CINXE.COM

High Energy Physics - Lattice

<!DOCTYPE html> <html lang="en"> <head> <title>High Energy Physics - Lattice </title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20241206" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>&gt;</span> <a href="/list/hep-lat/recent">hep-lat</a> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <div id='content-inner'> <div id='dlpage'> <h1>High Energy Physics - Lattice</h1> <ul> <li><a href="#item0">New submissions</a></li> <li><a href="#item5">Cross-lists</a></li> <li><a href="#item7">Replacements</a></li> </ul> <p>See <a id="recent-hep-lat" aria-labelledby="recent-hep-lat" href="/list/hep-lat/recent">recent</a> articles</p> <h3>Showing new listings for Tuesday, 8 April 2025</h3> <div class='paging'>Total of 15 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/hep-lat/new?skip=0&amp;show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> <dl id='articles'> <h3>New submissions (showing 4 of 4 entries)</h3> <dt> <a name='item1'>[1]</a> <a href ="/abs/2504.03844" title="Abstract" id="2504.03844"> arXiv:2504.03844 </a> [<a href="/pdf/2504.03844" title="Download PDF" id="pdf-2504.03844" aria-labelledby="pdf-2504.03844">pdf</a>, <a href="https://arxiv.org/html/2504.03844v1" title="View HTML" id="html-2504.03844" aria-labelledby="html-2504.03844" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2504.03844" title="Other formats" id="oth-2504.03844" aria-labelledby="oth-2504.03844">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Simple third order operator-splitting schemes for stochastic mechanics and field theory </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Shkerin,+A">Andrey Shkerin</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Sibiryakov,+S">Sergey Sibiryakov</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 41 page, 8 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; Cosmology and Nongalactic Astrophysics (astro-ph.CO); Statistical Mechanics (cond-mat.stat-mech); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> We present a method for constructing numerical schemes with up to 3rd strong convergence order for solution of a class of stochastic differential equations, including equations of the Langevin type. The construction proceeds in two stages. In the first stage one approximates the stochastic equation by a differential equation with smooth coefficients randomly sampled at each time step. In the second stage the resulting regular equation is solved with the conventional operator-splitting techniques. This separation renders the approach flexible, allowing one to freely combine the numerical techniques most suitable to the problem at hand. The approach applies to ordinary and partial stochastic differential equations. In the latter case, it naturally gives rise to pseudo-spectral algorithms. We numerically test the strong convergence of several schemes obtained with this method in mechanical examples. Application to partial differential equations is illustrated by real-time simulations of a scalar field with quartic self-interaction coupled to a heat bath. The simulations accurately reproduce the thermodynamic properties of the field and are used to explore dynamics of thermal false vacuum decay in the case of negative quartic coupling. </p> </div> </dd> <dt> <a name='item2'>[2]</a> <a href ="/abs/2504.04625" title="Abstract" id="2504.04625"> arXiv:2504.04625 </a> [<a href="/pdf/2504.04625" title="Download PDF" id="pdf-2504.04625" aria-labelledby="pdf-2504.04625">pdf</a>, <a href="https://arxiv.org/html/2504.04625v1" title="View HTML" id="html-2504.04625" aria-labelledby="html-2504.04625" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2504.04625" title="Other formats" id="oth-2504.04625" aria-labelledby="oth-2504.04625">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Transverse-momentum-dependent pion structures from lattice QCD: Collins-Soper kernel, soft factor, TMDWF, and TMDPDF </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Bollweg,+D">Dennis Bollweg</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Gao,+X">Xiang Gao</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=He,+J">Jinchen He</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Mukherjee,+S">Swagato Mukherjee</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Zhao,+Y">Yong Zhao</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Experiment (hep-ex); High Energy Physics - Phenomenology (hep-ph); Nuclear Experiment (nucl-ex); Nuclear Theory (nucl-th) </div> <p class='mathjax'> We present the first lattice quantum chromodynamics (QCD) calculation of the pion valence-quark transverse-momentum-dependent parton distribution function (TMDPDF) within the framework of large-momentum effective theory (LaMET). Using correlators fixed in the Coulomb gauge (CG), we computed the quasi-TMD beam function for a pion with a mass of 300 MeV, a fine lattice spacing of $a = 0.06$ fm and multiple large momenta up to 3 GeV. The intrinsic soft functions in the CG approach are extracted from form factors with large momentum transfer, and as a byproduct, we also obtain the corresponding Collins-Soper (CS) kernel. Our determinations of both the soft function and the CS kernel agree with perturbation theory at small transverse separations ($b_\perp$) between the quarks. At larger $b_\perp$, the CS kernel remains consistent with recent results obtained using both CG and gauge-invariant TMD correlators in the literature. By combining next-to-leading logarithmic (NLL) factorization of the quasi-TMD beam function and the soft function, we obtain $x$-dependent pion valence-quark TMDPDF for transverse separations $b_\perp \gtrsim 1$ fm. Interestingly, we find that the $b_\perp$ dependence of the phenomenological parameterizations of TMDPDF for moderate values of $x$ are in reasonable agreement with our QCD determinations. In addition, we present results for the transverse-momentum-dependent wave function (TMDWF) for a heavier pion with 670 MeV mass. </p> </div> </dd> <dt> <a name='item3'>[3]</a> <a href ="/abs/2504.04714" title="Abstract" id="2504.04714"> arXiv:2504.04714 </a> [<a href="/pdf/2504.04714" title="Download PDF" id="pdf-2504.04714" aria-labelledby="pdf-2504.04714">pdf</a>, <a href="https://arxiv.org/html/2504.04714v1" title="View HTML" id="html-2504.04714" aria-labelledby="html-2504.04714" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2504.04714" title="Other formats" id="oth-2504.04714" aria-labelledby="oth-2504.04714">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Further numerical evidences for the gauge-independent separation between Confinement and Higgs phases in lattice SU(2) gauge theory with a scalar field in the fundamental representation </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Shibata,+A">Akihiro Shibata</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Kondo,+K">Kei-Ichi Kondo</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 8 pages, 5 figures, talk presented at the XVIth Quark Confinement and the Hadron Spectrum Conference (QCHSC24), 19-24 August, 2024, Cairns Convention Centre, Australia </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span> </div> <p class='mathjax'> In the lattice gauge-scalar model with a single scalar field in the fundamental representation of the gauge group SU(2), we have quite recently found that there exists a gauge-independent transition line separating the Confinement and Higgs phases without contradicting the well-known Osterwalder-Seiler-Fradkin-Shenker analyticity theorem between the two phases by performing numerical simulations without any gauge fixing. This was achieved by examining the correlation between the original fundamental scalar field and the so-called color-direction field constructed from the gauge field through the gauge-covariant decomposition due originally to Cho-Duan-Ge-Shabanov and Faddeev-Niemi. <br>In this presentation, we give further numerical evidence for the gauge-independent separation between the Confinement and Higgs phases in the above model to establish their physical origin. For this purpose, we investigate the separation line precisely. We also investigate the contributions of magnetic monopoles to examine their role in confinement %and mass generation (mass gap) from the viewpoint of the dual superconductor picture. </p> </div> </dd> <dt> <a name='item4'>[4]</a> <a href ="/abs/2504.04881" title="Abstract" id="2504.04881"> arXiv:2504.04881 </a> [<a href="/pdf/2504.04881" title="Download PDF" id="pdf-2504.04881" aria-labelledby="pdf-2504.04881">pdf</a>, <a href="https://arxiv.org/html/2504.04881v1" title="View HTML" id="html-2504.04881" aria-labelledby="html-2504.04881" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2504.04881" title="Other formats" id="oth-2504.04881" aria-labelledby="oth-2504.04881">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Critical Behaviour in the Single Flavor Thirring Model in 2+1$d$ with Wilson Kernel Domain Wall Fermions </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Hands,+S">Simon Hands</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Worthy,+J">Jude Worthy</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 18 pages, 9 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> We present results of a lattice field theory simulation of the 2+1$d$ Thirring model with $N=1$ fermion flavors, using domain wall fermions. The model exhibits a U(2) symmetry-breaking phase transition with the potential to define a UV-stable renormalisation group fixed point. The novelty is the replacement of the Shamir kernel used in all previous work with the Wilson kernel, improving the action particularly with respect to the $L_s\to\infty$ limit needed to recover U(2), now under much better control. Auxiliary field ensembles generated on $16^3\times24$ with varying self-interaction strength $g^2$ and bare mass $m$ are used to measure the bilinear condensate order parameter $\langle\bar\psi i\gamma_3\psi\rangle$ with domain wall separations as large as $L_s=120$. The resulting $L_s\to\infty$ extrapolation is used to fit an empirical equation of state modelling spontaneous symmetry breaking as $m\to0$. The fit is remarkably stable and compelling, with the fitted critical exponents $\beta_m\simeq2.4$, $\delta\simeq1.3$ differing markedly from previous estimates. The associated susceptibility exhibits a mass hierarchy in line with physical expectations, again unlike previous estimates. Schwinger-Dyson equation (SDE) solutions of the Thirring model exploiting a hidden local symmetry in the action are reviewed, and analytic predictions presented for the exponents. In contrast to all previous lattice studies, the universal characteristics of the critical point revealed qualitatively resemble the SDE predictions. </p> </div> </dd> </dl> <dl id='articles'> <h3>Cross submissions (showing 2 of 2 entries)</h3> <dt> <a name='item5'>[5]</a> <a href ="/abs/2504.04655" title="Abstract" id="2504.04655"> arXiv:2504.04655 </a> (cross-list from nucl-th) [<a href="/pdf/2504.04655" title="Download PDF" id="pdf-2504.04655" aria-labelledby="pdf-2504.04655">pdf</a>, <a href="https://arxiv.org/html/2504.04655v1" title="View HTML" id="html-2504.04655" aria-labelledby="html-2504.04655" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2504.04655" title="Other formats" id="oth-2504.04655" aria-labelledby="oth-2504.04655">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Examination of the lattice QCD-motivated strong attractive $惟N$ potentials in the $惟^- n p$ system </div> <div class='list-authors'><a href="https://arxiv.org/search/nucl-th?searchtype=author&amp;query=Filikhin,+I">I. Filikhin</a>, <a href="https://arxiv.org/search/nucl-th?searchtype=author&amp;query=Kezerashvili,+R+Y">R. Ya. Kezerashvili</a>, <a href="https://arxiv.org/search/nucl-th?searchtype=author&amp;query=Vlahovic,+B">B. Vlahovic</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 13 pages, 4 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Nuclear Theory (nucl-th)</span>; High Energy Physics - Lattice (hep-lat) </div> <p class='mathjax'> Within the framework of the Faddeev equations in configuration space, we examine the $\Omega^{-} np$ system, employing strongly attractive lattice HAL QCD and Yukawa-type meson exchange potentials for the $\Omega N$ interaction. Our formalism incorporates the attractive Coulomb force between the $\Omega^{-}$ and proton, treating the system as three non-identical particle pairs (the $ABC$ model). In this study, we assess the impact of the Coulomb interaction on the system and compare our results with recent $\Omega NN$ ($AAC$ model) calculations obtained using various approaches. The $ABC$ model yields low-energy characteristics for the \(\Omega NN\) system that differ from previous calculations. The Coulomb potential has a marginal perturbative effect on the $AAC$ system, shifting the three-body binding energy by the Coulomb energy of the two-body $BC$ subsystem, but only slightly deviating the spatial configuration from isosceles triangle symmetry. These effects are primarily driven by the strong \(\Omega N\) interaction. We demonstrate that the large binding energy of the $\Omega^{-} np$ system arises from the short-range behavior of the $\Omega N$ potentials. </p> </div> </dd> <dt> <a name='item6'>[6]</a> <a href ="/abs/2504.04709" title="Abstract" id="2504.04709"> arXiv:2504.04709 </a> (cross-list from hep-ph) [<a href="/pdf/2504.04709" title="Download PDF" id="pdf-2504.04709" aria-labelledby="pdf-2504.04709">pdf</a>, <a href="https://arxiv.org/html/2504.04709v1" title="View HTML" id="html-2504.04709" aria-labelledby="html-2504.04709" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2504.04709" title="Other formats" id="oth-2504.04709" aria-labelledby="oth-2504.04709">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> ChPT and lattice QCD studies of doubly charmed baryons </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-ph?searchtype=author&amp;query=Liang,+Z">Ze-Rui Liang</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&amp;query=Yi,+J">Jing-Yu Yi</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&amp;query=Liu,+L">Liuming Liu</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&amp;query=Yao,+D">De-Liang Yao</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 10 pages, 2 figures, 5 tables. Proceedings of the 11th International Workshop on Chiral Dynamics (CD2024) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Phenomenology (hep-ph)</span>; High Energy Physics - Experiment (hep-ex); High Energy Physics - Lattice (hep-lat) </div> <p class='mathjax'> The scattering lengths on the interactions between the spin-$1/2$ doubly charmed baryons and Nambu-Goldstone bosons are of great importance for the investigation of the spectroscopy of heavy flavored baryons. To that end, we have conducted a systematic analysis of the low-energy dynamics of doubly charmed baryons within the frameworks of chiral perturbation theory (ChPT) and lattice quantum chromodynamics (QCD). On the one hand, the S- and P-wave scattering lengths are predicted in a manifestly relativistic baryon ChPT at leading one-loop order. On the other hand, results of the S-wave scattering lengths for four elastic scattering single channels are obtained in lattice QCD for the first time. </p> </div> </dd> </dl> <dl id='articles'> <h3>Replacement submissions (showing 9 of 9 entries)</h3> <dt> <a name='item7'>[7]</a> <a href ="/abs/2406.19193" title="Abstract" id="2406.19193"> arXiv:2406.19193 </a> (replaced) [<a href="/pdf/2406.19193" title="Download PDF" id="pdf-2406.19193" aria-labelledby="pdf-2406.19193">pdf</a>, <a href="https://arxiv.org/html/2406.19193v2" title="View HTML" id="html-2406.19193" aria-labelledby="html-2406.19193" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2406.19193" title="Other formats" id="oth-2406.19193" aria-labelledby="oth-2406.19193">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Physical-mass calculation of $蟻(770)$ and $K^*(892)$ resonance parameters via $蟺蟺$ and $K 蟺$ scattering amplitudes from lattice QCD </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Boyle,+P">Peter Boyle</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Erben,+F">Felix Erben</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers,+V">Vera G眉lpers</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Hansen,+M+T">Maxwell T. Hansen</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Joswig,+F">Fabian Joswig</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Lachini,+N+P">Nelson Pitanga Lachini</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Marshall,+M">Michael Marshall</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Portelli,+A">Antonin Portelli</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys.Rev.D 111 (2025) 5, 054510 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Phenomenology (hep-ph) </div> <p class='mathjax'> We present our study of the $\rho(770)$ and $K^*(892)$ resonances from lattice quantum chromodynamics (QCD) employing domain-wall fermions at physical quark masses. We determine the finite-volume energy spectrum in various momentum frames and obtain phase-shift parameterizations via the L眉scher formalism, and as a final step the complex resonance poles of the $\pi \pi$ and $K \pi$ elastic scattering amplitudes via an analytical continuation of the models. By sampling a large number of representative sets of underlying energy-level fits, we also assign a systematic uncertainty to our final results. This is a significant extension to data-driven analysis methods that have been used in lattice QCD to date, due to the two-step nature of the formalism. Our final pole positions, $M+i\Gamma/2$, with all statistical and systematic errors exposed, are $M_{K^{*}} = 893(2)(8)(54)(2)~\mathrm{MeV}$ and $\Gamma_{K^{*}} = 51(2)(11)(3)(0)~\mathrm{MeV}$ for the $K^*(892)$ resonance and $M_{\rho} = 796(5)(15)(48)(2)~\mathrm{MeV}$ and $\Gamma_{\rho} = 192(10)(28)(12)(0)~\mathrm{MeV}$ for the $\rho(770)$ resonance. The four differently grouped sources of uncertainties are, in the order of occurrence: statistical, data-driven systematic, an estimation of systematic effects beyond our computation (dominated by the fact that we employ a single lattice spacing), and the error from the scale-setting uncertainty on our ensemble. </p> </div> </dd> <dt> <a name='item8'>[8]</a> <a href ="/abs/2406.19194" title="Abstract" id="2406.19194"> arXiv:2406.19194 </a> (replaced) [<a href="/pdf/2406.19194" title="Download PDF" id="pdf-2406.19194" aria-labelledby="pdf-2406.19194">pdf</a>, <a href="https://arxiv.org/html/2406.19194v2" title="View HTML" id="html-2406.19194" aria-labelledby="html-2406.19194" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2406.19194" title="Other formats" id="oth-2406.19194" aria-labelledby="oth-2406.19194">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Light and strange vector resonances from lattice QCD at physical quark masses </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Boyle,+P">Peter Boyle</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Erben,+F">Felix Erben</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers,+V">Vera G眉lpers</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Hansen,+M+T">Maxwell T. Hansen</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Joswig,+F">Fabian Joswig</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Lachini,+N+P">Nelson Pitanga Lachini</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Marshall,+M">Michael Marshall</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Portelli,+A">Antonin Portelli</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys.Rev.Lett. 134 (2025) 11, 111901 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Phenomenology (hep-ph) </div> <p class='mathjax'> We present the first ab initio calculation at physical quark masses of scattering amplitudes describing the lightest pseudoscalar mesons interacting via the strong force in the vector channel. Using lattice quantum chromodynamics, we postdict the defining parameters for two short-lived resonances, the $\rho(770)$ and $K^*(892)$, which manifest as complex energy poles in $\pi \pi$ and $K \pi$ scattering amplitudes, respectively. The calculation proceeds by first computing the finite-volume energy spectrum of the two-hadron systems, and then determining the amplitudes from the energies using the L眉scher formalism. The error budget includes a data-driven systematic error, obtained by scanning possible fit ranges and fit models to extract the spectrum from Euclidean correlators, as well as the scattering amplitudes from the latter. The final results, obtained by analytically continuing multiple parameterizations into the complex energy plane, are $M_\rho = 796(5)(50)~\mathrm{MeV}$, $\Gamma_\rho = 192(10)(31)~\mathrm{MeV}$, $M_{K^*} = 893(2)(54)~\mathrm{MeV}$ and $\Gamma_{K^*} = 51(2)(11)~\mathrm{MeV}$, where the subscript indicates the resonance and $M$ and $\Gamma$ stand for the mass and width, respectively, and where the first bracket indicates the statistical and the second bracket the systematic uncertainty. </p> </div> </dd> <dt> <a name='item9'>[9]</a> <a href ="/abs/2412.17137" title="Abstract" id="2412.17137"> arXiv:2412.17137 </a> (replaced) [<a href="/pdf/2412.17137" title="Download PDF" id="pdf-2412.17137" aria-labelledby="pdf-2412.17137">pdf</a>, <a href="https://arxiv.org/html/2412.17137v2" title="View HTML" id="html-2412.17137" aria-labelledby="html-2412.17137" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2412.17137" title="Other formats" id="oth-2412.17137" aria-labelledby="oth-2412.17137">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The Role of Integration Cycles in Complex Langevin Simulations </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Hansen,+M+W">Michael W. Hansen</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Mandl,+M">Michael Mandl</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Seiler,+E">Erhard Seiler</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Sexty,+D">D茅nes Sexty</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> some typos fixed; 19 pages + 5 pages appendix, 19 figures </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. D 111, 074502 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Complex Langevin simulations are an attempt to solve the sign (or complex-action) problem encountered in various physical systems of interest. The method is based on a complexification of the underlying degrees of freedom and an evolution in an auxiliary time dimension. The complexification, however, does not come without drawbacks, the most severe of which is the infamous &#39;wrong convergence&#39; problem, stating that complex Langevin simulations sometimes fail to produce correct answers despite their apparent convergence. It has long been realized that wrong convergence may - in principle - be fixed by the introduction of a suitable kernel into the complex Langevin equation, such that the conventional correctness criteria are met. However, as we discuss in this work, complex Langevin results may - especially in the presence of a kernel - still be affected by unwanted so-called integration cycles of the theory spoiling them. Indeed, we confirm numerically that in the absence of boundary terms the complex Langevin results are given by a linear combination of such integration cycles, as put forward by Salcedo &amp; Seiler. In particular, we shed light on the way different choices of kernel affect which integration cycles are being sampled in a simulation and how this knowledge can be used to ensure correct convergence in simple toy models. </p> </div> </dd> <dt> <a name='item10'>[10]</a> <a href ="/abs/2501.10662" title="Abstract" id="2501.10662"> arXiv:2501.10662 </a> (replaced) [<a href="/pdf/2501.10662" title="Download PDF" id="pdf-2501.10662" aria-labelledby="pdf-2501.10662">pdf</a>, <a href="https://arxiv.org/html/2501.10662v2" title="View HTML" id="html-2501.10662" aria-labelledby="html-2501.10662" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2501.10662" title="Other formats" id="oth-2501.10662" aria-labelledby="oth-2501.10662">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Analyzing the Higgs-confinement transition with non-local operators on the lattice </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Shimada,+Y">Yusuke Shimada</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Yamamoto,+A">Arata Yamamoto</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages, 11 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> We study non-local operators for analyzing the Higgs-confinement phase transition in lattice gauge theory. Since the nature of the Higgs-confinement phase transition is topological, its order parameter is the expectation value of non-local operators, such as loop and surface operators. There exist several candidates for the non-local operators. Adopting the charge-2 Abelian Higgs model, we test numerical simulation of conventional ones, the Polyakov loop and the &#39;t Hooft loop, and an unconventional one, the Aharonov-Bohm phase defined by the Wilson loop wrapping around a vortex line. </p> </div> </dd> <dt> <a name='item11'>[11]</a> <a href ="/abs/2503.15090" title="Abstract" id="2503.15090"> arXiv:2503.15090 </a> (replaced) [<a href="/pdf/2503.15090" title="Download PDF" id="pdf-2503.15090" aria-labelledby="pdf-2503.15090">pdf</a>, <a href="https://arxiv.org/html/2503.15090v2" title="View HTML" id="html-2503.15090" aria-labelledby="html-2503.15090" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.15090" title="Other formats" id="oth-2503.15090" aria-labelledby="oth-2503.15090">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Improved Lattice QCD $B_c\to J/蠄$ Vector, Axial-Vector, and Tensor Form Factors </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&amp;query=Harrison,+J">Judd Harrison</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages, 12 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Phenomenology (hep-ph) </div> <p class='mathjax'> We present an update of HPQCD&#39;s lattice QCD determination of the $B_c\to J/\psi$ vector and axial-vector form factors, and provide new results for the tensor form factors. We use the Highly Improved Staggered Quark action for all valence quarks, together with the second generation MILC $n_f=2+1+1$ HISQ gluon field configurations. This calculation includes two additional ensembles, one with physically light up and down quarks and $a\approx 0.06 \mathrm{fm}$ and one with $a\approx 0.03\mathrm{fm}$ on which we are able to reach the physical bottom quark mass. Our calculation uses nonperturbatively renormalised current operators and covers the full kinematical range of the decay. We use our recent results for the heavy-charm susceptibilities, as a function of $u=m_c/m_h$, in order to employ the full dispersive parameterisation for $B_c\to J/\psi$ in our physical-continuum extrapolation. We give updated SM predictions $R(J/\psi)=0.2597(27)$, $A_{\lambda_\tau}=0.5093(42)$, $F_L^{J/\psi}=0.4421(55)$, and $\mathcal{A}_\mathrm{FB}=-0.0567(61)$, reducing uncertainties by $29\%$, $45\%$, $40\%$ and $50\%$ respectively. Since our lattice form factors cover the full kinematic range we can use them to test extrapolations using data in a truncated range, at low-recoil. We investigate different physical continuum parameterisation schemes, with lattice results in the first $1/3$ of the kinematic range near $q^2_\mathrm{max}$. We find that unexpectedly large systematic uncertainties near $q^2=0$ can emerge when extrapolating synthetic data in the high-$q^2$ region if higher order kinematical terms are omitted from the physical continuum extrapolation. This suggests a potentially underestimated systematic uncerainty entering extrapolations of synthetic lattice QCD data for the related $B\to D^*\ell\bar{\nu}$ decay from the high-$q^2$ region into the low-$q^2$ region. </p> </div> </dd> <dt> <a name='item12'>[12]</a> <a href ="/abs/2407.17724" title="Abstract" id="2407.17724"> arXiv:2407.17724 </a> (replaced) [<a href="/pdf/2407.17724" title="Download PDF" id="pdf-2407.17724" aria-labelledby="pdf-2407.17724">pdf</a>, <a href="https://arxiv.org/html/2407.17724v3" title="View HTML" id="html-2407.17724" aria-labelledby="html-2407.17724" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.17724" title="Other formats" id="oth-2407.17724" aria-labelledby="oth-2407.17724">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Monte Carlo studies of quantum cosmology by the generalized Lefschetz thimble method </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&amp;query=Chou,+C">Chien-Yu Chou</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&amp;query=Nishimura,+J">Jun Nishimura</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 36 pages, 8 figures (v2) references added (v3) the version accepted for publication in JHEP </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Physics - Lattice (hep-lat); High Energy Physics - Theory (hep-th); Quantum Physics (quant-ph) </div> <p class='mathjax'> Quantum cosmology aims at elucidating the beginning of our Universe. Back in early 80&#39;s, Vilenkin and Hartle-Hawking put forward the &#34;tunneling from nothing&#34; and &#34;no boundary&#34; proposals. Recently there has been renewed interest in this subject from the viewpoint of defining the oscillating path integral for Lorentzian quantum gravity using the Picard-Lefschetz theory. Aiming at going beyond the mini-superspace and saddle-point approximations, we perform Monte Carlo calculations using the generalized Lefschetz thimble method to overcome the sign problem. In particular, we confirm that either Vilenkin or Hartle-Hawking saddle point becomes relevant if one uses the Robin boundary condition depending on its parameter. We also clarify some fundamental issues in quantum cosmology, such as an issue related to the integration domain of the lapse function and an issue related to reading off the real geometry from the complex geometry obtained at the saddle point. </p> </div> </dd> <dt> <a name='item13'>[13]</a> <a href ="/abs/2410.08552" title="Abstract" id="2410.08552"> arXiv:2410.08552 </a> (replaced) [<a href="/pdf/2410.08552" title="Download PDF" id="pdf-2410.08552" aria-labelledby="pdf-2410.08552">pdf</a>, <a href="https://arxiv.org/html/2410.08552v2" title="View HTML" id="html-2410.08552" aria-labelledby="html-2410.08552" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.08552" title="Other formats" id="oth-2410.08552" aria-labelledby="oth-2410.08552">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Classical Continuum Limit of the String Field Theory Dual to Lattice Gauge Theory </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&amp;query=Kawana,+K">Kiyoharu Kawana</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 37 pages, 7 figures; Version to appear in PTEP (v2) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; High Energy Physics - Lattice (hep-lat) </div> <p class='mathjax'> We discuss the classical continuum limit of the string field theory dual to the $\mathrm{SU}(N)$ lattice gauge theory and investigate various fundamental phenomena in the continuum theory at the mean-field level. Our construction of the continuum theory is based on the concept of {\it area derivative}, which can be regarded as a generalization of the ordinary derivative $\partial/\partial x^\mu$ to operators acting on functional fields $\phi[C]$ on the loop space. The resultant continuum theory has a $\mathbb{Z}_N^{}$ $1$-form global symmetry, which originates in the $\mathbb{Z}_N^{}$ center symmetry in the gauge theory. We find that the confined and deconfined phases of the gauge theory are identified by the unbroken and broken phases of the $\mathbb{Z}_N^{}$ symmetry respectively by showing the Area/Perimeter law of the classical solution. In the broken phase, the low-energy effective theory is described by a $\mathrm{BF}$-type topological field theory and has a emergent $\mathbb{Z}_N^{}$ $(D-2)$-form global symmetry. The existence of the emergent symmetry is deeply related to $(D-2)$-dimensional topological configurations (i.e. center vortex for $D=4$), and we explicitly construct such a topological defect in the continuum theory. Finally, we also comment on the upper and lower critical dimensions of the gauge theory/string field theory. </p> </div> </dd> <dt> <a name='item14'>[14]</a> <a href ="/abs/2501.17798" title="Abstract" id="2501.17798"> arXiv:2501.17798 </a> (replaced) [<a href="/pdf/2501.17798" title="Download PDF" id="pdf-2501.17798" aria-labelledby="pdf-2501.17798">pdf</a>, <a href="https://arxiv.org/html/2501.17798v3" title="View HTML" id="html-2501.17798" aria-labelledby="html-2501.17798" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2501.17798" title="Other formats" id="oth-2501.17798" aria-labelledby="oth-2501.17798">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Inequivalence between the Euclidean and Lorentzian versions of the type IIB matrix model from Lefschetz thimble calculations </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&amp;query=Chou,+C">Chien-Yu Chou</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&amp;query=Nishimura,+J">Jun Nishimura</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&amp;query=Tripathi,+A">Ashutosh Tripathi</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 6 pages, 3 figures; (v2) references added, minor revisions; (v3) the version accepted for publication in Physical Review Letters </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat); High Energy Physics - Phenomenology (hep-ph) </div> <p class='mathjax'> The type IIB matrix model is conjectured to describe superstring theory nonperturbatively in terms of ten $N \times N$ bosonic traceless Hermitian matrices $A_\mu$ ($\mu=0, \ldots , 9$), whose eigenvalues correspond to $(9+1)$-dimensional space-time. Quite often, this model has been investigated in its Euclidean version, which is well defined although the ${\rm SO}(9,1)$ Lorentz symmetry of the original model is replaced by the ${\rm SO}(10)$ rotational symmetry. Recently, a well-defined model respecting the Lorentz symmetry has been proposed by gauge-fixing the Lorentz symmetry nonperturbatively using the Faddeev-Popov procedure. Here we investigate the two models by Monte Carlo simulations, overcoming the severe sign problem by the Lefschetz thimble method, in the case of matrix size $N=2$ omitting fermionic contributions. We add a quadratic term $\gamma \, \mathrm{tr} (A_\mu A^\mu)$ in the action and calculate the expectation values of rotationally symmetric (or Lorentz symmetric) observables as a function of the coefficient $\gamma$. Our results exhibit striking differences between the two models around $\gamma=0$ and in the $\gamma&gt;0$ region, associated with the appearance of different saddle points, clearly demonstrating their inequivalence against naive expectations from quantum field theory. </p> </div> </dd> <dt> <a name='item15'>[15]</a> <a href ="/abs/2503.11959" title="Abstract" id="2503.11959"> arXiv:2503.11959 </a> (replaced) [<a href="/pdf/2503.11959" title="Download PDF" id="pdf-2503.11959" aria-labelledby="pdf-2503.11959">pdf</a>, <a href="https://arxiv.org/html/2503.11959v2" title="View HTML" id="html-2503.11959" aria-labelledby="html-2503.11959" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.11959" title="Other formats" id="oth-2503.11959" aria-labelledby="oth-2503.11959">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Tomography of the Rho meson in the QCD Instanton Vacuum: Transverse Momentum Dependent Parton Distribution Functions </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-ph?searchtype=author&amp;query=Liu,+W">Wei-Yang Liu</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&amp;query=Zahed,+I">Ismail Zahed</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 26 pages, 9 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Phenomenology (hep-ph)</span>; High Energy Physics - Lattice (hep-lat); High Energy Physics - Theory (hep-th); Nuclear Theory (nucl-th) </div> <p class='mathjax'> We analyse the rho meson unpolarized and polarized transverse momentum dependent parton distribution functions (TMDPDFs) in the instanton liquid model (ILM). The corresponding TMDs in ILM are approximated by a constituent quark beam function in the leading Fock state multiplied by a rapidity-dependent factor resulting from the staple-shaped Wilson lines, for fixed longitudinal momentum, transverse separation, and rapidity. At the resolution of the ILM, all of the rho meson TMDs are symmetric in parton x for fixed transverse momentum, and Gaussian-like in the transverse momentum for fixed parton x. The latter is a direct consequence of the profiling of the quark zero modes in the ILM. The evolved TMDs at higher rapidity using the Collins-Soper kernel, and higher resolution using the renormalization group (RG), show substantial skewness towards low parton x. </p> </div> </dd> </dl> <div class='paging'>Total of 15 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/hep-lat/new?skip=0&amp;show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> </div> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10