CINXE.COM

Search results for: volcanic eruption

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: volcanic eruption</title> <meta name="description" content="Search results for: volcanic eruption"> <meta name="keywords" content="volcanic eruption"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="volcanic eruption" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="volcanic eruption"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 123</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: volcanic eruption</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Geochemistry Identification of Volcanic Rocks Product of Krakatau Volcano Eruption for Katastropis Mitigation Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agil%20Gemilang%20Ramadhan">Agil Gemilang Ramadhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Novian%20Triandanu"> Novian Triandanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since 1929, the first appearance in sea level, Anak Krakatau volcano growth relatively quickly. During the 80 years up to 2010 has reached the height of 320 meter above sea level. The possibility of catastrophic explosive eruption could happen again if the chemical composition of rocks from the eruption changed from alkaline magma into acid magma. Until now Anak Krakatau volcanic activity is still quite active as evidenced by the frequency of eruptions that produced ash sized pyroclastic deposits - bomb. Purpose of this study was to identify changes in the percentage of rock geochemistry any results eruption of Anak Krakatau volcano to see consistency change the percentage content of silica in the magma that affect the type of volcanic eruptions. Results from this study will be produced in the form of a diagram the data changes the chemical composition of rocks of Anak Krakatau volcano. Changes in the composition of any silica eruption are illustrated in a graph. If the increase in the percentage of silica is happening consistently and it is assumed to increase in the time scale of a few percent, then to achieve silica content of 68 % (acid composition) that will produce an explosive eruption will know the approximate time. All aspects of the factors driving the increased threat of danger to the public should be taken into account. Catastrophic eruption katatropis mitigation can be planned early so that when these disasters happen later, casualties can be minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krakatau%20volcano" title="Krakatau volcano">Krakatau volcano</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20geochemistry" title=" rock geochemistry"> rock geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=catastrophic%20eruption" title=" catastrophic eruption"> catastrophic eruption</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a> </p> <a href="https://publications.waset.org/abstracts/43876/geochemistry-identification-of-volcanic-rocks-product-of-krakatau-volcano-eruption-for-katastropis-mitigation-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Nyiragongo: An Active Volcano at Risk of Eruption without Precursor Signs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Havugimana">Emmanuel Havugimana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If there is a natural phenomenon that could endanger the lives of countless people in Central Africa, it is the possible eruption of the Nyiragongo Volcano. This one is 3,470 m above sea level and has a summit formed by a crater 1.2 km in diameter. Its composite is made up of many layers of lava and tephras from the Great Rift Valley located in the Democratic Republic of Congo. It is also located in the region of the volcanic mountains near the city of Goma in Congo and near the city of Gisenyi in Rwanda. Nyiragongo represents an imminent danger considering that its magma has a very low silica content and is thus quite fluid. Its slopes are also high and slippery, and the lava takes advantage of this to flow up to 100 km. Lately, its eruptions took place in May 2002, resumed in May 2021, and they were faster than before. The volcano remains active even today. All these factors make it among the most dangerous volcanoes in the world. On top of that, no one knows when the next eruption will take place, especially since it can also occur without any warning signs. Unfortunately, volcanological monitoring services in Congo are non-existent, and that is why this document concludes that Nyiragongo could if nothing is done in this regard, ravage the two neighboring towns: Goma in Congo and Gisenyi in Rwanda. It also proposes solutions that may contribute to preventing the expected dangers in this context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyiragongo" title="Nyiragongo">Nyiragongo</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20eruption" title=" volcanic eruption"> volcanic eruption</a>, <a href="https://publications.waset.org/abstracts/search?q=precursor%20signs" title=" precursor signs"> precursor signs</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20volcano" title=" active volcano"> active volcano</a> </p> <a href="https://publications.waset.org/abstracts/149976/nyiragongo-an-active-volcano-at-risk-of-eruption-without-precursor-signs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Risk Assessment of Roof Structures in Concepcion, Tarlac in the Event of an Ash Fall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Michael%20J.%20Sadullo">Jerome Michael J. Sadullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaica%20Lois%20A.%20Torres"> Jamaica Lois A. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Trisha%20Muriel%20T.%20Valino"> Trisha Muriel T. Valino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Philippines, Central Luzon is one of the regions at high risk in terms of volcanic eruption. In fact, last June 15, 1991, which were the Mount Pinatubo has erupted, the most affected provinces were Zambales, Olangapo, Pampanga, Tarlac, Bataan, Bulacan and Nueva Ecija. During the Mount Pinatubo eruption, Castillejos, Zambales, has recorded the most significant damage to both commercial and residential structures. In this study, the researchers aim to determine and analyze the various impacts of ashfall on roof structures in Concepcion, Tarlac, during the event of a volcanic eruption. In able for the researcher to determine the sample size of the study, they have utilized Cochran's sample size formula. With the computed sample size, the researchers have gathered data through the distribution of survey forms, utilizing public records, and picture documentation of different roof structures in Concepcion, Tarlac. With the data collected, Chi-squared goodness of fit was done by the researcher in order to compare the data collected from the observed N (Concepcion, Tarlac) and expected N (Castillejos, Zambales). The results showed that when it comes to the roof constructions material used in Concepcion, Tarlac and Castillejos, Zambales. Structures in Concepcion, Tarlac were most likely to suffer worse when another eruption happens compared to the structures in Castillejos, Zambales. Yet, considering the current structural statuses of structure in Concepcion Tarlac and its location from Mount Pinatubo, they are less likely to experience ashfall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title="risk assessment">risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Concepcion" title=" Concepcion"> Concepcion</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarlac" title=" Tarlac"> Tarlac</a>, <a href="https://publications.waset.org/abstracts/search?q=Volcano%20Pinatubo" title=" Volcano Pinatubo"> Volcano Pinatubo</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20structures" title=" roof structures"> roof structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ashfall" title=" ashfall"> ashfall</a> </p> <a href="https://publications.waset.org/abstracts/150127/risk-assessment-of-roof-structures-in-concepcion-tarlac-in-the-event-of-an-ash-fall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Effect of Volcanic Ash and Recycled Aggregates in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Letelier">Viviana Letelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Ester%20Tarela"> Ester Tarela</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Moriconi"> Giacomo Moriconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20recycled%20concrete" title="compressive strength of recycled concrete">compressive strength of recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20recycled%20concrete" title=" mechanical properties of recycled concrete"> mechanical properties of recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title=" recycled aggregates"> recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20ash%20as%20cement%20replacement" title=" volcanic ash as cement replacement"> volcanic ash as cement replacement</a> </p> <a href="https://publications.waset.org/abstracts/56425/effect-of-volcanic-ash-and-recycled-aggregates-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Volcanostratigraphy Reconaissance Study Using Ridge Continuity to Solve Complex Volcanic Deposit Problems, Case Study Old Sunda Volcano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afy%20Syahidan%20ACHMAD">Afy Syahidan ACHMAD</a>, <a href="https://publications.waset.org/abstracts/search?q=Astin%20NURDIANA"> Astin NURDIANA</a>, <a href="https://publications.waset.org/abstracts/search?q=SURYANTINI"> SURYANTINI</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In volcanic arc environment we can find multiple volcanic deposits which overlapped with another volcanic deposit so it will complicates source and distribution determination. This problem getting more difficult when we can not trace any deposit border evidences in field especially in high vegetation volcanic area, or overlapped deposit with same characteristics. Main purpose of this study is to solve complex volcanostratigraphy mapping problems trough ridge, valley, and river continuity. This method application carried out in Old Sunda Volcanic, West Java, Indonesia. Using 1:100.000 and 1:50.000 topographic map, and regional geology map, old sunda volcanic deposit was differentiated in regional level and detail level. Final product of this method is volcanostratigraphy unit determination in reconnaissance stage to simplify mapping process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volcanostratigraphy" title="volcanostratigraphy">volcanostratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=study" title=" study"> study</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20deposit" title=" volcanic deposit"> volcanic deposit</a> </p> <a href="https://publications.waset.org/abstracts/17134/volcanostratigraphy-reconaissance-study-using-ridge-continuity-to-solve-complex-volcanic-deposit-problems-case-study-old-sunda-volcano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levent%20Basayigit">Levent Basayigit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mert%20Dedeoglu"> Mert Dedeoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadime%20Ozogul"> Fadime Ozogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. &nbsp;The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat%207" title="Landsat 7">Landsat 7</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20index" title=" soil moisture index"> soil moisture index</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20models" title=" temperature models"> temperature models</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20soils" title=" volcanic soils"> volcanic soils</a> </p> <a href="https://publications.waset.org/abstracts/68582/the-use-of-thermal-infrared-wavelengths-to-determine-the-volcanic-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Texture Characterization and Mineralogical Composition of the 1982-1983 Second Phase Galunggung Eruption, West Java Regency, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hanif%20Irsyada">M. Hanif Irsyada</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifaldy"> Rifaldy</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Lutfi%20Namury"> Arif Lutfi Namury</a>, <a href="https://publications.waset.org/abstracts/search?q=Syahreza%20S.%20Angkasa"> Syahreza S. Angkasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Rizky"> Khalid Rizky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricky%20Aryanto"> Ricky Aryanto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alfiyan%20Bagus"> M. Alfiyan Bagus</a>, <a href="https://publications.waset.org/abstracts/search?q=Excobar%20Arman"> Excobar Arman</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahri%20Septianto"> Fahri Septianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Firman%20Najib%20Wibisana"> Firman Najib Wibisana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Galunggung Mountain is an active volcano in Indonesia, precisely on the island of Java. This area is included in the Sunda Sunda arc formed by the tendency of the Australian oceanic plate to Eurasian continental plate. This research was conducted to determine the characteristics and document the mineralogical composition of the Galunggung eruption of the second phase 1982-1983. In fragment samples, petrographic analysis is carried out under a qualitative and quantitative polarizing microscope. This sample was obtained from the second phase eruption in the Cibanjanj formation. Based on the analysis results obtained filter texture characteristics, olivine parallel growth, lamellar structure, glass inclusion, plagioclase zonation and obtained special texture in the gabbroic cummulate. The mineral composition consists of phenocryst plagioclase (41vol%), pyroxene (26vol%), olivin (4vol%) and mineral opaque (29vol%). Microlite minerals consist of plagioclase (31.95vol%), pyroxene (12.09vol%), opaque minerals (55.96vol%). This research is expected to be developed by further researchers to be able to explain in more detail related to Galunggung mountain with 3 phases of eruption that are so intense. Also, it is expected to explain the structural characteristics and mineralogical composition that can be used to determine the origin of all the results of the Galunggung eruption 1982-1983. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galunggung%20eruption" title="Galunggung eruption">Galunggung eruption</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogical%20composition" title=" mineralogical composition"> mineralogical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20characterization" title=" texture characterization"> texture characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=gabbroic%20cumulate" title=" gabbroic cumulate"> gabbroic cumulate</a> </p> <a href="https://publications.waset.org/abstracts/118356/texture-characterization-and-mineralogical-composition-of-the-1982-1983-second-phase-galunggung-eruption-west-java-regency-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Civil Engineering Education at the University of the West Indies: An International Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyan%20Shrivastava">Gyan Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Civil Engineering education, at undergraduate and graduate levels, commenced at the University of the West Indies (UWI) in 1961, in collaboration with Imperial College in London. From its inception, it has concentrated on natural hazard resistant design of structures, given the occurrence of earthquakes, hurricanes and volcanic eruption in the Commonwealth Caribbean Islands. Against this background, a number of international students, from Botswana, Canada, Germany, India, Nigeria and South Africa, have studied Civil Engineering at UWI over the years. This paper outlines the author’s experience in teaching Fluid Mechanics and Engineering design to the said students, and in so doing highlights their strengths and weaknesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caribbean" title="Caribbean">Caribbean</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20hazards" title=" natural hazards"> natural hazards</a> </p> <a href="https://publications.waset.org/abstracts/77994/civil-engineering-education-at-the-university-of-the-west-indies-an-international-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> The Construction of Knowledge and Social Wisdom on Local Community in the Process of Disaster Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oman%20Sukmana">Oman Sukmana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geographically, Indonesia appears to be disaster-prone areas, whether for natural, nonnatural (man-made), or social disasters. This study aimed to construct the knowledge and social wisdom on the local community in the process of disaster management after the eruption of Mt. Kelud. This study, moreover, encompassed two major concerns: (1) the construction of knowledge and social wisdom on the local community in the process of disaster management after the eruption of Mt. Kelud; (2) the conceptual framework of disaster management on the basis of knowledge and social wisdom on the local community. The study was conducted by means of qualitative approach. The data were analyzed by using the qualitative-descriptive technique. The data collection techniques used in this study were in-depth interview, focus group discussion, observation, and documentation. It was conducted at Pandansari Village, Sub-district Ngantang, District Malang as the most at risk area of Mt. Kelud’s eruption. The purposive sampling was applied ad hoc to select the respondents including: the apparatus of Pandansari Village, the local figures of Pandansari Village, the Chief and Boards of the Forum of Disaster Risk Reduction (FPRB), the Head of Malang Regional Disaster Management Agency, and other agencies. The findings of this study showed that the local community has already possessed the adequate knowledge and social wisdom to overcome the disaster. Through the social wisdom, the local community could predict the potential eruption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge" title="knowledge">knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20and%20local%20wisdom" title=" social and local wisdom"> social and local wisdom</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a> </p> <a href="https://publications.waset.org/abstracts/60424/the-construction-of-knowledge-and-social-wisdom-on-local-community-in-the-process-of-disaster-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Zeolite Origin within the Pliocene Sedimentary-Pyroclastic Deposits in the Southwestern Part of Syria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20Turkmani">Abdulsalam Turkmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khaled%20Yezbek"> Mohammed Khaled Yezbek</a>, <a href="https://publications.waset.org/abstracts/search?q=Farouk%20Al%20Imadi"> Farouk Al Imadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geological surveys in the southwestern part of Syria showed the presence of sedimentary-pyroclastic deposits, volcanic tuff, to the age of the Upper Pliocene and contain the following minerals according petrographical study and XRD, SEM, XRF analysis and surface properties. X-Ray diffraction results indicate the presence of analcime, phillipsite and chabazite in in all the studied localities. There are also amorphous materials and clay minerals such as illite and montmorillonite. The non-zeolite constituents include olivine, clinopyroxene orthopyroxene and spinel, and less of magnetite and feldspar. Some major oxides were determined through XRF geochemical analyses which include SiO₂, Al₂O₃, K₂O, Fe₂O₃, and CaO for volcanic tuff and zeolite. The formation of these depositions can be summarized in the following stages during the Pliocene: Volcanic activity at the edges of Al Rutba uplift and Jabal Al Arab depression was a rich by tuff bearing ultra basic and basic xenoliths plus second phase by scoria, during the early Pliocene. Volcanic calm with the activity of erosion and form lakes in which deposition of a set of wastes, including olivine resulting from the disintegration of xenoliths during the middle Pliocene. Zeolites minerals form later, which make up about 15-20% and increase and decrease in reverse relation with the olivine sand. Zeolite is formed from volcanic glass, and the results of SEM show that the zeolites minerals very well crystallized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minerals" title="minerals">minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=origin" title=" origin"> origin</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroclastic" title=" pyroclastic"> pyroclastic</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/111046/zeolite-origin-within-the-pliocene-sedimentary-pyroclastic-deposits-in-the-southwestern-part-of-syria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Seismo-Volcanic Hazards in Great Ararat Region, Eastern Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Salih%20Bayraktutan">Mehmet Salih Bayraktutan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20Tokmak"> Emre Tokmak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Great Ararat Volcano is the highest peak in South Caucasus Volcanic Plateau. Uplifted by Quaternary basaltic pyroclastic and lava flows. Numerous volcanic cones formed along with the tensional fractures under N-S compressional geodynamic framework. Basaltic flows have fresh surface morphology give ages of 650-680 K years. Hyperstene andesites constitute a major mass of Greater Ararat gives ages of 450-490 K years. During the early eruption period, predominately pyroclastics, cinder, lapilly-ash volcanic bombs were extruded. Third-period eruptions dominantly basaltic lava flows. Andesitic domes aligned along with the NW-SE striking fractures. Hyalo basalt and hornblende basaltic lavas are the latest lava eruptions. Hyalo-basaltic eruptions occurred via parasitic cones distributed far from the center. Parasitic cones are most common at the foot of Mount covered by recent NW flowing basaltic lava. Some of the cones are distributed on a circular pattern. One of the most hazardous disasters recorded in Eastern Turkey was July 1840 Cehennem Canyon Flood. Volcanic activities seismically triggered resulted in melting of glacier cap, mixed with ash and pyroclastics, flowed down along the Valley. Mud rich Slush urged catastrophically northwards, crossed Ars River and damned Surmeli Basin, forming reservoir behind. Ararat volcanoes are located on NW-SE striking Agri Fault Zone. Right lateral extensional faults, along which a series of andesitic domes formed. Great Ararat, in general strato-type volcano. This huge structure, developed in two main parts with different topographic and morphological features. The large lower base covers a widespread area composed of predominantly pyroclastics, ignimbrites, aglomerates, thick pumice, perlite deposits. Approximately 1/3 of the Crest by height formed of this basement. And 2/3 of the upper part with a conic- shape composed of basaltic lava flows. The active tectonic structure consists of three different patterns. The first network is radially distributed fractures formed during the last stage of lava eruptions. The second group of active faults striking in NW direction, and continue in N30W strike, formes Igdir Fault Zone. The third set of faults, dipping in the northwest with 75-80 degrees, strikes NE- SW across the whole Mount, slicing Great Ararat into four segments. In the upper stage of Cehennem Canyon, this set cutting volcanic layers caused numerous Waterfalls, Rock Avalanches, Mud Flows along the canyon, threatens the Village of Yanidogan, at the apex of flood deposits. Great Ararat Region has high seismo-tectonic risk and by occurrence frequency and magnitude, which caused in history caused heavy disasters, at villages surrounding the Ararat Basement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eastern%20Turkey" title="Eastern Turkey">Eastern Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=geohazard" title=" geohazard"> geohazard</a>, <a href="https://publications.waset.org/abstracts/search?q=great%20ararat%20volcano" title=" great ararat volcano"> great ararat volcano</a>, <a href="https://publications.waset.org/abstracts/search?q=seismo-tectonic%20features" title=" seismo-tectonic features"> seismo-tectonic features</a> </p> <a href="https://publications.waset.org/abstracts/138165/seismo-volcanic-hazards-in-great-ararat-region-eastern-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezhan%20Tutberidze">Bezhan Tutberidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calc-alkalic" title="calc-alkalic">calc-alkalic</a>, <a href="https://publications.waset.org/abstracts/search?q=dolerite" title=" dolerite"> dolerite</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia" title=" Georgia"> Georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=Javakheti%20Highland" title=" Javakheti Highland"> Javakheti Highland</a> </p> <a href="https://publications.waset.org/abstracts/68226/petrology-of-the-post-collisional-dolerites-basalts-from-the-javakheti-highland-south-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Characterization of Lahar Sands for Reclamation Projects in the Manila Bay, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20Sandoval">Julian Sandoval</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Schober"> Philipp Schober</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lahar sand (lahars) is a material that originates from volcanic debris flows. During and after a volcano eruption, the lahars can move at speeds up to 22 meters per hour or more, so they can easily cover extensive areas and destroy any structure in their path. Mount Pinatubo eruption (1991) brought lahars to its vicinities, and its use has been a matter of research ever since. Lahars are often disposed of for land reclamation projects in the Manila Bay, Philippines. After reclamation, some deep loss deposits may still present and they are prone to liquefaction. To mitigate the risk of liquefaction of such deposits, Vibro compaction has been proposed and used as a ground improvement technique. Cone penetration testing (CPT) campaigns are usually initiated to monitor the effectiveness of the ground improvement works by vibro compaction. The CPT cone resistance is used to analyses the in-situ relative density of the reclaimed sand before and after compaction. Available correlations between the CPT cone resistance and the relative density are only valid for non-crushable sands. Due to the partially crushable nature of lahars, the CPT data requires to be adjusted to allow for a correct interpretation of the CPT data. The objective of this paper is to characterize the chemical and mechanical properties of the lahar sands used for an ongoing project in the Port of Manila, which comprises reclamation activities using lahars from the east of Mount Pinatubo, it investigates their effect in the proposed correction factor. Additionally, numerous CPTs were carried out in a test trial and during the execution of the project. Based on this data, the influence of the grid spacing, compaction steps and the holding time on the compaction results are analyzed. Moreover, the so-called “aging effect” of the lahars is studied by comparing the results of the CPT testing campaign at different times after the vibro compaction activities. A considerable increase in the tip resistance of the CPT was observed over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibro%20compaction" title="vibro compaction">vibro compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT"> CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=lahar%20sands" title=" lahar sands"> lahar sands</a>, <a href="https://publications.waset.org/abstracts/search?q=correction%20factor" title=" correction factor"> correction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a> </p> <a href="https://publications.waset.org/abstracts/111831/characterization-of-lahar-sands-for-reclamation-projects-in-the-manila-bay-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> The Relationship between Trace Elements in Groundwater Linked to a History of Volcanic Activity in La Pampa and Buenos Aires Provinces, Argentina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maisarah%20Jaafar">Maisarah Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20I.%20Ward"> Neil I. Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volcanic and geothermal activity can result in the release of arsenic (As), manganese (Mn), iron, selenium (Se), molybdenum (Mo) and uranium (U) into natural waters. Several studies have reported high levels of these elements in surface and groundwater in Argentina. The main focus has been on As associated with volcanic ash deposits. This study reports the trace element levels of groundwater from an agricultural region of south-eastern La Pampa and southern Buenos Aires provinces, Argentina which have reported high levels of human health problems (bone/teeth disorders, depression, arthritis, etc). Fifty-eight groundwater samples were collected from wells adjacent to Ruta 35 and an Agilent 7700x inductively coupled plasma mass spectrometer (ICP-MS) were used for total elemental analysis. Physicochemical analysis confirmed pH range of 7.05-8.84 and variable conductivity (988-3880 µS/cm) with total dissolved solid content of 502-1989 mg/l. The majority water samples are in an oxidizing environment (Eh= 45-146 mV). Total As levels ranged from (µg/l): 13.08 – 319.4 for La Pampa (LP) and 39.6 – 189.4 for Buenos Aires (BA); all above the WHO Guideline for Drinking Water, 10 µg/l As. Interestingly, Mo (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;), Se (LP: 1.2 – 16.59 µg/l; BA: 0.3– 6.94 µg/l;) and U (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;) levels are lower than reported values for northern La Pampa. Inter-elemental correlation displayed positive statistically significant between As-Mo, A-Se, As-U while negative statistically significant between As-Mn and As-Fe. This confirms that the source of the trace element is similar to that reported for other region of Argentina, namely volcanic ash deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argentina" title="Argentina">Argentina</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20activity" title=" volcanic activity"> volcanic activity</a> </p> <a href="https://publications.waset.org/abstracts/40106/the-relationship-between-trace-elements-in-groundwater-linked-to-a-history-of-volcanic-activity-in-la-pampa-and-buenos-aires-provinces-argentina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viveka%20Jackson">Viveka Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Erouscilla%20Joseph"> Erouscilla Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Denise%20Beckles"> Denise Beckles</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Christopher"> Thomas Christopher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20SO2" title="ambient SO2">ambient SO2</a>, <a href="https://publications.waset.org/abstracts/search?q=community-based%20monitoring" title=" community-based monitoring"> community-based monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=risk-reduction" title=" risk-reduction"> risk-reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20springs" title=" sulphur springs"> sulphur springs</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost" title=" low-cost "> low-cost </a> </p> <a href="https://publications.waset.org/abstracts/26170/development-testing-and-application-of-a-low-cost-technology-sulphur-dioxide-monitor-as-a-tool-for-use-in-a-volcanic-emissions-monitoring-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Developing a Multiagent-Based Decision Support System for Realtime Multi-Risk Disaster Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Moser">D. Moser</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinto"> D. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cipriano"> A. Cipriano </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Disaster Management System (DMS) for countries with different disasters is very important. In the world different disasters like earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters occurs and have an effect on the population. It is also possible that two or more disasters arisen at the same time, this means to handle multi-risk situations. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs deal with one (in the case of an earthquake-tsunami combination with two) disaster and often with one particular disaster. Nevertheless, a DSS helps for a better realtime response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture, and well-defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20system" title="decision support system">decision support system</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management%20system" title=" disaster management system"> disaster management system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-risk" title=" multi-risk"> multi-risk</a>, <a href="https://publications.waset.org/abstracts/search?q=multiagent%20system" title=" multiagent system"> multiagent system</a> </p> <a href="https://publications.waset.org/abstracts/26119/developing-a-multiagent-based-decision-support-system-for-realtime-multi-risk-disaster-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alahmadi">Fahad Alahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhan%20Abd%20Rahman"> Norhan Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdulrazzak"> Mohammad Abdulrazzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulikifli%20Yusop"> Zulikifli Yusop </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20runoff%20modelling" title="urban runoff modelling">urban runoff modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20regions" title=" arid regions"> arid regions</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20catchments" title=" ungauged catchments"> ungauged catchments</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20rocks" title=" volcanic rocks"> volcanic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Madinah" title=" Madinah"> Madinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/14362/urban-runoff-modeling-of-ungauged-volcanic-catchment-in-madinah-western-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Spontaneous Eruption of Impacted Teeth While Awaiting Surgical Intervention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alison%20Ryan">Alison Ryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Himani%20Chhabra"> Himani Chhabra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Dungarwalla"> Mohammed Dungarwalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Jones"> Judith Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Impacted and ectopic teeth present in 1-2% of orthodontic patients and often require joint surgical and orthodontic management. The authors present two patients undergoing orthodontic treatment, where the impacted teeth, in a hopeless position, spontaneously erupted during the period of cessation of general anaesthetic lists during the COVID-19 pandemic. Patient information: A healthy 11-year-old boy was referred to the Department of Oral and Maxillofacial Surgery for the management of a mesioangular impacted LR7. The patient was seen by the joint oral surgery/orthodontic team, who planned for the removal of the LR7 under general anaesthetic. A healthy 13-year-old boy was referred to the same Department and team for surgical extraction of unerupted and buccally impacted UL3 and UR3 under general anaesthetic. Management and outcome: The majority of elective dental-alveolar work ceased as a result of the global pandemic. On resumption of activity, the first patient was reviewed in July 2021. The LR7 had spontaneously erupted in a favourable position, and following MDT review, a decision was made to forgo any further surgical intervention. The second patient was reviewed in July 2021. The UL3 had clinically erupted, and there was radiographic evidence of favourable movement of UR3. Due to the nature of the patient’s malocclusion, the decision was made to proceed with the extractions as previously planned. Key Learning Points: Severely impacted teeth do have a prospect of spontaneous eruption or alignment without clinical intervention, and current literature states the initial location, axial inclination, degree of root formation, and relation of the impacted tooth to adjacent teeth roots may influence spontaneous eruption. There is potential to introduce a period of observation to account for this possibility in the developing dentition, with the aim of reducing the unnecessary need for surgical intervention. This could help prevent episodes of general anaesthetic and allocate theatre space more appropriately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20eruption" title="spontaneous eruption">spontaneous eruption</a>, <a href="https://publications.waset.org/abstracts/search?q=impaction" title=" impaction"> impaction</a>, <a href="https://publications.waset.org/abstracts/search?q=observation" title=" observation"> observation</a>, <a href="https://publications.waset.org/abstracts/search?q=hopeless%20position" title=" hopeless position"> hopeless position</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical" title=" surgical"> surgical</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic" title=" orthodontic"> orthodontic</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20in%20treatment%20plan" title=" change in treatment plan"> change in treatment plan</a> </p> <a href="https://publications.waset.org/abstracts/157183/spontaneous-eruption-of-impacted-teeth-while-awaiting-surgical-intervention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Identification of Paleogeomorphology at Kedulan Temple, Sleman, Yogyakarta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virgina%20Claudia%20Latengke">Virgina Claudia Latengke</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhaammad%20Nur%20Arifin"> Muhaammad Nur Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanny%20Septia%20Sundari"> Vanny Septia Sundari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedulan Temple is located in Dusun Kedulan, Sleman, Yogyakarta, Indonesia at coordinates S 07o 44’ 57’, E 110o 28’ 17’. Kedulan Temple is a trace of the relics of life in the 3 century AD. The Kedulan Temple including exhumed landforms, which the primordial landform is first surface topography, then buried under cover mass and exposed or re-inscribed. Recognized by the existence of ancient soil (paleosoil) and ancient objects. Seen from the type of soil that closes the temple, there are 13 layers of lava type, so it is estimated that the lava that buried the temple came from 13 times the eruption of Mount Merapi. The material that buries the base of this temple is the pyroclastic surge deposits in 3 layers, each of which is limited by a thin layer of paleosol, the sediments are 1445+/-50 yBP, 1175+/-50 yBP, and 1060+/-40 yBP. This temple is buried and dug again at 940+/-100 yBP. Furthermore, the temple affected by earthquake, so the floor and foundation becomes bumpy and most of the temple stone are thrown. The temple is left alone, until exposed to hot clouds at 1285 M (740+/-50yBP). Next, repeatedly buried lava in 4 periods, in 1587 M (360+/-50 yBP, 240+/-50 yBP, 200+/-50 yBP and unknown date). From studying this temple, can be known paleogeomorphology process that occurred in Yogyakarta, especially related to the volcanic activity of Mount Merapi. Until now, the water is still flowing around the temple so there is a fluvial process that began to take a role in the temple. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedulan%20temple" title="Kedulan temple">Kedulan temple</a>, <a href="https://publications.waset.org/abstracts/search?q=paleogeomorphology" title=" paleogeomorphology"> paleogeomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=buried" title=" buried"> buried</a>, <a href="https://publications.waset.org/abstracts/search?q=mount%20Merapi" title=" mount Merapi"> mount Merapi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogyakarta" title=" Yogyakarta"> Yogyakarta</a> </p> <a href="https://publications.waset.org/abstracts/83119/identification-of-paleogeomorphology-at-kedulan-temple-sleman-yogyakarta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> The Geochemical Characteristic and Tectonic Setting of Mezoic-Cenozoic Volcanic and Granitic Rocks in Southern Sumatra, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syahrir%20Andi%20Mangga">Syahrir Andi Mangga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During 1989–1993, the Geological Research and Development Center (recent Geological Survey Institute) Geological Agency, Ministry of Energy and Mineral Resources Republic of Indonesia was the collaboration with British Geological Survey, the United Kingdom to do technical assistance in order to collect data of geology in Sumatra Island. The overall corporation of technical programs was larger concern in stratigraphy, geochemical and age-dating studies. Availability of new data has been stimulated to reassessment of tectonic evolution of Sumatra Island. The study area located in Southern Sumatra within at latitudes 0°-6° S and 99°40’-106’00 E longitudes. The study tectonic is situated within along South Western margin of Sunda land, The Southeast Asia Continental extension arc of the Eurasian Plate and formed as part of Sunda Arc. The oceanic crust of Indian-Australian plate recently is being oblique subduction along the Sunda Trench off the West coast Sumatra. The Mesozoic-Cenozoic of the volcanic and granitic rocks can be divided into northern and southern plutons, defining a series subparallel, controlled by fault, northwest-southeast trending belts, some of the plutons are deformed and under-formed. They are widely exposed along the south-eastern side of the Barisan mountain. Based on the characteristic of minerals and crystallography, rocks found in this study area were granite, granitic, monzogranite and andesitic-Basaltic Volcanic Rock. It belongs to calc Alkaline was predominantly metalumina, I-Type Granite, Volcanic arc granites, Syncollisonal Granites (Syn_COLG) and tholeiitic basalt. It was formed since 169±5 to 20±1 Ma. The origin of magmas in interpreted to be derived from partial melting of igneous rock. The occurrence of the gratoid and volcanic rocks supposed to be closely related to the subduction of the Australian-Hindia oceanic crust beneath the Eurasia/Sunda land Continental Crust as Volcanic arc or continental margin granitic and shown youngest to the southwest. The subduction process having probably been different in position between one terrane to others led to the occurrence of segmentation subduction system. The positional discontinuities of the subduction are probably caused by the difference in time of emplacement and mechanism of volcanic and granitic rock between segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectonic%20setting" title="tectonic setting">tectonic setting</a>, <a href="https://publications.waset.org/abstracts/search?q=I-type%20granitic" title=" I-type granitic"> I-type granitic</a>, <a href="https://publications.waset.org/abstracts/search?q=subduction" title=" subduction"> subduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20Sumatra" title=" Southern Sumatra"> Southern Sumatra</a> </p> <a href="https://publications.waset.org/abstracts/60668/the-geochemical-characteristic-and-tectonic-setting-of-mezoic-cenozoic-volcanic-and-granitic-rocks-in-southern-sumatra-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Time Varying Crustal Anisotropy at Whakaari/White Island Volcano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dagim%20Yoseph">M. Dagim Yoseph</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Savage"> M. K. Savage</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Jolly"> A. D. Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Ebinger"> C. J. Ebinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whakaari/White Island has been the most active New Zealand volcano in the 21st century, producing small phreatic and phreatomagmatic eruptions, which are hard to predict. The most recent eruption occurred in 2019, tragically claiming the lives of 22 individuals and causing numerous injuries. We employed shear-wave splitting analyses to investigate variations in anisotropy between 2018 and 2020, during quiescence, unrest, and the eruption. We examined spatial and temporal variations in 3499 shear-wave splitting and 2656 V_p/V_s ratio measurements. Comparing shear-wave splitting parameters from similar earthquake paths across different times indicates that the observed temporal changes are unlikely to result from variations in earthquake paths through media with spatial variability. Instead, these changes may stem from variations in anisotropy over time, likely caused by changes in crack alignment due to stress or varying fluid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20seismic%20waves" title="background seismic waves">background seismic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20orientations" title=" fast orientations"> fast orientations</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20anisotropy" title=" seismic anisotropy"> seismic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=V_p%2FV_s%20ratio" title=" V_p/V_s ratio"> V_p/V_s ratio</a> </p> <a href="https://publications.waset.org/abstracts/185200/time-varying-crustal-anisotropy-at-whakaariwhite-island-volcano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> The Nexus between Socio-Economic Inequalities and the Talibanization in Pakistan’s Federally Administrated Tribal Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed">Sajjad Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since September 2001, the Federally Administered Tribal Areas (FATA) have become a hotbed of Talibanization. The eruption of Talibanization has caused a catastrophic human and socio-economic cost on Pakistan ever since. The vast majority of extant studies have tended to focus on assessing the current disparaging and destructive condition of FATA as a product of the notorious 'Global War on Terrorism' and its consequences in the form of the Afghan war and the rising socio-political unrest in the region. This, however, is not the case. This study argues that the Talibanization has not happened overnight, the magma of current militant volcanic outburst has been stockpiled since the inception of Pakistan in 1947. The study claims that the Talibanization is the expression of the conflict between the privileged and the underprivileged. The prevailing situation in FATA warrants an in-depth analysis of the problem. By using a qualitative and quantitative research principle, this paper attempts to critically examine 'How is Talibanization in Pakistan connected with the political, social, and economic conditions in FATA?' The critical analyses of this study would assist to policymakers in order to formulate all-encompassing anti-radicalization policies to effectively root out Talibanization in FATA. This research intends to explore the undiscovered root causes of the problem and to suggest remedial measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exclusion" title="exclusion">exclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=FATA%20%28Federally%20Administrated%20Tribal%20Areas%29" title=" FATA (Federally Administrated Tribal Areas)"> FATA (Federally Administrated Tribal Areas)</a>, <a href="https://publications.waset.org/abstracts/search?q=inequalities" title=" inequalities"> inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=marginalization" title=" marginalization"> marginalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=talibanization" title=" talibanization"> talibanization</a> </p> <a href="https://publications.waset.org/abstracts/83823/the-nexus-between-socio-economic-inequalities-and-the-talibanization-in-pakistans-federally-administrated-tribal-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Sedimentological Study of Bivalve Fossils Site Locality in Hong Hoi Formation in Lampang, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Moonpa">Kritsada Moonpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannipa%20Motanated"> Kannipa Motanated</a>, <a href="https://publications.waset.org/abstracts/search?q=Weerapan%20Srichan"> Weerapan Srichan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hong Hoi Formation is a Middle Triassic deep marine succession presented in outcrops throughout the Lampang Basin of northern Thailand. The primary goal of this research is to diagnose the paleoenvironment, petrographic compositions, and sedimentary sources of the Hong Hoi Formation in Ban Huat, Ngao District. The Triassic Hong Hoi Formation is chosen because the outcrops are continuous and fossils are greatly exposed and abundant. Depositional environment is reconstructed through sedimentological studies along with facies analysis. The Hong Hoi Formation is petrographically divided into two major facies, they are: sandstones with mudstone interbeds, and mudstones or shale with sandstone interbeds. Sandstone beds are lithic arenite and lithic greywacke, volcanic lithic fragments are dominated. Sedimentary structures, paleocurrent data and lithofacies arrangement indicate that the formation deposited in a part of deep marine abyssal plain environment. The sedimentological and petrographic features suggest that during the deposition the Hong Hoi Formation received sediment supply from nearby volcanic arc. This suggested that the intensive volcanic activity within the Sukhothai Arc during the Middle Triassic is the main sediment source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhothai%20zone" title="Sukhothai zone">Sukhothai zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography" title=" petrography"> petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hoi%20formation" title=" Hong Hoi formation"> Hong Hoi formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lampang" title=" Lampang"> Lampang</a>, <a href="https://publications.waset.org/abstracts/search?q=Triassic" title=" Triassic"> Triassic</a> </p> <a href="https://publications.waset.org/abstracts/111476/sedimentological-study-of-bivalve-fossils-site-locality-in-hong-hoi-formation-in-lampang-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Twin%20Aji%20Kusumagiani">Twin Aji Kusumagiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Agustine"> Eleonora Agustine</a>, <a href="https://publications.waset.org/abstracts/search?q=Dini%20Fitriani"> Dini Fitriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EC" title="EC">EC</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=VWC" title=" VWC"> VWC</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20water%20content" title=" volume water content"> volume water content</a>, <a href="https://publications.waset.org/abstracts/search?q=NPK%20fertilizer" title=" NPK fertilizer"> NPK fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20soil" title=" volcanic soil"> volcanic soil</a> </p> <a href="https://publications.waset.org/abstracts/65179/delineation-of-soil-physical-properties-using-electrical-conductivity-case-study-volcanic-soil-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Cannavo">Flavio Cannavo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=mount%20Etna" title=" mount Etna"> mount Etna</a>, <a href="https://publications.waset.org/abstracts/search?q=volcano%20monitoring" title=" volcano monitoring"> volcano monitoring</a> </p> <a href="https://publications.waset.org/abstracts/67701/an-ensemble-system-of-classifiers-for-computer-aided-volcano-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edda%20E.%20Falcone">Edda E. Falcone</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinzia%20Federico"> Cinzia Federico</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Bellomo"> Sergio Bellomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Brusca"> Lorenzo Brusca</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfredi%20Longo"> Manfredi Longo</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20D%E2%80%99Alessandro"> Walter D’Alessandro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioindicators" title="bioindicators">bioindicators</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=feathers" title=" feathers"> feathers</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20plume" title=" volcanic plume"> volcanic plume</a> </p> <a href="https://publications.waset.org/abstracts/101001/metal-contents-in-bird-feathers-columba-livia-from-mt-etna-volcano-volcanic-plume-contribution-and-biological-fractionation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Integration of GIS with Remote Sensing and GPS for Disaster Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Nawaz%20Khan">Sikander Nawaz Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20mitigation" title="disaster mitigation">disaster mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/11085/integration-of-gis-with-remote-sensing-and-gps-for-disaster-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eszter%20Kulcsar">Eszter Kulcsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes%20Takacs"> Agnes Takacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20B.%20Kiss"> Gabriella B. Kiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Prakfalvi"> Peter Prakfalvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epithermal" title="epithermal">epithermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Karancs%20Mountain" title=" Karancs Mountain"> Karancs Mountain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungary" title=" Hungary"> Hungary</a>, <a href="https://publications.waset.org/abstracts/search?q=Miocene%20Inner%20Carpathian%20volcanic%20belt" title=" Miocene Inner Carpathian volcanic belt"> Miocene Inner Carpathian volcanic belt</a>, <a href="https://publications.waset.org/abstracts/search?q=polimetallic%20ore%20deposit" title=" polimetallic ore deposit"> polimetallic ore deposit</a> </p> <a href="https://publications.waset.org/abstracts/99791/preliminary-study-of-the-hydrothermal-polymetallic-ore-deposit-at-the-karancs-mountain-north-east-hungary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Analysis of Road Network Vulnerability Due to Merapi Volcano Eruption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imam%20Muthohar">Imam Muthohar</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Hartono"> Budi Hartono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sigit%20Priyanto"> Sigit Priyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardiansyah%20Hardiansyah"> Hardiansyah Hardiansyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The eruption of Merapi Volcano in Yogyakarta, Indonesia in 2010 caused many casualties due to minimum preparedness in facing disaster. Increasing population capacity and evacuating to safe places become very important to minimize casualties. Regional government through the Regional Disaster Management Agency has divided disaster-prone areas into three parts, namely ring 1 at a distance of 10 km, ring 2 at a distance of 15 km and ring 3 at a distance of 20 km from the center of Mount Merapi. The success of the evacuation is fully supported by road network infrastructure as a way to rescue in an emergency. This research attempts to model evacuation process based on the rise of refugees in ring 1, expanded to ring 2 and finally expanded to ring 3. The model was developed using SATURN (Simulation and Assignment of Traffic to Urban Road Networks) program version 11.3. 12W, involving 140 centroid, 449 buffer nodes, and 851 links across Yogyakarta Special Region, which was aimed at making a preliminary identification of road networks considered vulnerable to disaster. An assumption made to identify vulnerability was the improvement of road network performance in the form of flow and travel times on the coverage of ring 1, ring 2, ring 3, Sleman outside the ring, Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul. The research results indicated that the performance increase in the road networks existing in the area of ring 2, ring 3, and Sleman outside the ring. The road network in ring 1 started to increase when the evacuation was expanded to ring 2 and ring 3. Meanwhile, the performance of road networks in Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul during the evacuation period simultaneously decreased in when the evacuation areas were expanded. The results of preliminary identification of the vulnerability have determined that the road networks existing in ring 1, ring 2, ring 3 and Sleman outside the ring were considered vulnerable to the evacuation of Mount Merapi eruption. Therefore, it is necessary to pay a great deal of attention in order to face the disasters that potentially occur at anytime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuation" title=" evacuation"> evacuation</a>, <a href="https://publications.waset.org/abstracts/search?q=SATURN" title=" SATURN"> SATURN</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/87176/analysis-of-road-network-vulnerability-due-to-merapi-volcano-eruption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20C.%20Shruti">V. C. Shruti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20F.%20Rodr%C3%ADguez-Espinosa"> P. F. Rodríguez-Espinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Escobedo-Ur%C3%ADas"> D. C. Escobedo-Urías</a>, <a href="https://publications.waset.org/abstracts/search?q=Estefan%C3%ADa%20Martinez%20Tavera"> Estefanía Martinez Tavera</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Jonathan"> M. P. Jonathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in &mu;g g<sup>-1</sup>) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (I<sub>geo</sub>), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (&gt;1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and I<sub>geo</sub> values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atoyac%20River" title="Atoyac River">Atoyac River</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20indices" title=" contamination indices"> contamination indices</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20concentrations" title=" metal concentrations"> metal concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexico" title=" Mexico"> Mexico</a>, <a href="https://publications.waset.org/abstracts/search?q=textural%20studies" title=" textural studies"> textural studies</a> </p> <a href="https://publications.waset.org/abstracts/56024/environmental-consequences-of-metal-concentrations-in-stream-sediments-of-atoyac-river-basin-central-mexico-natural-and-industrial-influences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20eruption&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20eruption&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20eruption&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20eruption&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=volcanic%20eruption&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10