CINXE.COM

Amazon Mechanical Turk

<!DOCTYPE html> <html> <head> <!-- set content security policy --> <meta http-equiv="Content-Security-Policy" content="default-src 'none'; script-src 'self'; style-src 'self' https://*.awsstatic.com/; font-src 'self' data: https://*.awsstatic.com/; img-src 'self'; object-src 'none';" /> <!-- set the encoding of your site --> <meta charset="utf-8" /> <!-- set the viewport width and initial-scale on mobile devices --> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>Amazon Mechanical Turk</title> <!-- Start SiteCatalyst code version: H.26. --> <!-- <script src="/assets/js/s_code.js"></script> <script src="/assets/js/omniture.js"></script> --> <!-- Start IE7 Hack --> <!-- <noscript> <img alt="" height="1" src="//amazonwebservices.d2.sc.omtrdc.net/b/ss/awsmturk/1/H.25.1--NS/0" width="1" /> </noscript> --> <!-- End IE7 Hack --> <!-- End SiteCatalyst code version: H.26. --> <!-- include the site stylesheet --> <link media="all" rel="stylesheet" href="/assets/css/main.css" /> <link rel="stylesheet" href="https://a0.awsstatic.com/libra-css/css/1.0.212/style-awsm.css" /> <!-- include jQuery library --> <script src="/assets/js/jquery-3.7.0.min.js" defer></script> <!-- include custom JavaScript --> <script src="/assets/js/jquery.main.js" defer></script> <link rel="shortcut_icon" href="/assets/images/favicon.ico" /> <link rel="icon" href="/assets/images/favicon.ico" /> </head> <body> <!-- main container of all the page elements --> <div id="wrapper"> <!-- header of the page --> <header id="header"> <div class="header-top"> <span>Looking to work on tasks?</span> <div class="inline-block"> <span ><a href="https://worker.mturk.com/">Sign in as a Worker</a> | <a href="/worker">Learn more</a></span > </div> </div> <div class="header-bottom"> <!-- page logo --> <strong class="logo"> <a href="/"> <img src="/assets/images/logo.svg" alt="Amazon Mechanical Turk" /> </a> </strong> <!-- main navigation of the page --> <nav class="menu"> <a href="#" class="nav-opener"><span></span></a> <div class="nav-drop"> <ul id="nav"> <li><a href="/">Overview</a></li> <li><a href="/product-details">Features</a></li> <li><a href="/pricing">Pricing</a></li> <li><a href="/help">Help</a></li> <li><a href="/resources">Developer Resources</a></li> <li class="active"><a href="/customers">Customers</a></li> </ul> <a href="https://requester.mturk.com/signin_options" class="btn" >Sign in as a Requester</a > </div> </nav> </div> </header> <!-- contain main informative part of the site --> <main id="main"> <!-- contain the main content of the page --> <div class="container"> <h1 id="Customer_Use_Cases">Customer Use Cases</h1> <div class="lb-mid-small-pad lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-grid lb-row lb-row-max-large lb-snapp margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="https://pinterest.com/" ><img id="pinterest-image" alt="Pinterest" title="Pinterest" src="/assets/images/pinterest.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt"> <p> Pinterest is a visual discovery engine for saving and discovering ideas.&nbsp; </p> </div> </div> </div> <div class="lb-rtxt" id="pinterest-quote"> <p> <i >“At Pinterest, we have a growing dataset of billions of ideas, and we're tasked with showing the right idea to the right user at the right time. Taking advantage of Amazon Mechanical Turk’s powerful crowdsourcing platform, we built a high-quality human evaluation system that could scale with our needs.”&nbsp;</i > </p> <p> - Veronica Mapes, Technical Program Manager for Human Computation, Pinterest </p> </div> </div> <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" id="wikihow-cell" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="https://www.wikihow.com/Main-Page" ><img id="wikihow-image" alt="wikiHow" title="wikiHow" src="/assets/images/wikihow.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt margin-bottom-0"> <p> wikiHow is a collaborative, wiki-style website with goal of teaching everyone in the world how to do anything. wikiHow publishes how-to guides in 18 languages and reaches over 150 million readers each month. The wikiHow team uses Amazon MTurk to assist with quality control on user-submitted questions. <br /> </p> </div> </div> </div> <div class="lb-rtxt" id="wikihow-quote"> <p> <i >“The very popular Community Q&A feature on wikiHow allows people to ask questions about any article on our site. We receive a large volume of questions every day, on an incredibly wide range of topics. These questions vary greatly in quality – from insightful and helpful to off-topic or unintelligible. We needed a scalable solution to help provide quality control on these questions so that we could share them with our community and readers to answer, and purely algorithmic processing of questions wasn’t up to the task. MTurk provided us with a pool of qualified Workers who were able to help us evaluate the relevance of questions and edit them for concision and clarity. Because MTurk and the MediaWiki software that power wikiHow have robust APIs, we were able to automate the process and scale the solution quickly, seamlessly passing questions from our servers, to MTurk, and back.”</i > </p> <p> - Chris Hadley, Vice President of Operations, wikiHow<br /> </p> </div> </div> </div> <hr class="lb-divider" /> <div class="lb-mid-small-pad lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" id="allen-cell" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="https://allenai.org" ><img id="allen-image" alt="Allen AI" title="Allen AI" src="/assets/images/allen.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt"> <p> The Allen Institute for Artificial Intelligence (AI2) is a non-profit research institute with the core mission of contributing to human good through high-impact research and engineering in artificial intelligence. &nbsp; </p> </div> </div> </div> <div class="lb-rtxt" id="allen-description"> <p> <i >“At AI2, we're pushing the state of the art of Artificial Intelligence, which often requires human-annotated data to train new systems and measure our progress. In particular, we use crowdsourcing platforms such as Amazon Mechanical Turk to build datasets that help our models learn common sense knowledge, which is often necessary to answer basic questions that are easy for humans but still quite hard for machines. Amazon Mechanical Turk provides a flexible platform that enables us to harness human knowledge to advance machine learning research.”&nbsp;</i > </p> <p> - Michael Schmitz, Director of Engineering, The Allen Institute for Artificial Intelligence </p> </div> </div> <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-grid lb-row lb-row-max-large lb-snap margin-bottom-0 margin-top-0" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img" id="csats-figure"> <div> <a href="http://www.csats.com/" ><img id="csats-image" alt="C-SATS" title="C-SATS" src="/assets/images/csats.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt margin-bottom-0"> <p> C-SATS, part of the Johnson &amp; Johnson Institute, is a performance management system for healthcare professionals to assess and improve continuously, accurately and objectively. <br /> </p> </div> </div> </div> <div class="lb-rtxt" id="csats-description"> <p> <i >“C-SATS enables surgeons to upload surgical videos for assessment by expert surgeons and reviewers who provide objective and confidential feedback on technical skills. Powered by Amazon Mechanical Turk, this scalable platform will fundamentally change how surgeons learn by giving them the opportunity to anonymously receive input on actual cases to improve their technical skills, which benefits patients, surgeons and health systems.”</i > </p> <p>- Svetlana, Director of Operations, C-SATS<br /></p> </div> </div> </div> <hr class="lb-divider" /> <div class="lb-mid-small-pad lb-grid lb-row lb-row-max-large lb-snap margin-bottom-0 margin-top-0" > <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" id="baidu-cell" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="http://research.baidu.com/" ><img id="baidu-image" alt="Baidu" title="Baidu" src="/assets/images/baidu.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt"> <p> Baidu Research, a division of Baidu Inc, brings together global talent to work on technologies such as image recognition, video understanding, voice recognition, natural language processing, and semantic intelligence. &nbsp; </p> </div> </div> </div> <div class="lb-rtxt" id="baidu-description"> <p> <i >“At Baidu Research, we aim to revolutionize human-machine interfaces with the latest artificial intelligence techniques. Voice cloning is a highly desired feature for personalized speech interfaces. We introduce a neural voice cloning system that learns to synthesize a person’s voice from only a few audio samples. Besides evaluations by discriminative models, we were able to quickly stress-test the audio samples by crowdsourcing perceptions. Using Amazon Mechanical Turk, we were able to tap on a large number of listeners to rate the quality of the audio and compare it to original human recording.”&nbsp;</i > </p> <p>- Greg Diamos, Senior Researcher, Baidu Research</p> </div> </div> <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="http://www.kitt.ai/" ><img id="kitt-ai-image" alt="KITT-AI" title="KITT-AI" src="/assets/images/kittai.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt margin-bottom-0"> <p> KITT.AI, a subsidiary company of Baidu, provides an open platform that enables developers to create voice-based applications that can be used on multiple devices and applications. <br /> </p> </div> </div> </div> <div class="lb-rtxt" id="kitt-ai-description"> <p> <i >“Snowboy is a highly customizable wake word detection engine that makes it possible for users to pick any wake word they want to call their voice assistant into action. Wake word algorithms are based on neural nets. Usually it takes a well-funded team to recruit the thousands of people needed to provide the voice recordings and additional human training to coach a wake word neural net until it works well. Amazon Mechanical Turk provided us with a low cost, scalable, and global workforce that enables us to generate the diverse training sets required for building such AI models.”</i > </p> <p>- Xuchen Yao, CEO, KITT.AI<br /></p> </div> </div> </div> <hr class="lb-divider" /> <div class="lb-mid-small-pad lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" id="zignal-cell" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="https://zignallabs.com" ><img id="zignal-image" alt="Zignal" title="Zignal" src="/assets/images/zignal.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt"> <p> Zignal Labs offers a media analytics platform that monitors and analyzes – in real-time – brand conversations across social, broadcast, digital and traditional media channels. &nbsp; </p> </div> </div> </div> <div class="lb-rtxt" id="zignal-description"> <p> <i >“Today, brands are capable of producing hundreds of millions of social conversations and stories across the digital media spectrum. For Zignal, natural language processing is critical to rapidly synthesizing this massive amount of media data in real-time. Amazon Mechanical Turk makes it possible to generate human-annotated data for machine learning algorithms quickly and at scale. By harnessing the power of the crowd to obtain high-quality labeled data, we were able to measure and build effective models applicable across the media spectrum.”&nbsp;</i > </p> <p>- Jeff Fenchel, Sr Software Engineer, Zignal Labs</p> </div> </div> <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="http://www.radiantsolutions.com/" ><img id="radiant-image" alt="Radiant" title="Radiant" src="/assets/images/radiant.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt margin-bottom-0"> <p> Maxar’s Radiant Solutions is a leading provider of innovative geospatial solutions that reveal insights where and when it matters. <br /> </p> </div> </div> </div> <div class="lb-rtxt"> <p> <i >“At Radiant Solutions, we source trillions of satellite pixels every day, and understanding every object, location, and action on this planet is an enormous challenge. Using Amazon Mechanical Turk's crowdsourcing platform, large communities of users sift through massive volumes of data to tag important objects, features, or locations. These labeled datasets serve as ground truth that helps us train and refine our advanced geospatial algorithms.”</i > </p> <p> - Kevin McGee, AI/ML Production Lead, Radiant Solutions<br /> </p> </div> </div> </div> <hr class="lb-divider" /> <div class="lb-mid-small-pad lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" id="us-foods-cell" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img" id="us-foods-figure"> <div> <a href="https://www.usfoods.com/" ><img id="us-foods-image" lt="USFoods" title="USFoods" src="/assets/images/usfoods.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt"> <p> Food Genius, a subsidiary of US Foods, is a leading foodservice data provider. &nbsp; </p> </div> </div> </div> <div class="lb-rtxt" id="us-foods-description"> <p> <i >“The F&B industry has always operated at the mercy of changing tastes and preferences of consumers. Our goal is to surface consumer insights and spot emerging trends, so our clients can effectively respond with effective strategies. Workers on Amazon Mechanical Turk respond to our requests to gather information from menus, websites, and other channels. We are able to leverage these human collective insights to better understand customer needs and uncover important market trends.”&nbsp;</i > </p> <p> - David Falck, Executive Director, Food Genius / US Foods Data Science </p> </div> </div> <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="http://www.thecolliderlab.com" ><img id="collider-image" alt="Collider" title="Collider" src="/assets/images/collider.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt margin-bottom-0"> <p> Collider is a marketing strategy lab for Yum! Brands that helps brands grow through insights, research and innovation. <br /> </p> </div> </div> </div> <div class="lb-rtxt" id="collider-description"> <p> <i >“As a strategy and innovation group that's constantly inventing new research tools, we love using MTurk to test out prototypes of our new tools. The flexibility of MTurk allows us to quickly try out new things that wouldn't make sense with traditional research panels, such as single question experiments.”</i > </p> <p> - Greg Dzurik, VP, Marketing &amp; Innovation Strategy, Collider/Yum! Brands<br /> </p> </div> </div> </div> <hr class="lb-divider" /> <div class="lb-mid-small-pad lb-grid lb-row lb-row-max-large lb-snap margin-top-0 margin-bottom-0" > <div class="lb-col lb-tiny-24 lb-mid-12"> <div class="lb-none-v-margin lb-grid lb-row lb-row-max-large lb-snap" id="scale-hub-cell" > <div class="lb-col lb-tiny-24 lb-mid-8"> <figure class="lb-none-v-margin lb-img"> <div> <a href="https://www.scalehub.com/" ><img id="scale-hub-image" lt="ScaleHub" title="ScaleHub" src="/assets/images/scalehub.png" /></a> </div> </figure> </div> <div class="lb-col lb-tiny-24 lb-mid-16"> <div class="lb-txt-light lb-txt-14 lb-rtxt"> <p> ScaleHub is a leading global technology provider of innovative crowdsourcing solutions for shared services centers (SSCs) and business process outsourcers (BPOs). Combining artificial and human intelligence with crowdsourcing technology, ScaleHub provides 24x7 managed service solutions for document capture and data extraction, guaranteeing 99.x% automation. </p> </div> </div> </div> <div class="lb-rtxt" id="scale-hub-description"> <p> <i >“At ScaleHub, we process tens of millions of documents and billions of characters for our customers on a scaled AWS cloud solution annually. Our customers generally face the same challenges: Handling structured and unstructured inbound data always requires some human intervention for data processing and exception handling, including correcting OCR results and fine-tuning AI engines. Using Amazon Mechanical Turk’s platform, we engage thousands of MTurk users around the world daily. Our customers benefit from faster turnaround times, higher quality and an optimized cost structure. We reshape the future of document processing.”&nbsp;</i > </p> <p>- Dan Dubiner, CTO, Scalehub AG</p> </div> </div> </div> </div> </main> <!-- footer of the page --> <div class="footer-holder"> <div class="container"> <!-- contain sidebar of the page --> <aside class="get-started"> <h1>Start Using Amazon Mechanical Turk?</h1> <p> It’s easy to get started with Amazon Mechanical Turk. Create your first Human Intelligence Tasks in a few clicks. </p> <a class="btn" href="/get-started" >Get Started with Amazon Mechanical Turk</a > </aside> </div> <footer id="footer"> <div class="right-side"> <!-- footer logo --> <strong class="logo"> <img src="/assets/images/footer-logo.svg" alt="an amazon company" /> </strong> </div> <div class="left-side"> <!-- footer navigation --> <ul class="menu"> <li><a href="/help">Help</a></li> <li> <a href="https://support.aws.amazon.com/#/contacts/aws-mechanical-turk" >Contact us</a > </li> <li><a href="/legal-licenses">Legal &amp; Licenses</a></li> <li> <a href="https://www.amazon.jobs/en/team/mechanical-turk" target="_blank" >Careers</a > </li> <li> <a href="https://twitter.com/amazonmturk" target="_blank" >Follow us on Twitter</a > </li> <li> <a href="http://blog.mturk.com" target="_blank">MTurk Blog</a> </li> <li> <a href="https://requester.mturk.com/status/" target="_blank" >Service Health</a > </li> </ul> <div class="copyright"> <p> &copy; 2005-2018, <a href="/">Amazon Mechanical Turk</a>, Inc. or its affiliates. All rights reserved. </p> </div> </div> </footer> </div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10