CINXE.COM
Search results for: Masanao Kinoshita
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Masanao Kinoshita</title> <meta name="description" content="Search results for: Masanao Kinoshita"> <meta name="keywords" content="Masanao Kinoshita"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Masanao Kinoshita" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Masanao Kinoshita"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Masanao Kinoshita</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masataka%20Inada">Masataka Inada</a>, <a href="https://publications.waset.org/abstracts/search?q=Masanao%20Kinoshita"> Masanao Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuaki%20Matsumori"> Nobuaki Matsumori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20protein" title="membrane protein">membrane protein</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriorhodopsin" title=" bacteriorhodopsin"> bacteriorhodopsin</a>, <a href="https://publications.waset.org/abstracts/search?q=glycolipid" title=" glycolipid"> glycolipid</a> </p> <a href="https://publications.waset.org/abstracts/72463/interaction-of-glycolipid-s-tga-1-with-bacteriorhodopsin-and-its-functional-role" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reira%20Kinoshita">Reira Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%27ichi%20Ishimaru"> Shin'ichi Ishimaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title="chemical sensor">chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=intercalation%20compound" title=" intercalation compound"> intercalation compound</a>, <a href="https://publications.waset.org/abstracts/search?q=tetramethylbenzidine" title=" tetramethylbenzidine"> tetramethylbenzidine</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrasilisicfluormica" title=" tetrasilisicfluormica"> tetrasilisicfluormica</a>, <a href="https://publications.waset.org/abstracts/search?q=vapochromism" title=" vapochromism"> vapochromism</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/151094/vapochromism-of-3355-tetramethylbenzidine-tetrasilisicfluormica-intercalation-compounds-with-high-selectivity-for-water-and-acetonitrile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryoichi%20Kinoshita"> Ryoichi Kinoshita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-curved%20rail" title="double-curved rail">double-curved rail</a>, <a href="https://publications.waset.org/abstracts/search?q=octave%20analysis" title=" octave analysis"> octave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20model" title=" vibration model"> vibration model</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20comfort" title=" ride comfort"> ride comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20vehicle" title=" railway vehicle"> railway vehicle</a> </p> <a href="https://publications.waset.org/abstracts/54593/investigation-on-the-bogie-pseudo-hunting-motion-of-a-reduced-scale-model-railway-vehicle-running-on-double-curved-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Combustion Improvements by C4/C5 Bio-Alcohol Isomer Blended Fuels Combined with Supercharging and EGR in a Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasufumi%20Yoshimoto">Yasufumi Yoshimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Enkhjargal%20Tserenochir"> Enkhjargal Tserenochir</a>, <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Kinoshita"> Eiji Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Otaka"> Takeshi Otaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next generation bio-alcohols produced from non-food based sources like cellulosic biomass are promising renewable energy sources. The present study investigates engine performance, combustion characteristics, and emissions of a small single cylinder direct injection diesel engine fueled by four kinds of next generation bio-alcohol isomer and diesel fuel blends with a constant blending ratio of 3:7 (mass). The tested bio-alcohol isomers here are n-butanol and iso-butanol (C<sub>4</sub> alcohol), and n-pentanol and iso-pentanol (C<sub>5</sub> alcohol). To obtain simultaneous reductions in NOx and smoke emissions, the experiments employed supercharging combined with EGR (Exhaust Gas Recirculation). The boost pressures were fixed at two conditions, 100 kPa (naturally aspirated operation) and 120 kPa (supercharged operation) provided with a roots blower type supercharger. The EGR rates were varied from 0 to 25% using a cooled EGR technique. The results showed that both with and without supercharging, all the bio-alcohol blended diesel fuels improved the trade-off relation between NOx and smoke emissions at all EGR rates while maintaining good engine performance, when compared with diesel fuel operation. It was also found that regardless of boost pressure and EGR rate, the ignition delays of the tested bio-alcohol isomer blends are in the order of iso-butanol > n-butanol > iso-pentanol > n-pentanol. Overall, it was concluded that, except for the changes in the ignition delays the influence of bio-alcohol isomer blends on the engine performance, combustion characteristics, and emissions are relatively small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title="alternative fuel">alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=butanol" title=" butanol"> butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=EGR%20%28Exhaust%20Gas%20Recirculation%29" title=" EGR (Exhaust Gas Recirculation)"> EGR (Exhaust Gas Recirculation)</a>, <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20bio-alcohol%20isomer%20blended%20fuel" title=" next generation bio-alcohol isomer blended fuel"> next generation bio-alcohol isomer blended fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=pentanol" title=" pentanol"> pentanol</a>, <a href="https://publications.waset.org/abstracts/search?q=supercharging" title=" supercharging"> supercharging</a> </p> <a href="https://publications.waset.org/abstracts/83809/combustion-improvements-by-c4c5-bio-alcohol-isomer-blended-fuels-combined-with-supercharging-and-egr-in-a-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura">Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Kinoshita"> Takuya Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Fukuyama"> Hiroshi Fukuyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARX%20model" title="ARX model">ARX model</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20analysis" title=" response analysis"> response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SRC%20building" title=" SRC building"> SRC building</a>, <a href="https://publications.waset.org/abstracts/search?q=the%202011%20off%20the%20Pacific%20Coast%20of%20Tohoku%20Earthquake" title=" the 2011 off the Pacific Coast of Tohoku Earthquake"> the 2011 off the Pacific Coast of Tohoku Earthquake</a> </p> <a href="https://publications.waset.org/abstracts/85411/response-analysis-of-a-steel-reinforced-concrete-high-rise-building-during-the-2011-tohoku-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> A Peg Board with Photo-Reflectors to Detect Peg Insertion and Pull-Out Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Kinoshita">Hiroshi Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuto%20Nakanishi"> Yasuto Nakanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryuhei%20Okuno"> Ryuhei Okuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Higashi"> Toshio Higashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various kinds of pegboards have been developed and used widely in research and clinics of rehabilitation for evaluation and training of patient’s hand function. A common measure in these peg boards is a total time of performance execution assessed by a tester’s stopwatch. Introduction of electrical and automatic measurement technology to the apparatus, on the other hand, has been delayed. The present work introduces the development of a pegboard with an electric sensor to detect moments of individual peg’s insertion and removal. The work also gives fundamental data obtained from a group of healthy young individuals who performed peg transfer tasks using the pegboard developed. Through trails and errors in pilot tests, two 10-hole peg-board boxes installed with a small photo-reflector and a DC amplifier at the bottom of each hole were designed and built by the present authors. The amplified electric analogue signals from the 20 reflectors were automatically digitized at 500 Hz per channel, and stored in a PC. The boxes were set on a test table at different distances (25, 50, 75, and 125 mm) in parallel to examine the effect of hole-to-hole distance. Fifty healthy young volunteers (25 in each gender) as subjects of the study performed successive fast 80 time peg transfers at each distance using their dominant and non-dominant hands. The data gathered showed a clear-cut light interruption/continuation moment by the pegs, allowing accurately (no tester’s error involved) and precisely (an order of milliseconds) to determine the pull out and insertion times of each peg. This further permitted computation of individual peg movement duration (PMD: from peg-lift-off to insertion) apart from hand reaching duration (HRD: from peg insertion to lift-off). An accidental drop of a peg led to an exceptionally long ( < mean + 3 SD) PMD, which was readily detected from an examination of data distribution. The PMD data were commonly right-skewed, suggesting that the median can be a better estimate of individual PMD than the mean. Repeated measures ANOVA using the median values revealed significant hole-to-hole distance, and hand dominance effects, suggesting that these need to be fixed in the accurate evaluation of PMD. The gender effect was non-significant. Performance consistency was also evaluated by the use of quartile variation coefficient values, which revealed no gender, hole-to-hole, and hand dominance effects. The measurement reliability was further examined using interclass correlation obtained from 14 subjects who performed the 25 and 125 mm hole distance tasks at two 7-10 days separate test sessions. Inter-class correlation values between the two tests showed fair reliability for PMD (0.65-0.75), and for HRD (0.77-0.94). We concluded that a sensor peg board developed in the present study could provide accurate (excluding tester’s errors), and precise (at a millisecond rate) time information of peg movement separated from that used for hand movement. It could also easily detect and automatically exclude erroneous execution data from his/her standard data. These would lead to a better evaluation of hand dexterity function compared to the widely used conventional used peg boards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand" title="hand">hand</a>, <a href="https://publications.waset.org/abstracts/search?q=dexterity%20test" title=" dexterity test"> dexterity test</a>, <a href="https://publications.waset.org/abstracts/search?q=peg%20movement%20time" title=" peg movement time"> peg movement time</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20consistency" title=" performance consistency"> performance consistency</a> </p> <a href="https://publications.waset.org/abstracts/84616/a-peg-board-with-photo-reflectors-to-detect-peg-insertion-and-pull-out-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>