CINXE.COM

Search results for: delft 3d

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: delft 3d</title> <meta name="description" content="Search results for: delft 3d"> <meta name="keywords" content="delft 3d"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="delft 3d" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="delft 3d"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: delft 3d</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Flushing Model for Artificial Islands in the Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Eissa">Sawsan Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Momen%20Gharib"> Momen Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Kabbany"> Omnia Kabbany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing"> flushing</a>, <a href="https://publications.waset.org/abstracts/search?q=delft%203d" title=" delft 3d"> delft 3d</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf"> Persian Gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20islands." title=" artificial islands."> artificial islands.</a> </p> <a href="https://publications.waset.org/abstracts/182437/flushing-model-for-artificial-islands-in-the-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Khedr">Ahmed M. Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20M.%20Abdelrahman"> Saad M. Abdelrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kareem%20M.%20Tonbol"> Kareem M. Tonbol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two geo-referenced sea level datasets (September 2008 &ndash; November 2010) and (April 2012 &ndash; January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a &ldquo;Form Factor&rdquo; of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1&ndash;6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandria" title="Alexandria">Alexandria</a>, <a href="https://publications.waset.org/abstracts/search?q=Delft-3D" title=" Delft-3D"> Delft-3D</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=geodetic%20reference" title=" geodetic reference"> geodetic reference</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20analysis" title=" harmonic analysis"> harmonic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level" title=" sea level"> sea level</a> </p> <a href="https://publications.waset.org/abstracts/86002/sea-level-characteristics-referenced-to-specific-geodetic-datum-in-alexandria-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Robots for City Life: Design Guidelines and Strategy Recommendations for Introducing Robots in Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20Rege">Akshay Rege</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Gomaa"> Lara Gomaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesh%20Kumar%20Verma"> Maneesh Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sem%20Carree"> Sem Carree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to articulate design strategies and recommendations for introducing robots into the city life of people based on experiments conducted with robots and semi-autonomous systems in three cities in the Netherlands. This research was carried out by the Spot robotics team of Impact Lab housed within YES!Delft, a start-up accelerator located in Delft, The Netherlands. The premise of this research is to inform the development of the ‘region of the future’ by the Municipality of Rotterdam-Den Haag (MRDH). The paper starts by reporting the desktop research carried out to find and develop multiple use cases for robots to support humans in various activities. Further, the paper reports the user research carried out by crowdsourcing responses collected in public spaces of Rotterdam-Den Haag region and on the internet. Furthermore, based on the knowledge gathered in the initial research, practical experiments were carried out using robots and semi-autonomous systems in order to test and validate our initial research. These experiments were conducted in three cities in the Netherlands which were Rotterdam, The Hague, and Delft. Custom sensor box, Drone, and Boston Dynamics' Spot robot were used to conduct these experiments. Out of thirty use cases, five were tested with experiments which were skyscraper emergency evacuation, human transportation and security, bike lane delivery, mobility tracking, and robot drama. The learnings from these experiments provided us with insights into human-robot interaction and symbiosis in cities which can be used to introduce robots in cities to support human activities, ultimately enabling the transitioning from a human only city life towards a blended one where robots can play a role. Based on these understandings, we formulated design guidelines and strategy recommendations for incorporating robots in the Rotterdam-Den Haag’s region of the future. Lastly, we discuss how our insights in the Rotterdam-Den Haag region can inspire and inform the incorporation of robots in different cities of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20life" title="city life">city life</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20guidelines" title=" design guidelines"> design guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20Interaction" title=" human-robot Interaction"> human-robot Interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20use%20cases" title=" robot use cases"> robot use cases</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20experiments" title=" robotic experiments"> robotic experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20recommendations" title=" strategy recommendations"> strategy recommendations</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20research" title=" user research"> user research</a> </p> <a href="https://publications.waset.org/abstracts/160182/robots-for-city-life-design-guidelines-and-strategy-recommendations-for-introducing-robots-in-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Assessment of Agricultural Damage under Different Simulated Flood Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Kadir">M. N. Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20H.%20Oliver"> M. M. H. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Naher"> T. Naher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20damage" title="agricultural damage">agricultural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=Delft-3d" title=" Delft-3d"> Delft-3d</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20map" title=" land cover map"> land cover map</a> </p> <a href="https://publications.waset.org/abstracts/108556/assessment-of-agricultural-damage-under-different-simulated-flood-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aghazadegan">Ali Aghazadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shokri"> Ali Shokri</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Mullarney"> Julia Mullarney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20confluence" title="river confluence">river confluence</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20layer" title=" shear layer"> shear layer</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20circulation" title=" secondary circulation"> secondary circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/152370/hydrodynamics-of-shear-layers-at-river-confluences-by-formation-of-secondary-circulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Eissa">Sawsan Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Kabbany"> Omnia Kabbany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=Togo" title=" Togo"> Togo</a>, <a href="https://publications.waset.org/abstracts/search?q=Delft3D" title=" Delft3D"> Delft3D</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAN" title=" SWAN"> SWAN</a>, <a href="https://publications.waset.org/abstracts/search?q=XBeach" title=" XBeach"> XBeach</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title=" coastal erosion"> coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=detached%20breakwaters" title=" detached breakwaters"> detached breakwaters</a> </p> <a href="https://publications.waset.org/abstracts/182433/morpho-dynamic-modelling-of-the-western-14-km-of-the-togolese-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Sundarban as a Buffer against Storm Surge Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohiuddin%20Sakib">Mohiuddin Sakib</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatin%20Nihal"> Fatin Nihal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anisul%20Haque"> Anisul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Munsur%20Rahman"> Munsur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Ali"> Mansur Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sundarban, the largest mangrove forest in the world, is known to act as a buffer against the cyclone and storm surge. Theoretically, Sundarban absorbs the initial thrust of the wind and acts to ‘resist’ the storm surge flooding. The role of Sundarban was evident during the cyclone Sidr when the Sundarban solely defended the initial thrust of the cyclonic wind and the resulting storm surge inundation. In doing this, Sundarban sacrificed 30% of its plant habitats. Although no scientific study has yet been conducted, it is generally believed that Sundarban will continuously play its role as a buffer against the cyclone when landfall of the cyclone is at or close to the Sundarban. Considering these facts, the present study mainly focused on a scientific insight into the role of Sundarban as a buffer against the present-day cyclone and storm surge and also its probable role on the impacts of future storms of similar nature but with different landfall locations. The Delft 3D dashboard and flow model are applied to compute the resulting inundation due to cyclone induced storm surge. The results show that Sundarban indeed acts as a buffer against the storm surge inundation when cyclone landfall is at or close to Sundarban. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffer" title="buffer">buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangrove%20forest" title=" Mangrove forest"> Mangrove forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidr" title=" Sidr"> Sidr</a>, <a href="https://publications.waset.org/abstracts/search?q=landfall" title=" landfall"> landfall</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/37352/sundarban-as-a-buffer-against-storm-surge-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Student Attitude towards Entrepreneurship: A South African and Dutch Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natanya%20Meyer">Natanya Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Johann%20Landsberg"> Johann Landsberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unemployment among the youth is a significant problem in South Africa. Large corporations and the public sector simply cannot create enough jobs. Too many youths in South Africa currently do not consider entrepreneurship as an option in order to become independent. Unlike the youth of the Netherlands, South African youth prefer to find employment in the public or private sector. The Netherlands has a much lower unemployment rate than South Africa and the Dutch are generally very entrepreneurial. From early on entrepreneurship is considered a desirable career option in the Netherlands. The purpose of this study was to determine whether there is a difference in the perceptions of some Dutch and South African students in terms of unemployment and entrepreneurship. Questionnaires were distributed to students at the North West University's Vaal Triangle campus in Vanderbijlpark in Gauteng, South Africa and the Technical University of Delft in the Netherlands. A descriptive statistical analysis approach was followed and the means for the independent questions were calculated. The results demonstrate that the Dutch students are not as concerned about unemployment after completion of their studies as this is not as significant a problem as it is in South Africa. Both groups had positive responses towards the posed questions, but the South African group felt more strongly about the issues. Both groups of students felt that there was a need for more practical entrepreneurship training. The South African education system should focus on practical entrepreneurship training from a young age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship%20development" title="entrepreneurship development">entrepreneurship development</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship%20development%20programmes" title=" entrepreneurship development programmes"> entrepreneurship development programmes</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship%20intention" title=" entrepreneurship intention"> entrepreneurship intention</a>, <a href="https://publications.waset.org/abstracts/search?q=Netherlands" title=" Netherlands"> Netherlands</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=unemployment" title=" unemployment"> unemployment</a> </p> <a href="https://publications.waset.org/abstracts/34569/student-attitude-towards-entrepreneurship-a-south-african-and-dutch-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arlett%20A.%20Rosado-Torres">Arlett A. Rosado-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismael%20Marino-Tapia"> Ismael Marino-Tapia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title="hydrodynamic model">hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a> </p> <a href="https://publications.waset.org/abstracts/97189/benthic-cover-in-coral-reef-environments-under-influence-of-submarine-groundwater-discharges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakraborty%20Sudipta">Chakraborty Sudipta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Kambekar"> A. R. Kambekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarma%20Arnab"> Sarma Arnab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-&agrave;-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Coastal%20Vulnerability%20Index" title=" Coastal Vulnerability Index"> Coastal Vulnerability Index</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise" title=" sea level rise"> sea level rise</a> </p> <a href="https://publications.waset.org/abstracts/129256/impact-of-climate-change-on-sea-level-rise-along-the-coastline-of-mumbai-city-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Omri">Asma Omri</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Benothman"> Noureddine Benothman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Sayahi"> Sofiane Sayahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Tlili"> Fethi Tlili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Besbes"> Hichem Besbes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-level%20clustering" title="2-level clustering">2-level clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20classification" title=" coarse classification"> coarse classification</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclist%20safety" title=" cyclist safety"> cyclist safety</a>, <a href="https://publications.waset.org/abstracts/search?q=warning%20system%20based%20on%20radar%20technology" title=" warning system based on radar technology"> warning system based on radar technology</a> </p> <a href="https://publications.waset.org/abstracts/174889/radar-on-bike-coarse-classification-based-on-multi-level-clustering-for-cyclist-safety-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Braga%20Mendes">Anderson Braga Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Wallington%20Felipe%20de%20Almeida"> Wallington Felipe de Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=Cicero%20Medeiros%20da%20Silva"> Cicero Medeiros da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20hydrodynamic%20modeling" title="3D hydrodynamic modeling">3D hydrodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Churchill%20trapping%20efficiency" title=" Churchill trapping efficiency"> Churchill trapping efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20crossing%20system" title=" fish crossing system"> fish crossing system</a>, <a href="https://publications.waset.org/abstracts/search?q=Itaipu%20power%20plant" title=" Itaipu power plant"> Itaipu power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=lifespan" title=" lifespan"> lifespan</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentological%20equilibrium" title=" sedimentological equilibrium"> sedimentological equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/58862/lifespan-assessment-of-the-fish-crossing-system-of-itaipu-power-plant-brazilparaguay-based-on-the-reaching-of-its-sedimentological-equilibrium-computed-by-3d-modeling-and-churchill-trapping-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10