CINXE.COM

Search results for: surface deformations

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: surface deformations</title> <meta name="description" content="Search results for: surface deformations"> <meta name="keywords" content="surface deformations"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="surface deformations" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="surface deformations"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6766</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: surface deformations</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6766</span> Determination of Surface Deformations with Global Navigation Satellite System Time Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Tiryakioglu">Ibrahim Tiryakioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20Ugur"> Mehmet Ali Ugur</a>, <a href="https://publications.waset.org/abstracts/search?q=Caglar%20Ozkaymak"> Caglar Ozkaymak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bolvadin%20fault" title="Bolvadin fault">Bolvadin fault</a>, <a href="https://publications.waset.org/abstracts/search?q=GAMIT" title=" GAMIT"> GAMIT</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS%20time%20series" title=" GNSS time series"> GNSS time series</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20deformations" title=" surface deformations"> surface deformations</a> </p> <a href="https://publications.waset.org/abstracts/97295/determination-of-surface-deformations-with-global-navigation-satellite-system-time-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6765</span> FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zaidi">A. Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Khelifi"> F. Khelifi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Masmoudi"> R. Masmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhicha"> M. Bouhicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 &deg;C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (<em>c/d<sub>b</sub></em>) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (<em>e/d<sub>b</sub></em>). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 &deg;C corresponding to the ratio of <em>e/d<sub>b</sub></em> varied from 1.3 to 2.3, respectively. However, for ratios <em>e/d<sub>b</sub></em> &gt;2.3 and <em>c/d<sub>b</sub></em> &gt;1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title="concrete beam">concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20bars" title=" FRP bars"> FRP bars</a>, <a href="https://publications.waset.org/abstracts/search?q=spacing%20effect" title=" spacing effect"> spacing effect</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20deformation" title=" thermal deformation"> thermal deformation</a> </p> <a href="https://publications.waset.org/abstracts/85717/frp-bars-spacing-effect-on-numerical-thermal-deformations-in-concrete-beams-under-high-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6764</span> Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Sz%C3%A9kely"> Gábor Székely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit" title=" implicit"> implicit</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20method" title=" Newton method"> Newton method</a> </p> <a href="https://publications.waset.org/abstracts/60543/implicit-eulerian-fluid-structure-interaction-method-for-the-modeling-of-highly-deformable-elastic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6763</span> Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joel%20M.%20De%20La%20Rosa%20R.">Joel M. De La Rosa R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20shaft" title="vertical shaft">vertical shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20method" title=" flotation method"> flotation method</a>, <a href="https://publications.waset.org/abstracts/search?q=very%20soft%20clays" title=" very soft clays"> very soft clays</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20supervision" title=" construction supervision"> construction supervision</a> </p> <a href="https://publications.waset.org/abstracts/137807/permissible-horizontal-displacements-during-the-construction-of-vertical-shafts-in-soft-soils-at-the-valley-of-mexico-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6762</span> An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marta%20Cordero-Gracia">Marta Cordero-Gracia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariola%20Gomez"> Mariola Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Blesbois"> Olivier Blesbois</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Carrion"> Marina Carrion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20accretion" title="ice accretion">ice accretion</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20deformation" title=" mesh deformation"> mesh deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a> </p> <a href="https://publications.waset.org/abstracts/59130/an-interpolation-tool-for-data-transfer-in-two-dimensional-ice-accretion-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6761</span> Multiresolution Mesh Blending for Surface Detail Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Honorio%20Salmeron%20Valdivieso">Honorio Salmeron Valdivieso</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Keane"> Andy Keane</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Toal"> David Toal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the area of mechanical reverse engineering, processes often encounter difficulties capturing small, highly localized surface information. This could be the case if a physical turbine was 3D scanned for lifecycle management or robust design purposes, with interest on eroded areas or scratched coating. The limitation partly is due to insufficient automated frameworks for handling -localized - surface information during the reverse engineering pipeline. We have developed a tool for blending surface patches with arbitrary irregularities into a base body (e.g. a CAD solid). The approach aims to transfer small surface features while preserving their shape and relative placement by using a multi-resolution scheme and rigid deformations. Automating this process enables the inclusion of outsourced surface information in CAD models, including samples prepared in mesh handling software, or raw scan information discarded in the early stages of reverse engineering reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application%20lifecycle%20management" title="application lifecycle management">application lifecycle management</a>, <a href="https://publications.waset.org/abstracts/search?q=multiresolution%20deformation" title=" multiresolution deformation"> multiresolution deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20blending" title=" surface blending"> surface blending</a> </p> <a href="https://publications.waset.org/abstracts/137875/multiresolution-mesh-blending-for-surface-detail-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6760</span> Stability of Pump Station Cavern in Chagrin Shale with Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moridzadeh">Mohammad Moridzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Djavid"> Mohammad Djavid</a>, <a href="https://publications.waset.org/abstracts/search?q=Barry%20Doyle"> Barry Doyle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cavern" title="Cavern">Cavern</a>, <a href="https://publications.waset.org/abstracts/search?q=Chagrin%20shale" title=" Chagrin shale"> Chagrin shale</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element." title=" finite element."> finite element.</a> </p> <a href="https://publications.waset.org/abstracts/79280/stability-of-pump-station-cavern-in-chagrin-shale-with-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6759</span> Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Zelenin">M. N. Zelenin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Mikhailov"> V. S. Mikhailov</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Zhivotovsky"> R. P. Zhivotovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20welding%20deformations" title="residual welding deformations">residual welding deformations</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20and%20transverse%20shortenings%20of%20welding%20joints" title=" longitudinal and transverse shortenings of welding joints"> longitudinal and transverse shortenings of welding joints</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20analytic%20dependences" title=" method of analytic dependences"> method of analytic dependences</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements%20method" title=" finite elements method"> finite elements method</a> </p> <a href="https://publications.waset.org/abstracts/8765/optimization-of-assembly-and-welding-of-complex-3d-structures-on-the-base-of-modeling-with-use-of-finite-elements-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6758</span> An Interlock Model of Friction and Superlubricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Malekan">Azadeh Malekan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Rouhani"> Shahin Rouhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=amonton%60s%20law" title=" amonton`s law"> amonton`s law</a>, <a href="https://publications.waset.org/abstracts/search?q=superlubricity" title=" superlubricity"> superlubricity</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20model" title=" contact model"> contact model</a> </p> <a href="https://publications.waset.org/abstracts/128468/an-interlock-model-of-friction-and-superlubricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6757</span> In-Plane Shear Tests of Prefabricated Masonry Panel System with Two-Component Polyurethane Adhesive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekkehard%20Fehling">Ekkehard Fehling</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Capewell"> Paul Capewell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the importance of masonry glued by polyurethane adhesive has increased. In 2021, the Institute of Structural Engineering of the University of Kassel was commissioned to carry out quasi-static in-plane shear tests on prefabricated brick masonry panel systems with 2K PUR adhesive in order to investigate the load-bearing behavior during earthquakes. In addition to the usual measurement of deformations using displacement transducers, all tests were documented using an optical measuring system (“GOM”), which was used to determine the surface strains and deformations of the test walls. To compare the results with conventional mortar walls, additional reference tests were carried out on test specimens with thin-bed mortar joints. This article summarizes the results of the test program and provides a comparison between the load-bearing behavior of masonry bonded with polyurethane adhesive and thin bed mortar in order to enable realistic non-linear modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry" title="masonry">masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20tests" title=" shear tests"> shear tests</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane" title=" in-plane"> in-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20adhesive" title=" polyurethane adhesive"> polyurethane adhesive</a> </p> <a href="https://publications.waset.org/abstracts/178809/in-plane-shear-tests-of-prefabricated-masonry-panel-system-with-two-component-polyurethane-adhesive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6756</span> On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merzak%20Laribi">Merzak Laribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmadjid%20Kasser"> Abdelmadjid Kasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title="residual stresses">residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spraying" title=" thermal spraying"> thermal spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=lubrication" title=" lubrication"> lubrication</a> </p> <a href="https://publications.waset.org/abstracts/124899/on-a-determination-of-residual-stresses-and-wear-resistance-of-thermally-sprayed-stainless-steel-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6755</span> Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenqian%20Zhang">Wenqian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuelin%20Wang"> Xuelin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Hu"> Yujin Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyang%20Wang"> Siyang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20machining" title="surface machining">surface machining</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20layer" title=" subsurface layer"> subsurface layer</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20deformation" title=" local deformation"> local deformation</a> </p> <a href="https://publications.waset.org/abstracts/65094/characterizing-surface-machining-induced-local-deformation-using-electron-backscatter-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6754</span> Co-Seismic Surface Deformation Induced By 24 September 2019 Mirpur, Pakistan Earthquake Along an Active Blind Fault Estimated Using Sentinel-1 TOPS Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali">Muhammad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Afzal"> Zeeshan Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Giampaolo%20Ferraioli"> Giampaolo Ferraioli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilda%20Schirinzi"> Gilda Schirinzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saleem%20Mughal"> Muhammad Saleem Mughal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vito%20Pascazio"> Vito Pascazio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On 24 September 2019, an earthquake with 5.6 Mw and 10 km depth stroke in Mirpur. The Mirpur area was highly affected by this earthquake, with the death of 34 people. This study aims to estimate the surface deformation associated with this earthquake. The interferometric synthetic aperture radar (InSAR) technique is applied to study earthquake induced surface motion. InSAR data using 9 Sentinel-1A SAR images from 11 August 2019 to 22 October 2019 is used to investigate the pre, co-, and post-seismic deformation trends. Time series investigation reveals that there was not such deformation in pre-seismic time period. In the co-seismic time period, strong displacement was observed, and in post-seismic results, small displacement is seen due to aftershocks. Our results show the existence of a previously unpublished blind fault in Mirpur and help to locate the fault line. Previous this fault line was triggered during the 2005 earthquake, and now it’s activated on 24 September 2019. Study area is already facing many problems due to natural hazards where additional surface deformations, particularly because of an earthquake with an activated blind fault, have increased its vulnerability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20deformation" title="surface deformation">surface deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=InSAR" title=" InSAR"> InSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=sentinel-1" title=" sentinel-1"> sentinel-1</a>, <a href="https://publications.waset.org/abstracts/search?q=mirpur" title=" mirpur"> mirpur</a> </p> <a href="https://publications.waset.org/abstracts/153556/co-seismic-surface-deformation-induced-by-24-september-2019-mirpur-pakistan-earthquake-along-an-active-blind-fault-estimated-using-sentinel-1-tops-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6753</span> Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bensouilah">H. Bensouilah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Boucherit"> H. Boucherit</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahmar"> M. Lahmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elasto-aerodynamic%20lubrication" title="elasto-aerodynamic lubrication">elasto-aerodynamic lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20foil%20bearing" title=" air foil bearing"> air foil bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20deformation" title=" steady-state deformation"> steady-state deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20deformation" title=" dynamic deformation"> dynamic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping%20coefficients" title=" stiffness and damping coefficients"> stiffness and damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20method" title=" perturbation method"> perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerk%20infinite%20element%20method" title=" Galerk infinite element method"> Galerk infinite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/14356/analysis-of-a-self-acting-air-journal-bearing-effect-of-dynamic-deformation-of-bump-foil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6752</span> Lamb Waves in Plates Subjected to Uniaxial Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munawwar%20Mohabuth">Munawwar Mohabuth</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Tai%20Ng"> Ching-Tai Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustoelasticity" title="acoustoelasticity">acoustoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20deformation" title=" finite deformation"> finite deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title=" lamb waves"> lamb waves</a> </p> <a href="https://publications.waset.org/abstracts/32316/lamb-waves-in-plates-subjected-to-uniaxial-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6751</span> On the Creep of Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brahma">A. Brahma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title="concrete structure">concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/36257/on-the-creep-of-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6750</span> Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Kacimi">Bachir Kacimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Teklal"> Fatiha Teklal</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezki%20Djebbar"> Arezki Djebbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defects" title="Defects">Defects</a>, <a href="https://publications.waset.org/abstracts/search?q=Forming" title=" Forming"> Forming</a>, <a href="https://publications.waset.org/abstracts/search?q=Impact" title=" Impact"> Impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Induced%20properties" title=" Induced properties"> Induced properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Textiles" title=" Textiles"> Textiles</a> </p> <a href="https://publications.waset.org/abstracts/116162/mesoscopic-defects-of-forming-and-induced-properties-on-the-impact-of-a-composite-glasspolyester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6749</span> Comparative Analysis of Real and Virtual Garment Fit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Ancutiene">Kristina Ancutiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to perform comparative analysis between the virtual fit of the woman's dress and the fit on a real person. The dress fitting was done using mechanical and structural parameters of the 100 % linen fabric and using Modaris_3D_Fit software (CAD Lectra). The dress was also sawn after which garment fit differences of real and virtual dress was researched. Four respondents whose figures were similar were used to evaluate the ease and strain deformations of the real and virtual dress. The scores that were given by the respondents wearing the real dress were compared to the ease and strain results that were given by the software. The main result was that respondents feel similar to the virtual stretch deformations but their ease feeling is not always matching the virtual ones. The results may be influenced by psychological factors and different understanding about purpose of garment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20garment" title="virtual garment">virtual garment</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20CAD" title=" 3D CAD"> 3D CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=garment%20fit" title=" garment fit"> garment fit</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/3838/comparative-analysis-of-real-and-virtual-garment-fit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6748</span> Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Kabantsev">Oleg Kabantsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Karomatullo%20Umarov"> Karomatullo Umarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title="reinforced concrete structures">reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20excitation" title=" earthquake excitation"> earthquake excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20coefficients" title=" plasticity coefficients"> plasticity coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic-force-reduction%20factor" title=" seismic-force-reduction factor"> seismic-force-reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/126871/analysis-of-elastic-plastic-deformation-of-reinforced-concrete-shear-wall-structures-under-earthquake-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6747</span> Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eulerian" title="eulerian">eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=newton" title=" newton"> newton</a>, <a href="https://publications.waset.org/abstracts/search?q=valve" title=" valve"> valve</a> </p> <a href="https://publications.waset.org/abstracts/59566/fully-eulerian-finite-element-methodology-for-the-numerical-modeling-of-the-dynamics-of-heart-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6746</span> Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abed%20Ahmed">Abed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Asadi"> Mehrdad Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Martay"> Jennifer Martay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes&rsquo; security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact" title="dynamic impact">dynamic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20boundary%20conditions" title=" deformable boundary conditions"> deformable boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title=" finite element modelling"> finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title=" LS-DYNA"> LS-DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20pipe" title=" stainless steel pipe"> stainless steel pipe</a> </p> <a href="https://publications.waset.org/abstracts/116559/evaluation-of-deformable-boundary-condition-using-finite-element-method-and-impact-test-for-steel-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6745</span> The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yilmaz">M. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yilmaz"> I. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uysal"> M. Uysal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free-air%20gravity%20anomaly" title="free-air gravity anomaly">free-air gravity anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouguer%20gravity%20anomaly" title=" Bouguer gravity anomaly"> Bouguer gravity anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20model" title=" global model"> global model</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20gravity" title=" land gravity"> land gravity</a> </p> <a href="https://publications.waset.org/abstracts/97149/the-evaluation-of-gravity-anomalies-based-on-global-models-by-land-gravity-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6744</span> A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alia%20Alghosoun">Alia Alghosoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Osman"> Ashraf Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Seaid"> Mohammed Seaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam-break%20flows" title="dam-break flows">dam-break flows</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20beds" title=" deformable beds"> deformable beds</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20techniques" title=" hybrid techniques"> hybrid techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20elasticity" title=" linear elasticity"> linear elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a> </p> <a href="https://publications.waset.org/abstracts/95218/a-finite-elementfinite-volume-method-for-dam-break-flows-over-deformable-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6743</span> Effects of Surface Topography on Roughness of Glazed Ceramic Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sarjahani">R. Sarjahani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sheikhattar"> M. Sheikhattar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Javadpour"> S. Javadpour</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hashemi"> B. Hashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glazes and their surface characterization is an important subject for ceramic industries. Fabrication of a super smooth surface resistant to stains is a big improvement for those industries. In this investigation, surface topography of popular glazes such as Zircon and Titania based opaque glazes, calcium based matte glaze and transparent glaze has been analyzed by Marsurf M300, SEM, EDS and XRD. Results shows that surface roughness of glazes seriously depends on surface crystallinity, crystal size and shapes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title="crystallinity">crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=glaze" title=" glaze"> glaze</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=topography" title=" topography"> topography</a> </p> <a href="https://publications.waset.org/abstracts/23918/effects-of-surface-topography-on-roughness-of-glazed-ceramic-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6742</span> Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20R.%20Tawfic">Yasser R. Tawfic</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Eid"> Mohamed A. Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foundation differential settlement and supported structure tilting is an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers and helical piers, jet grouted soil-crete columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: •Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. •For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in slow rate. •If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. •Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20settlement" title="differential settlement">differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-tunneling" title=" micro-tunneling"> micro-tunneling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=tilted%20structures" title=" tilted structures"> tilted structures</a> </p> <a href="https://publications.waset.org/abstracts/34698/application-of-micro-tunneling-technique-to-rectify-tilted-structures-constructed-on-cohesive-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6741</span> Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Nazarian">Kourosh Nazarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time<span dir="RTL">.</span> In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stress" title="Stress">Stress</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=faryab" title=" faryab"> faryab</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20runoff" title=" surface runoff"> surface runoff</a> </p> <a href="https://publications.waset.org/abstracts/89134/analysis-and-modeling-of-stresses-and-creeps-resulting-from-soil-mechanics-in-southern-plains-of-kerman-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6740</span> Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azher%20Jameel">Azher Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Ashraf%20Harmain"> Ghulam Ashraf Harmain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XFEM" title="XFEM">XFEM</a>, <a href="https://publications.waset.org/abstracts/search?q=EFGM" title=" EFGM"> EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20FE-EFGM" title=" coupled FE-EFGM"> coupled FE-EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20sets" title=" level sets"> level sets</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation"> large deformation</a> </p> <a href="https://publications.waset.org/abstracts/62784/modeling-of-large-elasto-plastic-deformations-by-the-coupled-fe-efgm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6739</span> Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Alirezaei">Amir Alirezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Vahdani"> Shahram Vahdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20demand" title="deformation demand">deformation demand</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a>, <a href="https://publications.waset.org/abstracts/search?q=setback" title=" setback"> setback</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/22134/estimation-of-seismic-deformation-demands-of-tall-buildings-with-symmetric-setbacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6738</span> Effect of Jet Diameter on Surface Quenching at Different Spatial Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Agrawal">C. Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kumar"> R. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gupta"> A. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chatterjee"> B. Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-surface" title="hot-surface">hot-surface</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement" title=" jet impingement"> jet impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point" title=" stagnation point"> stagnation point</a> </p> <a href="https://publications.waset.org/abstracts/2139/effect-of-jet-diameter-on-surface-quenching-at-different-spatial-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6737</span> Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Nazari">Ashkan Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saied%20Taheri"> Saied Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20modeling" title=" multi-scale modeling"> multi-scale modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a> </p> <a href="https://publications.waset.org/abstracts/103593/numerical-multi-scale-modeling-of-rubber-friction-on-rough-pavements-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=225">225</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=226">226</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20deformations&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10