> <a href="https://publications.waset.org/abstracts/179112/comprehensive-validation-of-high-performance-liquid-chromatography-diode-array-detection-hplc-dad-for-quantitative-assessment-of-caffeic-acid-in-phenolic-extracts-from-olive-mill-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2580</span> Tracking of Linarin from the Ethyl Acetate Fraction of Melinjo (Gnetum gnemon L.) Seeds Using Preparative High Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asep%20Sukohar">Asep Sukohar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramadhan%20Triyandi"> Ramadhan Triyandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Iqbal"> Muhammad Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahidin"> Sahidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharyani"> Suharyani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Resveratrol is a class of bioactive chemicals found in melinjo, which has a wide range of biological actions. The purpose of this study is to determine the linarin content of the melinjo fraksi by using preparative-high-performance liquid chromatography (prep-HPLC). Method: Extraction used the soxhletation method with 96% ethanol solvent. Fractionation used ethyl acetate and ethanol in a ratio of 1:1. Tracing of linarin compound used prep-HPLC with a mobile phase ratio of distilled water: methanol (55: 45, v/v). The presence of linarin was detected using a wavelength of 215 nm. Fourier Transform Infrared (FTIR) was used to identify the functional groups of compound. Result: The retention time required to elute the ethyl acetate fraction was 2.601 minutes. Compound separation identification using Fourier Transform Infrared Spectroscopy - Quest Attenuated Total Reflectance (FTIR - QATR) has a similarity value range with standards from 0 to 1000. The elution results of the ethyl acetate fraction have similar values with the standard compounds linarin (668), resveratrol (578), and catechin (455). Conclusion: Tracing for active compound in the ethyl acetate fraction of Gnetum Gnemon L. using prep-HPLC showed a strong suspicion of the presence of linarin compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gnetum%20gnemon%20L." title="Gnetum gnemon L.">Gnetum gnemon L.</a>, <a href="https://publications.waset.org/abstracts/search?q=linarin" title=" linarin"> linarin</a>, <a href="https://publications.waset.org/abstracts/search?q=prep-HPLC" title=" prep-HPLC"> prep-HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=fraction%20ethyl%20acetate" title=" fraction ethyl acetate"> fraction ethyl acetate</a> </p> <a href="https://publications.waset.org/abstracts/171258/tracking-of-linarin-from-the-ethyl-acetate-fraction-of-melinjo-gnetum-gnemon-l-seeds-using-preparative-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2579</span> A Distinct Reversed-Phase High-Performance Liquid Chromatography Method for Simultaneous Quantification of Evogliptin Tartrate and Metformin HCl in Pharmaceutical Dosage Forms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeshkumar%20Kanubhai%20Patel">Rajeshkumar Kanubhai Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Sudhirkumar%20Mochi"> Neha Sudhirkumar Mochi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple and accurate stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous quantitation of Evogliptin tartrate and Metformin HCl in pharmaceutical dosage forms, following ICH guidelines. Forced degradation was performed under various stress conditions including acid, base, oxidation, thermal, and photodegradation. The method utilized an Eclipse C18 column (250 mm × 4.6 mm, 5 µm) with a mobile phase of 5 mM 1-hexane sulfonic acid sodium salt in water and 0.2% v/v TEA (45:55 %v/v), adjusted to pH 3.0 with OPA, at a flow rate of 1.0 mL/min. Detection at 254.4 nm using a PDA detector showed good resolution of degradation products and both drugs. Linearity was observed within 1-5 µg/mL for Evogliptin tartrate and 100-500 µg/mL for Metformin HCl, with % recovery between 99-100% and precision within acceptable limits (%RSD < 2%). The method proved to be specific, precise, accurate, and robust for routine analysis of these drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability%20indicating%20RP-HPLC" title="stability indicating RP-HPLC">stability indicating RP-HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=evogliptin%20tartrate" title=" evogliptin tartrate"> evogliptin tartrate</a>, <a href="https://publications.waset.org/abstracts/search?q=metformin%20HCl" title=" metformin HCl"> metformin HCl</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/191306/a-distinct-reversed-phase-high-performance-liquid-chromatography-method-for-simultaneous-quantification-of-evogliptin-tartrate-and-metformin-hcl-in-pharmaceutical-dosage-forms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2578</span> A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20P.%20Dewani">Anil P. Dewani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20L.%20Bakal"> Ravindra L. Bakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20V.%20Chandewar"> Anil V. Chandewar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDA" title="MDA">MDA</a>, <a href="https://publications.waset.org/abstracts/search?q=TBA" title=" TBA"> TBA</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-UV" title=" HPLC-UV"> HPLC-UV</a> </p> <a href="https://publications.waset.org/abstracts/40145/a-validated-high-performance-liquid-chromatography-uv-method-for-determination-of-malondialdehyde-application-to-study-in-chronic-ciprofloxacin-treated-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2577</span> Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from Fish Oil Using HPLC Method and Investigation of Their Antibacterial Effects on Some Pathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y%C4%B1lmaz%20U%C3%A7ar">Yılmaz Uçar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Ozogul"> Fatih Ozogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Durmu%C5%9F"> Mustafa Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20Ozogul"> Yesim Ozogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R%C4%B1za%20K%C3%B6%C5%9Fker"> Ali Rıza Köşker</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmeray%20Kuley%20Bo%C4%9Fa"> Esmeray Kuley Boğa</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Ayas"> Deniz Ayas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that are essential oils from trout oil, using high-performance liquid chromatography (HPLC) method, bioconverted EPA and DHA into bioconverted EPA (bEPA), bioconverted DHA (bDHA) extracts by P. aeruginosa PR3. Moreover, in vitro antibacterial activity of bEPA and bDHA was investigated using disc diffusion methods and minimum inhibitory concentration (MIC). EPA and DHA concentration of 11.1% and 15.9% in trout oil increased in 58.64% and 40.33% after HPLC optimisation, respectively. In this study, EPA and DHA enriched products were obtained which are to be used as valuable supplements for food and pharmaceutical purposes. The bioconverted EPA and DHA exhibited antibacterial activities against two Gram-positive bacteria (Listeria monocytogenes ATCC 7677 and Staphylococcus aureus ATCC 29213) and six Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC700603, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila NCIMB 1135, and Salmonella Paratyphi A NCTC 13). Inhibition zones and MIC value of bEPA and bDHA against bacterial strains ranged from 7 to 12 mm and from 350 to 2350 μg/mL, respectively. Our results suggested that the crude extracts of bioconversion of EPA and DHA by P. aeruginosa PR3 can be considered as promising antimicrobials in improving food safety by controlling foodborne pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=High-Performance%20Liquid%20Chromatography%20%28HPLC%29" title="High-Performance Liquid Chromatography (HPLC)">High-Performance Liquid Chromatography (HPLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=docosahexaenoic%20acid" title=" docosahexaenoic acid"> docosahexaenoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=DHA" title=" DHA"> DHA</a>, <a href="https://publications.waset.org/abstracts/search?q=eicosapentaenoic%20acid" title=" eicosapentaenoic acid"> eicosapentaenoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=EPA" title=" EPA"> EPA</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibitory%20concentration" title=" minimum inhibitory concentration"> minimum inhibitory concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=MIC" title=" MIC"> MIC</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa%20PR3" title=" Pseudomonas aeruginosa PR3"> Pseudomonas aeruginosa PR3</a> </p> <a href="https://publications.waset.org/abstracts/21883/purification-of-eicosapentaenoic-acid-epa-and-docosahexaenoic-acid-dha-from-fish-oil-using-hplc-method-and-investigation-of-their-antibacterial-effects-on-some-pathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2576</span> Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Duangyod">Thidarat Duangyod</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Palanuvej"> Chanida Palanuvej</a>, <a href="https://publications.waset.org/abstracts/search?q=Nijsiri%20Ruangrungsi"> Nijsiri Ruangrungsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pentace%20burmanica" title="pentace burmanica">pentace burmanica</a>, <a href="https://publications.waset.org/abstracts/search?q=%28%2B%29-catechin" title=" (+)-catechin"> (+)-catechin</a>, <a href="https://publications.waset.org/abstracts/search?q=%28-%29-epicatechin" title=" (-)-epicatechin"> (-)-epicatechin</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title=" high performance liquid chromatography "> high performance liquid chromatography </a> </p> <a href="https://publications.waset.org/abstracts/19773/quantitative-analysis-of-catechin-and-epicatechin-in-pentace-burmanica-stem-bark-by-hplc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2575</span> Separation and Purification of Oligostilbenes Using HPLC with Dereplication Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurhuda%20Manshoor">Nurhuda Manshoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fazirulrahman%20Fathil"> Mohd Fazirulrahman Fathil</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hakim%20Jaafar"> Muhammad Hakim Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Amirul%20S.%20A.%20Jalil"> Mohd Amirul S. A. Jalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leaves of Neobalanocarpus heimii were investigated for their oligostilbene contents. Prior to isolation process, the determinations of compounds were based on mass spectrometric fragmentation patterns. Three compounds, heimiol B, hopeaphenol, and vaticaphenol A were identified directly from the crude extract. Preparative high-performance liquid chromatography (HPLC) was used to isolate and purify the other compounds. The purified compounds were then analyzed using NMR spectroscopy to identify the compound structure and stereochemistry. The method employed for the research modified to comply with different HPLC techniques such as preparative and analytical techniques. The crude sample was injected into preparative HPLC to obtain several fractions which consist of oligostilbene mixture. The fractions were further isolated using analytical HPLC to obtain four pure compounds. The compounds then were characterized using nuclear magnetic resonance (NMR). The result shows that the leaves extract of Neobalanocarpus heimii contain three oligostilbenes, namely vaticanol A, balanocarpol, and vaticaphenol A, and a galactopyranose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanocarpol" title="balanocarpol">balanocarpol</a>, <a href="https://publications.waset.org/abstracts/search?q=hemiol%20B" title=" hemiol B"> hemiol B</a>, <a href="https://publications.waset.org/abstracts/search?q=hopeaphenol" title=" hopeaphenol"> hopeaphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=vaticanol%20A" title=" vaticanol A"> vaticanol A</a>, <a href="https://publications.waset.org/abstracts/search?q=vaticaphenol%20A" title=" vaticaphenol A"> vaticaphenol A</a> </p> <a href="https://publications.waset.org/abstracts/18775/separation-and-purification-of-oligostilbenes-using-hplc-with-dereplication-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2574</span> Aflatoxins Characterization in Remedial Plant-Delphinium denudatum by High-Performance Liquid Chromatography–Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20A.%20Siddique">Nadeem A. Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Mujeeb"> Mohd Mujeeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahkashan"> Kahkashan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The objective of the projected work is to study the occurrence of the aflatoxins B1, B2, G1and G2 in remedial plants, exclusively in Delphinium denudatum. The aflatoxins were analysed by high-performance liquid chromatography–tandem quadrupole mass spectrometry with electrospray ionization (HPLC–MS/MS) and immunoaffinity column chromatography were used for extraction and purification of aflatoxins. PDA media was selected for fungal count. Results: A good quality linear relationship was originated for AFB1, AFB2, AFG1 and AFG2 at 1–10 ppb (r > 0.9995). The analyte precision at three different spiking levels was 88.7–109.1 %, by means of low per cent relative standard deviations in each case. Within 5 to7 min aflatoxins can be separated using an Agilent XDB C18-column. We found that AFB1 and AFB2 were not found in D. denudatum. This was reliable through exceptionally low figures of fungal colonies observed after 6 hr of incubation. The developed analytical method is straightforward, be successfully used to determine the aflatoxins. Conclusion: The developed analytical method is straightforward, simple, accurate, economical and can be successfully used to find out the aflatoxins in remedial plants and consequently to have power over the quality of products. The presence of aflatoxin in the plant extracts was interrelated to the least fungal load in the remedial plants examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=delphinium%20denudatum" title=" delphinium denudatum"> delphinium denudatum</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/56463/aflatoxins-characterization-in-remedial-plant-delphinium-denudatum-by-high-performance-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2573</span> Chromatographic Lipophilicity Determination of Newly Synthesized Steroid Derivatives for Further Biological Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milica%20Z.%20Karadzic">Milica Z. Karadzic</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevric"> Lidija R. Jevric</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovic"> Sanja Podunavac-Kuzmanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kovacevic"> Strahinja Z. Kovacevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamarija%20I.%20Mandic"> Anamarija I. Mandic</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Penov-Gasi"> Katarina Penov-Gasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20R.%20Nikolic"> Andrea R. Nikolic</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20M.%20Okljesa"> Aleksandar M. Okljesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a set of 29 newly synthesized steroid derivatives were investigated using reversed-phase high-performance liquid chromatography (RP-HPLC) as a first step in preselection of drug candidates. This analysis presents an experimental determination of chromatographic lipophilicity, and it was conducted to obtain physicochemical characterization of these molecules. As the most widely used bonded phases in RP-HPLC, octadecyl (C18) and octyl (C8) were used. Binary mixtures of water and acetonitrile or methanol were used as mobile phases. Obtained results were expressed as retention factor values logk and they were correlated with logP values. The results showed that both columns provide good estimations of the chromatographic lipophilicity of the molecules included in this study. This analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their antiproliferative and antimicrobial activity. This article is based upon work from COST Action (CM1306), supported by COST (European Cooperation in Science and Technology). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20activity" title="antiproliferative activity">antiproliferative activity</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatographic%20lipophilicity" title=" chromatographic lipophilicity"> chromatographic lipophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=steroids" title=" steroids"> steroids</a> </p> <a href="https://publications.waset.org/abstracts/49454/chromatographic-lipophilicity-determination-of-newly-synthesized-steroid-derivatives-for-further-biological-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2572</span> Analysis of Caffeic Acid from Myrica nagi Leaves by High Performance Liquid Chromatography </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Panthari">Preeti Panthari</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Kharkwal"> Harsha Kharkwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myrica nagi belongs to Myricaceae family. It is known for its therapeutic use since ancient times. The leaves were extracted with methanol and further fractioned with different solvents with increasing polarity. The n-butanol fraction of methanol extract was passed through celite, on separation through silica gel column chromatography yielded ten fractions. For the first time we report isolation of Caffeic acid from n-butanol fraction of Myrica nagi leaves in Chloroform: methanol (70:30) fraction. The mobile phase used for analysis in HPLC was Methanol: water (60:40) at the flow rate of 1 ml/min at wavelength of 280 nm. The retention time was 2.66 mins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myrica%20nagi" title="Myrica nagi">Myrica nagi</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20chromatography" title=" column chromatography"> column chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20time" title=" retention time"> retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeic%20acid" title=" caffeic acid"> caffeic acid</a> </p> <a href="https://publications.waset.org/abstracts/18957/analysis-of-caffeic-acid-from-myrica-nagi-leaves-by-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2571</span> Method Development and Validation for Quantification of Active Content and Impurities of Clodinafop Propargyl and Its Enantiomeric Separation by High-Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamlesh%20Vishwakarma">Kamlesh Vishwakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bipul%20Behari%20Saha"> Bipul Behari Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunilkumar%20Sing"> Sunilkumar Sing</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Mishra"> Abhishek Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreenivas%20Rao"> Sreenivas Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A rapid, sensitive and inexpensive method has been developed for complete analysis of Clodinafop Propargyl. Clodinafop Propargyl enantiomers were separated on chiral column, Chiral Pak AS-H (250 mm. 4.6mm x 5µm) with mobile phase n-hexane: IPA (96:4) at flow rate 1.5 ml/min. The effluent was monitored by UV detector at 230 nm. Clodinafop Propagyl content and impurity quantification was done with reverse phase HPLC. The present study describes a HPLC method using simple mobile phase for the quantification of Clodinafop Propargyl and its impurities. The method was validated and found to be accurate, precise, convenient and effective. Moreover, the lower solvent consumption along with short analytical run time led to a cost effective analytical method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clodinafop%20Propargyl" title="Clodinafop Propargyl">Clodinafop Propargyl</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-UV" title=" HPLC-UV"> HPLC-UV</a> </p> <a href="https://publications.waset.org/abstracts/63561/method-development-and-validation-for-quantification-of-active-content-and-impurities-of-clodinafop-propargyl-and-its-enantiomeric-separation-by-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2570</span> Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyan%20Li">Fangyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Min%20Lee"> Lin Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhu%20Peh"> Hui Zhu Peh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoet%20Harn%20Chan"> Shoet Harn Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advantame" title="advantame">advantame</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=sweetener" title=" sweetener"> sweetener</a> </p> <a href="https://publications.waset.org/abstracts/26887/determination-of-a-novel-artificial-sweetener-advantame-in-food-by-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2569</span> Chemical Fingerprinting of the Ephedrine Pathway to Methamphetamine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luke%20Andrighetto">Luke Andrighetto</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Stevenson"> Paul G. Stevenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20C.%20Henderson"> Luke C. Henderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Pearson"> Jim Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20A.%20Conlan"> Xavier A. Conlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As pseudoephedrine, a common ingredient in cold and flu medications is closely monitored and restricted in Australia, alternative methods of accessing it are of interest. The impurities and by-products of every reaction step of pseudoephedrine/ephedrine and methamphetamine synthesis have been mapped in order to develop a chemical fingerprint based on synthetic route. Likewise, seized methamphetamine contains a combination of different cutting agents and starting materials. Therefore, in-silico optimised two-dimensional HPLC with DryLab® and OpenMS® software has been used to efficiently separate complex seizure samples. An excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This study produced a two-dimensional separation regime that offers unprecedented separation power (separation space) while maintaining a rapid analysis time that is faster than those previously reported for gas chromatography, single dimension high performance liquid chromatography or capillary electrophoresis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20fingerprint" title="chemical fingerprint">chemical fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=ephedrine" title=" ephedrine"> ephedrine</a>, <a href="https://publications.waset.org/abstracts/search?q=methamphetamine" title=" methamphetamine"> methamphetamine</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20HPLC" title=" two-dimensional HPLC"> two-dimensional HPLC</a> </p> <a href="https://publications.waset.org/abstracts/23355/chemical-fingerprinting-of-the-ephedrine-pathway-to-methamphetamine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2568</span> Development and Validation of HPLC Method on Determination of Acesulfame-K in Jelly Drink Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Candra%20Irawan">Candra Irawan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Yudianto"> David Yudianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsanu%20Nadiyya"> Ahsanu Nadiyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Anna%20Br%20Sitepu"> Dewi Anna Br Sitepu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanafi"> Hanafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Erna%20Styani"> Erna Styani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jelly drink was produced from a combination of both natural and synthetic materials, such as acesulfame potassium (acesulfame-K) as synthetic sweetener material. Acesulfame-K content in jelly drink could be determined by High-Performance Liquid Chromatography (HPLC), but this method needed validation due to having a change on the reagent addition step which skips the carrez addition and comparison of mix mobile phase (potassium dihydrogen phosphate and acetonitrile) with ratio from 75:25 to 90:10 to be more efficient and cheap. This study was conducted to evaluate the performance of determination method for acesulfame-K content in the jelly drink by HPLC. The method referred to Deutsches Institut fur Normung European Standard International Organization for Standardization (DIN EN ISO):12856 (1999) about Foodstuffs, Determination of acesulfame-K, aspartame and saccharin. The result of the correlation coefficient value (r) on the linearity test was 0.9987 at concentration range 5-100 mg/L. Detection limit value was 0.9153 ppm, while the quantitation limit value was 1.1932 ppm. The recovery (%) value on accuracy test for sample concentration by spiking 100 mg/L was 102-105%. Relative Standard Deviation (RSD) value for precision and homogenization tests were 2.815% and 4.978%, respectively. Meanwhile, the comparative and stability tests were tstat (0.136) < ttable (2.101) and |µ1-µ2| (1.502) ≤ 0.3×CV Horwitz. Obstinacy test value was tstat < ttable. It can be concluded that the HPLC method for the determination of acesulfame-K in jelly drink product by HPLC has been valid and can be used for analysis with good performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acesulfame-K" title="acesulfame-K">acesulfame-K</a>, <a href="https://publications.waset.org/abstracts/search?q=jelly%20drink" title=" jelly drink"> jelly drink</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/111374/development-and-validation-of-hplc-method-on-determination-of-acesulfame-k-in-jelly-drink-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2567</span> Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavier%20A.%20Conlan">Xavier A. Conlan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromatography" title="chromatography">chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry%20methamphetamine" title=" mass spectrometry methamphetamine"> mass spectrometry methamphetamine</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20segmented%20outlet%20flow%20column" title=" parallel segmented outlet flow column"> parallel segmented outlet flow column</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20sciences" title=" forensic sciences"> forensic sciences</a> </p> <a href="https://publications.waset.org/abstracts/23798/chemical-fingerprinting-of-complex-samples-with-the-aid-of-parallel-outlet-flow-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2566</span> Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmala%20Deenadayalu">Nirmala Deenadayalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwanele%20B.%20Mazibuko"> Kwanele B. Mazibuko</a>, <a href="https://publications.waset.org/abstracts/search?q=Lethiwe%20D.%20Mthembu"> Lethiwe D. Mthembu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catechol" title="catechol">catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title=" sugarcane bagasse"> sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20liquefaction" title=" hydrothermal liquefaction"> hydrothermal liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/151529/depolymerization-of-lignin-in-sugarcane-bagasse-by-hydrothermal-liquefaction-to-optimize-catechol-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2565</span> Isolation, Identification and Characterization of the Bacteria and Yeast from the Fermented Stevia Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asato%20Takaishi">Asato Takaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Nasuhara"> Masashi Nasuhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki"> Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenichi%20Suga"> Kenichi Suga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia (Stevia rebaudiana Bertoni) is a composite plant native to Paraguay. Stevia sweetener is derived from a hot water extract of Stevia (Stevia extract), which has some effects such as histamine decomposition, antioxidative effect, and blood sugar level-lowering function. The steviol glycosides in the Stevia extract are considered to contribute to these effects. In addition, these effects increase by the fermentation. However, it takes a long time for fermentation of Stevia extract and the fermentation liquid sometimes decays during the fermentation process because natural fermentation method is used. The aim of this study is to perform the fermentation of Stevia extract in a shorter period, and to produce the fermentation liquid in stable quality. From the natural fermentation liquid of Stevia extract, the four strains of useful (good taste) microorganisms were isolated using dilution plate count method and some properties were determined. The base sequences of 16S rDNA and 28S rDNA revealed three bacteria (two Lactobacillus sp. and Microbacterium sp.) and one yeast (Issatchenkia sp.). This result has corresponded that several kinds of lactic bacterium such as Lactobacillus pentosus and Lactobacillus buchneri were isolated from Stevia leaves. Liquid chromatography/mass spectrometory (LC/MS/MS) and High-Performance Liquid Chromatography (HPLC) were used to determine the contents of steviol glycosides and neutral sugars. When these strains were cultured in the sterile Stevia extract, the steviol and stevioside were increased in the fermented Stevia extract. So, it was suggested that the rebaudioside A and the mixture of steviol glycosides in the Stevia extract were decomposed into stevioside and steviol by microbial metabolism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title=" lactobacillus"> lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=Stevia" title=" Stevia"> Stevia</a>, <a href="https://publications.waset.org/abstracts/search?q=steviol%20glycosides" title=" steviol glycosides"> steviol glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/62007/isolation-identification-and-characterization-of-the-bacteria-and-yeast-from-the-fermented-stevia-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2564</span> Metabolomics Fingerprinting Analysis of Melastoma malabathricum L. Leaf of Geographical Variation Using HPLC-DAD Combined with Chemometric Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dian%20Mayasari">Dian Mayasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosi%20Bayu%20Murti"> Yosi Bayu Murti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvia%20Utami%20Tunjung%20Pratiwi"> Sylvia Utami Tunjung Pratiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarsono"> Sudarsono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melastoma malabathricum L. is an Indo-Pacific herb that has been traditionally used to treat several ailments such as wounds, dysentery, diarrhea, toothache, and diabetes. This plant is common across tropical Indo-Pacific archipelagos and is tolerant of a range of soils, from low-lying areas subject to saltwater inundation to the salt-free conditions of mountain slopes. How the soil and environmental variation influences secondary metabolite production in the herb, and an understanding of the plant’s utility as traditional medicine, remain largely unknown and unexplored. The objective of this study is to evaluate the variability of the metabolic profiles of M. malabathricum L. across its geographic distribution. By employing high-performance liquid chromatography-diode array detector (HPLC-DAD), a highly established, simple, sensitive, and reliable method was employed for establishing the chemical fingerprints of 72 samples of M. malabathricum L. leaves from various geographical locations in Indonesia. Specimens collected from six terrestrial and archipelago regions of Indonesia were analyzed by HPLC to generate chromatogram peak profiles that could be compared across each region. Data corresponding to the common peak areas of HPLC chromatographic fingerprint were analyzed by hierarchical component analysis (HCA) and principal component analysis (PCA) to extract information on the most significant variables contributing to characterization and classification of analyzed samples data. Principal component values were identified as PC1 and PC2 with 41.14% and 19.32%, respectively. Based on variety and origin, the high-performance liquid chromatography method validated the chemical fingerprint results used to screen the in vitro antioxidant activity of M. malabathricum L. The result shows that the developed method has potential values for the quality of similar M. malabathrium L. samples. These findings provide a pathway for the development and utilization of references for the identification of M. malabathricum L. Our results indicate the importance of considering geographic distribution during field-collection efforts as they demonstrate regional metabolic variation in secondary metabolites of M. malabathricum L., as illustrated by HPLC chromatogram peaks and their antioxidant activities. The results also confirm the utility of this simple approach to a rapid evaluation of metabolic variation between plants and their potential ethnobotanical properties, potentially due to the environments from whence they were collected. This information will facilitate the optimization of growth conditions to suit particular medicinal qualities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title="fingerprint">fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title=" high performance liquid chromatography"> high performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=Melastoma%20malabathricum%20l." title=" Melastoma malabathricum l."> Melastoma malabathricum l.</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20profiles" title=" metabolic profiles"> metabolic profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis "> principal component analysis </a> </p> <a href="https://publications.waset.org/abstracts/133098/metabolomics-fingerprinting-analysis-of-melastoma-malabathricum-l-leaf-of-geographical-variation-using-hplc-dad-combined-with-chemometric-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2563</span> Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20P.%20Dewani">Anil P. Dewani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20S.%20Tripathi"> Alok S. Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20V.%20Chandewar"> Anil V. Chandewar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetics" title="pharmacokinetics">pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=glimepiride" title=" glimepiride"> glimepiride</a>, <a href="https://publications.waset.org/abstracts/search?q=ilaprazole" title=" ilaprazole"> ilaprazole</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=SPE" title=" SPE"> SPE</a> </p> <a href="https://publications.waset.org/abstracts/40102/pharmacokinetic-monitoring-of-glimepiride-and-ilaprazole-in-rat-plasma-by-high-performance-liquid-chromatography-with-diode-array-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2562</span> Separation of Some Pyrethroid Insecticides by High-Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fairouz%20Tazerouti">Fairouz Tazerouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ihadadene"> Samira Ihadadene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pyrethroids are synthetic pesticides that originated from the modification of natural pyrethrins to improve their biological activity and stability. They are a family of chiral pesticides with a large number of stereoisomers. Enantiomers of synthetic pyretroids present different insecticidal activity, toxicity against aquatic invertebrates and persistence in the environment so the development of rapid and sensitive chiral methods for the determination of different enantiomers is necessary. In this study, the separation of enantiomers of pyrethroid insecticides has been systematically studied using three commercially chiral high-performance liquid chromatography columns. Useful resolution was obtained for compounds with a variety of acid and alcohol moieties, and containing one to four chiral centres. The chromatographic behaviour of the diastereomers of some of these insecticides by using normal, polar and reversed mobile phase mode were also examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethroids" title=" pyrethroids"> pyrethroids</a> </p> <a href="https://publications.waset.org/abstracts/16635/separation-of-some-pyrethroid-insecticides-by-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2561</span> Forced Degradation Study of Rifaximin Formulated Tablets to Determine Stability Indicating Nature of High-Performance Liquid Chromatography Analytical Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Fida%20Masih">Abid Fida Masih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forced degradation study of Rifaximin was conducted to determine the stability indicating potential of HPLC testing method for detection of Rifaximin in formulated tablets to be employed for quality control and stability testing. The questioned method applied with mobile phase methanol: water (70:30), 5µm, 250 x 4.6mm, C18 column, wavelength 293nm and flow rate of 1.0 ml/min. Forced degradation study was performed under oxidative, acidic, basic, thermal and photolytic conditions. The applied method successfully determined the degradation products after acidic and basic degradation without interfering with Rifaximin detection. Therefore, the method was said to be stability indicating and can be applied for quality control and stability testing of Rifaxmin tablets during its shelf life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20degradation" title="forced degradation">forced degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography" title=" high-performance liquid chromatography"> high-performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20validation" title=" method validation"> method validation</a>, <a href="https://publications.waset.org/abstracts/search?q=rifaximin" title=" rifaximin"> rifaximin</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20indicating%20method" title=" stability indicating method"> stability indicating method</a> </p> <a href="https://publications.waset.org/abstracts/76445/forced-degradation-study-of-rifaximin-formulated-tablets-to-determine-stability-indicating-nature-of-high-performance-liquid-chromatography-analytical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2560</span> A Method for Quantifying Arsenolipids in Sea Water by HPLC-High Resolution Mass Spectrometry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muslim%20Khan">Muslim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20B.%20Jensen"> Kenneth B. Jensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20A.%20Francesconi"> Kevin A. Francesconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trace amounts (ca 1 µg/L, 13 nM) of arsenic are present in sea water mostly as the oxyanion arsenate. In contrast, arsenic is present in marine biota (animals and algae) at very high levels (up to100,000 µg/kg) a significant portion of which is present as lipid-soluble compounds collectively termed arsenolipids. The complex nature of sea water presents an analytical challenge to detect trace compounds and monitor their environmental path. We developed a simple method using liquid-liquid extraction combined with HPLC-High Resolution Mass Spectrometer capable of detecting trace of arsenolipids (99 % of the sample matrix while recovering > 80 % of the six target arsenolipids with limit of detection of 0.003 µg/L.) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenolipids" title="arsenolipids">arsenolipids</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20water" title=" sea water"> sea water</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-high%20resolution%20mass%20spectrometry" title=" HPLC-high resolution mass spectrometry"> HPLC-high resolution mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/39793/a-method-for-quantifying-arsenolipids-in-sea-water-by-hplc-high-resolution-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2559</span> High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Ragab">Marwa Ragab</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20El-Kimary"> Eman El-Kimary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiral%20analysis" title="chiral analysis">chiral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=esomeprazole" title=" esomeprazole"> esomeprazole</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Naproxen" title=" S-Naproxen"> S-Naproxen</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-DAD" title=" HPLC-DAD"> HPLC-DAD</a> </p> <a href="https://publications.waset.org/abstracts/61903/high-performance-liquid-chromatographic-method-with-diode-array-detection-hplc-dad-analysis-of-naproxen-and-omeprazole-active-isomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2558</span> Characterization of Penicillin V Acid and Its Related Compounds by HPLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahdja%20Guerfi">Bahdja Guerfi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hadhoum"> N. Hadhoum</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Azouz"> I. Azouz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bendoumia"> M. Bendoumia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouafia"> S. Bouafia</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Hadjadj%20Aoul"> F. Z. Hadjadj Aoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Penicillin%20V%20acid" title=" Penicillin V acid"> Penicillin V acid</a>, <a href="https://publications.waset.org/abstracts/search?q=related%20substances" title=" related substances"> related substances</a> </p> <a href="https://publications.waset.org/abstracts/76828/characterization-of-penicillin-v-acid-and-its-related-compounds-by-hplc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2557</span> Comparison of Physicochemical Properties of Catfish Myofibrillar and Sarcoplasmic Protein Hydrolysates and Characterization of Their Bioactive Peptides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Najafian">Leila Najafian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarcoplasmic protein hydrolysates (SPHs) and myofibrillar protein hydrolysates (MPHs) from patin (Pangasius sutchi) were produced using two types of proteases: Papain and Alcalase. 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities and metal chelating activity assays for antioxidant activities were carried out on the SPHs and MPHs. The hydrolysates were isolated and purified by ultrafiltration, gel filtration and reverse phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) was used in identifying peptide sequences. The results showed that when the DH of MPHs increased, the protein solubility increased, while the highest amount of the protein solubility of SPHs was after 60 min incubation. The effect of DH on antioxidant activities of SPHs and MPHs was investigated. Among the hydrolysates, papain-MPH and Alcalase-SPH, which had the highest antioxidant activities, were purified. The potent fractions obtained from RP-HPLC of sarcoplasmic (SI 3 fraction) and myofibrillar (MI 4 fraction) hydrolysates showed the highest DPPH radical scavenging activity. The FVNQPYLLYSVHMK peptide for MPH and the LVVDIPAALQHA peptide for SPH exhibited the highest antioxidant activity. The presence of hydrophobic and hydrophilic amino acids, namely leucine (L), valine (V), phenylalanine (F), histidine (H) and proline (P), in the peptide sequences of SPH and MPH are believed to contribute to high antioxidant activity. Hence, SPH and MPH from patin have the potential as a natural functional ingredient in food and pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patin%20%28Pangasius%20sutchi%29" title="patin (Pangasius sutchi)">patin (Pangasius sutchi)</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolysates" title=" protein hydrolysates"> protein hydrolysates</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidative%20peptides" title=" antioxidative peptides"> antioxidative peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/49761/comparison-of-physicochemical-properties-of-catfish-myofibrillar-and-sarcoplasmic-protein-hydrolysates-and-characterization-of-their-bioactive-peptides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2556</span> Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Mohale">D. S. Mohale</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Dewani"> A. P. Dewani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.tripathi"> A. S.tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Chandewar"> A. V. Chandewar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde-thiobarbituric%20acid%20complex" title="malondialdehyde-thiobarbituric acid complex">malondialdehyde-thiobarbituric acid complex</a>, <a href="https://publications.waset.org/abstracts/search?q=levofloxacin" title=" levofloxacin"> levofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/40000/determination-of-mda-by-hplc-in-blood-of-levofloxacin-treated-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2555</span> ANFIS Based Technique to Estimate Remnant Life of Power Transformer by Predicting Furan Contents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyesh%20Kumar%20Pandey">Priyesh Kumar Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Husain"> Zakir Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Jarial"> R. K. Jarial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Condition monitoring and diagnostic is important for testing of power transformer in order to estimate the remnant life. Concentration of furan content in transformer oil can be a promising indirect measurement of the aging of transformer insulation. The oil gets contaminated mainly due to ageing. The present paper introduces adaptive neuro fuzzy technique to correlate furanic compounds obtained by high performance liquid chromatography (HPLC) test and remnant life of the power transformer. The results are obtained by conducting HPLC test at TIFAC-CORE lab, NIT Hamirpur on thirteen power transformer oil samples taken from Himachal State Electricity Board, India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro%20fuzzy%20technique" title="adaptive neuro fuzzy technique">adaptive neuro fuzzy technique</a>, <a href="https://publications.waset.org/abstracts/search?q=furan%20compounds" title=" furan compounds"> furan compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=remnant%20life" title=" remnant life"> remnant life</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a> </p> <a href="https://publications.waset.org/abstracts/11916/anfis-based-technique-to-estimate-remnant-life-of-power-transformer-by-predicting-furan-contents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=87">87</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>