CINXE.COM
Search results for: flood response
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flood response</title> <meta name="description" content="Search results for: flood response"> <meta name="keywords" content="flood response"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flood response" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flood response"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5693</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flood response</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5663</span> Urban Flood Risk Mapping–a Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherly%20M.%20A.">Sherly M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhankar%20Karmakar"> Subhankar Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Terence%20Chan"> Terence Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Rau"> Christian Rau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floods are one of the most frequent natural disasters, causing widespread devastation, economic damage and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, population of cities across the world has increased exponentially leading to improperly planned developments. Climate change due to natural and anthropogenic activities on our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential in prevention and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping is often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for the effectiveness of flood risk management programs. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts and terms in urban flood risk mapping, along with its methodology, current status and limitations. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title="flood risk">flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title=" flood hazard"> flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20vulnerability" title=" flood vulnerability"> flood vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title=" flood modeling"> flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding" title=" urban flooding"> urban flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood%20risk%20mapping" title=" urban flood risk mapping"> urban flood risk mapping</a> </p> <a href="https://publications.waset.org/abstracts/21525/urban-flood-risk-mapping-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5662</span> Regional Flood Frequency Analysis in Narmada Basin: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Shah">Ankit Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Shrivastava"> R. K. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=index%20flood%20method" title=" index flood method"> index flood method</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20layer%20perceptrons" title=" multi layer perceptrons"> multi layer perceptrons</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20regression" title=" multiple regression"> multiple regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Narmada%20basin" title=" Narmada basin"> Narmada basin</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20flood%20frequency" title=" regional flood frequency"> regional flood frequency</a> </p> <a href="https://publications.waset.org/abstracts/77015/regional-flood-frequency-analysis-in-narmada-basin-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5661</span> Acceptance towards Counselling Services among Flood Victims in Selangor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husni%20Mohd%20Radzi">Husni Mohd Radzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilie%20Zahara%20Ramly"> Lilie Zahara Ramly</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapora%20Sipon"> Sapora Sipon</a>, <a href="https://publications.waset.org/abstracts/search?q=Salhah%20Abdullah"> Salhah Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysia have been experiencing series of huge floods all around the country for the past decades despide planned development done by local authorities. The floods incurred due to factors like natural climate change or man-made disaster. Floods have caused a lot of damages, destructions and losses in term of infrastructure, financial implications and physical health. However, other damaging aspect was not being given much attention are the psychological need of the flood victim. The traumatic impact from the natural disaster like floods may cause serious psychological and spiritual deterioration. Many flood relief shelters in the past did not provide counseling services for flood victims to consult, and as a result, it contributes to added stress among the flood victims, as the issue were not being addressed. Some studies indicates that flood victims did not look for counseling service being offered. A total of 257 flood victim was involved in this study. Main area of the study was Kg Bukit Changgang, Kg. Rancangan Tanah Belia, Kg. Labohan Dagang and Kg.Olak Lempit in Kuala Langat, Selangor. The flood victims have responded to the survey given and the data was analyze using SPSS for descriptive information and other measures. At least 13 victims were reported to have experienced moderate to severe level of stress and anxiety over the flood disaster incidents and a total of 88 respondents admitted to have at least thought and consider getting counseling service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perception" title="perception">perception</a>, <a href="https://publications.waset.org/abstracts/search?q=acceptance%20towards%20counseling" title=" acceptance towards counseling"> acceptance towards counseling</a>, <a href="https://publications.waset.org/abstracts/search?q=counseling%20service%20for%20flood%20victim" title=" counseling service for flood victim"> counseling service for flood victim</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a> </p> <a href="https://publications.waset.org/abstracts/35684/acceptance-towards-counselling-services-among-flood-victims-in-selangor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5660</span> Assessment of Chemical and Physical Properties of Surface Water Resources in Flood Affected Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Hajar%20Ya%E2%80%99acob">Siti Hajar Ya’acob</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Sayzwani%20Sukri"> Nor Sayzwani Sukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Khaliz%20Kedri"> Farah Khaliz Kedri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozidaini%20Mohd%20Ghazi"> Rozidaini Mohd Ghazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Raihan%20Nik%20Yusoff"> Nik Raihan Nik Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Aweng%20A%2FL%20Eh%20Rak"> Aweng A/L Eh Rak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood event that occurred in mid-December 2014 in East Coast of Peninsular Malaysia has driven attention from the public nationwide. Apart from loss and damage of properties and belongings, the massive flood event has introduced environmental disturbances on surface water resources in such flood affected area. A study has been conducted to measure the physical and chemical composition of Galas River and Pergau River prior to identification the flood impact towards environmental deterioration in surrounding area. Samples that have been collected were analyzed in-situ using YSI portable instrument and also in the laboratory for acid digestion and heavy metals analysis using Atomic Absorption Spectroscopy (AAS). Results showed that range of temperature (0C), DO (mg/L), Ec (µs/cm), TDS (mg/L), turbidity (NTU), pH, and salinity were 25.05-26.65, 1.51-5.85, 0.032-0.054, 0.022-0.035, 23.2-76.4, 3.46-7.31, and 0.01-0.02 respectively. The results from this study could be used as a primary database to evaluate the status of water quality of the respective river after the massive flood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=AAS" title=" AAS"> AAS</a> </p> <a href="https://publications.waset.org/abstracts/31976/assessment-of-chemical-and-physical-properties-of-surface-water-resources-in-flood-affected-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5659</span> Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiyan%20Gao">Meiyan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongmin%20Wang"> Zongmin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Yang"> Haibo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuhua%20Liang"> Qiuhua Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20flood%20resilience" title="urban flood resilience">urban flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20assessment" title=" resilience assessment"> resilience assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20curve" title=" resilience curve"> resilience curve</a> </p> <a href="https://publications.waset.org/abstracts/182830/urban-flood-resilience-comprehensive-assessment-of-720-rainstorm-in-zhengzhou-based-on-multiple-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5658</span> Flood Risk Assessment in the Niger River Basin in Support of the Conception of a Flood Risk Management Plan: Case Study of the District of Malanville, Benin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Freddy%20Houndekindo">Freddy Houndekindo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was carried out to evaluate the flood risk in the district of Malanville located along the Niger River. The knowledge produce by this study is useful in the implementation of adaptation and/or mitigation measures to alleviate the impact of the flooding on the populations, the economy and the environment. Over the course of the study, the lack of data in the area of interest has been one of the main challenges encountered. Therefore, in the analysis of the flood hazard different sources of remotely sensed data were used. Moreover, the flood hazard was analysed by applying a 1D hydraulic model: HEC-RAS. After setting up the model for the study area, the different flood scenarios considered were simulated and mapped using ArcGIS and the HEC-GEORAS extension. The result of the simulation gave information about the inundated areas and the water depths at each location. From the analysis of the flood hazard, it was found that between 47% and 50% of the total area of the district of Malanville would be flooded in the different flood scenarios considered, and the water depth varies between 1 and 7 m. The townships of Malanville most at risk of flooding are Momkassa and Galiel, located in a high-risk and very high-risk zone, respectively. Furthermore, the assessment of the flood risk showed that the most vulnerable sector to the inundations is the agricultural sector. Indeed, the cultivated floodplains were the most affected areas by the floodwater in every flood scenarios. Knowing that a high proportion of the population of the district relies on their farmlands in these floodplains for their livelihood, the floods pose a challenge not only to the food security in the area but also to its development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20management" title="flood risk management">flood risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger" title=" Niger"> Niger</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/104001/flood-risk-assessment-in-the-niger-river-basin-in-support-of-the-conception-of-a-flood-risk-management-plan-case-study-of-the-district-of-malanville-benin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5657</span> Rethinking Urban Floodplain Management: The Case of Colombo, Sri Lanka </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malani%20Herath">Malani Herath</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohan%20Wijesekera"> Sohan Wijesekera</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagath%20Munasingha"> Jagath Munasingha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of recent floods become significant, and the extraordinary flood events cause considerable damage to lives, properties, environment and negatively affect the whole development of Colombo urban region. Even though the Colombo urban region experiences recurrent flood impacts, several spatial planning interventions have been taken from time to time since early 20th century. All past plans have adopted a traditional approach to flood management, using infrastructural measures to reduce the chance of flooding together with rigid planning regulations. The existing flood risk management practices do not operate to be acceptable by the local community particular the urban poor. Researchers have constantly reported the differences in estimations of flood risk, priorities, concerns of experts and the local community. Risk-based decision making in flood management is not only a matter of technical facts; it has a significant bearing on how flood risk is viewed by local community and individuals. Moreover, sustainable flood management is an integrated approach, which highlights joint actions of experts and community. This indicates the necessity of further societal discussion on the acceptable level of flood risk indicators to prioritize and identify the appropriate flood management measures in Colombo. The understanding and evaluation of flood risk by local people are important to integrate in the decision-making process. This research questioned about the gap between the acceptable level of flood risk to spatial planners and to the local communities in Colombo. A comprehensive literature review was conducted to prepare a framework to analyze the public perception in Colombo. This research work identifies the factors that affect the variation of flood risk and acceptable levels to both local community and planning authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Colombo%20basin" title="Colombo basin">Colombo basin</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20perception" title=" public perception"> public perception</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood%20risk" title=" urban flood risk"> urban flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20analysis" title=" multi-criteria analysis "> multi-criteria analysis </a> </p> <a href="https://publications.waset.org/abstracts/58792/rethinking-urban-floodplain-management-the-case-of-colombo-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5656</span> Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reini%20S.%20Ilmiaty">Reini S. Ilmiaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Al%20Amin"> Muhammad B. Al Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarino"> Sarino</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzamil%20Jariski"> Muzamil Jariski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title="flood modelling">flood modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-GeoRAS" title=" HEC-GeoRAS"> HEC-GeoRAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20map" title=" inundation map"> inundation map</a> </p> <a href="https://publications.waset.org/abstracts/36622/simulation-of-flood-inundation-in-kedukan-river-using-hec-ras-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5655</span> Measuring Organizational Resiliency for Flood Response in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Arlikatti">Sudha Arlikatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Siebeneck"> Laura Siebeneck</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20A.%20Andrew"> Simon A. Andrew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to measure organizational resiliency through five attributes namely, rapidity, redundancy, resourcefulness, and robustness and to provide recommendations for resiliency building in flood risk communities. The research was conducted in Thailand following the severe floods of 2011 triggered by Tropical Storm Nock-ten. The floods lasted over eight months starting in June 2011 affecting 65 of the country’s 76 provinces and over 12 million people. Funding from a US National Science Foundation grant was used to collect ephemeral data in rural (Ayutthaya), suburban (Pathum Thani), and urban (Bangkok) provinces of Thailand. Semi-structured face-to-face interviews were conducted in Thai with 44 contacts from public, private, and non-profit organizations including universities, schools, automobile companies, vendors, tourist agencies, monks from temples, faith based organizations, and government agencies. Multiple triangulations were used to analyze the data by identifying selective themes from the qualitative data, validated with quantitative data and news media reports. This helped to obtain a more comprehensive view of how organizations in different geographic settings varied in their understanding of what enhanced or hindered their resilience and consequently their speed and capacities to respond. The findings suggest that the urban province of Bangkok scored highest in resourcefulness, rapidity of response, robustness, and ability to rebound. This is not surprising considering that it is the country’s capital and the seat of government, economic, military and tourism sectors. However, contrary to expectations all 44 respondents noted that the rural province of Ayutthaya was the fastest to recover amongst the three. Its organizations scored high on redundancy and rapidity of response due to the strength of social networks, a flood disaster sub-culture due to annual flooding, and the help provided by monks from and faith based organizations. Organizations in the suburban community of Pathum Thani scored lowest on rapidity of response and resourcefulness due to limited and ambiguous warnings, lack of prior flood experience and controversies that government flood protection works like sandbagging favored the capital city of Bangkok over them. Such a micro-level examination of organizational resilience in rural, suburban and urban areas in a country through mixed methods studies has its merits in getting a nuanced understanding of the importance of disaster subcultures and religious norms for resilience. This can help refocus attention on the strengths of social networks and social capital, for flood mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20subculture" title="disaster subculture">disaster subculture</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20response" title=" flood response"> flood response</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20resilience" title=" organizational resilience"> organizational resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand%20floods" title=" Thailand floods"> Thailand floods</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20beliefs%20and%20response" title=" religious beliefs and response"> religious beliefs and response</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital%20and%20disasters" title=" social capital and disasters"> social capital and disasters</a> </p> <a href="https://publications.waset.org/abstracts/90488/measuring-organizational-resiliency-for-flood-response-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5654</span> Flood Susceptibility Assessment of Mandaluyong City Using Analytic Hierarchy Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keigh%20D.%20Guinto">Keigh D. Guinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Romina%20M.%20Santos"> Ma. Romina M. Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most catastrophic natural disasters in the Philippines is floods. Twelve (12) million people reside in Metro Manila, National Capital Region (NCR), prone to flooding. A flood can cause widespread devastation resulting in damaged properties and infrastructures and loss of life. By using the analytical hierarchy process, six (6) parameters were selected, namely elevation, slope, lithology, distance from the river, river network density, and flow accumulation. Ranking of these parameters demonstrates that distance from the river with 25.31% and river density with 17.30% ranked the highest causative factor to flooding. This is followed by flow accumulation with 16.72%, elevation with 15.33%, slope with 13.53%, and the least flood causative factor is lithology with 11.8%. The generated flood susceptibility map of Mandaluyong has three (3) classes: high susceptibility, moderate susceptibility, and low susceptibility. The flood susceptibility map generated in this study can be used as an aid for planning flood mitigation, land use planning, and general public awareness. This study can also be used for emergency management and can be applied in the disaster risk management of Mandaluyong. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20hierarchy%20process" title="analytical hierarchy process">analytical hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a> </p> <a href="https://publications.waset.org/abstracts/147575/flood-susceptibility-assessment-of-mandaluyong-city-using-analytic-hierarchy-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5653</span> Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunita%20Ratih%20Wijayanti">Yunita Ratih Wijayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Rahmawati"> Dwi Rahmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Turniningtyas%20Ayu%20Rahmawati"> Turniningtyas Ayu Rahmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title="flood hazard">flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20inundation" title=" potential inundation"> potential inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20mapper" title=" global mapper"> global mapper</a>, <a href="https://publications.waset.org/abstracts/search?q=Gresik%20Regency" title=" Gresik Regency"> Gresik Regency</a> </p> <a href="https://publications.waset.org/abstracts/155596/flood-hazard-impact-based-on-simulation-model-of-potential-flood-inundation-in-lamong-river-gresik-regency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5652</span> Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Damova">Mariana Damova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanko%20Stankov"> Stanko Stankov</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Stoyanov"> Emil Stoyanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Hristo%20Hristov"> Hristo Hristov</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermand%20Pessek"> Hermand Pessek</a>, <a href="https://publications.waset.org/abstracts/search?q=Plamen%20Chernev"> Plamen Chernev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20simulation" title="flood simulation">flood simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a>, <a href="https://publications.waset.org/abstracts/search?q=Earth%20observation" title=" Earth observation"> Earth observation</a>, <a href="https://publications.waset.org/abstracts/search?q=e-Infrastructure" title=" e-Infrastructure"> e-Infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20forecasting" title=" flood forecasting"> flood forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20areas%20localization" title=" flood areas localization"> flood areas localization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20planning" title=" response planning"> response planning</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20estimation" title=" resource estimation"> resource estimation</a> </p> <a href="https://publications.waset.org/abstracts/191232/flood-simulation-and-forecasting-for-sustainable-planning-of-response-in-municipalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5651</span> Effectiveness of Infrastructure Flood Control Due to Development Upstream Land Use: Case Study of Ciliwung Watershed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Murniningsih">Siti Murniningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Evi%20Anggraheni"> Evi Anggraheni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various infrastructures such as dams, flood control dams and reservoirs have been developed in the 19th century until the 20th century. These infrastructures are very effective in controlling the river flows and in preventing inundation in the urban area prone to flooding. Flooding in the urban area often brings large impact, affecting every aspect of life and also environment. Ciliwung is one of the rivers allegedly contributes to the flooding problems in Jakarta; various engineering work has been done in Ciliwung river to help controlling the flooding. One of the engineering work is to build Ciawi Dam and Sukamahi Dam. In this research, author is doing the flood calculation with Nakayasu Method, while the previous flooding in that case study is computed using Level Pool Routine. The effectiveness of these dams can be identified by using flood simulation of existing condition and compare it to the flood simulation after the dam construction. The final goal of this study is to determine the effectiveness of flood mitigation infrastructure located at upstream area in reducing the volume of flooding in Jakarta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title="effectiveness">effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20simulation" title=" flood simulation"> flood simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20flooding" title=" infrastructure flooding"> infrastructure flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20pool%20routine" title=" level pool routine"> level pool routine</a> </p> <a href="https://publications.waset.org/abstracts/43628/effectiveness-of-infrastructure-flood-control-due-to-development-upstream-land-use-case-study-of-ciliwung-watershed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5650</span> Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Afifi">Ahmed S. Afifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Magdy"> Ahmed Magdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAR%20backscattering" title="SAR backscattering">SAR backscattering</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-1" title=" Sentinel-1"> Sentinel-1</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20mapping" title=" flood mapping"> flood mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a> </p> <a href="https://publications.waset.org/abstracts/160125/flood-monitoring-in-the-vietnamese-mekong-delta-using-sentinel-1-sar-with-global-flood-mapper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5649</span> Estimation of the Effectiveness of Tasik Kemajuan and Tasik Inovasi as Flood Detention Pond at UTHM Campus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Aliza%20Binti%20Ahmad">Noor Aliza Binti Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azra%20Munirah%20Mat%20Daud"> Azra Munirah Mat Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabariah%20Musa"> Sabariah Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Azhar%20MK"> Mohamad Azhar MK</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flooding is a common natural disaster in Malaysia triggered by heavy rainfall. Urbanization that increases the construction of paved areas, subsequently raise surface runoff and reduce time of concentration. It increases flood magnitude and so that leads to greater flood problems as what has happened at Universiti Tun Hussein Onn Malaysia (UTHM) area in December 2006 and earlier 2007. Tasik Kemajuan and Tasik Inovasi were constructed as recreation ponds and have also functioned as flood ponds. Unfortunately, the flood problem still occurs persistently. Thus, the effectiveness of Tasik Kemajuan and Tasik Inovasi in reducing the flood problems need to be investigated and the causes of flood events at UTHM Campus need to be evaluated. The results from this study show that the conditions of Tasik Kemajuan and Tasik Inovasi are effective in reducing the flood water levels. It also can be concluded that increasing water level in both lakes in UTHM Campus are significantly influenced by presence of the grass and rubbish. During dry condition, the flow rates with three different days are 59.38m3/s, 60.71m3/s and 59.08m3/s and while for wet condition in two different days are 89.59 m3/s and 86.61m3/s. In conclusion, this system should be improved to prevent future flooding either widened or reduced drainage floor, and also perform maintenance on the plants that live around the lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage%20system" title="drainage system">drainage system</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20detention" title=" flood detention"> flood detention</a>, <a href="https://publications.waset.org/abstracts/search?q=lakes" title=" lakes"> lakes</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20water" title=" storm water"> storm water</a> </p> <a href="https://publications.waset.org/abstracts/24860/estimation-of-the-effectiveness-of-tasik-kemajuan-and-tasik-inovasi-as-flood-detention-pond-at-uthm-campus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5648</span> A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuhui%20Lin">Xuhui Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuchen%20Lu"> Qiuchen Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20An"> Yi An</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Yang"> Tao Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urban%20resilience" title="Urban resilience">Urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20networks" title=" road networks"> road networks</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20response" title=" flood response"> flood response</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20repair%20strategy" title=" dynamic repair strategy"> dynamic repair strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20analysis" title=" topological analysis"> topological analysis</a> </p> <a href="https://publications.waset.org/abstracts/187662/a-topology-based-dynamic-repair-strategy-for-enhancing-urban-road-network-resilience-under-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5647</span> The Role of Education and Indigenous Knowledge in Disaster Preparedness </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameen%20Masood">Sameen Masood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali%20Jibran"> Muhammad Ali Jibran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The frequent flood history in Pakistan has pronounced the need for disaster risk management. Various policies are formulated and steps are being taken by the government in order to cope with the flood effects. However, a much promising pro-active approach that is globally acknowledged is educating the masses regarding living with risk and uncertainty. Unfortunately, majority of the flood victims in Pakistan are poor and illiterate which also transpires as a significant cause of their distress. An illiterate population is not risk averse or equipped intellectually regarding how to prepare and protect against natural disasters. The current research utilizes a cross-disciplinary approach where the role of education (both formal and informal) and indigenous knowledge is explored with reference to disaster preparedness. The data was collected from the flood prone rural areas of Punjab. In the absence of disaster curriculum taught in formal schools, informal education disseminated by NGOs and relief and rehabilitation agencies was the only education given to the flood victims. However the educational attainment of flood victims highly correlated with their awareness regarding flood management and disaster preparedness. Moreover, lessons learned from past flood experience generated indigenous knowledge on the basis of which flood victims prepared themselves for any uncertainty. If the future policy regarding disaster preparation integrates indigenous knowledge and then delivers education on the basis of that, it is anticipated that the flood devastations can be much reduced. Education can play a vital role in amplifying perception of risk and taking precautionary measures for disaster. The findings of the current research will provide practical strategies where disaster preparedness through education has not yet been applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20preparedness" title=" disaster preparedness"> disaster preparedness</a>, <a href="https://publications.waset.org/abstracts/search?q=illiterate%20population" title=" illiterate population"> illiterate population</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management "> risk management </a> </p> <a href="https://publications.waset.org/abstracts/22374/the-role-of-education-and-indigenous-knowledge-in-disaster-preparedness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5646</span> Participatory Approach of Flood Disaster Risk Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laxman%20Budhathoki">Laxman Budhathoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Lal%20Bahadur%20Shrestha"> Lal Bahadur Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Laxman"> K. C. Laxman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hundreds of people are being lost their life by flood disaster in Nepal every year. Community-based disaster management committee has formed to formulate the disaster management plan including the component of EWS like EWS tower, rain gauge station, flood gauge station, culverts, boats, ropes, life jackets, a communication mechanism, emergency shelter, Spur, dykes, dam, evacuation route, emergency dry food management etc. Now EWS become a successful tool to decrease the human casualty from 13 to 0 every year in Rapti River of Chitwan District. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20risk%20reduction" title="disaster risk reduction">disaster risk reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20warning%20system" title=" early warning system"> early warning system</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20approach" title=" participatory approach"> participatory approach</a> </p> <a href="https://publications.waset.org/abstracts/45429/participatory-approach-of-flood-disaster-risk-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5645</span> Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shayeq%20Azizi">Ahmad Shayeq Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Toda"> Yuji Toda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20hydrological%20model" title="distributed hydrological model">distributed hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20inundation" title=" flood inundation"> flood inundation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20basins" title=" ungauged basins"> ungauged basins</a> </p> <a href="https://publications.waset.org/abstracts/91132/application-of-public-access-two-dimensional-hydrodynamic-and-distributed-hydrological-models-for-flood-forecasting-in-ungauged-basins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5644</span> Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Safrai">Maryam Safrai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tewfik%20Mahdi"> Tewfik Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title="flood modeling">flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20comparison" title=" model comparison"> model comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20flooded%20area" title=" probabilistic flooded area"> probabilistic flooded area</a>, <a href="https://publications.waset.org/abstracts/search?q=SRH-2D" title=" SRH-2D"> SRH-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=WMS" title=" WMS"> WMS</a> </p> <a href="https://publications.waset.org/abstracts/107620/stochastic-richelieu-river-flood-modeling-and-comparison-of-flood-propagation-models-wms-1d-and-srh-2d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5643</span> Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjadj%20Tarek">Medjadj Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghribi%20Hayet"> Ghribi Hayet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geographic%20information%20systems%20%28GIS%29" title="Geographic information systems (GIS)">Geographic information systems (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20%28ML%29" title=" machine learning (ML)"> machine learning (ML)</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20mapping" title=" emergency mapping"> emergency mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster%20management" title=" flood disaster management"> flood disaster management</a> </p> <a href="https://publications.waset.org/abstracts/163225/flood-prone-urban-area-mapping-using-machine-learning-a-case-sudy-of-msila-city-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5642</span> Flood Monitoring Using Active Microwave Remote Sensed Synthetic Aperture Radar Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Goswami">Bikramjit Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoranjan%20Kalita"> Manoranjan Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active microwave remote sensing is useful in remote sensing applications in cloud-covered regions in the world. Because of high spatial resolution, the spatial variations of land cover can be monitored in greater detail using synthetic aperture radar (SAR). Inundation is studied using the SAR images obtained from Sentinel-1A in both VH and VV polarizations in the present experimental study. The temporal variation of the SAR scattering coefficient values for the area gives a good indication of flood and its boundary. The study area is the district of Morigaon in the state of Assam in India. The period of flood monitoring study is the monsoon season of the year 2017, during which high flood occurred in the state of Assam. The variation of microwave scattering value shows a distinctive indication of flood from the non-flooded period. Frequent monitoring of flood in a large area (10 km x 10 km) using passive microwave sensing and pin-pointing the actual flooded portions (5 m x 5 m) within the flooded area using active microwave sensing, can be a highly useful combination, as revealed by the present experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20remote%20sensing" title="active remote sensing">active remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20monitoring" title=" flood monitoring"> flood monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20remote%20sensing" title=" microwave remote sensing"> microwave remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title=" synthetic aperture radar"> synthetic aperture radar</a> </p> <a href="https://publications.waset.org/abstracts/105375/flood-monitoring-using-active-microwave-remote-sensed-synthetic-aperture-radar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5641</span> Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anik%20Sarminingsih">Anik Sarminingsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20V.%20Pradana"> Krishna V. Pradana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20flood" title="design flood">design flood</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20model" title=" hydrological model"> hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Wulan%20river" title=" Wulan river"> Wulan river</a> </p> <a href="https://publications.waset.org/abstracts/87196/evaluation-of-reliability-flood-control-system-based-on-uncertainty-of-flood-discharge-case-study-wulan-river-central-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5640</span> Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alba%20Ballester%20Ciur%C3%B3">Alba Ballester Ciuró</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Pares%20Franzi"> Marc Pares Franzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20management" title="flood risk management">flood risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20participation" title=" public participation"> public participation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction" title=" risk reduction"> risk reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capacities" title=" social capacities"> social capacities</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20assessment" title=" vulnerability assessment"> vulnerability assessment</a> </p> <a href="https://publications.waset.org/abstracts/78896/public-participation-for-an-effective-flood-risk-management-building-social-capacities-in-ribera-alta-del-ebro-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5639</span> Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Jacobsen">Robert Jacobsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrology" title="hydrology">hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=high-definition" title=" high-definition"> high-definition</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation" title=" inundation"> inundation</a> </p> <a href="https://publications.waset.org/abstracts/181568/developing-high-definition-flood-inundation-maps-hd-fims-using-raster-adjustment-with-scenario-profiles-rasptm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5638</span> Assessment of Agricultural Damage under Different Simulated Flood Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Kadir">M. N. Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20H.%20Oliver"> M. M. H. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Naher"> T. Naher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20damage" title="agricultural damage">agricultural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=Delft-3d" title=" Delft-3d"> Delft-3d</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20map" title=" land cover map"> land cover map</a> </p> <a href="https://publications.waset.org/abstracts/108556/assessment-of-agricultural-damage-under-different-simulated-flood-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5637</span> Assessing the Impact of Urbanization on Flood Risk: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20Ahmed">Talha Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishtiaq%20Hassan"> Ishtiaq Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urbanization" title="urbanization">urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/141943/assessing-the-impact-of-urbanization-on-flood-risk-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5636</span> Benefit-Cost Analysis of Flood Management: a Case Study of Jammu and Kashmir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kowser%20Ali%20Jan">Kowser Ali Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Balaji"> R. Balaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A disaster hurts those affected. It also spares many in the affected areas, yet those spared may be indirectly affected. The analytical framework of prevention and coping has proved useful in many circumstances. Historically and currently, there has been limited quantitative information available on flood management in Jammu and Kashmir. This study focuses on the Cost-benefit Analysis (CBA) of flood management by District Disaster Management Kulgam, and the assessment is based on secondary pooled data collected from government offices, NGOs, published Journals, and local and national newspapers. It also described the scenario, the approach adopted, and the sources of flood damage cost information. The estimated total benefits account for 78686.18 lakh of rupees, and that of total costs account for 2218.75lakh of rupees. The Benefit-Cost ratio greater than one (>1) shows that Flood Management in District Kulgam was economically feasible and successfully managed. The State of Jammu and Kashmir takes essential prevention and management measures to bring down the damages due to floods to significant status. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost-benefit%20analysis" title="cost-benefit analysis">cost-benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nature" title=" nature"> nature</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a> </p> <a href="https://publications.waset.org/abstracts/138334/benefit-cost-analysis-of-flood-management-a-case-study-of-jammu-and-kashmir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5635</span> Determination of Heavy Metal Concentration in Soil from Flood Affected Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Sayzwani%20Sukri">Nor Sayzwani Sukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Hajar%20Ya%E2%80%99acob"> Siti Hajar Ya’acob</a>, <a href="https://publications.waset.org/abstracts/search?q=Musfiroh%20Jani"> Musfiroh Jani</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Khaliz%20Kedri"> Farah Khaliz Kedri</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Syuhadah%20Subki"> Noor Syuhadah Subki</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulhazman%20Hamzah"> Zulhazman Hamzah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In mid-December 2014, the biggest flood event occurred in East Coast of Peninsular Malaysia especially at Dabong area, Kelantan. As a consequent of flood disaster, the heavy metals concentration in soil may changes and become harmful to the environment due to the pollution that deposited in soil. This study was carried out to determine the heavy metal concentration from flood affected area. Sample have been collected and analysed by using Atomic Absorption Spectroscopy (AAS). Lead (Pb), Cadmium (Cd), Mercury (Hg), and Arsenic (As) were chosen for the heavy metals concentration. The result indicated that the heavy metal concentration did not exceed the limit. In-situ parameters also were carried out, were the results showed the range of soil pH (6.5-6.8), temperature (25°C – 26.5°C), and moisture content (1-2), respectively. The results from this study can be used as a base data to improve the soil quality and for consideration of future land use activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=AAS" title=" AAS"> AAS</a> </p> <a href="https://publications.waset.org/abstracts/32044/determination-of-heavy-metal-concentration-in-soil-from-flood-affected-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5634</span> Flood Hazards, Vulnerability and Adaptations in Upper Imo River Basin of South Eastern Nigera Introduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20N.%20Chibo">Christian N. Chibo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imo River Basin is located in South Eastern Nigeria comprising of 11 states of Imo, Abia, Anambra, Ebonyi, Enugu, Edo, Rivers, Cross river, AkwaIbom, Bayelsa, Delta, and Bayelsa states. The basin has a fluvial erosional system dominated by powerful rivers coming down from steep slopes in the area. This research investigated various hazards associated with flood, the vulnerable areas, elements at risk of flood and various adaptation strategies adopted by local inhabitants to cope with the hazards. The research aim is to identify, examine and assess flood hazards, vulnerability and adaptations in the Upper Imo River Basin. The study identified the role of elevation in cause of flood, elements at risk of flood as well as examine the effectiveness or otherwise of the adaptation strategies for coping with the hazards. Data for this research is grouped as primary and secondary. Their various methods of generation are field measurement, questionnaire, library websites etc. Other types of data were generated from topographical, geological, and Digital Elevation model (DEM) maps, while the hydro meteorological data was sourced from Nigeria Meteorological Agency (NIMET), Meteorological stations of Geography and Environmental Management Departments of Imo State University and Alvan Ikoku Federal College of Education. 800 copies of questionnaire were distributed using systematic sampling to 8 locations used for the pilot survey. About 96% of the questionnaire were retrieved and used for the study. 13 flood events were identified in the study area. Their causes, years and dates of events were documented in the text, and the damages they caused were evaluated. The study established that for each flood event, there is over 200mm of rain observed on the day of the flood and the day before the flood. The study also observed that the areas that situate at higher elevation (See DEM) are less prone to flood hazards while areas at low elevations are more prone to flood hazards. Elements identified to be at risk of flood are agricultural land, residential dwellings, retail trading and related services, public buildings and community services. The study thereby recommends non settlement at flood plains and flood prone areas and rearrangement of land use activities in the upper Imo River Basin among others <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title="flood hazard">flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20plain" title=" flood plain"> flood plain</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphology" title=" geomorphology"> geomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=Imo%20River%20Basin" title=" Imo River Basin"> Imo River Basin</a> </p> <a href="https://publications.waset.org/abstracts/59863/flood-hazards-vulnerability-and-adaptations-in-upper-imo-river-basin-of-south-eastern-nigera-introduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=189">189</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=190">190</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20response&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>