CINXE.COM
Frontiers | Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain)
<!doctype html> <html data-n-head-ssr lang="en" data-n-head="%7B%22lang%22:%7B%22ssr%22:%22en%22%7D%7D"> <head > <link data-n-head="ssr" rel="icon" type="image/png" sizes="16x16" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_16-tenantFavicon-Frontiers.png"> <link data-n-head="ssr" rel="icon" type="image/png" sizes="32x32" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_32-tenantFavicon-Frontiers.png"> <link data-n-head="ssr" rel="apple-touch-icon" type="image/png" sizes="180x180" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_180-tenantFavicon-Frontiers.png"> <title>Frontiers | Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain)</title><meta data-n-head="ssr" charset="utf-8"><meta data-n-head="ssr" name="viewport" content="width=device-width, initial-scale=1"><meta data-n-head="ssr" data-hid="charset" charset="utf-8"><meta data-n-head="ssr" data-hid="mobile-web-app-capable" name="mobile-web-app-capable" content="yes"><meta data-n-head="ssr" data-hid="apple-mobile-web-app-title" name="apple-mobile-web-app-title" content="Frontiers | Articles"><meta data-n-head="ssr" data-hid="theme-color" name="theme-color" content="#0C4DED"><meta data-n-head="ssr" data-hid="description" property="description" name="description" content="During the Paleocene/Eocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO2. This event ..."><meta data-n-head="ssr" data-hid="og:title" property="og:title" name="title" content="Frontiers | Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain)"><meta data-n-head="ssr" data-hid="og:description" property="og:description" name="description" content="During the Paleocene/Eocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO2. This event ..."><meta data-n-head="ssr" data-hid="keywords" name="keywords" content="Rhodolith beds,Thermal maximum,Paleocene/Eocene boundary,ocean acidification,Pyrenean Basin"><meta data-n-head="ssr" data-hid="og:site_name" property="og:site_name" name="site_name" content="Frontiers"><meta data-n-head="ssr" data-hid="og:image" property="og:image" name="image" content="https://images-provider.frontiersin.org/api/ipx/w=1200&f=png/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg"><meta data-n-head="ssr" data-hid="og:type" property="og:type" name="type" content="article"><meta data-n-head="ssr" data-hid="og:url" property="og:url" name="url" content="https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full"><meta data-n-head="ssr" data-hid="twitter:card" name="twitter:card" content="summary_large_image"><meta data-n-head="ssr" data-hid="citation_volume" name="citation_volume" content="9"><meta data-n-head="ssr" data-hid="citation_journal_title" name="citation_journal_title" content="Frontiers in Marine Science"><meta data-n-head="ssr" data-hid="citation_publisher" name="citation_publisher" content="Frontiers"><meta data-n-head="ssr" data-hid="citation_journal_abbrev" name="citation_journal_abbrev" content="Front. Mar. Sci."><meta data-n-head="ssr" data-hid="citation_issn" name="citation_issn" content="2296-7745"><meta data-n-head="ssr" data-hid="citation_doi" name="citation_doi" content="10.3389/fmars.2022.899877"><meta data-n-head="ssr" data-hid="citation_firstpage" name="citation_firstpage" content="899877"><meta data-n-head="ssr" data-hid="citation_language" name="citation_language" content="English"><meta data-n-head="ssr" data-hid="citation_title" name="citation_title" content="Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain)"><meta data-n-head="ssr" data-hid="citation_keywords" name="citation_keywords" content="Rhodolith beds; Thermal maximum; Paleocene/Eocene boundary; ocean acidification; Pyrenean Basin"><meta data-n-head="ssr" data-hid="citation_abstract" name="citation_abstract" content="<p>During the Paleocene/Eocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO<sub>2</sub>. This event lasted for ~100 thousands of years with the consequent ocean acidification (estimated pH = 7.8-7.6). In this paper, we analyze the effects of this global environmental shift on coralline algal assemblages in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain), where the PETM is recorded within coastal-to-shallow marine carbonate and siliciclastic deposits. In both sections, coralline algae occur mostly as fragments, although rhodoliths and crusts coating other organisms are also frequent. Rhodoliths occur either dispersed or locally forming dense concentrations (rhodolith beds). <italic>Distichoplax biserialis</italic> and geniculate forms (mostly <italic>Jania nummulitica</italic>) of the order Corallinales dominated the algal assemblages followed by Sporolithales and Hapalidiales. Other representatives of Corallinales, namely <italic>Spongites</italic>, <italic>Lithoporella</italic> as well as <italic>Neogoniolithon</italic>, <italic>Karpathia</italic>, and <italic>Hydrolithon</italic>, are less abundant. Species composition does not change throughout the Paleocene/Eocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a reduction. They were abundant during the late Thanetian but became rare during the early Ypresian. This abundance decrease is due to a drastic change in the local paleoenvironmental conditions immediately after the boundary. A hardground at the top of the Thanetian carbonates was followed by continental sedimentation. After that, marine sedimentation resumed in shallow, very restricted lagoon and peritidal settings, where muddy carbonates rich in benthic foraminifera, e.g., milioliids (with abundant <italic>Alveolina</italic>) and soritids, and eventually stromatolites were deposited. These initial restricted conditions were unfavorable for coralline algae. Adverse conditions continued to the end of the study sections although coralline algae reappeared and were locally frequent in some beds, where they occurred associated with corals. In Serraduy, the marine reflooding was also accompanied by significant terrigenous supply, precluding algal development. Therefore, the observed changes in coralline algal assemblages during the PETM in the Pyrenees were most likely related to local paleoenvironmental shifts rather than to global oceanic or atmospheric alterations.</p>"><meta data-n-head="ssr" data-hid="citation_pdf_url" name="citation_pdf_url" content="https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/pdf"><meta data-n-head="ssr" data-hid="citation_online_date" name="citation_online_date" content="2022/05/23"><meta data-n-head="ssr" data-hid="citation_publication_date" name="citation_publication_date" content="2022/07/04"><meta data-n-head="ssr" data-hid="citation_author_0" name="citation_author" content="Aguirre, Julio"><meta data-n-head="ssr" data-hid="citation_author_institution_0" name="citation_author_institution" content="Dpto. Estratigraf铆a y Paleontolog铆a, Facultad de Ciencias, Universidad de Granada, Spain"><meta data-n-head="ssr" data-hid="citation_author_1" name="citation_author" content="Baceta, Juan I."><meta data-n-head="ssr" data-hid="citation_author_institution_1" name="citation_author_institution" content="Departamento de Geolog铆a, Facultad de Ciencia y Tecnolog铆a, Universidad del Pa铆s Vasco, Spain"><meta data-n-head="ssr" data-hid="citation_author_2" name="citation_author" content="Braga, Juan C."><meta data-n-head="ssr" data-hid="citation_author_institution_2" name="citation_author_institution" content="Dpto. Estratigraf铆a y Paleontolog铆a, Facultad de Ciencias, Universidad de Granada, Spain"><meta data-n-head="ssr" data-hid="dc.identifier" name="dc.identifier" content="doi:10.3389/fmars.2022.899877"><link data-n-head="ssr" rel="manifest" href="/article-pages/_nuxt/manifest.c499fc0a.json" data-hid="manifest"><link data-n-head="ssr" rel="canonical" href="https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full"><script data-n-head="ssr" data-hid="newrelic-browser-script" type="text/javascript">window.NREUM||(NREUM={});NREUM.info = {"agent":"","beacon":"bam.nr-data.net","errorBeacon":"bam.nr-data.net","licenseKey":"598a124f17","applicationID":"588603994","agentToken":null,"applicationTime":3.351405,"transactionName":"MQcDMkECCkNSW0YMWghNIgldDQFTRxd1IGFJTQ==","queueTime":0,"ttGuid":"271050a736125edc"}; (window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:"594400880",accountID:"230385",trustKey:"230385",xpid:"VgUHUl5WGwYIXFdSBAgOUg==",licenseKey:"598a124f17",applicationID:"588603994"};;/*! For license information please see nr-loader-spa-1.274.0.min.js.LICENSE.txt */ (()=>{var e,t,r={8122:(e,t,r)=>{"use strict";r.d(t,{a:()=>i});var n=r(944);function i(e,t){try{if(!e||"object"!=typeof e)return(0,n.R)(3);if(!t||"object"!=typeof t)return(0,n.R)(4);const r=Object.create(Object.getPrototypeOf(t),Object.getOwnPropertyDescriptors(t)),o=0===Object.keys(r).length?e:r;for(let a in o)if(void 0!==e[a])try{if(null===e[a]){r[a]=null;continue}Array.isArray(e[a])&&Array.isArray(t[a])?r[a]=Array.from(new Set([...e[a],...t[a]])):"object"==typeof e[a]&&"object"==typeof t[a]?r[a]=i(e[a],t[a]):r[a]=e[a]}catch(e){(0,n.R)(1,e)}return r}catch(e){(0,n.R)(2,e)}}},2555:(e,t,r)=>{"use strict";r.d(t,{Vp:()=>c,fn:()=>s,x1:()=>u});var n=r(384),i=r(8122);const o={beacon:n.NT.beacon,errorBeacon:n.NT.errorBeacon,licenseKey:void 0,applicationID:void 0,sa:void 0,queueTime:void 0,applicationTime:void 0,ttGuid:void 0,user:void 0,account:void 0,product:void 0,extra:void 0,jsAttributes:{},userAttributes:void 0,atts:void 0,transactionName:void 0,tNamePlain:void 0},a={};function s(e){try{const t=c(e);return!!t.licenseKey&&!!t.errorBeacon&&!!t.applicationID}catch(e){return!1}}function c(e){if(!e)throw new Error("All info objects require an agent identifier!");if(!a[e])throw new Error("Info for ".concat(e," was never set"));return a[e]}function u(e,t){if(!e)throw new Error("All info objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.info=a[e])}},9417:(e,t,r)=>{"use strict";r.d(t,{D0:()=>h,gD:()=>g,xN:()=>p});var n=r(993);const i=e=>{if(!e||"string"!=typeof e)return!1;try{document.createDocumentFragment().querySelector(e)}catch{return!1}return!0};var o=r(2614),a=r(944),s=r(384),c=r(8122);const u="[data-nr-mask]",d=()=>{const e={mask_selector:"*",block_selector:"[data-nr-block]",mask_input_options:{color:!1,date:!1,"datetime-local":!1,email:!1,month:!1,number:!1,range:!1,search:!1,tel:!1,text:!1,time:!1,url:!1,week:!1,textarea:!1,select:!1,password:!0}};return{ajax:{deny_list:void 0,block_internal:!0,enabled:!0,harvestTimeSeconds:10,autoStart:!0},distributed_tracing:{enabled:void 0,exclude_newrelic_header:void 0,cors_use_newrelic_header:void 0,cors_use_tracecontext_headers:void 0,allowed_origins:void 0},feature_flags:[],generic_events:{enabled:!0,harvestTimeSeconds:30,autoStart:!0},harvest:{tooManyRequestsDelay:60},jserrors:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},logging:{enabled:!0,harvestTimeSeconds:10,autoStart:!0,level:n.p_.INFO},metrics:{enabled:!0,autoStart:!0},obfuscate:void 0,page_action:{enabled:!0},page_view_event:{enabled:!0,autoStart:!0},page_view_timing:{enabled:!0,harvestTimeSeconds:30,autoStart:!0},performance:{capture_marks:!1,capture_measures:!1},privacy:{cookies_enabled:!0},proxy:{assets:void 0,beacon:void 0},session:{expiresMs:o.wk,inactiveMs:o.BB},session_replay:{autoStart:!0,enabled:!1,harvestTimeSeconds:60,preload:!1,sampling_rate:10,error_sampling_rate:100,collect_fonts:!1,inline_images:!1,fix_stylesheets:!0,mask_all_inputs:!0,get mask_text_selector(){return e.mask_selector},set mask_text_selector(t){i(t)?e.mask_selector="".concat(t,",").concat(u):""===t||null===t?e.mask_selector=u:(0,a.R)(5,t)},get block_class(){return"nr-block"},get ignore_class(){return"nr-ignore"},get mask_text_class(){return"nr-mask"},get block_selector(){return e.block_selector},set block_selector(t){i(t)?e.block_selector+=",".concat(t):""!==t&&(0,a.R)(6,t)},get mask_input_options(){return e.mask_input_options},set mask_input_options(t){t&&"object"==typeof t?e.mask_input_options={...t,password:!0}:(0,a.R)(7,t)}},session_trace:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},soft_navigations:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},spa:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},ssl:void 0,user_actions:{enabled:!0}}},l={},f="All configuration objects require an agent identifier!";function h(e){if(!e)throw new Error(f);if(!l[e])throw new Error("Configuration for ".concat(e," was never set"));return l[e]}function p(e,t){if(!e)throw new Error(f);l[e]=(0,c.a)(t,d());const r=(0,s.nY)(e);r&&(r.init=l[e])}function g(e,t){if(!e)throw new Error(f);var r=h(e);if(r){for(var n=t.split("."),i=0;i<n.length-1;i++)if("object"!=typeof(r=r[n[i]]))return;r=r[n[n.length-1]]}return r}},5603:(e,t,r)=>{"use strict";r.d(t,{a:()=>c,o:()=>s});var n=r(384),i=r(8122);const o={accountID:void 0,trustKey:void 0,agentID:void 0,licenseKey:void 0,applicationID:void 0,xpid:void 0},a={};function s(e){if(!e)throw new Error("All loader-config objects require an agent identifier!");if(!a[e])throw new Error("LoaderConfig for ".concat(e," was never set"));return a[e]}function c(e,t){if(!e)throw new Error("All loader-config objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.loader_config=a[e])}},3371:(e,t,r)=>{"use strict";r.d(t,{V:()=>f,f:()=>l});var n=r(8122),i=r(384),o=r(6154),a=r(9324);let s=0;const c={buildEnv:a.F3,distMethod:a.Xs,version:a.xv,originTime:o.WN},u={customTransaction:void 0,disabled:!1,isolatedBacklog:!1,loaderType:void 0,maxBytes:3e4,onerror:void 0,ptid:void 0,releaseIds:{},appMetadata:{},session:void 0,denyList:void 0,timeKeeper:void 0,obfuscator:void 0},d={};function l(e){if(!e)throw new Error("All runtime objects require an agent identifier!");if(!d[e])throw new Error("Runtime for ".concat(e," was never set"));return d[e]}function f(e,t){if(!e)throw new Error("All runtime objects require an agent identifier!");d[e]={...(0,n.a)(t,u),...c},Object.hasOwnProperty.call(d[e],"harvestCount")||Object.defineProperty(d[e],"harvestCount",{get:()=>++s});const r=(0,i.nY)(e);r&&(r.runtime=d[e])}},9324:(e,t,r)=>{"use strict";r.d(t,{F3:()=>i,Xs:()=>o,Yq:()=>a,xv:()=>n});const n="1.274.0",i="PROD",o="CDN",a="^2.0.0-alpha.17"},6154:(e,t,r)=>{"use strict";r.d(t,{A4:()=>s,OF:()=>d,RI:()=>i,WN:()=>h,bv:()=>o,gm:()=>a,lR:()=>f,m:()=>u,mw:()=>c,sb:()=>l});var n=r(1863);const i="undefined"!=typeof window&&!!window.document,o="undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self.navigator instanceof WorkerNavigator||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis.navigator instanceof WorkerNavigator),a=i?window:"undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis),s="complete"===a?.document?.readyState,c=Boolean("hidden"===a?.document?.visibilityState),u=""+a?.location,d=/iPad|iPhone|iPod/.test(a.navigator?.userAgent),l=d&&"undefined"==typeof SharedWorker,f=(()=>{const e=a.navigator?.userAgent?.match(/Firefox[/\s](\d+\.\d+)/);return Array.isArray(e)&&e.length>=2?+e[1]:0})(),h=Date.now()-(0,n.t)()},7295:(e,t,r)=>{"use strict";r.d(t,{Xv:()=>a,gX:()=>i,iW:()=>o});var n=[];function i(e){if(!e||o(e))return!1;if(0===n.length)return!0;for(var t=0;t<n.length;t++){var r=n[t];if("*"===r.hostname)return!1;if(s(r.hostname,e.hostname)&&c(r.pathname,e.pathname))return!1}return!0}function o(e){return void 0===e.hostname}function a(e){if(n=[],e&&e.length)for(var t=0;t<e.length;t++){let r=e[t];if(!r)continue;0===r.indexOf("http://")?r=r.substring(7):0===r.indexOf("https://")&&(r=r.substring(8));const i=r.indexOf("/");let o,a;i>0?(o=r.substring(0,i),a=r.substring(i)):(o=r,a="");let[s]=o.split(":");n.push({hostname:s,pathname:a})}}function s(e,t){return!(e.length>t.length)&&t.indexOf(e)===t.length-e.length}function c(e,t){return 0===e.indexOf("/")&&(e=e.substring(1)),0===t.indexOf("/")&&(t=t.substring(1)),""===e||e===t}},1687:(e,t,r)=>{"use strict";r.d(t,{Ak:()=>c,Ze:()=>l,x3:()=>u});var n=r(7836),i=r(3606),o=r(860),a=r(2646);const s={};function c(e,t){const r={staged:!1,priority:o.P3[t]||0};d(e),s[e].get(t)||s[e].set(t,r)}function u(e,t){e&&s[e]&&(s[e].get(t)&&s[e].delete(t),h(e,t,!1),s[e].size&&f(e))}function d(e){if(!e)throw new Error("agentIdentifier required");s[e]||(s[e]=new Map)}function l(e="",t="feature",r=!1){if(d(e),!e||!s[e].get(t)||r)return h(e,t);s[e].get(t).staged=!0,f(e)}function f(e){const t=Array.from(s[e]);t.every((([e,t])=>t.staged))&&(t.sort(((e,t)=>e[1].priority-t[1].priority)),t.forEach((([t])=>{s[e].delete(t),h(e,t)})))}function h(e,t,r=!0){const o=e?n.ee.get(e):n.ee,s=i.i.handlers;if(!o.aborted&&o.backlog&&s){if(r){const e=o.backlog[t],r=s[t];if(r){for(let t=0;e&&t<e.length;++t)p(e[t],r);Object.entries(r).forEach((([e,t])=>{Object.values(t||{}).forEach((t=>{t[0]?.on&&t[0]?.context()instanceof a.y&&t[0].on(e,t[1])}))}))}}o.isolatedBacklog||delete s[t],o.backlog[t]=null,o.emit("drain-"+t,[])}}function p(e,t){var r=e[1];Object.values(t[r]||{}).forEach((t=>{var r=e[0];if(t[0]===r){var n=t[1],i=e[3],o=e[2];n.apply(i,o)}}))}},7836:(e,t,r)=>{"use strict";r.d(t,{P:()=>c,ee:()=>u});var n=r(384),i=r(8990),o=r(3371),a=r(2646),s=r(5607);const c="nr@context:".concat(s.W),u=function e(t,r){var n={},s={},d={},l=!1;try{l=16===r.length&&(0,o.f)(r).isolatedBacklog}catch(e){}var f={on:p,addEventListener:p,removeEventListener:function(e,t){var r=n[e];if(!r)return;for(var i=0;i<r.length;i++)r[i]===t&&r.splice(i,1)},emit:function(e,r,n,i,o){!1!==o&&(o=!0);if(u.aborted&&!i)return;t&&o&&t.emit(e,r,n);for(var a=h(n),c=g(e),d=c.length,l=0;l<d;l++)c[l].apply(a,r);var p=v()[s[e]];p&&p.push([f,e,r,a]);return a},get:m,listeners:g,context:h,buffer:function(e,t){const r=v();if(t=t||"feature",f.aborted)return;Object.entries(e||{}).forEach((([e,n])=>{s[n]=t,t in r||(r[t]=[])}))},abort:function(){f._aborted=!0,Object.keys(f.backlog).forEach((e=>{delete f.backlog[e]}))},isBuffering:function(e){return!!v()[s[e]]},debugId:r,backlog:l?{}:t&&"object"==typeof t.backlog?t.backlog:{},isolatedBacklog:l};return Object.defineProperty(f,"aborted",{get:()=>{let e=f._aborted||!1;return e||(t&&(e=t.aborted),e)}}),f;function h(e){return e&&e instanceof a.y?e:e?(0,i.I)(e,c,(()=>new a.y(c))):new a.y(c)}function p(e,t){n[e]=g(e).concat(t)}function g(e){return n[e]||[]}function m(t){return d[t]=d[t]||e(f,t)}function v(){return f.backlog}}(void 0,"globalEE"),d=(0,n.Zm)();d.ee||(d.ee=u)},2646:(e,t,r)=>{"use strict";r.d(t,{y:()=>n});class n{constructor(e){this.contextId=e}}},9908:(e,t,r)=>{"use strict";r.d(t,{d:()=>n,p:()=>i});var n=r(7836).ee.get("handle");function i(e,t,r,i,o){o?(o.buffer([e],i),o.emit(e,t,r)):(n.buffer([e],i),n.emit(e,t,r))}},3606:(e,t,r)=>{"use strict";r.d(t,{i:()=>o});var n=r(9908);o.on=a;var i=o.handlers={};function o(e,t,r,o){a(o||n.d,i,e,t,r)}function a(e,t,r,i,o){o||(o="feature"),e||(e=n.d);var a=t[o]=t[o]||{};(a[r]=a[r]||[]).push([e,i])}},3878:(e,t,r)=>{"use strict";function n(e,t){return{capture:e,passive:!1,signal:t}}function i(e,t,r=!1,i){window.addEventListener(e,t,n(r,i))}function o(e,t,r=!1,i){document.addEventListener(e,t,n(r,i))}r.d(t,{DD:()=>o,jT:()=>n,sp:()=>i})},5607:(e,t,r)=>{"use strict";r.d(t,{W:()=>n});const n=(0,r(9566).bz)()},9566:(e,t,r)=>{"use strict";r.d(t,{LA:()=>s,ZF:()=>c,bz:()=>a,el:()=>u});var n=r(6154);const i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx";function o(e,t){return e?15&e[t]:16*Math.random()|0}function a(){const e=n.gm?.crypto||n.gm?.msCrypto;let t,r=0;return e&&e.getRandomValues&&(t=e.getRandomValues(new Uint8Array(30))),i.split("").map((e=>"x"===e?o(t,r++).toString(16):"y"===e?(3&o()|8).toString(16):e)).join("")}function s(e){const t=n.gm?.crypto||n.gm?.msCrypto;let r,i=0;t&&t.getRandomValues&&(r=t.getRandomValues(new Uint8Array(e)));const a=[];for(var s=0;s<e;s++)a.push(o(r,i++).toString(16));return a.join("")}function c(){return s(16)}function u(){return s(32)}},2614:(e,t,r)=>{"use strict";r.d(t,{BB:()=>a,H3:()=>n,g:()=>u,iL:()=>c,tS:()=>s,uh:()=>i,wk:()=>o});const n="NRBA",i="SESSION",o=144e5,a=18e5,s={STARTED:"session-started",PAUSE:"session-pause",RESET:"session-reset",RESUME:"session-resume",UPDATE:"session-update"},c={SAME_TAB:"same-tab",CROSS_TAB:"cross-tab"},u={OFF:0,FULL:1,ERROR:2}},1863:(e,t,r)=>{"use strict";function n(){return Math.floor(performance.now())}r.d(t,{t:()=>n})},7485:(e,t,r)=>{"use strict";r.d(t,{D:()=>i});var n=r(6154);function i(e){if(0===(e||"").indexOf("data:"))return{protocol:"data"};try{const t=new URL(e,location.href),r={port:t.port,hostname:t.hostname,pathname:t.pathname,search:t.search,protocol:t.protocol.slice(0,t.protocol.indexOf(":")),sameOrigin:t.protocol===n.gm?.location?.protocol&&t.host===n.gm?.location?.host};return r.port&&""!==r.port||("http:"===t.protocol&&(r.port="80"),"https:"===t.protocol&&(r.port="443")),r.pathname&&""!==r.pathname?r.pathname.startsWith("/")||(r.pathname="/".concat(r.pathname)):r.pathname="/",r}catch(e){return{}}}},944:(e,t,r)=>{"use strict";function n(e,t){"function"==typeof console.debug&&console.debug("New Relic Warning: https://github.com/newrelic/newrelic-browser-agent/blob/main/docs/warning-codes.md#".concat(e),t)}r.d(t,{R:()=>n})},5284:(e,t,r)=>{"use strict";r.d(t,{t:()=>c,B:()=>s});var n=r(7836),i=r(6154);const o="newrelic";const a=new Set,s={};function c(e,t){const r=n.ee.get(t);s[t]??={},e&&"object"==typeof e&&(a.has(t)||(r.emit("rumresp",[e]),s[t]=e,a.add(t),function(e={}){try{i.gm.dispatchEvent(new CustomEvent(o,{detail:e}))}catch(e){}}({loaded:!0})))}},8990:(e,t,r)=>{"use strict";r.d(t,{I:()=>i});var n=Object.prototype.hasOwnProperty;function i(e,t,r){if(n.call(e,t))return e[t];var i=r();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(e,t,{value:i,writable:!0,enumerable:!1}),i}catch(e){}return e[t]=i,i}},6389:(e,t,r)=>{"use strict";function n(e,t=500,r={}){const n=r?.leading||!1;let i;return(...r)=>{n&&void 0===i&&(e.apply(this,r),i=setTimeout((()=>{i=clearTimeout(i)}),t)),n||(clearTimeout(i),i=setTimeout((()=>{e.apply(this,r)}),t))}}function i(e){let t=!1;return(...r)=>{t||(t=!0,e.apply(this,r))}}r.d(t,{J:()=>i,s:()=>n})},3304:(e,t,r)=>{"use strict";r.d(t,{A:()=>o});var n=r(7836);const i=()=>{const e=new WeakSet;return(t,r)=>{if("object"==typeof r&&null!==r){if(e.has(r))return;e.add(r)}return r}};function o(e){try{return JSON.stringify(e,i())??""}catch(e){try{n.ee.emit("internal-error",[e])}catch(e){}return""}}},5289:(e,t,r)=>{"use strict";r.d(t,{GG:()=>o,sB:()=>a});var n=r(3878);function i(){return"undefined"==typeof document||"complete"===document.readyState}function o(e,t){if(i())return e();(0,n.sp)("load",e,t)}function a(e){if(i())return e();(0,n.DD)("DOMContentLoaded",e)}},384:(e,t,r)=>{"use strict";r.d(t,{NT:()=>o,US:()=>d,Zm:()=>a,bQ:()=>c,dV:()=>s,nY:()=>u,pV:()=>l});var n=r(6154),i=r(1863);const o={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net"};function a(){return n.gm.NREUM||(n.gm.NREUM={}),void 0===n.gm.newrelic&&(n.gm.newrelic=n.gm.NREUM),n.gm.NREUM}function s(){let e=a();return e.o||(e.o={ST:n.gm.setTimeout,SI:n.gm.setImmediate,CT:n.gm.clearTimeout,XHR:n.gm.XMLHttpRequest,REQ:n.gm.Request,EV:n.gm.Event,PR:n.gm.Promise,MO:n.gm.MutationObserver,FETCH:n.gm.fetch,WS:n.gm.WebSocket}),e}function c(e,t){let r=a();r.initializedAgents??={},t.initializedAt={ms:(0,i.t)(),date:new Date},r.initializedAgents[e]=t}function u(e){let t=a();return t.initializedAgents?.[e]}function d(e,t){a()[e]=t}function l(){return function(){let e=a();const t=e.info||{};e.info={beacon:o.beacon,errorBeacon:o.errorBeacon,...t}}(),function(){let e=a();const t=e.init||{};e.init={...t}}(),s(),function(){let e=a();const t=e.loader_config||{};e.loader_config={...t}}(),a()}},2843:(e,t,r)=>{"use strict";r.d(t,{u:()=>i});var n=r(3878);function i(e,t=!1,r,i){(0,n.DD)("visibilitychange",(function(){if(t)return void("hidden"===document.visibilityState&&e());e(document.visibilityState)}),r,i)}},8139:(e,t,r)=>{"use strict";r.d(t,{u:()=>f});var n=r(7836),i=r(3434),o=r(8990),a=r(6154);const s={},c=a.gm.XMLHttpRequest,u="addEventListener",d="removeEventListener",l="nr@wrapped:".concat(n.P);function f(e){var t=function(e){return(e||n.ee).get("events")}(e);if(s[t.debugId]++)return t;s[t.debugId]=1;var r=(0,i.YM)(t,!0);function f(e){r.inPlace(e,[u,d],"-",p)}function p(e,t){return e[1]}return"getPrototypeOf"in Object&&(a.RI&&h(document,f),h(a.gm,f),h(c.prototype,f)),t.on(u+"-start",(function(e,t){var n=e[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var i=(0,o.I)(n,l,(function(){var e={object:function(){if("function"!=typeof n.handleEvent)return;return n.handleEvent.apply(n,arguments)},function:n}[typeof n];return e?r(e,"fn-",null,e.name||"anonymous"):n}));this.wrapped=e[1]=i}})),t.on(d+"-start",(function(e){e[1]=this.wrapped||e[1]})),t}function h(e,t,...r){let n=e;for(;"object"==typeof n&&!Object.prototype.hasOwnProperty.call(n,u);)n=Object.getPrototypeOf(n);n&&t(n,...r)}},3434:(e,t,r)=>{"use strict";r.d(t,{Jt:()=>o,YM:()=>c});var n=r(7836),i=r(5607);const o="nr@original:".concat(i.W);var a=Object.prototype.hasOwnProperty,s=!1;function c(e,t){return e||(e=n.ee),r.inPlace=function(e,t,n,i,o){n||(n="");const a="-"===n.charAt(0);for(let s=0;s<t.length;s++){const c=t[s],u=e[c];d(u)||(e[c]=r(u,a?c+n:n,i,c,o))}},r.flag=o,r;function r(t,r,n,s,c){return d(t)?t:(r||(r=""),nrWrapper[o]=t,function(e,t,r){if(Object.defineProperty&&Object.keys)try{return Object.keys(e).forEach((function(r){Object.defineProperty(t,r,{get:function(){return e[r]},set:function(t){return e[r]=t,t}})})),t}catch(e){u([e],r)}for(var n in e)a.call(e,n)&&(t[n]=e[n])}(t,nrWrapper,e),nrWrapper);function nrWrapper(){var o,a,d,l;try{a=this,o=[...arguments],d="function"==typeof n?n(o,a):n||{}}catch(t){u([t,"",[o,a,s],d],e)}i(r+"start",[o,a,s],d,c);try{return l=t.apply(a,o)}catch(e){throw i(r+"err",[o,a,e],d,c),e}finally{i(r+"end",[o,a,l],d,c)}}}function i(r,n,i,o){if(!s||t){var a=s;s=!0;try{e.emit(r,n,i,t,o)}catch(t){u([t,r,n,i],e)}s=a}}}function u(e,t){t||(t=n.ee);try{t.emit("internal-error",e)}catch(e){}}function d(e){return!(e&&"function"==typeof e&&e.apply&&!e[o])}},9300:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.ajax},3333:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,Zp:()=>i,mq:()=>s,nf:()=>a,qN:()=>o});const n=r(860).K7.genericEvents,i=["auxclick","click","copy","keydown","paste","scrollend"],o=["focus","blur"],a=4,s=1e3},6774:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.jserrors},993:(e,t,r)=>{"use strict";r.d(t,{ET:()=>o,TZ:()=>a,p_:()=>i});var n=r(860);const i={ERROR:"ERROR",WARN:"WARN",INFO:"INFO",DEBUG:"DEBUG",TRACE:"TRACE"},o="log",a=n.K7.logging},3785:(e,t,r)=>{"use strict";r.d(t,{R:()=>c,b:()=>u});var n=r(9908),i=r(1863),o=r(860),a=r(3969),s=r(993);function c(e,t,r={},c=s.p_.INFO){(0,n.p)(a.xV,["API/logging/".concat(c.toLowerCase(),"/called")],void 0,o.K7.metrics,e),(0,n.p)(s.ET,[(0,i.t)(),t,r,c],void 0,o.K7.logging,e)}function u(e){return"string"==typeof e&&Object.values(s.p_).some((t=>t===e.toUpperCase().trim()))}},3969:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,XG:()=>s,rs:()=>i,xV:()=>a,z_:()=>o});const n=r(860).K7.metrics,i="sm",o="cm",a="storeSupportabilityMetrics",s="storeEventMetrics"},6630:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewEvent},782:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewTiming},6344:(e,t,r)=>{"use strict";r.d(t,{BB:()=>d,G4:()=>o,Qb:()=>l,TZ:()=>i,Ug:()=>a,_s:()=>s,bc:()=>u,yP:()=>c});var n=r(2614);const i=r(860).K7.sessionReplay,o={RECORD:"recordReplay",PAUSE:"pauseReplay",REPLAY_RUNNING:"replayRunning",ERROR_DURING_REPLAY:"errorDuringReplay"},a=.12,s={DomContentLoaded:0,Load:1,FullSnapshot:2,IncrementalSnapshot:3,Meta:4,Custom:5},c={[n.g.ERROR]:15e3,[n.g.FULL]:3e5,[n.g.OFF]:0},u={RESET:{message:"Session was reset",sm:"Reset"},IMPORT:{message:"Recorder failed to import",sm:"Import"},TOO_MANY:{message:"429: Too Many Requests",sm:"Too-Many"},TOO_BIG:{message:"Payload was too large",sm:"Too-Big"},CROSS_TAB:{message:"Session Entity was set to OFF on another tab",sm:"Cross-Tab"},ENTITLEMENTS:{message:"Session Replay is not allowed and will not be started",sm:"Entitlement"}},d=5e3,l={API:"api"}},5270:(e,t,r)=>{"use strict";r.d(t,{Aw:()=>c,CT:()=>u,SR:()=>s});var n=r(384),i=r(9417),o=r(7767),a=r(6154);function s(e){return!!(0,n.dV)().o.MO&&(0,o.V)(e)&&!0===(0,i.gD)(e,"session_trace.enabled")}function c(e){return!0===(0,i.gD)(e,"session_replay.preload")&&s(e)}function u(e,t){const r=t.correctAbsoluteTimestamp(e);return{originalTimestamp:e,correctedTimestamp:r,timestampDiff:e-r,originTime:a.WN,correctedOriginTime:t.correctedOriginTime,originTimeDiff:Math.floor(a.WN-t.correctedOriginTime)}}},3738:(e,t,r)=>{"use strict";r.d(t,{He:()=>i,Kp:()=>s,Lc:()=>u,Rz:()=>d,TZ:()=>n,bD:()=>o,d3:()=>a,jx:()=>l,uP:()=>c});const n=r(860).K7.sessionTrace,i="bstResource",o="resource",a="-start",s="-end",c="fn"+a,u="fn"+s,d="pushState",l=1e3},3962:(e,t,r)=>{"use strict";r.d(t,{AM:()=>o,O2:()=>s,Qu:()=>c,TZ:()=>a,ih:()=>u,tC:()=>i});var n=r(860);const i=["click","keydown","submit"],o="api",a=n.K7.softNav,s={INITIAL_PAGE_LOAD:"",ROUTE_CHANGE:1,UNSPECIFIED:2},c={INTERACTION:1,AJAX:2,CUSTOM_END:3,CUSTOM_TRACER:4},u={IP:"in progress",FIN:"finished",CAN:"cancelled"}},7378:(e,t,r)=>{"use strict";r.d(t,{$p:()=>x,BR:()=>b,Kp:()=>R,L3:()=>y,Lc:()=>c,NC:()=>o,SG:()=>d,TZ:()=>i,U6:()=>p,UT:()=>m,d3:()=>w,dT:()=>f,e5:()=>A,gx:()=>v,l9:()=>l,oW:()=>h,op:()=>g,rw:()=>u,tH:()=>E,uP:()=>s,wW:()=>T,xq:()=>a});var n=r(384);const i=r(860).K7.spa,o=["click","submit","keypress","keydown","keyup","change"],a=999,s="fn-start",c="fn-end",u="cb-start",d="api-ixn-",l="remaining",f="interaction",h="spaNode",p="jsonpNode",g="fetch-start",m="fetch-done",v="fetch-body-",b="jsonp-end",y=(0,n.dV)().o.ST,w="-start",R="-end",x="-body",T="cb"+R,A="jsTime",E="fetch"},4234:(e,t,r)=>{"use strict";r.d(t,{W:()=>o});var n=r(7836),i=r(1687);class o{constructor(e,t){this.agentIdentifier=e,this.ee=n.ee.get(e),this.featureName=t,this.blocked=!1}deregisterDrain(){(0,i.x3)(this.agentIdentifier,this.featureName)}}},7767:(e,t,r)=>{"use strict";r.d(t,{V:()=>o});var n=r(9417),i=r(6154);const o=e=>i.RI&&!0===(0,n.gD)(e,"privacy.cookies_enabled")},425:(e,t,r)=>{"use strict";r.d(t,{j:()=>j});var n=r(860),i=r(2555),o=r(3371),a=r(9908),s=r(7836),c=r(1687),u=r(5289),d=r(6154),l=r(944),f=r(3969),h=r(384),p=r(6344);const g=["setErrorHandler","finished","addToTrace","addRelease","addPageAction","setCurrentRouteName","setPageViewName","setCustomAttribute","interaction","noticeError","setUserId","setApplicationVersion","start",p.G4.RECORD,p.G4.PAUSE,"log","wrapLogger"],m=["setErrorHandler","finished","addToTrace","addRelease"];var v=r(1863),b=r(2614),y=r(993),w=r(3785),R=r(2646),x=r(3434);function T(e,t,r,n){if("object"!=typeof t||!t||"string"!=typeof r||!r||"function"!=typeof t[r])return(0,l.R)(29);const i=function(e){return(e||s.ee).get("logger")}(e),o=(0,x.YM)(i),a=new R.y(s.P);return a.level=n.level,a.customAttributes=n.customAttributes,o.inPlace(t,[r],"wrap-logger-",a),i}function A(){const e=(0,h.pV)();g.forEach((t=>{e[t]=(...r)=>function(t,...r){let n=[];return Object.values(e.initializedAgents).forEach((e=>{e&&e.api?e.exposed&&e.api[t]&&n.push(e.api[t](...r)):(0,l.R)(38,t)})),n.length>1?n:n[0]}(t,...r)}))}const E={};var S=r(9417),N=r(5603),O=r(5284);const _=e=>{const t=e.startsWith("http");e+="/",r.p=t?e:"https://"+e};let I=!1;function j(e,t={},g,R){let{init:x,info:j,loader_config:P,runtime:C={},exposed:k=!0}=t;C.loaderType=g;const L=(0,h.pV)();j||(x=L.init,j=L.info,P=L.loader_config),(0,S.xN)(e.agentIdentifier,x||{}),(0,N.a)(e.agentIdentifier,P||{}),j.jsAttributes??={},d.bv&&(j.jsAttributes.isWorker=!0),(0,i.x1)(e.agentIdentifier,j);const H=(0,S.D0)(e.agentIdentifier),D=[j.beacon,j.errorBeacon];I||(H.proxy.assets&&(_(H.proxy.assets),D.push(H.proxy.assets)),H.proxy.beacon&&D.push(H.proxy.beacon),A(),(0,h.US)("activatedFeatures",O.B),e.runSoftNavOverSpa&&=!0===H.soft_navigations.enabled&&H.feature_flags.includes("soft_nav")),C.denyList=[...H.ajax.deny_list||[],...H.ajax.block_internal?D:[]],C.ptid=e.agentIdentifier,(0,o.V)(e.agentIdentifier,C),e.ee=s.ee.get(e.agentIdentifier),void 0===e.api&&(e.api=function(e,t,h=!1){t||(0,c.Ak)(e,"api");const g={};var R=s.ee.get(e),x=R.get("tracer");E[e]=b.g.OFF,R.on(p.G4.REPLAY_RUNNING,(t=>{E[e]=t}));var A="api-",S=A+"ixn-";function N(t,r,n,o){const a=(0,i.Vp)(e);return null===r?delete a.jsAttributes[t]:(0,i.x1)(e,{...a,jsAttributes:{...a.jsAttributes,[t]:r}}),I(A,n,!0,o||null===r?"session":void 0)(t,r)}function O(){}g.log=function(e,{customAttributes:t={},level:r=y.p_.INFO}={}){(0,a.p)(f.xV,["API/log/called"],void 0,n.K7.metrics,R),(0,w.R)(R,e,t,r)},g.wrapLogger=(e,t,{customAttributes:r={},level:i=y.p_.INFO}={})=>{(0,a.p)(f.xV,["API/wrapLogger/called"],void 0,n.K7.metrics,R),T(R,e,t,{customAttributes:r,level:i})},m.forEach((e=>{g[e]=I(A,e,!0,"api")})),g.addPageAction=I(A,"addPageAction",!0,n.K7.genericEvents),g.setPageViewName=function(t,r){if("string"==typeof t)return"/"!==t.charAt(0)&&(t="/"+t),(0,o.f)(e).customTransaction=(r||"http://custom.transaction")+t,I(A,"setPageViewName",!0)()},g.setCustomAttribute=function(e,t,r=!1){if("string"==typeof e){if(["string","number","boolean"].includes(typeof t)||null===t)return N(e,t,"setCustomAttribute",r);(0,l.R)(40,typeof t)}else(0,l.R)(39,typeof e)},g.setUserId=function(e){if("string"==typeof e||null===e)return N("enduser.id",e,"setUserId",!0);(0,l.R)(41,typeof e)},g.setApplicationVersion=function(e){if("string"==typeof e||null===e)return N("application.version",e,"setApplicationVersion",!1);(0,l.R)(42,typeof e)},g.start=()=>{try{(0,a.p)(f.xV,["API/start/called"],void 0,n.K7.metrics,R),R.emit("manual-start-all")}catch(e){(0,l.R)(23,e)}},g[p.G4.RECORD]=function(){(0,a.p)(f.xV,["API/recordReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.RECORD,[],void 0,n.K7.sessionReplay,R)},g[p.G4.PAUSE]=function(){(0,a.p)(f.xV,["API/pauseReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.PAUSE,[],void 0,n.K7.sessionReplay,R)},g.interaction=function(e){return(new O).get("object"==typeof e?e:{})};const _=O.prototype={createTracer:function(e,t){var r={},i=this,o="function"==typeof t;return(0,a.p)(f.xV,["API/createTracer/called"],void 0,n.K7.metrics,R),h||(0,a.p)(S+"tracer",[(0,v.t)(),e,r],i,n.K7.spa,R),function(){if(x.emit((o?"":"no-")+"fn-start",[(0,v.t)(),i,o],r),o)try{return t.apply(this,arguments)}catch(e){const t="string"==typeof e?new Error(e):e;throw x.emit("fn-err",[arguments,this,t],r),t}finally{x.emit("fn-end",[(0,v.t)()],r)}}}};function I(e,t,r,i){return function(){return(0,a.p)(f.xV,["API/"+t+"/called"],void 0,n.K7.metrics,R),i&&(0,a.p)(e+t,[(0,v.t)(),...arguments],r?null:this,i,R),r?void 0:this}}function j(){r.e(478).then(r.bind(r,8778)).then((({setAPI:t})=>{t(e),(0,c.Ze)(e,"api")})).catch((e=>{(0,l.R)(27,e),R.abort()}))}return["actionText","setName","setAttribute","save","ignore","onEnd","getContext","end","get"].forEach((e=>{_[e]=I(S,e,void 0,h?n.K7.softNav:n.K7.spa)})),g.setCurrentRouteName=h?I(S,"routeName",void 0,n.K7.softNav):I(A,"routeName",!0,n.K7.spa),g.noticeError=function(t,r){"string"==typeof t&&(t=new Error(t)),(0,a.p)(f.xV,["API/noticeError/called"],void 0,n.K7.metrics,R),(0,a.p)("err",[t,(0,v.t)(),!1,r,!!E[e]],void 0,n.K7.jserrors,R)},d.RI?(0,u.GG)((()=>j()),!0):j(),g}(e.agentIdentifier,R,e.runSoftNavOverSpa)),void 0===e.exposed&&(e.exposed=k),I=!0}},8374:(e,t,r)=>{r.nc=(()=>{try{return document?.currentScript?.nonce}catch(e){}return""})()},860:(e,t,r)=>{"use strict";r.d(t,{$J:()=>o,K7:()=>n,P3:()=>i});const n={ajax:"ajax",genericEvents:"generic_events",jserrors:"jserrors",logging:"logging",metrics:"metrics",pageAction:"page_action",pageViewEvent:"page_view_event",pageViewTiming:"page_view_timing",sessionReplay:"session_replay",sessionTrace:"session_trace",softNav:"soft_navigations",spa:"spa"},i={[n.pageViewEvent]:1,[n.pageViewTiming]:2,[n.metrics]:3,[n.jserrors]:4,[n.spa]:5,[n.ajax]:6,[n.sessionTrace]:7,[n.softNav]:8,[n.sessionReplay]:9,[n.logging]:10,[n.genericEvents]:11},o={[n.pageViewTiming]:"events",[n.ajax]:"events",[n.spa]:"events",[n.softNav]:"events",[n.metrics]:"jserrors",[n.jserrors]:"jserrors",[n.sessionTrace]:"browser/blobs",[n.sessionReplay]:"browser/blobs",[n.logging]:"browser/logs",[n.genericEvents]:"ins"}}},n={};function i(e){var t=n[e];if(void 0!==t)return t.exports;var o=n[e]={exports:{}};return r[e](o,o.exports,i),o.exports}i.m=r,i.d=(e,t)=>{for(var r in t)i.o(t,r)&&!i.o(e,r)&&Object.defineProperty(e,r,{enumerable:!0,get:t[r]})},i.f={},i.e=e=>Promise.all(Object.keys(i.f).reduce(((t,r)=>(i.f[r](e,t),t)),[])),i.u=e=>({212:"nr-spa-compressor",249:"nr-spa-recorder",478:"nr-spa"}[e]+"-1.274.0.min.js"),i.o=(e,t)=>Object.prototype.hasOwnProperty.call(e,t),e={},t="NRBA-1.274.0.PROD:",i.l=(r,n,o,a)=>{if(e[r])e[r].push(n);else{var s,c;if(void 0!==o)for(var u=document.getElementsByTagName("script"),d=0;d<u.length;d++){var l=u[d];if(l.getAttribute("src")==r||l.getAttribute("data-webpack")==t+o){s=l;break}}if(!s){c=!0;var f={478:"sha512-1vUqEfJPB8Pihje9mv5CfYgkitO1FWcS+UQb84DbXqP8oYctRv4/lzl/MzNLPlRhcY1WVDBGL20I8vm6s2VV7g==",249:"sha512-Y/BeZAh6VSTmUtUNmS5XdyKxL92s30Fyyj8xVW76HSPxcKItL4+x2+kGMZc8pMJnUpZDz1L4eftZQAJh3D8NnA==",212:"sha512-Gn2tQ3qog5Yhrx/gRutkSTYPp+7nkKFt4/mIXg99LxcNpMDAYJZDBYmAACdoHNM86+iq1F3cBcQotFNzjIX8bw=="};(s=document.createElement("script")).charset="utf-8",s.timeout=120,i.nc&&s.setAttribute("nonce",i.nc),s.setAttribute("data-webpack",t+o),s.src=r,0!==s.src.indexOf(window.location.origin+"/")&&(s.crossOrigin="anonymous"),f[a]&&(s.integrity=f[a])}e[r]=[n];var h=(t,n)=>{s.onerror=s.onload=null,clearTimeout(p);var i=e[r];if(delete e[r],s.parentNode&&s.parentNode.removeChild(s),i&&i.forEach((e=>e(n))),t)return t(n)},p=setTimeout(h.bind(null,void 0,{type:"timeout",target:s}),12e4);s.onerror=h.bind(null,s.onerror),s.onload=h.bind(null,s.onload),c&&document.head.appendChild(s)}},i.r=e=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},i.p="https://js-agent.newrelic.com/",(()=>{var e={38:0,788:0};i.f.j=(t,r)=>{var n=i.o(e,t)?e[t]:void 0;if(0!==n)if(n)r.push(n[2]);else{var o=new Promise(((r,i)=>n=e[t]=[r,i]));r.push(n[2]=o);var a=i.p+i.u(t),s=new Error;i.l(a,(r=>{if(i.o(e,t)&&(0!==(n=e[t])&&(e[t]=void 0),n)){var o=r&&("load"===r.type?"missing":r.type),a=r&&r.target&&r.target.src;s.message="Loading chunk "+t+" failed.\n("+o+": "+a+")",s.name="ChunkLoadError",s.type=o,s.request=a,n[1](s)}}),"chunk-"+t,t)}};var t=(t,r)=>{var n,o,[a,s,c]=r,u=0;if(a.some((t=>0!==e[t]))){for(n in s)i.o(s,n)&&(i.m[n]=s[n]);if(c)c(i)}for(t&&t(r);u<a.length;u++)o=a[u],i.o(e,o)&&e[o]&&e[o][0](),e[o]=0},r=self["webpackChunk:NRBA-1.274.0.PROD"]=self["webpackChunk:NRBA-1.274.0.PROD"]||[];r.forEach(t.bind(null,0)),r.push=t.bind(null,r.push.bind(r))})(),(()=>{"use strict";i(8374);var e=i(944),t=i(6344),r=i(9566);class n{agentIdentifier;constructor(e=(0,r.LA)(16)){this.agentIdentifier=e}#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}addPageAction(e,t){return this.#e("addPageAction",e,t)}setPageViewName(e,t){return this.#e("setPageViewName",e,t)}setCustomAttribute(e,t,r){return this.#e("setCustomAttribute",e,t,r)}noticeError(e,t){return this.#e("noticeError",e,t)}setUserId(e){return this.#e("setUserId",e)}setApplicationVersion(e){return this.#e("setApplicationVersion",e)}setErrorHandler(e){return this.#e("setErrorHandler",e)}addRelease(e,t){return this.#e("addRelease",e,t)}log(e,t){return this.#e("log",e,t)}}class o extends n{#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}start(){return this.#e("start")}finished(e){return this.#e("finished",e)}recordReplay(){return this.#e(t.G4.RECORD)}pauseReplay(){return this.#e(t.G4.PAUSE)}addToTrace(e){return this.#e("addToTrace",e)}setCurrentRouteName(e){return this.#e("setCurrentRouteName",e)}interaction(){return this.#e("interaction")}wrapLogger(e,t,r){return this.#e("wrapLogger",e,t,r)}}var a=i(860),s=i(9417);const c=Object.values(a.K7);function u(e){const t={};return c.forEach((r=>{t[r]=function(e,t){return!0===(0,s.gD)(t,"".concat(e,".enabled"))}(r,e)})),t}var d=i(425);var l=i(1687),f=i(4234),h=i(5289),p=i(6154),g=i(5270),m=i(7767),v=i(6389);class b extends f.W{constructor(e,t,r=!0){super(e.agentIdentifier,t),this.auto=r,this.abortHandler=void 0,this.featAggregate=void 0,this.onAggregateImported=void 0,!1===e.init[this.featureName].autoStart&&(this.auto=!1),this.auto?(0,l.Ak)(e.agentIdentifier,t):this.ee.on("manual-start-all",(0,v.J)((()=>{(0,l.Ak)(e.agentIdentifier,this.featureName),this.auto=!0,this.importAggregator(e)})))}importAggregator(t,r={}){if(this.featAggregate||!this.auto)return;let n;this.onAggregateImported=new Promise((e=>{n=e}));const o=async()=>{let o;try{if((0,m.V)(this.agentIdentifier)){const{setupAgentSession:e}=await i.e(478).then(i.bind(i,6526));o=e(t)}}catch(t){(0,e.R)(20,t),this.ee.emit("internal-error",[t]),this.featureName===a.K7.sessionReplay&&this.abortHandler?.()}try{if(t.sharedAggregator)await t.sharedAggregator;else{t.sharedAggregator=i.e(478).then(i.bind(i,9337));const{EventAggregator:e}=await t.sharedAggregator;t.sharedAggregator=new e}if(!this.#t(this.featureName,o))return(0,l.Ze)(this.agentIdentifier,this.featureName),void n(!1);const{lazyFeatureLoader:e}=await i.e(478).then(i.bind(i,6103)),{Aggregate:a}=await e(this.featureName,"aggregate");this.featAggregate=new a(t,r),n(!0)}catch(t){(0,e.R)(34,t),this.abortHandler?.(),(0,l.Ze)(this.agentIdentifier,this.featureName,!0),n(!1),this.ee&&this.ee.abort()}};p.RI?(0,h.GG)((()=>o()),!0):o()}#t(e,t){switch(e){case a.K7.sessionReplay:return(0,g.SR)(this.agentIdentifier)&&!!t;case a.K7.sessionTrace:return!!t;default:return!0}}}var y=i(6630);class w extends b{static featureName=y.T;constructor(e,t=!0){super(e,y.T,t),this.importAggregator(e)}}var R=i(384);var x=i(9908),T=i(2843),A=i(3878),E=i(782),S=i(1863);class N extends b{static featureName=E.T;constructor(e,t=!0){super(e,E.T,t),p.RI&&((0,T.u)((()=>(0,x.p)("docHidden",[(0,S.t)()],void 0,E.T,this.ee)),!0),(0,A.sp)("pagehide",(()=>(0,x.p)("winPagehide",[(0,S.t)()],void 0,E.T,this.ee))),this.importAggregator(e))}}var O=i(3969);class _ extends b{static featureName=O.TZ;constructor(e,t=!0){super(e,O.TZ,t),this.importAggregator(e)}}var I=i(6774),j=i(3304);class P{constructor(e,t,r,n,i){this.name="UncaughtError",this.message="string"==typeof e?e:(0,j.A)(e),this.sourceURL=t,this.line=r,this.column=n,this.__newrelic=i}}function C(e){return H(e)?e:new P(void 0!==e?.message?e.message:e,e?.filename||e?.sourceURL,e?.lineno||e?.line,e?.colno||e?.col,e?.__newrelic)}function k(e){const t="Unhandled Promise Rejection";if(!e?.reason)return;if(H(e.reason))try{return e.reason.message=t+": "+e.reason.message,C(e.reason)}catch(t){return C(e.reason)}const r=C(e.reason);return r.message=t+": "+r?.message,r}function L(e){if(e.error instanceof SyntaxError&&!/:\d+$/.test(e.error.stack?.trim())){const t=new P(e.message,e.filename,e.lineno,e.colno,e.error.__newrelic);return t.name=SyntaxError.name,t}return H(e.error)?e.error:C(e)}function H(e){return e instanceof Error&&!!e.stack}class D extends b{static featureName=I.T;#r=!1;constructor(e,r=!0){super(e,I.T,r);try{this.removeOnAbort=new AbortController}catch(e){}this.ee.on("internal-error",(e=>{this.abortHandler&&(0,x.p)("ierr",[C(e),(0,S.t)(),!0,{},this.#r],void 0,this.featureName,this.ee)})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.#r=e})),p.gm.addEventListener("unhandledrejection",(e=>{this.abortHandler&&(0,x.p)("err",[k(e),(0,S.t)(),!1,{unhandledPromiseRejection:1},this.#r],void 0,this.featureName,this.ee)}),(0,A.jT)(!1,this.removeOnAbort?.signal)),p.gm.addEventListener("error",(e=>{this.abortHandler&&(0,x.p)("err",[L(e),(0,S.t)(),!1,{},this.#r],void 0,this.featureName,this.ee)}),(0,A.jT)(!1,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var M=i(8990);let K=1;const U="nr@id";function V(e){const t=typeof e;return!e||"object"!==t&&"function"!==t?-1:e===p.gm?0:(0,M.I)(e,U,(function(){return K++}))}function G(e){if("string"==typeof e&&e.length)return e.length;if("object"==typeof e){if("undefined"!=typeof ArrayBuffer&&e instanceof ArrayBuffer&&e.byteLength)return e.byteLength;if("undefined"!=typeof Blob&&e instanceof Blob&&e.size)return e.size;if(!("undefined"!=typeof FormData&&e instanceof FormData))try{return(0,j.A)(e).length}catch(e){return}}}var F=i(8139),B=i(7836),W=i(3434);const z={},q=["open","send"];function Z(t){var r=t||B.ee;const n=function(e){return(e||B.ee).get("xhr")}(r);if(z[n.debugId]++)return n;z[n.debugId]=1,(0,F.u)(r);var i=(0,W.YM)(n),o=p.gm.XMLHttpRequest,a=p.gm.MutationObserver,s=p.gm.Promise,c=p.gm.setInterval,u="readystatechange",d=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],l=[],f=p.gm.XMLHttpRequest=function(t){const r=new o(t),a=n.context(r);try{n.emit("new-xhr",[r],a),r.addEventListener(u,(s=a,function(){var e=this;e.readyState>3&&!s.resolved&&(s.resolved=!0,n.emit("xhr-resolved",[],e)),i.inPlace(e,d,"fn-",y)}),(0,A.jT)(!1))}catch(t){(0,e.R)(15,t);try{n.emit("internal-error",[t])}catch(e){}}var s;return r};function h(e,t){i.inPlace(t,["onreadystatechange"],"fn-",y)}if(function(e,t){for(var r in e)t[r]=e[r]}(o,f),f.prototype=o.prototype,i.inPlace(f.prototype,q,"-xhr-",y),n.on("send-xhr-start",(function(e,t){h(e,t),function(e){l.push(e),a&&(g?g.then(b):c?c(b):(m=-m,v.data=m))}(t)})),n.on("open-xhr-start",h),a){var g=s&&s.resolve();if(!c&&!s){var m=1,v=document.createTextNode(m);new a(b).observe(v,{characterData:!0})}}else r.on("fn-end",(function(e){e[0]&&e[0].type===u||b()}));function b(){for(var e=0;e<l.length;e++)h(0,l[e]);l.length&&(l=[])}function y(e,t){return t}return n}var Y="fetch-",X=Y+"body-",J=["arrayBuffer","blob","json","text","formData"],Q=p.gm.Request,ee=p.gm.Response,te="prototype";const re={};function ne(e){const t=function(e){return(e||B.ee).get("fetch")}(e);if(!(Q&&ee&&p.gm.fetch))return t;if(re[t.debugId]++)return t;function r(e,r,n){var i=e[r];"function"==typeof i&&(e[r]=function(){var e,r=[...arguments],o={};t.emit(n+"before-start",[r],o),o[B.P]&&o[B.P].dt&&(e=o[B.P].dt);var a=i.apply(this,r);return t.emit(n+"start",[r,e],a),a.then((function(e){return t.emit(n+"end",[null,e],a),e}),(function(e){throw t.emit(n+"end",[e],a),e}))})}return re[t.debugId]=1,J.forEach((e=>{r(Q[te],e,X),r(ee[te],e,X)})),r(p.gm,"fetch",Y),t.on(Y+"end",(function(e,r){var n=this;if(r){var i=r.headers.get("content-length");null!==i&&(n.rxSize=i),t.emit(Y+"done",[null,r],n)}else t.emit(Y+"done",[e],n)})),t}var ie=i(7485),oe=i(5603);class ae{constructor(e){this.agentIdentifier=e}generateTracePayload(e){if(!this.shouldGenerateTrace(e))return null;var t=(0,oe.o)(this.agentIdentifier);if(!t)return null;var n=(t.accountID||"").toString()||null,i=(t.agentID||"").toString()||null,o=(t.trustKey||"").toString()||null;if(!n||!i)return null;var a=(0,r.ZF)(),s=(0,r.el)(),c=Date.now(),u={spanId:a,traceId:s,timestamp:c};return(e.sameOrigin||this.isAllowedOrigin(e)&&this.useTraceContextHeadersForCors())&&(u.traceContextParentHeader=this.generateTraceContextParentHeader(a,s),u.traceContextStateHeader=this.generateTraceContextStateHeader(a,c,n,i,o)),(e.sameOrigin&&!this.excludeNewrelicHeader()||!e.sameOrigin&&this.isAllowedOrigin(e)&&this.useNewrelicHeaderForCors())&&(u.newrelicHeader=this.generateTraceHeader(a,s,c,n,i,o)),u}generateTraceContextParentHeader(e,t){return"00-"+t+"-"+e+"-01"}generateTraceContextStateHeader(e,t,r,n,i){return i+"@nr=0-1-"+r+"-"+n+"-"+e+"----"+t}generateTraceHeader(e,t,r,n,i,o){if(!("function"==typeof p.gm?.btoa))return null;var a={v:[0,1],d:{ty:"Browser",ac:n,ap:i,id:e,tr:t,ti:r}};return o&&n!==o&&(a.d.tk=o),btoa((0,j.A)(a))}shouldGenerateTrace(e){return this.isDtEnabled()&&this.isAllowedOrigin(e)}isAllowedOrigin(e){var t=!1,r={};if((0,s.gD)(this.agentIdentifier,"distributed_tracing")&&(r=(0,s.D0)(this.agentIdentifier).distributed_tracing),e.sameOrigin)t=!0;else if(r.allowed_origins instanceof Array)for(var n=0;n<r.allowed_origins.length;n++){var i=(0,ie.D)(r.allowed_origins[n]);if(e.hostname===i.hostname&&e.protocol===i.protocol&&e.port===i.port){t=!0;break}}return t}isDtEnabled(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.enabled}excludeNewrelicHeader(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.exclude_newrelic_header}useNewrelicHeaderForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!1!==e.cors_use_newrelic_header}useTraceContextHeadersForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.cors_use_tracecontext_headers}}var se=i(9300),ce=i(7295),ue=["load","error","abort","timeout"],de=ue.length,le=(0,R.dV)().o.REQ,fe=(0,R.dV)().o.XHR;class he extends b{static featureName=se.T;constructor(e,t=!0){super(e,se.T,t),this.dt=new ae(e.agentIdentifier),this.handler=(e,t,r,n)=>(0,x.p)(e,t,r,n,this.ee);try{const e={xmlhttprequest:"xhr",fetch:"fetch",beacon:"beacon"};p.gm?.performance?.getEntriesByType("resource").forEach((t=>{if(t.initiatorType in e&&0!==t.responseStatus){const r={status:t.responseStatus},n={rxSize:t.transferSize,duration:Math.floor(t.duration),cbTime:0};pe(r,t.name),this.handler("xhr",[r,n,t.startTime,t.responseEnd,e[t.initiatorType]],void 0,a.K7.ajax)}}))}catch(e){}ne(this.ee),Z(this.ee),function(e,t,r,n){function i(e){var t=this;t.totalCbs=0,t.called=0,t.cbTime=0,t.end=R,t.ended=!1,t.xhrGuids={},t.lastSize=null,t.loadCaptureCalled=!1,t.params=this.params||{},t.metrics=this.metrics||{},e.addEventListener("load",(function(r){T(t,e)}),(0,A.jT)(!1)),p.lR||e.addEventListener("progress",(function(e){t.lastSize=e.loaded}),(0,A.jT)(!1))}function o(e){this.params={method:e[0]},pe(this,e[1]),this.metrics={}}function s(t,r){e.loader_config.xpid&&this.sameOrigin&&r.setRequestHeader("X-NewRelic-ID",e.loader_config.xpid);var i=n.generateTracePayload(this.parsedOrigin);if(i){var o=!1;i.newrelicHeader&&(r.setRequestHeader("newrelic",i.newrelicHeader),o=!0),i.traceContextParentHeader&&(r.setRequestHeader("traceparent",i.traceContextParentHeader),i.traceContextStateHeader&&r.setRequestHeader("tracestate",i.traceContextStateHeader),o=!0),o&&(this.dt=i)}}function c(e,r){var n=this.metrics,i=e[0],o=this;if(n&&i){var a=G(i);a&&(n.txSize=a)}this.startTime=(0,S.t)(),this.body=i,this.listener=function(e){try{"abort"!==e.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==e.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof r.onload)&&"function"==typeof o.end)&&o.end(r)}catch(e){try{t.emit("internal-error",[e])}catch(e){}}};for(var s=0;s<de;s++)r.addEventListener(ue[s],this.listener,(0,A.jT)(!1))}function u(e,t,r){this.cbTime+=e,t?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof r.onload||"function"!=typeof this.end||this.end(r)}function d(e,t){var r=""+V(e)+!!t;this.xhrGuids&&!this.xhrGuids[r]&&(this.xhrGuids[r]=!0,this.totalCbs+=1)}function l(e,t){var r=""+V(e)+!!t;this.xhrGuids&&this.xhrGuids[r]&&(delete this.xhrGuids[r],this.totalCbs-=1)}function f(){this.endTime=(0,S.t)()}function h(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-added",[e[1],e[2]],r)}function g(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-removed",[e[1],e[2]],r)}function m(e,t,r){t instanceof fe&&("onload"===r&&(this.onload=!0),("load"===(e[0]&&e[0].type)||this.onload)&&(this.xhrCbStart=(0,S.t)()))}function v(e,r){this.xhrCbStart&&t.emit("xhr-cb-time",[(0,S.t)()-this.xhrCbStart,this.onload,r],r)}function b(e){var t,r=e[1]||{};if("string"==typeof e[0]?0===(t=e[0]).length&&p.RI&&(t=""+p.gm.location.href):e[0]&&e[0].url?t=e[0].url:p.gm?.URL&&e[0]&&e[0]instanceof URL?t=e[0].href:"function"==typeof e[0].toString&&(t=e[0].toString()),"string"==typeof t&&0!==t.length){t&&(this.parsedOrigin=(0,ie.D)(t),this.sameOrigin=this.parsedOrigin.sameOrigin);var i=n.generateTracePayload(this.parsedOrigin);if(i&&(i.newrelicHeader||i.traceContextParentHeader))if(e[0]&&e[0].headers)s(e[0].headers,i)&&(this.dt=i);else{var o={};for(var a in r)o[a]=r[a];o.headers=new Headers(r.headers||{}),s(o.headers,i)&&(this.dt=i),e.length>1?e[1]=o:e.push(o)}}function s(e,t){var r=!1;return t.newrelicHeader&&(e.set("newrelic",t.newrelicHeader),r=!0),t.traceContextParentHeader&&(e.set("traceparent",t.traceContextParentHeader),t.traceContextStateHeader&&e.set("tracestate",t.traceContextStateHeader),r=!0),r}}function y(e,t){this.params={},this.metrics={},this.startTime=(0,S.t)(),this.dt=t,e.length>=1&&(this.target=e[0]),e.length>=2&&(this.opts=e[1]);var r,n=this.opts||{},i=this.target;"string"==typeof i?r=i:"object"==typeof i&&i instanceof le?r=i.url:p.gm?.URL&&"object"==typeof i&&i instanceof URL&&(r=i.href),pe(this,r);var o=(""+(i&&i instanceof le&&i.method||n.method||"GET")).toUpperCase();this.params.method=o,this.body=n.body,this.txSize=G(n.body)||0}function w(e,t){if(this.endTime=(0,S.t)(),this.params||(this.params={}),(0,ce.iW)(this.params))return;let n;this.params.status=t?t.status:0,"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);const i={txSize:this.txSize,rxSize:n,duration:(0,S.t)()-this.startTime};r("xhr",[this.params,i,this.startTime,this.endTime,"fetch"],this,a.K7.ajax)}function R(e){const t=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(let t=0;t<de;t++)e.removeEventListener(ue[t],this.listener,!1);t.aborted||(0,ce.iW)(t)||(n.duration=(0,S.t)()-this.startTime,this.loadCazptureCalled||4!==e.readyState?null==t.status&&(t.status=0):T(this,e),n.cbTime=this.cbTime,r("xhr",[t,n,this.startTime,this.endTime,"xhr"],this,a.K7.ajax))}}function T(e,r){e.params.status=r.status;var n=function(e,t){var r=e.responseType;return"json"===r&&null!==t?t:"arraybuffer"===r||"blob"===r||"json"===r?G(e.response):"text"===r||""===r||void 0===r?G(e.responseText):void 0}(r,e.lastSize);if(n&&(e.metrics.rxSize=n),e.sameOrigin){var i=r.getResponseHeader("X-NewRelic-App-Data");i&&((0,x.p)(O.rs,["Ajax/CrossApplicationTracing/Header/Seen"],void 0,a.K7.metrics,t),e.params.cat=i.split(", ").pop())}e.loadCaptureCalled=!0}t.on("new-xhr",i),t.on("open-xhr-start",o),t.on("open-xhr-end",s),t.on("send-xhr-start",c),t.on("xhr-cb-time",u),t.on("xhr-load-added",d),t.on("xhr-load-removed",l),t.on("xhr-resolved",f),t.on("addEventListener-end",h),t.on("removeEventListener-end",g),t.on("fn-end",v),t.on("fetch-before-start",b),t.on("fetch-start",y),t.on("fn-start",m),t.on("fetch-done",w)}(e,this.ee,this.handler,this.dt),this.importAggregator(e)}}function pe(e,t){var r=(0,ie.D)(t),n=e.params||e;n.hostname=r.hostname,n.port=r.port,n.protocol=r.protocol,n.host=r.hostname+":"+r.port,n.pathname=r.pathname,e.parsedOrigin=r,e.sameOrigin=r.sameOrigin}const ge={},me=["pushState","replaceState"];function ve(e){const t=function(e){return(e||B.ee).get("history")}(e);return!p.RI||ge[t.debugId]++||(ge[t.debugId]=1,(0,W.YM)(t).inPlace(window.history,me,"-")),t}var be=i(3738);const{He:ye,bD:we,d3:Re,Kp:xe,TZ:Te,Lc:Ae,uP:Ee,Rz:Se}=be;class Ne extends b{static featureName=Te;constructor(e,t=!0){super(e,Te,t);if(!(0,m.V)(this.agentIdentifier))return void this.deregisterDrain();const r=this.ee;let n;ve(r),this.eventsEE=(0,F.u)(r),this.eventsEE.on(Ee,(function(e,t){this.bstStart=(0,S.t)()})),this.eventsEE.on(Ae,(function(e,t){(0,x.p)("bst",[e[0],t,this.bstStart,(0,S.t)()],void 0,a.K7.sessionTrace,r)})),r.on(Se+Re,(function(e){this.time=(0,S.t)(),this.startPath=location.pathname+location.hash})),r.on(Se+xe,(function(e){(0,x.p)("bstHist",[location.pathname+location.hash,this.startPath,this.time],void 0,a.K7.sessionTrace,r)}));try{n=new PerformanceObserver((e=>{const t=e.getEntries();(0,x.p)(ye,[t],void 0,a.K7.sessionTrace,r)})),n.observe({type:we,buffered:!0})}catch(e){}this.importAggregator(e,{resourceObserver:n})}}var Oe=i(2614);class _e extends b{static featureName=t.TZ;#i;#o;constructor(e,r=!0){let n;super(e,t.TZ,r),this.replayRunning=!1,this.#o=e;try{n=JSON.parse(localStorage.getItem("".concat(Oe.H3,"_").concat(Oe.uh)))}catch(e){}(0,g.SR)(e.agentIdentifier)&&this.ee.on(t.G4.RECORD,(()=>this.#a())),this.#s(n)?(this.#i=n?.sessionReplayMode,this.#c()):this.importAggregator(e),this.ee.on("err",(e=>{this.replayRunning&&(this.errorNoticed=!0,(0,x.p)(t.G4.ERROR_DURING_REPLAY,[e],void 0,this.featureName,this.ee))})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.replayRunning=e}))}#s(e){return e&&(e.sessionReplayMode===Oe.g.FULL||e.sessionReplayMode===Oe.g.ERROR)||(0,g.Aw)(this.agentIdentifier)}#u=!1;async#c(e){if(!this.#u){this.#u=!0;try{const{Recorder:t}=await Promise.all([i.e(478),i.e(249)]).then(i.bind(i,8589));this.recorder??=new t({mode:this.#i,agentIdentifier:this.agentIdentifier,trigger:e,ee:this.ee}),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording}catch(e){}this.importAggregator(this.#o,{recorder:this.recorder,errorNoticed:this.errorNoticed})}}#a(){this.featAggregate?this.featAggregate.mode!==Oe.g.FULL&&this.featAggregate.initializeRecording(Oe.g.FULL,!0):(this.#i=Oe.g.FULL,this.#c(t.Qb.API),this.recorder&&this.recorder.parent.mode!==Oe.g.FULL&&(this.recorder.parent.mode=Oe.g.FULL,this.recorder.stopRecording(),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording))}}var Ie=i(3962);class je extends b{static featureName=Ie.TZ;constructor(e,t=!0){if(super(e,Ie.TZ,t),!p.RI||!(0,R.dV)().o.MO)return;const r=ve(this.ee);Ie.tC.forEach((e=>{(0,A.sp)(e,(e=>{a(e)}),!0)}));const n=()=>(0,x.p)("newURL",[(0,S.t)(),""+window.location],void 0,this.featureName,this.ee);r.on("pushState-end",n),r.on("replaceState-end",n);try{this.removeOnAbort=new AbortController}catch(e){}(0,A.sp)("popstate",(e=>(0,x.p)("newURL",[e.timeStamp,""+window.location],void 0,this.featureName,this.ee)),!0,this.removeOnAbort?.signal);let i=!1;const o=new((0,R.dV)().o.MO)(((e,t)=>{i||(i=!0,requestAnimationFrame((()=>{(0,x.p)("newDom",[(0,S.t)()],void 0,this.featureName,this.ee),i=!1})))})),a=(0,v.s)((e=>{(0,x.p)("newUIEvent",[e],void 0,this.featureName,this.ee),o.observe(document.body,{attributes:!0,childList:!0,subtree:!0,characterData:!0})}),100,{leading:!0});this.abortHandler=function(){this.removeOnAbort?.abort(),o.disconnect(),this.abortHandler=void 0},this.importAggregator(e,{domObserver:o})}}var Pe=i(7378);const Ce={},ke=["appendChild","insertBefore","replaceChild"];function Le(e){const t=function(e){return(e||B.ee).get("jsonp")}(e);if(!p.RI||Ce[t.debugId])return t;Ce[t.debugId]=!0;var r=(0,W.YM)(t),n=/[?&](?:callback|cb)=([^&#]+)/,i=/(.*)\.([^.]+)/,o=/^(\w+)(\.|$)(.*)$/;function a(e,t){if(!e)return t;const r=e.match(o),n=r[1];return a(r[3],t[n])}return r.inPlace(Node.prototype,ke,"dom-"),t.on("dom-start",(function(e){!function(e){if(!e||"string"!=typeof e.nodeName||"script"!==e.nodeName.toLowerCase())return;if("function"!=typeof e.addEventListener)return;var o=(s=e.src,c=s.match(n),c?c[1]:null);var s,c;if(!o)return;var u=function(e){var t=e.match(i);if(t&&t.length>=3)return{key:t[2],parent:a(t[1],window)};return{key:e,parent:window}}(o);if("function"!=typeof u.parent[u.key])return;var d={};function l(){t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,A.jT)(!1)),e.removeEventListener("error",f,(0,A.jT)(!1))}function f(){t.emit("jsonp-error",[],d),t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,A.jT)(!1)),e.removeEventListener("error",f,(0,A.jT)(!1))}r.inPlace(u.parent,[u.key],"cb-",d),e.addEventListener("load",l,(0,A.jT)(!1)),e.addEventListener("error",f,(0,A.jT)(!1)),t.emit("new-jsonp",[e.src],d)}(e[0])})),t}const He={};function De(e){const t=function(e){return(e||B.ee).get("promise")}(e);if(He[t.debugId])return t;He[t.debugId]=!0;var r=t.context,n=(0,W.YM)(t),i=p.gm.Promise;return i&&function(){function e(r){var o=t.context(),a=n(r,"executor-",o,null,!1);const s=Reflect.construct(i,[a],e);return t.context(s).getCtx=function(){return o},s}p.gm.Promise=e,Object.defineProperty(e,"name",{value:"Promise"}),e.toString=function(){return i.toString()},Object.setPrototypeOf(e,i),["all","race"].forEach((function(r){const n=i[r];e[r]=function(e){let i=!1;[...e||[]].forEach((e=>{this.resolve(e).then(a("all"===r),a(!1))}));const o=n.apply(this,arguments);return o;function a(e){return function(){t.emit("propagate",[null,!i],o,!1,!1),i=i||!e}}}})),["resolve","reject"].forEach((function(r){const n=i[r];e[r]=function(e){const r=n.apply(this,arguments);return e!==r&&t.emit("propagate",[e,!0],r,!1,!1),r}})),e.prototype=i.prototype;const o=i.prototype.then;i.prototype.then=function(...e){var i=this,a=r(i);a.promise=i,e[0]=n(e[0],"cb-",a,null,!1),e[1]=n(e[1],"cb-",a,null,!1);const s=o.apply(this,e);return a.nextPromise=s,t.emit("propagate",[i,!0],s,!1,!1),s},i.prototype.then[W.Jt]=o,t.on("executor-start",(function(e){e[0]=n(e[0],"resolve-",this,null,!1),e[1]=n(e[1],"resolve-",this,null,!1)})),t.on("executor-err",(function(e,t,r){e[1](r)})),t.on("cb-end",(function(e,r,n){t.emit("propagate",[n,!0],this.nextPromise,!1,!1)})),t.on("propagate",(function(e,r,n){this.getCtx&&!r||(this.getCtx=function(){if(e instanceof Promise)var r=t.context(e);return r&&r.getCtx?r.getCtx():this})}))}(),t}const Me={},Ke="setTimeout",Ue="setInterval",Ve="clearTimeout",Ge="-start",Fe=[Ke,"setImmediate",Ue,Ve,"clearImmediate"];function Be(e){const t=function(e){return(e||B.ee).get("timer")}(e);if(Me[t.debugId]++)return t;Me[t.debugId]=1;var r=(0,W.YM)(t);return r.inPlace(p.gm,Fe.slice(0,2),Ke+"-"),r.inPlace(p.gm,Fe.slice(2,3),Ue+"-"),r.inPlace(p.gm,Fe.slice(3),Ve+"-"),t.on(Ue+Ge,(function(e,t,n){e[0]=r(e[0],"fn-",null,n)})),t.on(Ke+Ge,(function(e,t,n){this.method=n,this.timerDuration=isNaN(e[1])?0:+e[1],e[0]=r(e[0],"fn-",this,n)})),t}const We={};function ze(e){const t=function(e){return(e||B.ee).get("mutation")}(e);if(!p.RI||We[t.debugId])return t;We[t.debugId]=!0;var r=(0,W.YM)(t),n=p.gm.MutationObserver;return n&&(window.MutationObserver=function(e){return this instanceof n?new n(r(e,"fn-")):n.apply(this,arguments)},MutationObserver.prototype=n.prototype),t}const{TZ:qe,d3:Ze,Kp:Ye,$p:Xe,wW:Je,e5:Qe,tH:$e,uP:et,rw:tt,Lc:rt}=Pe;class nt extends b{static featureName=qe;constructor(e,t=!0){if(super(e,qe,t),!p.RI)return;try{this.removeOnAbort=new AbortController}catch(e){}let r,n=0;const i=this.ee.get("tracer"),o=Le(this.ee),a=De(this.ee),s=Be(this.ee),c=Z(this.ee),u=this.ee.get("events"),d=ne(this.ee),l=ve(this.ee),f=ze(this.ee);function h(e,t){l.emit("newURL",[""+window.location,t])}function g(){n++,r=window.location.hash,this[et]=(0,S.t)()}function m(){n--,window.location.hash!==r&&h(0,!0);var e=(0,S.t)();this[Qe]=~~this[Qe]+e-this[et],this[rt]=e}function v(e,t){e.on(t,(function(){this[t]=(0,S.t)()}))}this.ee.on(et,g),a.on(tt,g),o.on(tt,g),this.ee.on(rt,m),a.on(Je,m),o.on(Je,m),this.ee.on("fn-err",((...t)=>{t[2]?.__newrelic?.[e.agentIdentifier]||(0,x.p)("function-err",[...t],void 0,this.featureName,this.ee)})),this.ee.buffer([et,rt,"xhr-resolved"],this.featureName),u.buffer([et],this.featureName),s.buffer(["setTimeout"+Ye,"clearTimeout"+Ze,et],this.featureName),c.buffer([et,"new-xhr","send-xhr"+Ze],this.featureName),d.buffer([$e+Ze,$e+"-done",$e+Xe+Ze,$e+Xe+Ye],this.featureName),l.buffer(["newURL"],this.featureName),f.buffer([et],this.featureName),a.buffer(["propagate",tt,Je,"executor-err","resolve"+Ze],this.featureName),i.buffer([et,"no-"+et],this.featureName),o.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"],this.featureName),v(d,$e+Ze),v(d,$e+"-done"),v(o,"new-jsonp"),v(o,"jsonp-end"),v(o,"cb-start"),l.on("pushState-end",h),l.on("replaceState-end",h),window.addEventListener("hashchange",h,(0,A.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("load",h,(0,A.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("popstate",(function(){h(0,n>1)}),(0,A.jT)(!0,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var it=i(3333);class ot extends b{static featureName=it.TZ;constructor(e,t=!0){super(e,it.TZ,t);const r=[e.init.page_action.enabled,e.init.performance.capture_marks,e.init.performance.capture_measures,e.init.user_actions.enabled];p.RI&&e.init.user_actions.enabled&&(it.Zp.forEach((e=>(0,A.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)),!0))),it.qN.forEach((e=>(0,A.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)))))),r.some((e=>e))?this.importAggregator(e):this.deregisterDrain()}}var at=i(993),st=i(3785);class ct extends b{static featureName=at.TZ;constructor(e,t=!0){super(e,at.TZ,t);const r=this.ee;this.ee.on("wrap-logger-end",(function([e]){const{level:t,customAttributes:n}=this;(0,st.R)(r,e,n,t)})),this.importAggregator(e)}}new class extends o{constructor(t,r){super(r),p.gm?(this.features={},(0,R.bQ)(this.agentIdentifier,this),this.desiredFeatures=new Set(t.features||[]),this.desiredFeatures.add(w),this.runSoftNavOverSpa=[...this.desiredFeatures].some((e=>e.featureName===a.K7.softNav)),(0,d.j)(this,t,t.loaderType||"agent"),this.run()):(0,e.R)(21)}get config(){return{info:this.info,init:this.init,loader_config:this.loader_config,runtime:this.runtime}}run(){try{const t=u(this.agentIdentifier),r=[...this.desiredFeatures];r.sort(((e,t)=>a.P3[e.featureName]-a.P3[t.featureName])),r.forEach((r=>{if(!t[r.featureName]&&r.featureName!==a.K7.pageViewEvent)return;if(this.runSoftNavOverSpa&&r.featureName===a.K7.spa)return;if(!this.runSoftNavOverSpa&&r.featureName===a.K7.softNav)return;const n=function(e){switch(e){case a.K7.ajax:return[a.K7.jserrors];case a.K7.sessionTrace:return[a.K7.ajax,a.K7.pageViewEvent];case a.K7.sessionReplay:return[a.K7.sessionTrace];case a.K7.pageViewTiming:return[a.K7.pageViewEvent];default:return[]}}(r.featureName).filter((e=>!(e in this.features)));n.length>0&&(0,e.R)(36,{targetFeature:r.featureName,missingDependencies:n}),this.features[r.featureName]=new r(this)}))}catch(t){(0,e.R)(22,t);for(const e in this.features)this.features[e].abortHandler?.();const r=(0,R.Zm)();delete r.initializedAgents[this.agentIdentifier]?.api,delete r.initializedAgents[this.agentIdentifier]?.features,delete this.sharedAggregator;return r.ee.get(this.agentIdentifier).abort(),!1}}}({features:[he,w,N,Ne,_e,_,D,ot,ct,je,nt],loaderType:"spa"})})()})();</script><link rel="preload" href="/article-pages/_nuxt/4764e3b.js" as="script"><link rel="preload" href="/article-pages/_nuxt/8e7ee66.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/468b299.css" as="style"><link rel="preload" href="/article-pages/_nuxt/232bf4b.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/6a64fd3.css" as="style"><link rel="preload" href="/article-pages/_nuxt/3b10072.js" as="script"><link rel="preload" href="/article-pages/_nuxt/a07a553.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/e5cdfa1.css" as="style"><link rel="preload" href="/article-pages/_nuxt/94ee25c.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/82a0061.css" as="style"><link rel="preload" href="/article-pages/_nuxt/5465e0e.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/d80c00c.css" as="style"><link rel="preload" href="/article-pages/_nuxt/fb04c78.js" as="script"><link rel="preload" href="/article-pages/_nuxt/f8f682e.js" as="script"><link rel="stylesheet" href="/article-pages/_nuxt/css/468b299.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/6a64fd3.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/e5cdfa1.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/82a0061.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/d80c00c.css"> <meta property="fb:admins" content="1841006843"> </head> <body > <button class="BypassBlock__firstEl"></button> <a href="#main-content" class="BypassBlock__wrapper"> <span class="BypassBlock__button">Skip to main content</span> </a> <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://tag-manager.frontiersin.org/ns.html?id=GTM-M322FV2>m_auth=owVbWxfaJr21yQv1fe1cAQ>m_preview=env-1>m_cookies_win=x" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div data-server-rendered="true" id="__nuxt"><div id="__layout"><div theme="cyan" class="ArticleLayout"><nav class="Ibar"><h1 class="acc-hidden">Top bar navigation</h1> <div class="Ibar__main"><div class="Ibar__wrapper"><button aria-label="Open Menu" data-event="iBar-btn-openMenu" class="Ibar__burger"></button> <div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div> <a aria-label="Frontiers in Marine Science" href="//www.frontiersin.org/journals/marine-science" data-event="iBar-a-journalHome" class="Ibar__journalName"><div logoClass="Ibar__logo--mixed" class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Marine Science</span></div></div></a> <div parent-data-event="iBar" class="Ibar__dropdown Ibar__dropdown--aboutUs"><button class="Ibar__dropdown__trigger"><!----> About us </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About us </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Who we are</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/mission" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Mission and values</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/history" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">History</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/leadership" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Leadership</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/awards" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Awards</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Impact and progress</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/impact" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">Frontiers' impact</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://progressreport.frontiersin.org/?utm_source=fweb&utm_medium=frep&utm_campaign=pr20" target="_blank" data-event="iBar-aboutUs_1-a_impactAndProgress">Progress Report 2022</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/progress-reports" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">All progress reports</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Publishing model</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">How we publish</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Open access</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Fee policy</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/peer-review" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Peer review</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research integrity</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-topics" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research Topics</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Services</li> <li class="Ibar__dropdown__about__block__item"><a href="https://publishingpartnerships.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_3-a_services">Societies</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/open-access-agreements/consortia" target="_self" data-event="iBar-aboutUs_3-a_services">National consortia</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access-agreements" target="_self" data-event="iBar-aboutUs_3-a_services">Institutional partnerships</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/collaborators" target="_self" data-event="iBar-aboutUs_3-a_services">Collaborators</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">More from Frontiers</li> <li class="Ibar__dropdown__about__block__item"><a href="https://forum.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Forum</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Planet Prize</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://pressoffice.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Press office</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.orgabout/sustainability" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Sustainability</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://careers.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Career opportunities</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Contact us</a></li></ul></div></div></div> <a href="https://www.frontiersin.org/journals" data-event="iBar-a-allJournals" class="Ibar__link">All journals</a><a href="https://www.frontiersin.org/articles" data-event="iBar-a-allArticles" class="Ibar__link">All articles</a> <a href="https://www.frontiersin.org/submission/submit?domainid=1&fieldid=45&specialtyid=0&entitytype=2&entityid=655" data-event="iBar-a-submit" class="Ibar__button Ibar__submit">Submit your research</a> <div class="Ibar__spacer"></div> <a href="/search" aria-label="Search" data-event="iBar-a-search" class="Ibar__icon Ibar__icon--search"><span>Search</span></a> <!----> <!----> <!----> <div class="Ibar__userArea"></div></div></div> <div class="Ibar__menu Ibar__menu--journal"><div class="Ibar__menu__header"><div class="Ibar__logo"><div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div></div> <button aria-label="Close Menu" data-event="iBarMenu-btn-closeMenu" class="Ibar__close"></button></div> <div class="Ibar__menu__wrapper"><div class="Ibar__menu__journal"><a href="//www.frontiersin.org/journals/marine-science" data-event="iBarMenu-a-journalHome"><div class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Marine Science</span></div></div></a> <div parent-data-event="iBarMenu" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/aquatic-microbiology" data-event="iBarJournal-sections-a_id_313">Aquatic Microbiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/aquatic-physiology" data-event="iBarJournal-sections-a_id_230">Aquatic Physiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/coastal-ocean-processes" data-event="iBarJournal-sections-a_id_962">Coastal Ocean Processes</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/coral-reef-research" data-event="iBarJournal-sections-a_id_958">Coral Reef Research</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/deep-sea-environments-and-ecology" data-event="iBarJournal-sections-a_id_832">Deep-Sea Environments and Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/discoveries" data-event="iBarJournal-sections-a_id_3472">Discoveries</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/global-change-and-the-future-ocean" data-event="iBarJournal-sections-a_id_780">Global Change and the Future Ocean</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-affairs-and-policy" data-event="iBarJournal-sections-a_id_742">Marine Affairs and Policy</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biogeochemistry" data-event="iBarJournal-sections-a_id_743">Marine Biogeochemistry</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biology" data-event="iBarJournal-sections-a_id_1539">Marine Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biotechnology-and-bioproducts" data-event="iBarJournal-sections-a_id_764">Marine Biotechnology and Bioproducts</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-conservation-and-sustainability" data-event="iBarJournal-sections-a_id_761">Marine Conservation and Sustainability</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-ecosystem-ecology" data-event="iBarJournal-sections-a_id_747">Marine Ecosystem Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-evolutionary-biology-biogeography-and-species-diversity" data-event="iBarJournal-sections-a_id_760">Marine Evolutionary Biology, Biogeography and Species Diversity</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-fisheries-aquaculture-and-living-resources" data-event="iBarJournal-sections-a_id_1091">Marine Fisheries, Aquaculture and Living Resources</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-megafauna" data-event="iBarJournal-sections-a_id_793">Marine Megafauna</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-molecular-biology-and-ecology" data-event="iBarJournal-sections-a_id_737">Marine Molecular Biology and Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-pollution" data-event="iBarJournal-sections-a_id_766">Marine Pollution</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/microbial-symbioses" data-event="iBarJournal-sections-a_id_314">Microbial Symbioses</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/ocean-observation" data-event="iBarJournal-sections-a_id_1185">Ocean Observation</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/ocean-solutions" data-event="iBarJournal-sections-a_id_794">Ocean Solutions</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/physical-oceanography" data-event="iBarJournal-sections-a_id_1453">Physical Oceanography</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/marine-science/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/marine-science/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/marine-science/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarMenu" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission & scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div></div> <div parent-data-event="iBarMenu" class="Ibar__dropdown Ibar__dropdown--aboutUs"><button class="Ibar__dropdown__trigger"><!----> About us </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About us </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Who we are</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/mission" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Mission and values</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/history" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">History</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/leadership" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Leadership</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/awards" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Awards</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Impact and progress</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/impact" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">Frontiers' impact</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://progressreport.frontiersin.org/?utm_source=fweb&utm_medium=frep&utm_campaign=pr20" target="_blank" data-event="iBar-aboutUs_1-a_impactAndProgress">Progress Report 2022</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/progress-reports" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">All progress reports</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Publishing model</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">How we publish</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Open access</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Fee policy</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/peer-review" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Peer review</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research integrity</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-topics" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research Topics</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Services</li> <li class="Ibar__dropdown__about__block__item"><a href="https://publishingpartnerships.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_3-a_services">Societies</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/open-access-agreements/consortia" target="_self" data-event="iBar-aboutUs_3-a_services">National consortia</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access-agreements" target="_self" data-event="iBar-aboutUs_3-a_services">Institutional partnerships</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/collaborators" target="_self" data-event="iBar-aboutUs_3-a_services">Collaborators</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">More from Frontiers</li> <li class="Ibar__dropdown__about__block__item"><a href="https://forum.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Forum</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Planet Prize</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://pressoffice.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Press office</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.orgabout/sustainability" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Sustainability</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://careers.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Career opportunities</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Contact us</a></li></ul></div></div></div> <a href="https://www.frontiersin.org/journals" data-event="iBar-a-allJournals" class="Ibar__link">All journals</a><a href="https://www.frontiersin.org/articles" data-event="iBar-a-allArticles" class="Ibar__link">All articles</a> <!----> <!----> <!----> <a href="https://www.frontiersin.org/submission/submit?domainid=1&fieldid=45&specialtyid=0&entitytype=2&entityid=655" data-event="iBarMenu-a-submit" class="Ibar__button Ibar__submit">Submit your research</a></div></div> <div class="Ibar__journal"><div class="Ibar__wrapper Ibar__wrapper--journal"><a aria-label="Frontiers in Marine Science" href="//www.frontiersin.org/journals/marine-science" data-event="iBarJournal-a-journalHome" class="Ibar__journalName"><div class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Marine Science</span></div></div></a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/aquatic-microbiology" data-event="iBarJournal-sections-a_id_313">Aquatic Microbiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/aquatic-physiology" data-event="iBarJournal-sections-a_id_230">Aquatic Physiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/coastal-ocean-processes" data-event="iBarJournal-sections-a_id_962">Coastal Ocean Processes</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/coral-reef-research" data-event="iBarJournal-sections-a_id_958">Coral Reef Research</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/deep-sea-environments-and-ecology" data-event="iBarJournal-sections-a_id_832">Deep-Sea Environments and Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/discoveries" data-event="iBarJournal-sections-a_id_3472">Discoveries</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/global-change-and-the-future-ocean" data-event="iBarJournal-sections-a_id_780">Global Change and the Future Ocean</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-affairs-and-policy" data-event="iBarJournal-sections-a_id_742">Marine Affairs and Policy</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biogeochemistry" data-event="iBarJournal-sections-a_id_743">Marine Biogeochemistry</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biology" data-event="iBarJournal-sections-a_id_1539">Marine Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biotechnology-and-bioproducts" data-event="iBarJournal-sections-a_id_764">Marine Biotechnology and Bioproducts</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-conservation-and-sustainability" data-event="iBarJournal-sections-a_id_761">Marine Conservation and Sustainability</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-ecosystem-ecology" data-event="iBarJournal-sections-a_id_747">Marine Ecosystem Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-evolutionary-biology-biogeography-and-species-diversity" data-event="iBarJournal-sections-a_id_760">Marine Evolutionary Biology, Biogeography and Species Diversity</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-fisheries-aquaculture-and-living-resources" data-event="iBarJournal-sections-a_id_1091">Marine Fisheries, Aquaculture and Living Resources</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-megafauna" data-event="iBarJournal-sections-a_id_793">Marine Megafauna</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-molecular-biology-and-ecology" data-event="iBarJournal-sections-a_id_737">Marine Molecular Biology and Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-pollution" data-event="iBarJournal-sections-a_id_766">Marine Pollution</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/microbial-symbioses" data-event="iBarJournal-sections-a_id_314">Microbial Symbioses</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/ocean-observation" data-event="iBarJournal-sections-a_id_1185">Ocean Observation</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/ocean-solutions" data-event="iBarJournal-sections-a_id_794">Ocean Solutions</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/physical-oceanography" data-event="iBarJournal-sections-a_id_1453">Physical Oceanography</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/marine-science/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/marine-science/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/marine-science/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission & scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div> <div class="Ibar__spacer"></div></div></div> <div class="Ibar__journal Ibar__journal--mix"><div class="Ibar__wrapper Ibar__wrapper--journal"><div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div> <a aria-label="Frontiers in Marine Science" href="//www.frontiersin.org/journals/marine-science" data-event="iBarJournal-a-journalHome" class="Ibar__journalName"><div logoClass="Ibar__logo--mixed" class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Marine Science</span></div></div></a> <div class="Ibar__spacer"></div> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/aquatic-microbiology" data-event="iBarJournal-sections-a_id_313">Aquatic Microbiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/aquatic-physiology" data-event="iBarJournal-sections-a_id_230">Aquatic Physiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/coastal-ocean-processes" data-event="iBarJournal-sections-a_id_962">Coastal Ocean Processes</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/coral-reef-research" data-event="iBarJournal-sections-a_id_958">Coral Reef Research</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/deep-sea-environments-and-ecology" data-event="iBarJournal-sections-a_id_832">Deep-Sea Environments and Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/discoveries" data-event="iBarJournal-sections-a_id_3472">Discoveries</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/global-change-and-the-future-ocean" data-event="iBarJournal-sections-a_id_780">Global Change and the Future Ocean</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-affairs-and-policy" data-event="iBarJournal-sections-a_id_742">Marine Affairs and Policy</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biogeochemistry" data-event="iBarJournal-sections-a_id_743">Marine Biogeochemistry</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biology" data-event="iBarJournal-sections-a_id_1539">Marine Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-biotechnology-and-bioproducts" data-event="iBarJournal-sections-a_id_764">Marine Biotechnology and Bioproducts</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-conservation-and-sustainability" data-event="iBarJournal-sections-a_id_761">Marine Conservation and Sustainability</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-ecosystem-ecology" data-event="iBarJournal-sections-a_id_747">Marine Ecosystem Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-evolutionary-biology-biogeography-and-species-diversity" data-event="iBarJournal-sections-a_id_760">Marine Evolutionary Biology, Biogeography and Species Diversity</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-fisheries-aquaculture-and-living-resources" data-event="iBarJournal-sections-a_id_1091">Marine Fisheries, Aquaculture and Living Resources</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-megafauna" data-event="iBarJournal-sections-a_id_793">Marine Megafauna</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-molecular-biology-and-ecology" data-event="iBarJournal-sections-a_id_737">Marine Molecular Biology and Ecology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/marine-pollution" data-event="iBarJournal-sections-a_id_766">Marine Pollution</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/microbial-symbioses" data-event="iBarJournal-sections-a_id_314">Microbial Symbioses</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/ocean-observation" data-event="iBarJournal-sections-a_id_1185">Ocean Observation</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/ocean-solutions" data-event="iBarJournal-sections-a_id_794">Ocean Solutions</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/marine-science/sections/physical-oceanography" data-event="iBarJournal-sections-a_id_1453">Physical Oceanography</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/marine-science/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/marine-science/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/marine-science/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission & scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/marine-science/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div> <div class="Ibar__spacer"></div> <a href="https://www.frontiersin.org/submission/submit?domainid=1&fieldid=45&specialtyid=0&entitytype=2&entityid=655" data-event="iBarJournal-a-submit" class="Ibar__button Ibar__submit"><span>Submit</span> <span>聽your research</span></a> <a href="/search" aria-label="Search" data-event="iBar-a-search" class="Ibar__icon Ibar__icon--search"><span>Search</span></a> <!----> <!----> <!----> <div class="Ibar__userArea"></div></div></div></nav> <div class="ArticlePage"><div><div class="Layout Layout--withAside Layout--withIbarMix ArticleDetails"><!----> <aside class="Layout__aside"><div class="ArticleDetails__wrapper"><div class="ArticleDetails__aside"><div class="ArticleDetails__aside__responsiveButtons"><div id="FloatingButtonsEl" class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--type ActionsDropDown__button--icon"><span class="ActionsDropDown__button__label">Download article</span></button> <div class="ActionsDropDown__menuWrapper"><!----> <ul class="ActionsDropDown__menu"><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/pdf" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-pdf" class="ActionsDropDown__option"> Download PDF </a></li><li><a href="http://www.readcube.com/articles/10.3389/fmars.2022.899877" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-readCube" class="ActionsDropDown__option"> ReadCube </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/epub" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-epub" class="ActionsDropDown__option"> EPUB </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/xml/nlm" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-nlmXml" class="ActionsDropDown__option"> XML (NLM) </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div> <div class="ArticleDetails__aside__responsiveButtons__items"><!----> <div class="ArticleDetailsShare__responsive"><button aria-label="Open share options" class="ArticleDetailsShare__trigger"></button> <div class="ArticleDetailsShare"><h5 class="ArticleDetailsShare__title">Share on</h5> <ul class="ArticleDetailsShare__list"><li class="ArticleDetailsShare__item"><a href="https://www.twitter.com/share?url=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full" target="_blank" title="Share on X" aria-label="Share on X" class="ArticleDetailsShare__link ArticleDetailsShare__link--x"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.linkedin.com/share?url=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full" target="_blank" title="Share on Linkedin" aria-label="Share on Linkedin" class="ArticleDetailsShare__link ArticleDetailsShare__link--linkedin"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.facebook.com/sharer/sharer.php?u=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full" target="_blank" title="Share on Facebook" aria-label="Share on Facebook" class="ArticleDetailsShare__link ArticleDetailsShare__link--facebook"></a></li></ul></div></div> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--typeIconButton ActionsDropDown__button--iconQuote"><!----></button> <div class="ActionsDropDown__menuWrapper"><div class="ActionsDropDown__mobileTitle"> Export citation </div> <ul class="ActionsDropDown__menu"><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/endNote" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-endNote" class="ActionsDropDown__option"> EndNote </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/reference" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-referenceManager" class="ActionsDropDown__option"> Reference Manager </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/text" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-simpleTextFile" class="ActionsDropDown__option"> Simple Text file </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/bibTex" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-bibTex" class="ActionsDropDown__option"> BibTex </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div></div></div> <div class="TotalViews"><div class="TotalViews__data"><div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 2,5K </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Total views</div></div></div> <div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 673 </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Downloads</div></div></div> <div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 3 </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Citations</div></div></div> <div class="ImpactMetricsInfoPopover"><button aria-label="Open impact metrics info" class="ImpactMetricsInfoPopover__button"></button> <div class="ImpactMetricsInfoPopover__tooltip"><button aria-label="Close impact metrics info" class="ImpactMetricsInfoPopover__tooltip__closeButton"></button> <div class="ImpactMetricsInfoPopover__tooltip__text"> Citation numbers are available from Dimensions </div></div></div></div> <div class="TotalViews__viewImpactLink"><span class="Link__wrapper"><a aria-label="View article impact" href="http://loop-impact.frontiersin.org/impact/article/899877#totalviews/views" target="_blank" data-event="customLink-link-a_viewArticleImpact" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View article impact</span></a></span></div> <div class="TotalViews__altmetric"><div data-badge-popover="bottom" data-badge-type="donut" data-doi="10.3389/fmars.2022.899877" data-condensed="true" data-link-target="new" class="altmetric-embed"></div> <span class="Link__wrapper"><a aria-label="View altmetric score" href="https://www.altmetric.com/details/doi/10.3389/fmars.2022.899877" target="_blank" data-event="customLink-link-a_viewAltmetricScore" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View altmetric score</span></a></span></div></div> <div class="ArticleDetailsShare"><h5 class="ArticleDetailsShare__title">Share on</h5> <ul class="ArticleDetailsShare__list"><li class="ArticleDetailsShare__item"><a href="https://www.twitter.com/share?url=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full" target="_blank" title="Share on X" aria-label="Share on X" class="ArticleDetailsShare__link ArticleDetailsShare__link--x"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.linkedin.com/share?url=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full" target="_blank" title="Share on Linkedin" aria-label="Share on Linkedin" class="ArticleDetailsShare__link ArticleDetailsShare__link--linkedin"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.facebook.com/sharer/sharer.php?u=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.899877/full" target="_blank" title="Share on Facebook" aria-label="Share on Facebook" class="ArticleDetailsShare__link ArticleDetailsShare__link--facebook"></a></li></ul></div> <div class="ArticleDetailsEditors"><div class="ArticleDetailsEditors__editors"><div class="ArticleDetailsEditors__title">Edited by</div> <a href="https://loop.frontiersin.org/people/496848/overview" data-event="editorInfo-a-gangLi" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/496848/32" alt="Gang Li" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name"> Gang Li </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation"> South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), China </div></div></a></div></div> <div class="ArticleDetailsEditors"><div class="ArticleDetailsEditors__editors"><div class="ArticleDetailsEditors__title">Reviewed by</div> <a href="https://loop.frontiersin.org/people/1628090/overview" data-event="editorInfo-a-sherifFarouk" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/1628090/32" alt="Sherif Farouk" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name"> Sherif Farouk </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation"> Egyptian Petroleum Research Institute, Egypt </div></div></a><a href="https://loop.frontiersin.org/people/1756246/overview" data-event="editorInfo-a-amitKGhosh" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/1756246/32" alt="AMIT K. GHOSH" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name"> AMIT K. GHOSH </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation"> Birbal Sahni Institute of Palaeosciences (BSIP), India </div></div></a></div></div> <div class="ArticleDetailsGlossary ArticleDetailsGlossary--open"><button class="ArticleDetailsGlossary__header"><div class="ArticleDetailsGlossary__header__title">Table of contents</div> <div class="ArticleDetailsGlossary__header__arrow"></div></button> <div class="ArticleDetailsGlossary__content"><ul class="flyoutJournal"><li><a href="#h1">Abstract</a></li><li><a href="#h2">Introduction</a></li><li><a href="#h3">Geological Setting</a></li><li><a href="#h4">Stratigraphic Sections</a></li><li><a href="#h5">Methods</a></li><li><a href="#h6">Results</a></li><li><a href="#h7">Discussion</a></li><li><a href="#h8">Conclusions</a></li><li><a href="#h9">Taxonomic Appendix</a></li><li><a href="#h10">Data Availability Statement</a></li><li><a href="#h11">Author Contributions</a></li><li><a href="#h12">Funding </a></li><li><a href="#h13">Conflict of Interest</a></li><li><a href="#h14">Publisher’s Note</a></li><li><a href="#h15">References</a></li></ul></div></div> <!----> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--typeOutline ActionsDropDown__button--iconQuote"><span class="ActionsDropDown__button__label">Export citation</span></button> <div class="ActionsDropDown__menuWrapper"><!----> <ul class="ActionsDropDown__menu"><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/endNote" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-endNote" class="ActionsDropDown__option"> EndNote </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/reference" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-referenceManager" class="ActionsDropDown__option"> Reference Manager </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/text" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-simpleTextFile" class="ActionsDropDown__option"> Simple Text file </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/bibTex" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-bibTex" class="ActionsDropDown__option"> BibTex </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div> <div class="CheckForUpdates"><button data-target="crossmark" data-event="checkForUpdates-btn-openModal" class="CheckForUpdates__link"><img src="/article-pages/_nuxt/img/crossmark.5c8ec60.svg" alt="Crossmark icon" class="CheckForUpdates__link__img"> <div class="CheckForUpdates__link__text">Check for updates</div></button></div> <!----> <!----></div> <!----> <div><div class="FloatingButtons"><!----> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--type ActionsDropDown__button--iconDownload"><span class="ActionsDropDown__button__label">Download article</span></button> <div class="ActionsDropDown__menuWrapper"><div class="ActionsDropDown__mobileTitle"> Download </div> <ul class="ActionsDropDown__menu"><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/pdf" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-pdf" class="ActionsDropDown__option"> Download PDF </a></li><li><a href="http://www.readcube.com/articles/10.3389/fmars.2022.899877" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-readCube" class="ActionsDropDown__option"> ReadCube </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/epub" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-epub" class="ActionsDropDown__option"> EPUB </a></li><li><a href="/journals/marine-science/articles/10.3389/fmars.2022.899877/xml/nlm" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-nlmXml" class="ActionsDropDown__option"> XML (NLM) </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div></div> <!----></div></div></aside> <main class="Layout__main"><!----> <section class="ArticleDetails__main"><div class="ArticleLayoutHeader"><div class="ArticleLayoutHeader__info"><h2 class="ArticleLayoutHeader__info__title">ORIGINAL RESEARCH article</h2> <div class="ArticleLayoutHeader__info__journalDate"><span>Front. Mar. Sci.</span><span>, 04 July 2022</span></div> <div class="ArticleLayoutHeader__info__journalDate"> Sec. Marine Ecosystem Ecology </div> <div class="ArticleLayoutHeader__info__doiVolume"><span> Volume 9 - 2022 | </span> <a href="https://doi.org/10.3389/fmars.2022.899877" class="ArticleLayoutHeader__info__doi"> https://doi.org/10.3389/fmars.2022.899877 </a></div> <!----></div> <!----> <div class="ArticleLayoutHeader__isPartOfRT"><span class="ArticleLayoutHeader__isPartOfRT__label">This article is part of the Research Topic</span> <span class="ArticleLayoutHeader__isPartOfRT__title">Coralline Algae: Past, Present, and Future Perspectives</span> <span class="Link__wrapper"><a aria-label="View all 10 articles" href="https://www.frontiersin.org/research-topics/26653/coralline-algae-past-present-and-future-perspectives/magazine" target="_self" data-event="customLink-link-a_viewAll10Articles" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View all 10 articles</span></a></span></div></div> <div class="ArticleDetails__main__content"><div class="ArticleDetails__main__content__main ArticleDetails__main__content__main--fullArticle"><div class="JournalAbstract"><div class="JournalAbstract__titleWrapper"><h1>Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain)</h1> <!----></div> <!----></div> <div class="JournalFullText"><div class="JournalAbstract"><a id="h1" name="h1"></a><div class="authors"><span class="author-wrapper"><a href="https://loop.frontiersin.org/people/515704" class="user-id-515704"><img class="pr5" src="https://loop.frontiersin.org/images/profile/515704/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="Julio Aguirre*&#x;">Julio Aguirre</a><sup>1*†</sup></span><span class="author-wrapper"><img class="pr5" src="https://loop.frontiersin.org/cdn/images/profile/default_32.jpg" alt="Juan I. Baceta&#x;" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';">Juan I. Baceta<sup>2†</sup></span><span class="author-wrapper"><a href="https://loop.frontiersin.org/people/648405" class="user-id-648405"><img class="pr5" src="https://loop.frontiersin.org/images/profile/648405/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="Juan C. Braga&#x;">Juan C. Braga</a><sup>1†</sup></span></div><ul class="notes"><li><span><sup>1</sup></span>Dpto. Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Granada, Spain</li><li><span><sup>2</sup></span>Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Bilbao, Spain</li></ul><p>During the Paleocene/Eocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO<sub>2</sub>. This event lasted for ~100 thousands of years with the consequent ocean acidification (estimated pH = 7.8-7.6). In this paper, we analyze the effects of this global environmental shift on coralline algal assemblages in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain), where the PETM is recorded within coastal-to-shallow marine carbonate and siliciclastic deposits. In both sections, coralline algae occur mostly as fragments, although rhodoliths and crusts coating other organisms are also frequent. Rhodoliths occur either dispersed or locally forming dense concentrations (rhodolith beds). <i>Distichoplax biserialis</i> and geniculate forms (mostly <i>Jania nummulitica</i>) of the order Corallinales dominated the algal assemblages followed by Sporolithales and Hapalidiales. Other representatives of Corallinales, namely <i>Spongites</i>, <i>Lithoporella</i> as well as <i>Neogoniolithon</i>, <i>Karpathia</i>, and <i>Hydrolithon</i>, are less abundant. Species composition does not change throughout the Paleocene/Eocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a reduction. They were abundant during the late Thanetian but became rare during the early Ypresian. This abundance decrease is due to a drastic change in the local paleoenvironmental conditions immediately after the boundary. A hardground at the top of the Thanetian carbonates was followed by continental sedimentation. After that, marine sedimentation resumed in shallow, very restricted lagoon and peritidal settings, where muddy carbonates rich in benthic foraminifera, e.g., milioliids (with abundant <i>Alveolina</i>) and soritids, and eventually stromatolites were deposited. These initial restricted conditions were unfavorable for coralline algae. Adverse conditions continued to the end of the study sections although coralline algae reappeared and were locally frequent in some beds, where they occurred associated with corals. In Serraduy, the marine reflooding was also accompanied by significant terrigenous supply, precluding algal development. Therefore, the observed changes in coralline algal assemblages during the PETM in the Pyrenees were most likely related to local paleoenvironmental shifts rather than to global oceanic or atmospheric alterations.</p><div class="clear"></div></div><div class="JournalFullText"><a id="h2" name="h2"></a><h2>Introduction</h2><p class="mb15">Recent studies on the present-day global change, particularly increasing temperature and ocean acidification linked to the massive release of greenhouse gasses to the atmosphere due to anthropogenic activities, are progressively demanding detailed analyses of events of similar magnitude throughout the Earth history (<a href="#B131">Ridgwell and Schmidt, 2010</a>; <a href="#B64">Gattuso and Hansson, 2011</a>; <a href="#B74">Hönisch et al., 2012</a>; <a href="#B72">Hansen et al., 2013</a>; <a href="#B97">Lunt et al., 2013</a>; <a href="#B167">Zeebe and Zachos, 2013</a>; <a href="#B42">Burke et al., 2018</a>; <a href="#B73">Haynes and Hönisch, 2020</a>). One of the targets is to analyze the effects of these global processes on marine calcified biota in the geological record to model and compare with the predicted biological changes for the future. The Paleocene/Eocene thermal maximum (PETM) is a spike-like thermal event (<a href="#B89">Kennett and Stott, 1991</a>; <a href="#B156">Thomas and Shackleton, 1996</a>), at which researchers are looking as an ancient analogue to understand the ongoing biotic changes (<a href="#B166">Zeebe and Westbroek, 2003</a>; <a href="#B147">Sluijs et al., 2007</a>; <a href="#B131">Ridgwell and Schmidt, 2010</a>; <a href="#B104">McInerney and Wing, 2011</a>; <a href="#B165">Zeebe and Ridgwell, 2011</a>; <a href="#B74">Hönisch et al., 2012</a>; <a href="#B164">Zeebe, 2012</a>; <a href="#B111">Norris et al., 2013</a>; <a href="#B167">Zeebe and Zachos, 2013</a>; <a href="#B108">Mudelsee et al., 2014</a>; <a href="#B73">Haynes and Hönisch, 2020</a>).</p><p class="mb15">During the Paleocene/Eocene boundary ~55.6 million years ago (Ma), the Earth witnessed the warmest event of the last 66 Ma due to a huge delivery of CO<sub>2</sub> to the atmosphere mostly linked to volcanism (<a href="#B73">Haynes and Hönisch, 2020</a>). This event is recorded by an abrupt negative carbon stable isotope (δ<sup>13</sup>C) excursion (CIE) (<a href="#B91">Koch et al., 1992</a>). It is estimated that about 1,500 ppmv of CO<sub>2</sub> were released to the atmosphere during a short time interval of 120-220 thousands of years (kyr) (e.g., <a href="#B147">Sluijs et al., 2007</a>; <a href="#B104">McInerney and Wing, 2011</a>) or even less (<a href="#B89">Kennett and Stott, 1991</a>; <a href="#B163">Zachos et al., 2005</a>). The most recent time model suggests that there was a first pulse of CO<sub>2</sub> release 5-6 kyr after the CIE that was followed by sustained high values for ca. 40 kyr and ended ~100 kyr (<a href="#B73">Haynes and Hönisch, 2020</a>). As a consequence, ocean pH decreased to 7.8-7.6 and global ocean surface temperature increased 5-9°C (<a href="#B163">Zachos et al., 2005</a>; <a href="#B162">Zachos et al., 2008</a>; <a href="#B104">McInerney and Wing, 2011</a>; <a href="#B165">Zeebe and Ridgwell, 2011</a>; <a href="#B164">Zeebe, 2012</a>; <a href="#B111">Norris et al., 2013</a>; <a href="#B167">Zeebe and Zachos, 2013</a>; <a href="#B108">Mudelsee et al., 2014</a>; <a href="#B73">Haynes and Hönisch, 2020</a>).</p><p class="mb15">Despite the drastic atmospheric, temperature, and oceanic alterations taking place during the PETM, only deep-sea benthic foraminifera were significantly affected, and 35-50% of the species became extinct (<a href="#B153">Thomas, 1990</a>; <a href="#B155">Thomas, 2007</a>; <a href="#B19">Alegret et al., 2009a</a>; <a href="#B18">Alegret et al., 2009b</a>), whereas the event had a lesser impact on marginal platform inhabitants (<a href="#B154">Thomas, 2003</a>; <a href="#B17">Alegret et al., 2005</a>). Coral reef ecosystems also showed considerable reduction in coral species diversity, number of reef sites, reef size, and reef carbonate production during the Paleocene/Eocene boundary (<a href="#B59">Flügel and Kiessling, 2002</a>; <a href="#B139">Schneibner and Speijer, 2008</a>; <a href="#B90">Kiessling, 2010</a>; <a href="#B118">Perrin and Kiessling, 2010</a>). <a href="#B111">Norris et al. (2013)</a> called this reef collapse as the early Eocene reef gap.</p><p class="mb15">Larger benthic and planktonic foraminifera, calcareous nannoplankton and deep-sea ostracods experienced diversity turnovers during the PETM (<a href="#B136">Schaub, 1951</a>; <a href="#B75">Hottinger, 1960</a>; <a href="#B45">Canudo and Molina, 1992</a>; <a href="#B44">Canudo et al., 1995</a>; <a href="#B88">Kelly et al., 1998</a>; <a href="#B148">Speijer and Morsi, 2002</a>; <a href="#B140">Scheibner et al., 2005</a>; <a href="#B66">Gibbs et al., 2006a</a>; <a href="#B67">Gibbs et al., 2006b</a>; <a href="#B149">Speijer et al., 2012</a>). In addition, aberrant forms (teratologies) of calcareous nannoplankton (<a href="#B130">Raffi and De Bernardi, 2008</a>), as well as dwarfism in deep-sea ostracods (<a href="#B161">Yamaguchi et al., 2012</a>), have been recorded.</p><p class="mb15">Coralline algae, fully calcified marine autotrophic organisms, are one of the most endangered algal groups due to global temperature increase and ocean acidification (e.g., <a href="#B100">Martin and Hall-Spencer, 2017</a>; <a href="#B47">Cornwall et al., 2021</a>). Laboratory studies and field observations indicate that coralline algae might be negatively affected due to ocean acidification derived from the greenhouse gasses release (<a href="#B20">Anthony et al., 2008</a>; <a href="#B70">Hall-Spencer et al., 2008</a>; <a href="#B99">Martin and Gattuso, 2009</a>; <a href="#B41">Büdenbender et al., 2011</a>; <a href="#B50">Diaz-Pulido et al., 2012</a>; <a href="#B85">Kamenos et al., 2013</a>; <a href="#B68">Guy-Haim et al., 2016</a>; <a href="#B100">Martin and Hall-Spencer, 2017</a>; <a href="#B115">Peña et al., 2020a</a>; <a href="#B47">Cornwall et al., 2021</a>). Nonetheless, contradictory or non-conclusive results have also been obtained (<a href="#B100">Martin and Hall-Spencer, 2017</a>; <a href="#B115">Peña et al., 2020a</a>; <a href="#B47">Cornwall et al., 2021</a>; and references therein) due to acclimation of coralline algae to acidification, physiological advantages (pre-adaptations) or interaction with other non-calcified epiphytes growing on corallines (<a href="#B100">Martin and Hall-Spencer, 2017</a>; <a href="#B69">Guy-Haim et al., 2020</a>; <a href="#B115">Peña et al., 2020a</a>; <a href="#B47">Cornwall et al., 2021</a>).</p><p class="mb0">In order to explore the long-term effects of the global change on coralline algae and their biological/evolutionary responses to these environmental alterations, here we analyzed coralline algal assemblages across the Paleocene/Eocene boundary and the PETM. The main aim was to assess how behaved/responded coralline algae to this major temperature change and ocean acidification event. We studied the classical sections of Campo and Serraduy, in the south-central Pyrenees (Huesca province, N Spain), which record upper Thanetian and lower Ypresian shallow-water carbonates as well as the PETM. These sections have been largely studied mostly focusing on the stratigraphy, sedimentology, biostratigraphy, and geochemistry across the Paleocene/Eocene interval (<a href="#B56">Eichenseer and Luterbacher, 1992</a>; <a href="#B114">Payros et al., 2000</a>; <a href="#B125">Pujalte et al., 2000a</a>; <a href="#B122">Pujalte et al., 2000b</a>; <a href="#B113">Orue-Etxebarria et al., 2001</a>; <a href="#B107">Molina et al., 2003</a>; <a href="#B124">Pujalte et al., 2003</a>; <a href="#B141">Schmitz and Pujalte, 2003</a>; <a href="#B142">Schmitz and Pujalte, 2007</a>; <a href="#B138">Scheibner et al., 2007</a>; <a href="#B53">Domingo et al., 2009</a>; <a href="#B123">Pujalte et al., 2009a</a>; <a href="#B127">Pujalte et al., 2009b</a>; <a href="#B133">Robador et al., 2009</a>; <a href="#B21">Arostegi et al., 2011</a>; <a href="#B26">Baceta et al., 2011</a>; <a href="#B98">Manners et al., 2013</a>; <a href="#B126">Pujalte et al., 2014</a>; <a href="#B71">Hamon et al., 2016</a>; <a href="#B54">Duller et al., 2019</a>; <a href="#B96">Li et al., 2020</a>; <a href="#B146">Serra-Kiel et al., 2020</a>; <a href="#B128">Pujalte et al., 2022</a>). Regarding the fossil content, studies have focused mostly on planktonic and benthic foraminifera (both larger and small forms) as well as corals (<a href="#B144">Serra-Kiel et al., 1994</a>; <a href="#B113">Orue-Etxebarria et al., 2001</a>; <a href="#B107">Molina et al., 2003</a>; <a href="#B138">Scheibner et al., 2007</a>; <a href="#B96">Li et al., 2020</a>; <a href="#B146">Serra-Kiel et al., 2020</a>). Nonetheless, no detailed analysis of the coralline algae throughout the Paleocene-Eocene transition has been carried out. We analyze the type of occurrence, species diversity and relative abundance of coralline algae with respect to other fossils throughout the late Thanetian (late Paleocene)-early Ypresian (early Eocene) interval to check how global alterations during the PETM affected coralline algae. In the case of rhodoliths, we also examine the coralline algal growth forms, as well as the inner algal arrangements and external morphology.</p><a id="h3" name="h3"></a><h2>Geological Setting</h2><p class="mb0">The Pyrenees is a reference area in Western Europe for the study of Paleogene shallow to deep-marine deposits and the series of distinct biotic and physical events that punctuated the beginning of the Cenozoic. During the Paleocene and early Eocene, the Pyrenean basin was a large marine embayment opening to the Bay of Biscay, to the WNW, with a central (hemi)pelagic trough flanked on the north, south and east by extensive shallow marine carbonate platforms (<a href="#B25">Baceta et al., 2004</a>; <a href="#B26">Baceta et al., 2011</a>) (<a href="#f1">Figure 1A</a>). The platform systems evolved with general ramp profiles and most sectors exhibit a wide range of carbonate facies representative of beaches, tidal flats, lagoons, seagrass banks, shoals, tidal bars and a variety of reefal constructions. Most inner to mid ramp lithofacies are relatively rich in photic-dependent organisms (calcareous red algae, corals, larger benthic foraminifera –LBF–) and also comprise a varied heterozoan biota, represented by mollusks, bryozoans, echinoderms (<a href="#B55">Eichenseer, 1988</a>; <a href="#B144">Serra-Kiel et al., 1994</a>; <a href="#B24">Baceta, 1996</a>; <a href="#B25">Baceta et al., 2004</a>; <a href="#B132">Robador, 2008</a>; <a href="#B26">Baceta et al., 2011</a>). Landwards, the platform successions interfinger with siliciclastic and mixed sediments with subordinate evaporites and discontinuous paleosols, known as the Garumnian facies, which represent alluvial to coastal plain depositional environments (<a href="#f1">Figure 1A</a>).</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 1</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g001.jpg" alt="www.frontiersin.org" id="f1" loading="lazy"> </picture> </a><p><strong>Figure 1</strong> <strong>(A)</strong> General paleogeography of the Pyrenean area during the earliest Eocene, at the time of the so-called Ilerdian transgression (adapted from <a href="#B25">Baceta et al., 2004</a>). <strong>(B)</strong> Enlarged geographic map of part of the Ainsa-Tremp sector of the Pyrenean basin with location of the Campo and Serraduy sections (yellow starts). <strong>(C)</strong> Integrated stratigraphy of the upper Paleocene-lowermost Eocene strata of the Ainsa-Tremp area (adapted from <a href="#B26">Baceta et al., 2011</a>; <a href="#B126">Pujalte et al., 2014</a>). The rectangles indicate the position of the two study stratigraphic sections within the general stratigraphic framework.</p></div><div class="DottedLine"></div><p class="mb15 w100pc float_left mt15">Sedimentation during the Paleocene and early Eocene in the Pyrenean basin margins evolved under general transgressive conditions, punctuated by a number of third order relative sea-level falls of variable magnitude and regional extent. These sea level drops are recorded by abrupt facies shifts and more or less prominent erosional discontinuities, commonly associated to enhanced subaerial exposure. Based on mapping and regional correlation, up to five depositional sequences recording shallow marine settings have been distinguished within the upper Thanetian-lower Ypresian succession (<a href="#B56">Eichenseer and Luterbacher, 1992</a>; <a href="#B24">Baceta, 1996</a>; <a href="#B25">Baceta et al., 2004</a>; <a href="#B26">Baceta et al., 2011</a>).</p><p class="mb15">Our study focuses on the Paleocene to lower Eocene coralline red algae recorded in the Campo and Serraduy sections, which form part of continuous outcrops along the Ferrera and Morillo-Merli ridges, on the northern flank of the Tremp-Ainsa area (<a href="#f1">Figure 1B</a>). Previous studies in these two sections and on coeval outcrops in the whole Tremp-Ainsa area have provided a well-constrained stratigraphic framework for the alluvial-coastal to shallow marine successions embedding the PETM event (e.g., <a href="#B55">Eichenseer, 1988</a>; <a href="#B114">Payros et al., 2000</a>; <a href="#B25">Baceta et al., 2004</a>; <a href="#B26">Baceta et al., 2011</a>). A detailed biostratigraphic scheme has been proposed based on LBF biozonation calibrated with standard calcareous plankton zonations and magnetostratigraphy (e.g., <a href="#B76">Hottinger and Schaub, 1960</a>; <a href="#B137">Schaub, 1973</a>; <a href="#B144">Serra-Kiel et al., 1994</a>; <a href="#B145">Serra-Kiel et al., 1998</a>; <a href="#B113">Orue-Etxebarria et al., 2001</a>; <a href="#B127">Pujalte et al., 2009b</a>; <a href="#B146">Serra-Kiel et al., 2020</a>) (<a href="#f1">Figure 1C</a>).</p><p class="mb15">The upper Paleocene to lower Eocene strata of the area involves the interbedding of four lithostratigraphic formations (<a href="#f1">Figure 1C</a>). The Esplugafreda and Claret Formations are made up of siliciclastic deposits formed in alluvial to coastal settings. The Navarri and Serraduy Formations are dominated by carbonate lithofacies representing coastal, lagoonal and shallow marine environments. In terms of sequence stratigraphy, the upper Paleocene Esplugafreda and Navarri Formations embrace two third-order depositional sequences (the Th-1 and Th-2) and the lower Ypresian Claret and Serraduy Formations comprise three depositional sequences (IL-1, IL-2 and IL-3) (<a href="#f1">Figure 1C</a>). The PETM, as determined from detailed geochemical and isotopic studies (<a href="#B126">Pujalte et al., 2014</a>; <a href="#B128">Pujalte et al., 2022</a>) lies within the lowermost Ypresian IL-1 sequence, encompassing most of the alluvial Claret Fm. and the lowermost marine deposits of the Serraduy Formation (<a href="#f1">Figure 1C</a>).</p><p class="mb0">According to paleogeographic reconstructions of the area (<a href="#B126">Pujalte et al., 2014</a>), the Serraduy section represents a shallower position relative to the Campo section. This is clearly evidenced by the architecture of the upper Paleocene succession, which at Campo section mainly consists of shallow marine carbonates, whereas at Serraduy section it is mostly made up of continental Garumnian facies. In both sections, the early Eocene comprises coastal and shallow-marine carbonates defining a deepening succession that culminates with middle to outer ramp deposits. In most outcrops of the Tremp-Ainsa area, the PETM event lies within continental siliciclastic deposits. In the Campo section, it is recorded within an interval of continental clastics with discontinuous palustrine carbonates passing vertically to inner ramp and restricted tidal flat carbonates (<a href="#f1">Figure 1C</a>). The vertical facies succession of the Paleocene-lower Eocene deposits exposed at Campo and Serraduy is synthetized in <a href="#f2">Figure 2</a>.</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 2</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g002.jpg" alt="www.frontiersin.org" id="f2" loading="lazy"> </picture> </a><p><strong>Figure 2</strong> Stratigraphic logs of the Campo <strong>(A)</strong> and Serraduy <strong>(B)</strong> sections, with indication of facies, main intervals, stratigraphic sequences (Th and IL), biostratigraphy, and the location of the samples studied for coralline algae (after <a href="#B55">Eichenseer, 1988</a>; <a href="#B144">Serra-Kiel et al., 1994</a>; <a href="#B132">Robador, 2008</a>; <a href="#B26">Baceta et al., 2011</a>; <a href="#B146">Serra-Kiel et al., 2020</a>). Wck, Wackestone; Pck, Packstone; Grst, Grainstone; Rudst, Rudstone; Flst, Floastone; SB, Sequence boundary.</p></div><div class="DottedLine"></div><a id="h4" name="h4"></a><h2>Stratigraphic Sections</h2><h3>Campo Section</h3><p class="mb15">This section is located along the banks of the Esera River, 1 km south from the village of Campo (<a href="#f1">Figure 1B</a>). Three main outcrops (along the old road to Ainsa, the local road to Navarri, and the road from Campo to Graus) allow the bed-by-bed analysis of 173 m of the upper Paleocene to lower Eocene deposits (<a href="#f2">Figure 2A</a>). Sampling was focused in two intervals. The lower one comprises the uppermost 38 m of the Thanetian Th-2 sequence, which is made up of middle ramp bioclastic carbonates with decimeter- to meter-thick sigmoidal cross bedded tidal bars trending towards the east and southeast. This interval culminates with a massive muddy limestone rich in corals, red algae and mollusks, just below the prominent discontinuity at the top of the Th-2 sequence that marks the Paleocene-Eocene boundary. According to <a href="#B144">Serra-Kiel et al. (1994</a>; <a href="#B146">2020</a>), the LBF assemblage of this upper part of the Th-2 sequence comprises <i>Glomalveolina levis</i>, <i>Assilina yvettae</i>, <i>A. azilensis</i>, and <i>Daviesina garumnensis</i>, all characteristic of the SBZ4 biozone of <a href="#B145">Serra-Kiel et al. (1998)</a> (<a href="#f2">Figure 2A</a>).</p><p class="mb0">The upper interval, up to 41 m thick, belongs to the lower Eocene and comprises the upper part of the IL-1 and most of the IL-2 depositional sequences (<a href="#f2">Figure 2A</a>). This interval mainly consists of shallow, inner-ramp carbonates rich in alveolinids, small milioliids, and soritids, associated with subordinate gastropods and bivalves (oysters and lucinids). A 2.5 m thick massive coral-rich limestone bed defining the base of sequence IL-2 was the only providing significant amounts of coralline algae. Therefore, this bed was sampled in two different outcrops: 1) samples CPE-14 and 15 on the new road to Graus, and, 2) samples CPN-1 to 3 on the old road to Ainsa. According to <a href="#B144">Serra-Kiel et al. (1994</a>; <a href="#B146">2020)</a>, this interval encompasses LBF association characteristic of the SBZ5 (<i>Alveolina vredenburgi</i>, <i>A. aramea</i>, <i>A. varians</i>) and the lower part of SBZ6 (<i>A. ellipsoidalis</i>, <i>A. pasticillata</i>, <i>A.</i> aff<i>. aragonensis</i>) (<a href="#f2">Figure 2A</a>).</p><h3>Serraduy Section</h3><p class="mb15">The Serraduy section is located 0.5 km north of Serraduy del Pont, on the Isabena valley, ~12 km to the SE of Campo (<a href="#f1">Figure 1B</a>). Correlation through mapping of the outcrops on both river banks, the Serraduy East and Serraduy West, allowed analyzing in detail a 130 m thick section of upper Paleocene (66 m) and lower Eocene (64 m) deposits (<a href="#f2">Figure 2B</a>).</p><p class="mb15">The upper Paleocene is mostly siliciclastic and consists of red to brownish calcareous lutites with intercalations of medium to coarse-grained lithic sandstones forming lenses, sheets and discrete channel fills (alluvial floodplain deposits), and discontinuous development of calcrete paleosols. Two discrete intervals of shallow marine carbonates, respectively up to 4 and 8 m thick, define the maximum flooding stages within the upper Paleocene depositional sequences Th-1 and Th-2 (<a href="#f1">Figures 1C</a>, <a href="#f2">2B</a>). We sampled the upper one (Th-2 sequence) (<a href="#f2">Figure 2B</a>). The lower beds of this upper limestone unit are sandy coralgal limestones, which are the only ones in the Thanetian of Serraduy section containing significant amount of red algae (samples SEW-0 to 2). According to <a href="#B144">Serra-Kiel et al. (1994</a>; <a href="#B146">2020)</a>, the lower limestone interval (Th-1 sequence) comprises a LBF assemblage of <i>Glomalveolina primaeva</i>, <i>Idalina sinjarica</i>, and <i>Miscellanea yvettae</i>, indicative of the SBZ3, whereas the upper limestone interval (Th-2 sequence) includes <i>Glomalveolina levis</i> and <i>Daviesina garumnensis</i>, two characteristic taxa of the SBZ4 (<a href="#f2">Figure 2B</a>).</p><p class="mb15">The lower Eocene deposits belong to depositional sequences IL-1 to IL-3 (<a href="#f2">Figure 2B</a>). The IL-1 is entirely made up of continental deposits, including the characteristic Claret conglomerate member of the Claret Formation, which according to <a href="#B126">Pujalte et al. (2014</a>; <a href="#B128">2022)</a> marks the beginning of the PETM event in the whole Tremp-Ainsa area.</p><p class="mb15">The IL-2 consists of shallow marine carbonates. The bulk deposits correspond to bedded packstone-grainstones rich in alveolinids and soritids with a LBF assemblage of <i>Alveolina vredenbrigi</i>, <i>A. aramea</i> and <i>Opertorbitolites gracilis</i> (SBZ5) in the lower beds, and <i>A. ellipsoidalis</i>, <i>A. dolioliformis</i> and <i>Opertorbitolites</i> (lower part of SBZ6) in the upper beds (<a href="#f2">Figure 2B</a>). On the Serraduy West outcrop, a bed with scattered corals 13 m above the base of the sequence is the only one with significant red algal content (samples SEW-3). On the east outcrops of the valley, a distinct massive bed package of coralgal limestones, up to 17 m thick, interfingers with the dominant <i>Alveolina</i>-rich deposits and comprises the main interval sampled for red algae (samples SEE-1 to 10) (<a href="#f2">Figure 2B</a>). <a href="#B56">Eichenseer and Luterbacher (1992)</a> interpreted these massive limestones as a low-relief coral biostrome.</p><p class="mb0">The overlying IL-3 sequence rests unconformably onto the IL-2 sequence and consists mainly of bioturbated sandstones, silty marls, and sandy limestones that eventually form meter-thick tidal bars with sigmoidal cross bedding trending towards the northeast and southeast. The fossil content in the mixed deposits is a mixture of small nummulitids, milioliids, rare <i>Alveolina</i>, green algae (dasyclads), bivalves, echinoids and gastropods. Vertically, the basal mixed deposits of the IL-3 pass gradually into <i>Alveolina</i>-rich packstone-grainstones, similar to those defining the bulk of sequence IL-2. The LBF assemblage of these uppermost limestones comprises <i>Alveolina ellipsoidalis</i>, <i>A. dolioliformis</i>, <i>Glomalveolina lepidula</i>, <i>Opertorbitolites</i>, and <i>Nummulites bigurdensis</i>, defining the upper part of the SBZ6 (<a href="#B145">Serra-Kiel et al., 1998</a>).</p><a id="h5" name="h5"></a><h2>Methods</h2><p class="mb15">Coralline algae occur mostly as fragments, which do not preserve enough taxonomic features to be identified at any precise taxonomic level. In these cases, we estimate the relative abundance of coralline algal fragments using the charts of <a href="#B23">Baccelle and Bosellini (1956)</a>.</p><p class="mb15">In the upper Thanetian carbonates, coralline algae occur forming rhodoliths concentrated in particular beds. Here, preservation of the coralline algae is better allowing more precise taxonomic identifications. In these cases, the relative abundance of species was quantified by point-counting the area occupied by each taxon (<a href="#B117">Perrin et al., 1995</a>). We identified the coralline algae at the lowest possible taxonomic level, in most cases at species level. When the specimens could not be confidently assigned to a described species, we used an open specific nomenclature. The taxonomic schemes of orders, families, subfamilies and genera follow recent molecular phylogenies (<a href="#B116">Peña et al., 2020b</a>; <a href="#B80">Jeong et al., 2021</a>).</p><p class="mb15">The external rhodolith morphology was examined in different 2-D sections at the outcrops, as extraction of complete and isolated rhodoliths was impossible due to cementation of limestones. The internal arrangement, algal growth form, and algal composition of rhodoliths were analyzed in thin sections. We use the terminology proposed by <a href="#B160">Woelkerling et al. (1993)</a>, as well as the recent terminology updated by <a href="#B8">Aguirre et al. (2017)</a>.</p><p class="mb0">All data are compiled in <a href="#T1">Table 1</a>, and a discussion of some of the identified taxa is provided in the Taxonomic Appendix.</p><div class="DottedLine"></div><div class="Imageheaders">TABLE 1</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" name="table 1" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t001.jpg" alt="www.frontiersin.org" id="T1" loading="lazy"> </picture> </a><p><strong>Table 1</strong> Coralline algal species distribution in the two study sections, indicating presence (X) of each taxon in the samples.</p></div><div class="DottedLine"></div><a id="h6" name="h6"></a><h2>Results</h2><h3>Coralline Algal Occurrences</h3><p class="mb0">Most of the coralline algae occur as fragments in rudstone, grainstone and packstone lithofacies. They occur with other bioclasts, mostly, larger and small benthic foraminifers, corals, mollusks, bryozoans, echinoids, serpulids, and barnacles, as well as additional rhodophytes, such as <i>Marinella lugeoni</i> <a href="#B120">Pfender 1939</a> and the peyssonneliacean <i>Polystrata alba</i>, <a href="#B49">(Pfender) Denizot 1968</a> and chlorophytes of the orders Dasycladales and Bryopsidales (<i>Halimeda</i> spp) (<a href="#f3">Figure 3</a>).</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 3</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g003.jpg" alt="www.frontiersin.org" id="f3" loading="lazy"> </picture> </a><p><strong>Figure 3</strong> <strong>(A)</strong> Superimposed thalli of <i>Polystrata alba</i> (nucleus of the rhodolith) and coralline algae (sample SEW-15). <strong>(B)</strong> <i>Marinella lugeoni</i> (sample CPE-7). <strong>(C)</strong> Longitudinal section of a <i>Halimeda</i> plate (sample CPE-5). <strong>(D)</strong> Oblique section of a dasycladalean green alga (sample SEE-6i).</p></div><div class="DottedLine"></div><p class="mb0">Coralline algal fragments are small (up to 2 mm; very exceptionally larger) and abraded due to reworking (<a href="#f4">Figures 4A, B</a>). In both sections, coralline algae represent up to 30% of the rock volume in the upper Thanetian sediments. The proportion decreases substantially in the lower Ypresian deposits, with values ranging from 1 to 5% (exceptionally, up to 10% in sample CPE-15).</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 4</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g004.jpg" alt="www.frontiersin.org" id="f4" loading="lazy"> </picture> </a><p><strong>Figure 4</strong> <strong>(A, B)</strong> Grainstone-rudstones of bioclasts including geniculate coralline algae (gen), <i>D. biserialis</i> (Db), larger benthic foraminifera (LBF), echinoids (ech), small benthic foraminifera (sbf), and <i>M. lugeoni</i> (Ml) (A: sample CPE-4; B: sample CPE-7). <strong>(C, D)</strong> Thin laminar encrusting coralline algae coating corals (Co) embedded in a wackestone matrix (<strong>C</strong>: sample SEW-2ii; D: sample SEE-6). <strong>(E)</strong> <i>Sporolithon</i> sp. engulfing geniculate coralline algae (sample SEW-1ii).</p></div><div class="DottedLine"></div><p class="mb15 w100pc float_left mt15">Due to high fragmentation and abrasion in these lithofacies, most coralline algal remains do not show diagnostic characteristics to be properly identified, even at family and order levels. Nonetheless, in some fragments reproductive structures are preserved allowing their identification. In the case of <i>Distichoplax biserialis</i>, the characteristic laminar growth forms and the isobilateral cell arrangements facilitate its identification.</p><p class="mb15">In the small coral buildups found both in the upper Thanetian and lower Ypresian deposits, coralline algae occur as fragments in the matrix and as thin laminar crusts attached to corals (<a href="#f4">Figures 4C, D</a>). More rarely, they form small rhodoliths with bioclastic nuclei, mostly corals or other algal fragments (<a href="#f4">Figure 4E</a>).</p><p class="mb0">Coralline algae also occur loosely to densely packed in rhodolith beds (<a href="#B8">Aguirre et al., 2017</a>), such as those found in the upper part of the Navarri Formation in the Campo section (samples CPE-8 and CPE-10) (<a href="#f5">Figures 5A–E</a>). The loosely packed beds consist of ellipsoidal rhodoliths, from 1 to 3 cm in largest diameter, made up of encrusting to warty corallines (<a href="#f5">Figures 5A, C</a>). They are embedded in a fine-grained packstone-wackestone matrix with accompanying organisms such as echinoids, benthic foraminifers, and bryozoans. Densely packed rhodolith beds contain spheroidal to ellipsoidal rhodoliths, up to 7 cm in largest diameter, consisting of encrusting, fruticose and warty corallines (<a href="#f5">Figures 5B, D, E</a>). In this case, rhodoliths are included in a packstone (rarely grainstone) matrix.</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 5</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g005.jpg" alt="www.frontiersin.org" id="f5" loading="lazy"> </picture> </a><p><strong>Figure 5</strong> <strong>(A)</strong> Loosely packed rhodolith bed. <strong>(B)</strong> Densely packed rhodolith bed. <strong>(C–E)</strong> Detail of warty-fruticose rhodliths. <strong>(F)</strong> Thin encrusting algae coating corals. <strong>(A–E)</strong>: pictures of the upper part of the Navarri Fm. (late Thanetian) in the Campo section. <strong>(F)</strong> picture of the lower part of the Serraduy Fm. (early Ypresian) in the Campo section.</p></div><div class="DottedLine"></div><p class="mb0">Internally, rhodoliths are either multispecific or monospecific (<a href="#f6">Figure 6</a>). They are built up by coralline algae intergrown with encrusting foraminifera (mainly <i>Solenomeris</i>), serpulids, bryozoans, and <i>Polystrata alba</i> (<a href="#f3">Figures 3A</a>, <a href="#f6">6</a>). The nuclei of rhodoliths consist of lithoclasts or bioclasts, such as corals (<a href="#f5">Figures 5F</a>, <a href="#f6">6</a>). Internal voids are filled with the matrix sediment or are open and later filled up with cement. In some cases, rhodoliths are asymmetrical and geopetal structures indicate that the preferential algal growth coincided with the upright position of the rhodolith. This suggests that rhodoliths are preserved in their original growth position, without substantial reworking.</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 6</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g006.jpg" alt="www.frontiersin.org" id="f6" loading="lazy"> </picture> </a><p><strong>Figure 6</strong> Composite pictures of three rhodoliths. <strong>(A)</strong> Rhodolith formed by the intergrowth of encrusting coralline algae and <i>Solenomeris</i> (So) embedded in a packstone matrix (sample CPE-8iii). <strong>(B)</strong> Encrusting-warty thalli of <i>Sporolithon</i> spp. overgrowing a lithified carbonate nucleus. Geopetal filling, coinciding with the asymmetrical algal development to the upper part of the picture, is indicated in the lower part of the photo (sample CPE-8). <strong>(C)</strong> Laminar-encrusting algae overgrowing corals. The rhodolith is embedded in a wackestone-mudstone marly matrix (sample CPE-10).</p></div><div class="DottedLine"></div><h3>Coralline Algal Diversity</h3><p class="mb0">The orders Corallinales, Hapalidiales, and Sporolithales are represented throughout the late Thanetian-early Ypresian interval in the study sections, being the two former groups the most diversified (<a href="#T1">Table 1</a>; <a href="#f7">Figure 7</a>). In the late Thanetian, coralline assemblages include up to 16 species. Maximum coralline diversification is found in the coral floatstone facies sampled at Serraduy section (samples SEW-0 and SEW-1) (<a href="#f2">Figures 2B</a>, <a href="#f7">7</a>). The three algal orders underwent a drastic reduction in the number of species in the earliest Ypresian, with a virtual disappearance within the first marine beds encompassing and immediately above the PETM at the Campo section. Here, the limestones were almost exclusively dominated by LBF packstones-grainstones, with alveolinids and subordinate soritids. After this interval, the species richness of corallines increases in the early Ypresian. This diversity recovery is associated with the development of coral buildups at the base of IL-2 in both Campo and Serraduy sections.</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 7</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g007.jpg" alt="www.frontiersin.org" id="f7" loading="lazy"> </picture> </a><p><strong>Figure 7</strong> Coralline algal species abundance in the study sections.</p></div><div class="DottedLine"></div><p class="mb0">The estimation of the relative abundance of species is hampered by preservation. Among the easily identifiable ones, the best represented is <i>Distichoplax biserialis</i>, which occurs in all samples, followed by geniculate species. The abundance of <i>D. biserialis</i> embedded in a packstone-wackestone matrix found in the uppermost Thanetian carbonates in the Campo section (samples CPE-9 and CPE-10) is remarkable, as it ranges from 73% to 95% of the coralline assemblages (<a href="#f8">Figure 8</a>).</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 8</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g008.jpg" alt="www.frontiersin.org" id="f8" loading="lazy"> </picture> </a><p><strong>Figure 8</strong> <i>Disctichoplax biserialis</i> concentration at the upper part of the Navarri Formation (late Thanetian) in the Campo section (sample CEP-9).</p></div><div class="DottedLine"></div><p class="mb15 w100pc float_left mt15">In contrast, preservation of coralline algae in the upper Thanetian rhodolith beds of Campo allows estimating species abundance. Here, members of the order Sporolithales were the most abundant (up to 75%), being <i>Sporolithon lugeoni</i> the best-represented species, followed by <i>Spongites</i> sp. 1, a few Hapalidiales, and anecdotal presence of laminar crusts of <i>Lithoporella</i> spp.</p><p class="mb0">The thin laminar algae encrusting corals, both in the Thanetian and in the Ypresian, are mostly <i>Lithoporella</i> spp, and <i>Lithothamnion crispithallus</i> and <i>Lithothamnion</i> sp 5.</p><a id="h7" name="h7"></a><h2>Discussion</h2><h3>Paleoenvironmental Evolution</h3><p class="mb15">High fragmentation and rounding of coralline algae and other bioclasts, in the cross-bedded deposits defining the lower part of the upper Thanetian Navarri Formation indicate high-energy conditions in an open inner ramp setting. Dominance of Corallinales is consistent with these shallow water conditions (<a href="#B38">Braga and Martín, 1988</a>; <a href="#B35">Braga and Aguirre, 2001</a>; <a href="#B36">Braga and Aguirre, 2004</a>; <a href="#B8">Aguirre et al., 2017</a>). Particularly interesting is the relative abundance of geniculate coralline algae, which dominate in high-energy intertidal, shallow-subtidal settings, both in the present day (<a href="#B63">Garbary and Johansen, 1982</a>; <a href="#B43">Canals and Ballesteros, 1997</a>; <a href="#B48">Couto et al., 2014</a>) and in the fossil record (<a href="#B138">Scheibner et al., 2007</a>; <a href="#B129">Quaranta et al., 2012</a>; <a href="#B40">Brandano, 2017</a>). In these settings, they are prone to disarticulation and breakage after death, thus, reducing their fossilization potential (<a href="#B14">Aguirre et al., 2000a</a>; <a href="#B12">Aguirre et al., 2010</a>; <a href="#B27">Basso, 2012</a>). During the late Thanetian, coralline algae diversified in small coral buildups, such as those found in the Serraduy section (samples SEW-0 and SEW-1) (<a href="#f2">Figures 2B</a>, <a href="#f7">7</a>).</p><p class="mb15">In addition to coralline algal fragments, loosely and densely packed rhodolith beds developed at the upper part of the Navarri Formation. Although rhodolith shape and algal growth forms in the outer parts of the rhodoliths can be water-depth and hydrodynamic indicators (<a href="#B32">Bracchi et al., 2022</a>), laboratory experiments and field observations have shown that in most cases there is no correlation between those factors (<a href="#B8">Aguirre et al., 2017</a>; <a href="#B33">Braga, 2017</a>; <a href="#B112">O’Connell et al., 2020</a>; and references therein). In the Campo section, several evidences suggest that rhodolith beds formed in relatively deep, calm marine settings, most likely in a middle ramp: 1) the matrix surrounding the rhodoliths is fine grained-muddy carbonate; 2) <i>Sporolithon</i> spp. are major components of the rhodoliths, indicating growth in relative deep waters (several tens of meters), as abundance of Sporolithales increases with water depth (<a href="#B3">Adey and Macintyre, 1973</a>; <a href="#B1">Adey, 1979</a>; <a href="#B106">Minnery et al., 1985</a>; <a href="#B2">Adey, 1986</a>; <a href="#B62">Fravega et al., 1989</a>; <a href="#B105">Minnery, 1990</a>; <a href="#B14">Aguirre et al., 2000a</a>; <a href="#B35">Braga and Aguirre, 2001</a>; <a href="#B36">Braga and Aguirre, 2004</a>; <a href="#B37">Braga and Bassi, 2007</a>; <a href="#B39">Braga et al., 2009</a>); and, 3) geopetal fillings point to a normal polarity of rhodoliths and preservation in growth position without significant reworking.</p><p class="mb15">The uppermost carbonate beds of the upper Thanetian Navarri Formation, immediately below the karst surface, are overwhelmingly dominated by large laminar thalli of <i>D. biserialis</i> dispersed in a muddy (packstone-wackestone) matrix (<a href="#f8">Figure 8</a>). Loose laminar growth forms of this coralline alga in fine-grained sediments suggest low energy conditions. These sediments at the top of the Navarri Formation are interpreted as middle ramp deposits as well (<a href="#B138">Scheibner et al, 2007</a>; <a href="#B96">Li et al., 2020</a>).</p><p class="mb15">In the Campo section, the Paleocene-Eocene boundary is represented by a subaerial erosional surface that reflects a profound paleoenvironmental change in the study region. Overlying the unconformity, continental clays, sands, and discontinuous palustrine limestones of the Claret Formation formed. Continental sedimentation was coeval with a sea level lowering during the carbon isotope excursion (CIE) recorded at the Paleocene/Eocene transition (e.g., <a href="#B126">Pujalte et al., 2014</a>; <a href="#B128">Pujalte et al., 2022</a>). In the Campo section, the continental interval is overlain by packstone-wackestone beds of alveolinids, which are topped, in turn, by laminated microbial carbonates (upper deposits of IL-1 sequence). The almost exclusive dominance of <i>Alveolina</i> indicates that they formed in a very restricted lagoon with probable fluctuations in salinity (<a href="#B31">BouDagher-Fadel, 2018</a>). The profuse development of microbial laminites, with evaporite minerals, reveals marginal/very restricted to eventually hypersaline environmental conditions. Coralline algae were absent in all these settings. Stratal geometry of these first marine beds shows an onlap indicating relative sea-level rise, which increased accommodation.</p><p class="mb15">Higher up into the study sections, milioliids and locally oysters (sample CPE-14), together with <i>Alveolina</i>, dominate the fossil assemblages. Milioliids are small benthic foraminifers preferentially inhabiting lagoons (<a href="#B109">Murray, 1991</a>; <a href="#B110">Murray, 2006</a>). Dasyclads are also abundant in the lower Ypresian carbonates, particularly in the Serraduy section (<a href="#T1">Table 1</a>). They preferentially inhabit low latitude, shallow bays and lagoons (<a href="#B57">Flügel, 1985</a>; <a href="#B58">Flügel, 1991</a>; <a href="#B30">Berger and Kaever, 1992</a>; <a href="#B13">Aguirre and Riding, 2005</a>; <a href="#B29">Berger, 2006</a>).</p><p class="mb15">Locally, small coral patches, corresponding to samples CPE-15 and CPN-3 of the Campo section, as well as samples SEW-3 and SEE-5—SEE-9 of the Serraduy section, grew in these shallow-water environments dominated by alveolinids. Corals are embedded in a wackestone-packstone matrix, very rich in milioliids, and suggest relatively normal marine conditions, probably in lagoonal areas with connection with open marine waters. The only records of corallines in the lower Ypresian deposits of the Campo section are found in the coral patches at the base of sequence IL-2. In the Serraduy section, coralline algae are present but scarce in all samples from the lower Ypresian IL-2 sequence, being more abundant in the coral buildups (<a href="#T1">Table 1</a>).</p><p class="mb0">In the Campo section, the lower Ypresian carbonates above the coral buildups represent a progressive deepening trend, as inferred by the progressive diversification of the larger benthic foraminifer assemblages (particularly, nummulitids) as well as other invertebrates (bivalves, gastropods, and echinoderms). In the uppermost part of the section, a monospecific bed of lucinids preserved in life position (below sample CPE-19) is found. The family Lucinidae is one of the most diversified groups of bivalves in chemosynthetic communities associated with hydrothermal vents and cold seeps, disoxic bottom conditions and/or eutrophic settings (<a href="#B152">Taylor and Glover, 2006</a>). This suggests the prevalence of harsh conditions for coralline algae during the early Ypresian deepening in the Campo section.</p><h3>Coralline Algal Diversity During the PETM</h3><p class="mb15">In terms of number of species, coralline algae maintain similar species richness along the late Thanetian-early Ypresian interval in our study case (<a href="#f7">Figure 7</a>). During the Thanetian, diversity peaked in particular beds, such as the rhodolith beds of the Campo section and in the coral buildups of the Serraduy section. In addition, the three coralline algal groups, namely Sporolithales, Hapalidiales, and Corallinales, keep similar diversity values, being Corallinales and Hapalidiales the most diversified ones (<a href="#f7">Figure 7</a>).</p><p class="mb15">Our results also show that the species found in the early Ypresian are also found in the late Thanetian deposits (<a href="#T1">Table 1</a>). This means that no extinction event is recorded at the Paleocene-Eocene transition at Campo and Serraduy sections. Furthermore, no significant turnover is observed since no new species occurred in the lower Ypresian deposits.</p><p class="mb15">The global diversification history of coralline algae shows a slight increase in diversity during the late Paleocene-early Eocene transition due to the diversification of Hapalidiales (<a href="#B14">Aguirre et al., 2000a</a>). Nonetheless, no significant diversity change is observed in the Pyrenean study areas. Both in Campo and Serraduy sections, coralline algae disappeared during the deposition of the Claret Formation and recovered long time after the Paleocene-Eocene boundary, within the Serraduy Formation.</p><p class="mb15">After the continentalization during the PETM interval, represented by the Claret Formation, marine deposition restarted in the early Ypresian but in very restricted lagoonal settings, unfavorable for the growth of coralline algae (<a href="#B160">Woelkerling et al., 1993</a>). These paleoenvironmental conditions remained during accumulation of <i>Alveolina</i>-rich deposits that form the bulk of the Serraduy Formation, inhibiting extensive coralline algal development. In the Campo section, siliciclastic content increases in the two topmost samples (CPE-19 and CPE-20) representing the inner to middle ramp transition. This might account for the virtual absence of coralline algae since terrigenous supply inhibits their profuse development (<a href="#B8">Aguirre et al., 2017</a>).</p><p class="mb15">Coralline algae, however, occurred associated with the lower Ypresian coral patch reefs, as laminar and thin crusts coating the coral colonies (<a href="#f4">Figures 4C, D</a>, <a href="#f5">5F</a>). Coral growth and expansion of coralline algae denote the reestablishment of fully marine conditions. In these settings, coralline algae became totally diversified, with species richness similar to that of the late Thanetian (<a href="#T1">Table 1</a>; <a href="#f7">Figure 7</a>). It seems, therefore, that, in the Pyrenean localities, coralline algae disappeared after the PETM due to drastic shifts in local environmental conditions, not as a consequence of global events.</p><p class="mb15">We are not able to ascertain that the massive release of CO<sub>2</sub> to the atmosphere ~55.6 Ma, with the consequent ocean acidification due to lowering pH and temperature rise, affected negatively to coralline algae. Indeed, species richness and species composition were the same when fully marine conditions resumed in the region.</p><p class="mb0">Furthermore to analyze inventories of coralline algal species to evaluate diversity changes throughout the Paleocene-Eocene transition, it is also interesting to investigate the PETM effects on rhodolith beds. After the mass extinction affecting coralline algae at the end of the Cretaceous (<a href="#B14">Aguirre et al., 2000a</a>; <a href="#B15">Aguirre et al., 2000b</a>), rhodolith beds spread significantly during the late Danian and early Thanetian (<a href="#B4">Aguirre et al., 2007</a>); i.e., after a long time of recovery. In the Pyrenees, rhodolith beds were present by the end of the Thanetian (uppermost interval of Navarri Formation) but they were absent during the early Ypresian. Globally, a significant reduction of rhodolith-rich deposits, which are rarely recorded, took place during the early Eocene (<a href="#B79">Howe, 1934</a>; <a href="#B95">Lemoine and Mengaud, 1934</a>; <a href="#B5">Aguirre et al., 2011</a>), and continued during the middle Eocene, at least in mid and high latitudes (<a href="#B11">Aguirre et al., 2020</a>). Rhodolith beds became widely recorded again in the late Eocene (<a href="#B11">Aguirre et al., 2020</a>).</p><a id="h8" name="h8"></a><h2>Conclusions</h2><p class="mb0">We studied coralline algal assemblages in shallow-marine carbonate and siliciclastic deposits during the Paleocene/Eocene Thermal Maximum (PETM) in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain). Coralline algae occur mostly as fragments of branches and forming rhodoliths, which occur either dispersed or in densely packed concentrations (rhodolith beds). Representatives of the orders Sporolithales, Hapalidiales, and Corallinales are present, being Corallinales and Hapalidiales the most diversified ones. Species composition and diversity do not change throughout the Paleocene/Eocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a considerable reduction: from abundant during the late Thanetian to scarce during the early Ypresian. This abundance drop was due to a drastic change in the local paleoenvironmental conditions immediately after the Paleocene/Eocene boundary. The Thanetian marine sedimentation ended with a hardground, which is followed, in turn, by continental deposits formed during the PETM. Marine deposition resumed in shallow, very restricted lagoon and peritidal settings, as indicated by the almost exclusive dominance of <i>Alveolina</i>, milioliids and soritids in muddy carbonates. These paleoenvironmental conditions were unfavorable for the development of coralline algae. They reappeared, and were locally abundant, associated with corals in lower Ypresian beds, where they show diversity values and species composition similar to pre-PETM deposits.</p><a id="h9" name="h9"></a><h2>Taxonomic Appendix</h2><p class="mb15">Species identification of fossil specimens is always challenging since it is based on morpho-anatomical features and depends mostly on their preservation state. Concerning fossil coralline algae, taking into consideration the ongoing phylogenetic classification schemes of recent taxa, their identification is complicated even at supraspecific levels. Preservation of the sporangial reproductive structures is needed to assign fossil specimens to any of the four fully-calcified coralline algal orders (<a href="#B80">Jeong et al., 2021</a>). Unfortunately, this is not always the case and many fossil specimens cannot be correctly identified at any supraspecific level. Based on characters usually preserved in the fossil record, the most feasible taxonomic approach is, at best, the subfamily or family level. The problem is exacerbated when trying to use an already proposed species epithet based on fossil material. Historically, authors have defined species based on ambiguous anatomical characters and have preferred to proposed new names for their findings instead of using already existing ones (<a href="#B34">Braga and Aguirre, 1995</a>; <a href="#B7">Aguirre and Braga, 2005</a>). An additional trouble is the inconsistent use of published species names by other scientists to name their specimens. This has produced an overabundance of species names to designate entities that cannot be unambiguously separated (<a href="#B7">Aguirre and Braga, 2005</a>).</p><p class="mb0">Regarding our study case, we checked species names of coralline algae described in Paleocene-Oligocene deposits. To avoid reinterpretations of original species definitions by later authors, we resort to the original descriptions and illustrations of the species. A description of the anatomical and reproductive features of some coralline algal species recognized in our samples and their similarities with closest species are given below. We focus only on those species that deserve some discussion since they underwent diverse taxonomic interpretations. Thus, we discuss the possible species names that can be assigned to some of the identified morphospecies. For those specimens that are not easily attributed to any species name, we keep an open species nomenclature. In addition, we provide a taxonomic key for all the identified species (<a href="#T2">Table 2</a>) and illustrate all of them in <a href="#f9">Figures 9</a>–<a href="#f12">12</a>.</p><div class="DottedLine"></div><div class="Imageheaders">TABLE 2</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" name="table 2" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-t002.jpg" alt="www.frontiersin.org" id="T2" loading="lazy"> </picture> </a><p><strong>Table 2</strong> Identification key with the anatomical and reproductive features characterizing the genera and species found in the study areas.</p></div><div class="DottedLine"></div><div class="Imageheaders">FIGURE 9</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g009.jpg" alt="www.frontiersin.org" id="f9" loading="lazy"> </picture> </a><p><strong>Figure 9</strong> <strong>(A)</strong> <i>Sporolithon oulianovii</i> (sample CPE-10). <strong>(B)</strong> <i>Sporolithon</i> sp. 1 (sample CPN-3). <strong>(C)</strong> <i>Sporolithon brevium/airoldii</i> (sample CPE-3). <strong>(D)</strong> <i>Sporolithon lugeonii</i> (sample CPE-8). <strong>(E)</strong> Spermetangial conceptacles of <i>S. lugeonii</i> (sample CPE-8). <strong>(F)</strong> <i>Melobesia</i> sp. Arrowheads indicacte two pore canals at the conceptacle roof (sample CPE-8). <strong>(G)</strong> Branch of <i>Lithothamnion</i> cf. <i>corallioides</i> (sample CPE-6).</p></div><div class="DottedLine"></div><p class="mb15">Order Sporolithales (<a href="#f9">Figures 9A–E</a>)</p><p style="margin-top:1em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">1. <i>Sporolithon lugeonii</i> (Pfender) Ghosh and Maithy 1996 (<a href="#f9">Figures 9D, E</a>) We have identified some plants with small uniporate, pear-like shaped conceptacles (100-125 μm in diameter and 100 μm in height) (<a href="#f9">Figure 9E</a>). They show vegetative anatomy and cell sizes similar to <i>Sporolithon lugeonii</i>. Therefore, we interpret these plants as gametangial (male) conceptacles of <i>S. lugeonii</i>. Nonetheless, these gametangial conceptacles coincide both in shape and size to those described as <i>Sporolithon</i> sp. 2 by <a href="#B28">Basso et al. (2019)</a> or as <i>S. airoldii</i> by <a href="#B159">Vannucci et al. (2010)</a>.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">2. <i>Sporolithon brevium</i> (Lemoine) Aguirre and Braga 1988/<i>Sporolithon airoldii</i> (<a href="#B61">Fravega</a>) <a href="#B159">Vannucci, Quaranta and Basso 2010</a> (<a href="#f9">Figure 9C</a>). Based on vegetative anatomy, thallus construction and reproductive structures, this species shows similarities with <i>Sporolithon airoldii</i> (<a href="#B61">Fravega, 1984</a>; <a href="#B159">Vannucci et al., 2010</a>). It also recalls the type material of <i>Sporolithon brevium</i> (<a href="#B6">Aguirre and Braga, 1998</a>), and <i>Sporolithon keenani</i> <a href="#B79">Howe 1934</a>.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">3. <i>Sporolithon</i> sp. 1 (<a href="#f9">Figure 9B</a>). This species has been found in one sample. It is a monomerous plant with a laminar and encrusting growth form. Thallus is thin, with a thin plumose ventral core, made up by 2-3 cell rows that bend upwards to the peripheral region, which consists of up to 15 cell rows. Reproductive structures consist of a few isolated sporangial cavities (3-5 cavities) grouped into very protruding nemathecia-like sori.</p><p style="margin-top:0em;margin-bottom:1em;margin-left:1em;text-indent:-1em;text-align:left">4. Undifferentiated Sporolithales. Under this category, we include small unidentifiable fragments of plants preserving sori.</p><p class="mb15">Order Hapalidales (<a href="#f9">Figures 9F, G</a>, <a href="#f10">10</a>, <a href="#f11">11A–C</a>).</p><p style="margin-top:1em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">1. <i>Melobesia</i> sp. (<a href="#f9">Figure 9F</a>). This species shows dimerous, laminar, very thin thalli made up of 2-3 cell rows that thicken around multiporate conceptacle cavities. The study specimens show similarities with <i>Melobesia</i> sp. from the middle Eocene from the Subbetic of the Betic Cordillera (S Spain) (<a href="#B11">Aguirre et al., 2020</a>).</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">2. <i>Lithothamnion concretum</i> <a href="#B77">Howe 1919a</a> (<a href="#f10">Figure 10C</a>). The study material fits with the original description of this species by <a href="#B77">Howe (1919a)</a>. That is, fruticose plants, occasionally encrusting, with cell filaments arranged in regular zones in the center of the branches, with a relatively well-defined lateral alignment of cells of adjacent filaments. Sporangial conceptacles are up to 750 μm in diameter and 100 μm in height and do not protrude on the thallus surface. This species is close to <i>Lithothamnion pianfolchi</i> <a href="#B102">Mastrorilli, 1967</a> and that identified as <i>Mesophyllum ryukyuensis</i> <a href="#B82">Johnson, 1964</a>. Nonetheless, these two species have smaller sporangial conceptacles. The species also resembles <i>Lithothamnion ramosissimum</i> (Reuss) <a href="#B121">Piller 1994</a> (<a href="#B121">Piller, 1994</a>; <a href="#B10">Aguirre et al., 1996</a>), although this species is more recent (Neogene).</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">3. <i>Lithothamnion</i> cf. <i>corallinaeforme</i> <a href="#B92">Lemoine 1924</a> (<a href="#f9">Figures 9G</a>, <a href="#f10">10A</a>). The specimens identified within this species epithet show growth form, thallus construction, vegetative anatomy and reproductive structures comparable with the type material of <i>L. corallinaeforme</i> <a href="#B92">Lemoine, 1924</a> as reassessed by <a href="#B9">Aguirre et al. (2012)</a>. <i>Lithothamnion marianae</i> <a href="#B81">Johnson, 1957</a> presents similarities with Lemoine’s species. The growth forms (slender, long branches), as well as the cell size and shape (rectangular to polygonal with a thickened cell wall) are anatomical features highlighted both by <a href="#B81">Johnson (1957)</a> and by <a href="#B9">Aguirre et al. (2012)</a> in the description of the two species.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">4. <i>Lithothamnion</i> cf. <i>exuberans</i> <a href="#B102">Mastrorilli 1967</a> (<a href="#f10">Figure 10D</a>). This species occurs as fragmented branches. Cell filaments in the center of the branch form regular growth zones. Sporangial conceptacles slightly protrude above the thallus surface and measure about 200 μm in diameter and 100-130 μm in height. They are slightly trapezoidal but irregular in shape and possess conspicuous pore canals in the roof. The specimens showing these features can be assigned to the species <i>Lithothamnion exuberans</i> <a href="#B102">Mastrorilli, 1967</a>, who highlighted the irregular shape of the sporangial conceptacles, which is a typical character of the study material. Similar coralline algae were described as <i>Lithothamnion</i> sp. 4 by <a href="#B11">Aguirre et al. (2020)</a> from the middle Eocene carbonates of Subbetic Zones, Betic Cordillera (S Spain), Colombia, and Dominican Republic.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">5. <i>Lithothamnion crispithallus</i> <a href="#B81">Johnson 1957</a> (<a href="#f10">Figure 10H</a>). Thin thallus with a well-developed plumose ventral core and a thin peripheral region, which thickens substantially surrounding conceptacles. Sporangial conceptacles, which are crowded in portions of the thallus, protrude on the thallus surface generating a wart-like structure. They are rectangular or dome-like in shape ranging from 190 μm to 250 μm in diameter and from 100 μm to 140 μm in height. This alga occurs attached to hard skeletons or as crusts isolated in the sediment. <a href="#B81">Johnson (1957)</a> highlighted the crowding of the conceptacles as characteristic of the species.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">   <i>Lithothamnion charollaisi</i> <a href="#B143">Segonzac and Charollais 1974</a> shows similarities with <i>L. crispithallus</i>. Nonetheless, the description of the species is very limited precluding feasible comparisons. </p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">6. <i>Lithothamnion vaughani</i> <a href="#B78">Howe 1919b</a> (<a href="#f10">Figure 10E</a>). In the protologue of this species, <a href="#B78">Howe (1919b)</a> indicated “primary hypothallia somewhat reduced, …. rather irregularly arranged (i.e., not distinctly “coaxial”)” (<a href="#B78">Howe, 1919b</a>; p. 6). Later, Lemoine (1928; see also <a href="#B94">Lemoine, 1939</a>) transferred the species to the new genus <i>Mesophyllum</i> that she described: “Les espèces fossiles qui me paraissent faire partie du genre <i>Mesophylllum</i> sont: … <i>M. vaughani</i> Howe” (<a href="#B93">Lemoine, 1928</a>; p. 253). This new genus attribution has been followed by later authors. Nonetheless, taking into consideration the clear reference to the plumose ventral core we keep the original genus attribution by <a href="#B78">Howe (1919b)</a>.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">7. <i>Lithothamnion</i> sp. 2 (<a href="#f10">Figure 10G</a>). This species occurs as fruticose or encrusting plants with branches showing irregular internal zones. The most characteristic feature is that numerous multiporate sporangial conceptacles are grouped in the tips of branches or warts. They are mostly secondarily filled by adventitious cells. Thallus morphology, internal organization, conceptacle shapes and sizes, and their distribution allow comparing this species with <i>Mesophyllum schenckii</i> <a href="#B79">Howe, 1934</a>, <i>Lithothamnion wallisium</i> <a href="#B84">Johnson and Tafur, 1952</a>, later figured by <a href="#B83">Johnson and Stewart (1953)</a>, and <i>Lithothamnion</i> sp. <a href="#B151">Stockar (2000)</a>. It also shows certain resemblance with <i>Mesophyllum galettoi</i> <a href="#B102">Mastrorilli, 1967</a>. Members of the genus <i>Mesophyllum</i> present a predominantly coaxial hypothallus. Nonetheless, in the protologue of <i>M. schenckii</i> and <i>M. galettoi</i>, both <a href="#B79">Howe (1934)</a> and <a href="#B102">Mastrorilli (1967)</a>, respectively, indicate the presence of a plumose ventral core. The specimens we have studied show plumose ventral core, so, we assign them to <i>Lithothamnion</i>.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">   One specimen in sample SEW-1 shows a large triangular conceptacle with a long single pore in the roof. The pore canal protrudes above the thallus surface generating a wart-like protuberance. This alga shows the same growth morphology and thallus organization as that of <i>Lithothamnion</i> sp. 2, thus, we interpret it as a gametangial plant of the species.</p><p style="margin-top:0em;margin-bottom:1em;margin-left:1em;text-indent:-1em;text-align:left">8. Undifferentiated Hapalidiales. Under this category, we include small unidentifiable fragments of encrusting thalli with well-developed plumose hypothallus and a thin perithallus, which thickens around sporangial multiporate conceptacles.</p><p class="mb15">Order Corallinales (<a href="#f11">Figures 11D–M</a>, <a href="#f12">12</a>)</p><p style="margin-top:1em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">1. Geniculate sp. 1 (<a href="#f11">Figure 11E</a>). It occurs as calcified disarticulated portions of intergenicula with cell fusions. One portion presents a uniporate conceptacle located in a terminal position of the intergeniculum (<a href="#f11">Figure 11E</a>). Fragmentation precludes genus identification; however, preserved features remind those of <i>Corallina prisca</i> <a href="#B81">Johnson, 1957</a> from the late Eocene of Saipan (Mariana Islands).</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">2. Geniculate sp. 2 (<a href="#f11">Figures 11F, G</a>). Dispersed fragments of portions of calcified intergenicula with cell fusions. Two of these intergenicula preserve uniporate conceptacles in the terminal position that are surrounded by lateral branches. One of the specimens show a small conceptacle with a high pore canal (<a href="#f11">Figure 11F</a>) and the other is bigger with a short pore canal (<a href="#f11">Figure 11G</a>). The former is tentatively interpreted as a possible gametangial conceptacle of the same taxon.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">3. Geniculate sp. 3 (<a href="#f11">Figure 11H</a>). A single thallus showing cell fusions and a big uniporate sporangial conceptacle derived from cortical cells in a lateral position of the intergeniculum.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">4. <i>Distichoplax biserialis</i> <a href="#B52">Dietrich 1927</a> (<a href="#f12">Figures 12B–D</a>). This is a widely known species, although its attribution has been debated. In the study material, we have found laminar thalli of <i>D. biserialis</i> showing both conceptacle primordia and void uniporate sporangial conceptacles (<a href="#f12">Figure 12C</a>), enabling the assignment of this species to the order Corallinales. Similar reproductive structures have been figured by Kiej (<a href="#B86">1963</a>; <a href="#B87">1964</a>) and <a href="#B51">Dieni et al. (1979)</a>. Recently, <a href="#B135">Sarkar (2018)</a> included this species within the subfamily Lithophylloideae, based on the absence of cell fusions, an interpretation also erroneously made by <a href="#B12">Aguirre et al. (2010)</a>. This species shows evident cell fusions, although they are sometimes nearly absent in some portions of the thallus (<a href="#f12">Figures 12C, D</a>). Therefore, it cannot be considered a lithophylloid any longer (<a href="#B134">Rösler et al., 2017</a>; <a href="#B116">Peña et al., 2020b</a>). <a href="#B22">Athanasiadis (1995)</a> already questioned the attribution of <i>Distichoplax</i> to Lithophylloideae and proposed its affinity with <i>Mastophora</i> or <i>Lithoporella.</i></p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">5. <i>Spongites</i> sp. 1 (<a href="#f12">Figure 12G</a>). This species is relatively frequent in the study material. It occurs as crusts or broken branches and is characterized by uniporate sporangial conceptacles that show slightly eccentric pore canals in the conceptacle roof. (<a href="#f12">Figure 12G</a>). The eccentric pore canal is highlighted by <a href="#B150">Stockar (1997)</a> while describing what he identified as <i>Lithophyllum atrum</i> <a href="#B46">Conti 1945</a>. Nonetheless, <a href="#B46">Conti (1945)</a> did not mention this feature in the original description of the species. Furthermore, sporangial conceptacles of <i>L. atrum</i> are much bigger than those found in the present study. Based on the vegetative anatomy and the reproductive structures, additional names that fit with our material are those originally described as <i>Lithophyllum vicetinum</i> <a href="#B103">Mastrorrilli, 1973</a> or <i>Lithophyllum ligusticum</i> <a href="#B16">Airoldi, 1932</a>. <a href="#B157">Vannucci (1970)</a> figured a specimen identified as <i>Lithophyllum ligusticum</i> showing a uniporate sporangial conceptacle with an eccentric pore canal. The reassessment of the Airoldi’s type material by <a href="#B158">Vannucci et al. (2008)</a> led them to synonymize <i>L. ligusticum</i> and <i>Lithophyllum perrandoi</i>, Airoldi 1932 favoring the latter as the valid species name. <a href="#B16">Airoldi (1932)</a> described a coaxial ventral core, the same thallus organization that can be observed in Figure (<a href="#f1">1A</a> and <a href="#f4">Figure 4</a>) of <a href="#B158">Vannucci et al. (2008)</a>. Nonetheless, these authors described the type material as having a plumose ventral core (their <a href="#f2">Figure 2</a>).</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">6. <i>Spongites</i> sp. 2 (<a href="#f12">Figure 12F</a>). Fragment of a fruticose plant obliquely cut showing numerous cell fusions. At the tip of the branch, a uniporate conceptacle, 270 μm in diameter and 110 μm in height, is observed. The pore canal is partially visible.</p><p style="margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left">7. <i>Spongites</i> sp. 3 (<a href="#f12">Figure 12E</a>). Thin encrusting monomerous plant with thin ventral core and peripheral region. The latter thickens around a protruding uniporate conceptacle 310 μm in diameter and 115 μm in height (<a href="#f12">Figure 12E</a>). Conceptacle shape and size remember <i>Lithophyllum bassanense</i> <a href="#B103">Mastrorrilli, 1973</a>.</p><p style="margin-top:0em;margin-bottom:1em;margin-left:1em;text-indent:-1em;text-align:left">8. Undifferentiated Corallinales. Fragments of coralline algae that show cell fusions and uniporate sporangial conceptacles but that do not show enough features to assign them to any species.</p><div class="DottedLine"></div><div class="Imageheaders">FIGURE 10</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g010.jpg" alt="www.frontiersin.org" id="f10" loading="lazy"> </picture> </a><p><strong>Figure 10</strong> <strong>(A)</strong> Spermatangial conceptacle of <i>Lithothamnion</i> cf. <i>corallioides</i> (sample CPE-6). <strong>(B)</strong> <i>Lithothamnion camarasae</i> (sample CPE-6). <strong>(C)</strong> <i>Lithothamnion concretum</i> (sample SEW-1). <strong>(D)</strong> <i>Lithothamnion</i> cf. <i>exhuberans</i> (sample CPE-15). <strong>(E)</strong> <i>Lithothamnion vaughanii</i> (sample SEW-1). <strong>(F)</strong> <i>Lithothamnion</i> sp. 1 (sample CPE-7). <strong>(G)</strong> <i>Lithothamnion</i> sp. 2 (sample SEE-2). <strong>(H)</strong> <i>Lithothamnion crispithallus</i> (sample SEE-6).</p></div><div class="DottedLine"></div><div class="Imageheaders">FIGURE 11</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g011.jpg" alt="www.frontiersin.org" id="f11" loading="lazy"> </picture> </a><p><strong>Figure 11</strong> <strong>(A)</strong> <i>Lithothamnion</i> sp. 3 (sample CPE-15). <strong>(B)</strong> <i>Lithothamnion</i> sp. 4 (sample SEE-5i). <strong>(C)</strong> <i>Lithothamnion</i> sp. 5 (sample SEW-3ii). <strong>(D)</strong> <i>Jania nummulitica</i> (sample CPE-4i). <strong>(E)</strong> Geniculate sp. 1 (cf. <i>Corallina prisca</i>) (sample CPE-4). <strong>(F)</strong> Geniculate sp. 2 [sample (CPE-4ii)]. <strong>(G)</strong> Geniculate sp. 2 (sample SEE-5i). <strong>(H)</strong> Geniculate sp. 3 (sample SEE-6i). <strong>(I)</strong> <i>Karpathia sphaerocellulosa</i> (sample CPE-5iii). <strong>(J)</strong> <i>Hydrolithon lemoineii</i> (sample SEE-6i). <strong>(K)</strong> <i>Lithoporella minus</i> (sample SEW-1i). <strong>(L)</strong> <i>L. minus</i> showing a uniporate sporangial conceptacle partially preserved (sample CPE-8iii). <strong>(M)</strong> <i>Lithoporella melobesioides</i> (sample CPE-10iii).</p></div><div class="DottedLine"></div><div class="Imageheaders">FIGURE 12</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" name="" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/899877/fmars-09-899877-HTML/image_m/fmars-09-899877-g012.jpg" alt="www.frontiersin.org" id="f12" loading="lazy"> </picture> </a><p><strong>Figure 12</strong> <strong>(A)</strong> <i>Lithoporella melobesioides</i> (sample SEW-3ii). <strong>(B)</strong> Laminar thalli of <i>Distichoplax biserialis</i> in a wackestone matrix (sample CPE-9). Arrows mark cell fusions. <strong>(C)</strong> <i>D. dbiserialis</i> showing a uniporate sporangial conceptacle (sample SEE-9). Arrow marks cell fusions. <strong>(D)</strong> Oblique section of a lamina of <i>D</i>. <i>biserialis</i> (sample CPE-9). Arrows mark cell fusions. <strong>(E)</strong> <i>Spongites</i> sp. 3 (sample CPN-3). <strong>(F)</strong> <i>Spongites</i> sp. 2 (sample CPN-5ii). <strong>(G)</strong> <i>Spongites</i> sp. 1 (sample CPE-7).</p></div><div class="DottedLine"></div><a id="h10" name="h10"></a><h2>Data Availability Statement</h2><p class="mb0">The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.</p><a id="h11" name="h11"></a><h2>Author Contributions</h2><p class="mb0">All authors contributed to the article and approved the submitted version.</p><a id="h12" name="h12"></a><h2>Funding </h2><p class="mb0">JA and JCB were funded by the research project PGC2018-099391-B-100 of the Spanish Ministerio de Ciencia e Innovación and by the Research Group RNM-190 of the Junta de Andalucía. JIB acknowledges funding through the Research Group IT930-16 of the Basque Government Research Programme.</p><a id="h13" name="h13"></a><h2>Conflict of Interest</h2><p class="mb0">The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p><a id="h14" name="h14"></a><h2>Publisher’s Note</h2><p class="mb15">All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.</p><a id="h15" name="h15"></a><h2>References</h2><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B1" id="B1"></a> Adey W. H. (1979). “Crustose Coralline Algae as Microenvironmental Indicators in the Tertiary,” in <i>Historical Biogeography, Plate Tectonics and the Changing Environment</i>. Eds. Gray J., Boucot A. J. (USA:Oregon State Univ. Press, Corvallis), 459–464.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=W.%20H.+Adey&publication_year=1979&title=Crustose%20Coralline%20Algae%20as%20Microenvironmental%20Indicators%20in%20the%20Tertiary&book=Historical+Biogeography,+Plate+Tectonics+and+the+Changing+Environment&pages=459" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B2" id="B2"></a> Adey W. H. (1986). “Coralline Algae as Indicators of Sea-Level,” in <i>Sea-Level Research: A Manual for the Collection and Evaluation of Data</i>. Ed. van de Plassche (Netherlands: Free Univ. Amsterdam), 229–280.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=W.%20H.+Adey&publication_year=1986&title=Coralline%20Algae%20as%20Indicators%20of%20Sea-Level&book=Sea-Level+Research:+A+Manual+for+the+Collection+and+Evaluation+of+Data&pages=229" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B3" id="B3"></a> Adey W. H., Macintyre I. G. (1973). Crustose Coralline Algae: A Re-Evaluation in the Geological Sciences. <i>Geol. Soc Am. Bull.</i> 84, 883–904. doi: 10.1130/0016-7606(1973)84<883:CCAARI>2.0.CO;2</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/0016-7606(1973)84<883:CCAARI>2.0.CO;2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=W.%20H.+Adey&author=I.%20G.+Macintyre&publication_year=1973&title=Crustose%20Coralline%20Algae%3A%20A%20Re-Evaluation%20in%20the%20Geological%20Sciences&journal=Geol.+Soc+Am.+Bull.&volume=84&pages=883" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B4" id="B4"></a> Aguirre J., Baceta J. I., Braga J. C. (2007). Recovery of Marine Primary Producers After the Cretaceous-Tertiary Mass Extinction: Paleocene Calcareous Red Algae From the Iberian Peninsula. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 249, 393–411. doi: 10.1016/j.palaeo.2007.02.009</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2007.02.009" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20I.+Baceta&author=J.%20C.+Braga&publication_year=2007&title=Recovery%20of%20Marine%20Primary%20Producers%20After%20the%20Cretaceous-Tertiary%20Mass%20Extinction%3A%20Paleocene%20Calcareous%20Red%20Algae%20From%20the%20Iberian%20Peninsula&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=249&pages=393" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B5" id="B5"></a> Aguirre J., Bassi D., Braga J. C. (2011). Taxonomic Assessment of Coralline Algal Species (Rhodophyta; Corallinales and Sporolithales) Described by Pfender, Lemoine, and Miranda From Northern Spain Type Localities. <i>Ann. Naturhist. Mus. Wien Ser. A</i> 113, 267–289.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=D.+Bassi&author=J.%20C.+Braga&publication_year=2011&title=Taxonomic%20Assessment%20of%20Coralline%20Algal%20Species%20%28Rhodophyta%3B%20Corallinales%20and%20Sporolithales%29%20Described%20by%20Pfender%2C%20Lemoine%2C%20and%20Miranda%20From%20Northern%20Spain%20Type%20Localities&journal=Ann.+Naturhist.+Mus.+Wien+Ser.+A&volume=113&pages=267" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B6" id="B6"></a> Aguirre J., Braga J. C. (1998). Redescription of Lemoine’s, (1939) Types of Coralline Algal Species From Algeria. <i>Palaeontology</i> 41, 489–507.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&publication_year=1998&title=Redescription%20of%20Lemoine%E2%80%99s%2C%20%281939%29%20Types%20of%20Coralline%20Algal%20Species%20From%20Algeria&journal=Palaeontology&volume=41&pages=489" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B7" id="B7"></a> Aguirre J., Braga J. C. (2005). The Citation of Nongeniculate Fossil Coralline Red Algal Species in the Twentieth Century Literature: An Analysis With Implications. <i>Rev. Esp. Micropaleontol.</i> 37, 57–62.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&publication_year=2005&title=The%20Citation%20of%20Nongeniculate%20Fossil%20Coralline%20Red%20Algal%20Species%20in%20the%20Twentieth%20Century%20Literature%3A%20An%20Analysis%20With%20Implications&journal=Rev.+Esp.+Micropaleontol.&volume=37&pages=57" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B8" id="B8"></a> Aguirre J., Braga J. C., Bassi D. (2017). “Rhodoliths and Rhodolith Beds in the Rock Record,” in <i>Rhodolith/Maërl Beds: A Global Perspective</i>. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ.), 105–138.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=D.+Bassi&publication_year=2017&title=Rhodoliths%20and%20Rhodolith%20Beds%20in%20the%20Rock%20Record&book=Rhodolith/Maërl+Beds:+A+Global+Perspective&pages=105" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B9" id="B9"></a> Aguirre J., Braga J. C., Martín J. M., Betzler C. (2012). Palaeoenvironmental and Stratigraphic Significance of Pliocene Rhodolith Beds and Coralline Algal Bioconstructions From the Carboneras Basin (SE Spain). <i>Geodiversitas</i> 34, 115–136. doi: 10.5252/g2012n1a7</p><p class="ReferencesCopy2"><a href="https://doi.org/10.5252/g2012n1a7" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=J.%20M.+Mart%C3%ADn&author=C.+Betzler&publication_year=2012&title=Palaeoenvironmental%20and%20Stratigraphic%20Significance%20of%20Pliocene%20Rhodolith%20Beds%20and%20Coralline%20Algal%20Bioconstructions%20From%20the%20Carboneras%20Basin%20%28SE%20Spain%29&journal=Geodiversitas&volume=34&pages=115" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B10" id="B10"></a> Aguirre J., Braga J. C., Piller W. E. (1996). Reassessment of <i>Palaeothamnium</i> Conti 1946 (Corallinales, Rhodophyta). <i>Rev. Palaeobot. Palynol.</i> 94, 1–9. doi: 10.1016/S0034-6667(96)00013-9</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/S0034-6667(96)00013-9" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=W.%20E.+Piller&publication_year=1996&title=Reassessment%20of%20Palaeothamnium%20Conti%201946%20%28Corallinales%2C%20Rhodophyta%29&journal=Rev.+Palaeobot.+Palynol.&volume=94&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B11" id="B11"></a> Aguirre J., Braga J. C., Pujalte V., Orue-Etxebarria X., Salazar-Ortiz E., Rincón-Martínez D., et al. (2020). Middle Eocene Rhodoliths From the Tropical and Mid-Latitude Regions. <i>Diversity</i> 12, 117. doi: 10.3390/d12030117</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3390/d12030117" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=V.+Pujalte&author=X.+Orue-Etxebarria&author=E.+Salazar-Ortiz&author=D.+Rinc%C3%B3n-Mart%C3%ADnez&publication_year=2020&title=Middle%20Eocene%20Rhodoliths%20From%20the%20Tropical%20and%20Mid-Latitude%20Regions&journal=Diversity&volume=12&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B12" id="B12"></a> Aguirre J., Perfectti F., Braga J. C. (2010). Integrating Phylogeny, Molecular Clocks and the Fossil Record in the Evolution of Coralline Algae (Corallinales, Rhodophyta). <i>Paleobiology</i> 36, 519–533. doi: 10.1666/09041.1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1666/09041.1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=F.+Perfectti&author=J.%20C.+Braga&publication_year=2010&title=Integrating%20Phylogeny%2C%20Molecular%20Clocks%20and%20the%20Fossil%20Record%20in%20the%20Evolution%20of%20Coralline%20Algae%20%28Corallinales%2C%20Rhodophyta%29&journal=Paleobiology&volume=36&pages=519" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B13" id="B13"></a> Aguirre J., Riding R. (2005). Dasycladalean Algal Biodiversity Compared With Global Variations in Temperature and Sea Level Over the Past 350 Myr. <i>Palaios</i> 20, 581–588. doi: 10.2110/palo.2004.p04-33</p><p class="ReferencesCopy2"><a href="https://doi.org/10.2110/palo.2004.p04-33" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=R.+Riding&publication_year=2005&title=Dasycladalean%20Algal%20Biodiversity%20Compared%20With%20Global%20Variations%20in%20Temperature%20and%20Sea%20Level%20Over%20the%20Past%20350%20Myr&journal=Palaios&volume=20&pages=581" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B14" id="B14"></a> Aguirre J., Riding R., Braga J. C. (2000a). Diversity of Coralline Red Algae: Origination and Extinction Patterns From the Early Cretaceous to the Pleistocene. <i>Paleobiology</i> 26, 651–667. doi: 10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=R.+Riding&author=J.%20C.+Braga&publication_year=2000&title=Diversity%20of%20Coralline%20Red%20Algae%3A%20Origination%20and%20Extinction%20Patterns%20From%20the%20Early%20Cretaceous%20to%20the%20Pleistocene&journal=Paleobiology&volume=26&pages=651" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B15" id="B15"></a> Aguirre J., Riding R., Braga J. C. (2000b). Late Cretaceous Incident Light Reduction: Evidence From Benthic Algae. <i>Lethaia</i> 33, 205–213. doi: 10.1080/00241160025100062</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1080/00241160025100062" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Aguirre&author=R.+Riding&author=J.%20C.+Braga&publication_year=2000&title=Late%20Cretaceous%20Incident%20Light%20Reduction%3A%20Evidence%20From%20Benthic%20Algae&journal=Lethaia&volume=33&pages=205" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B16" id="B16"></a> Airoldi M. (1932). Contributo Allo Studio Delle Corallinacee Del Terziario Italiano. I – Le Corallinacee Dell’Oligocene Ligure-Piemontese. <i>Paleontogr. Ital.</i> 33, 55–83.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.+Airoldi&publication_year=1932&title=Contributo%20Allo%20Studio%20Delle%20Corallinacee%20Del%20Terziario%20Italiano.%20I%20%E2%80%93%20Le%20Corallinacee%20Dell%E2%80%99Oligocene%20Ligure-Piemontese&journal=Paleontogr.+Ital.&volume=33&pages=55" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B17" id="B17"></a> Alegret L., Ortiz S., Arenillas I., Molina E. (2005). Paleoenvironmental Turnover Across the Paleocene/Eocene Boundary at the Stratotype Section in Dababiya (Egypt) Based on Benthic Foraminifera. <i>Terra Nova</i> 17, 526–536. doi: 10.1111/j.1365-3121.2005.00645.x</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/j.1365-3121.2005.00645.x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=L.+Alegret&author=S.+Ortiz&author=I.+Arenillas&author=E.+Molina&publication_year=2005&title=Paleoenvironmental%20Turnover%20Across%20the%20Paleocene%2FEocene%20Boundary%20at%20the%20Stratotype%20Section%20in%20Dababiya%20%28Egypt%29%20Based%20on%20Benthic%20Foraminifera&journal=Terra+Nova&volume=17&pages=526" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B18" id="B18"></a> Alegret L., Ortiz S., Molina E. (2009b). Extinction and Recovery of Benthic Foraminifera Across the Paleocene–Eocene Thermal Maximum at the Alamedilla Section (Southern Spain). <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 279, 186–200. doi: 10.1016/j.palaeo.2009.05.009</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2009.05.009" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=L.+Alegret&author=S.+Ortiz&author=E.+Molina&publication_year=2009&title=Extinction%20and%20Recovery%20of%20Benthic%20Foraminifera%20Across%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%20at%20the%20Alamedilla%20Section%20%28Southern%20Spain%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=279&pages=186" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B19" id="B19"></a> Alegret L., Ortiz S., Orue-Etxebarria X., Bernaola G., Baceta J. I., Monechi S., et al. (2009a). The Paleocene–Eocene Thermal Maximum: New Data on Microfossil Turnover at the Zumaia Section, Spain. <i>Palaios</i> 24, 318–328. doi: 10.2110/palo.2008.p08-057r</p><p class="ReferencesCopy2"><a href="https://doi.org/10.2110/palo.2008.p08-057r" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=L.+Alegret&author=S.+Ortiz&author=X.+Orue-Etxebarria&author=G.+Bernaola&author=J.%20I.+Baceta&author=S.+Monechi&publication_year=2009&title=The%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%3A%20New%20Data%20on%20Microfossil%20Turnover%20at%20the%20Zumaia%20Section%2C%20Spain&journal=Palaios&volume=24&pages=318" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B20" id="B20"></a> Anthony K. R. N., Kline D. I., Diaz-Pulido G., Dove S., Hoegh-Guldberg O. (2008). Ocean Acidification Causes Bleaching and Productivity Loss in Coral Reef Builders. <i>Proc. Nat. Acad. Sc.</i> 105, 17442–17446. doi: 10.1073/pnas.0804478105</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1073/pnas.0804478105" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=K.%20R.%20N.+Anthony&author=D.%20I.+Kline&author=G.+Diaz-Pulido&author=S.+Dove&author=O.+Hoegh-Guldberg&publication_year=2008&title=Ocean%20Acidification%20Causes%20Bleaching%20and%20Productivity%20Loss%20in%20Coral%20Reef%20Builders&journal=Proc.+Nat.+Acad.+Sc.&volume=105&pages=17442" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B21" id="B21"></a> Arostegi J., Baceta J. I., Pujalte V., Carracedo M. (2011). Late Cretaceous—Palaeocene Mid-Latitude Climates: Inferences From Clay Mineralogy of Continental-Coastal Sequences (Tremp-Graus Area, Southern Pyrenees, N Spain). <i>Clay Min.</i> 46, 105–126. doi: 10.1180/claymin.2011.046.1.105</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1180/claymin.2011.046.1.105" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Arostegi&author=J.%20I.+Baceta&author=V.+Pujalte&author=M.+Carracedo&publication_year=2011&title=Late%20Cretaceous%E2%80%94Palaeocene%20Mid-Latitude%20Climates%3A%20Inferences%20From%20Clay%20Mineralogy%20of%20Continental-Coastal%20Sequences%20%28Tremp-Graus%20Area%2C%20Southern%20Pyrenees%2C%20N%20Spain%29&journal=Clay+Min.&volume=46&pages=105" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B22" id="B22"></a> Athanasiadis A (1995). Morphology, Anatomy and Reproduction of the Eastern Mediterranean Coralline Tenarea Tortuosa and Its Relationship to Members of the Lithophylloideae and Mastophoroideae (Rhodophyta, Corallinales). <i>Nordic J. Bot</i> 15, 655–63.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A+Athanasiadis&publication_year=1995&title=Morphology%2C%20Anatomy%20and%20Reproduction%20of%20the%20Eastern%20Mediterranean%20Coralline%20Tenarea%20Tortuosa%20and%20Its%20Relationship%20to%20Members%20of%20the%20Lithophylloideae%20and%20Mastophoroideae%20%28Rhodophyta%2C%20Corallinales%29&journal=Nordic+J.+Bot&volume=15&pages=655-63" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B23" id="B23"></a> Baccelle L., Bosellini A. (1956). Diagrammi Per La Stima Visiva Della Composizione Percentuale Nelle Rocche Sedimentary. <i>Ann. Univ. Ferrara (Nuova Ser.) Sez. 9 Sc. Geol. Paleontol.</i> 1, 59–62.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=L.+Baccelle&author=A.+Bosellini&publication_year=1956&title=Diagrammi%20Per%20La%20Stima%20Visiva%20Della%20Composizione%20Percentuale%20Nelle%20Rocche%20Sedimentary&journal=Ann.+Univ.+Ferrara+(Nuova+Ser.)+Sez.+9+Sc.+Geol.+Paleontol.&volume=1&pages=59" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B24" id="B24"></a> Baceta J. I. (1996). “El Maastrichtiense Superior, Paleoceno E Ilerdiense Inferior De La Región Vasco-Cantábrica: Secuencias Deposicionales, Facies Y Evolución Paleogeográfica,” in <i>Basque Country UPV-EHU</i> (Bilbao: Univ. Basque Country).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20I.+Baceta&publication_year=1996&title=El%20Maastrichtiense%20Superior%2C%20Paleoceno%20E%20Ilerdiense%20Inferior%20De%20La%20Regi%C3%B3n%20Vasco-Cant%C3%A1brica%3A%20Secuencias%20Deposicionales%2C%20Facies%20Y%20Evoluci%C3%B3n%20Paleogeogr%C3%A1fica&book=Basque+Country+UPV-EHU&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B25" id="B25"></a> Baceta J. I., Pujalte V., Serra-Kiel J., Robador A., Orue-Etxebarría X. (2004). El Maastrichtiense Final, Paleoceno E Ilerdiense Inferior De La Cordillera Pirenaica, in Geología De España Madrid. <i>(Soc. Geol. Esp.-Inst. Geol. Min. Esp.)</i>, 308–313.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20I.+Baceta&author=V.+Pujalte&author=J.+Serra-Kiel&author=A.+Robador&author=X.+Orue-Etxebarr%C3%ADa&publication_year=2004&title=El%20Maastrichtiense%20Final%2C%20Paleoceno%20E%20Ilerdiense%20Inferior%20De%20La%20Cordillera%20Pirenaica%2C%20in%20Geolog%C3%ADa%20De%20Espa%C3%B1a%20Madrid&journal=(Soc.+Geol.+Esp.-Inst.+Geol.+Min.+Esp.)&pages=308" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B26" id="B26"></a> Baceta J. I., Pujalte V., Wright V. P., Schmitz B. (2011). “Carbonate Platform Models, Sea-Level Changes and Extreme Climatic Events During the Paleocene–early Eocene Greenhouse Interval: A Basin–Platform–Coastal Plain Transect Across the Southern Pyrenean Basin,” in <i>Pre-Meeting Field-Trips Guidebook</i>. Eds. Arenas C., Pomar L., Colombo F., 101–150. 28th IAS Meeting, Zaragoza. Soc. Geol. Esp., 7.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20I.+Baceta&author=V.+Pujalte&author=V.%20P.+Wright&author=B.+Schmitz&publication_year=2011&title=Carbonate%20Platform%20Models%2C%20Sea-Level%20Changes%20and%20Extreme%20Climatic%20Events%20During%20the%20Paleocene%E2%80%93early%20Eocene%20Greenhouse%20Interval%3A%20A%20Basin%E2%80%93Platform%E2%80%93Coastal%20Plain%20Transect%20Across%20the%20Southern%20Pyrenean%20Basin&book=Pre-Meeting+Field-Trips+Guidebook&pages=101" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B27" id="B27"></a> Basso D. (2012). Carbonate Productivity by Calcareous Red Algae and Global Change. <i>Geodiversitas</i> 34, 13–33. doi: 10.5252/g2012n1a2</p><p class="ReferencesCopy2"><a href="https://doi.org/10.5252/g2012n1a2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=D.+Basso&publication_year=2012&title=Carbonate%20Productivity%20by%20Calcareous%20Red%20Algae%20and%20Global%20Change&journal=Geodiversitas&volume=34&pages=13" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B28" id="B28"></a> Basso D., Coletti G., Alice-Bracchi V., Yazdi-Moghadam M. (2019). Lower Oligocene Coralline Algae of the Uromieh Section (Qom Formation, NW Iran) and the Oldest Record of <i>Titanoderma Pustulatum</i> (Corallinophycidae, Rhodophyta). <i>Riv. Ital. Paleont. Strat.</i> 125, 197–218.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=D.+Basso&author=G.+Coletti&author=V.+Alice-Bracchi&author=M.+Yazdi-Moghadam&publication_year=2019&title=Lower%20Oligocene%20Coralline%20Algae%20of%20the%20Uromieh%20Section%20%28Qom%20Formation%2C%20NW%20Iran%29%20and%20the%20Oldest%20Record%20of%20Titanoderma%20Pustulatum%20%28Corallinophycidae%2C%20Rhodophyta%29&journal=Riv.+Ital.+Paleont.+Strat.&volume=125&pages=197" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B29" id="B29"></a> Berger S. (2006). Photo-Atlas of Living Dasycladales. <i>Carn. Geol</i>:348pp. doi: 10.4267/2042/5831</p><p class="ReferencesCopy2"><a href="https://doi.org/10.4267/2042/5831" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=S.+Berger&publication_year=2006&title=Photo-Atlas%20of%20Living%20Dasycladales&journal=Carn.+Geol&pages=348pp." target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B30" id="B30"></a> Berger S., Kaever M. J. (1992). “Dasycladales,” in <i>An Illustrated Monograph of a Fascinating Algal Order</i> (Stuttgart: G. Thieme Verlag).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=S.+Berger&author=M.%20J.+Kaever&publication_year=1992&title=Dasycladales&book=An+Illustrated+Monograph+of+a+Fascinating+Algal+Order&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B31" id="B31"></a> BouDagher-Fadel M. K. (2018). <i>Evolution and Geological Significance of Larger Benthic Foraminifera</i>. 2nd Ed (London: UCL Press). doi: 10.14324/111.9781911576938</p><p class="ReferencesCopy2"><a href="https://doi.org/10.14324/111.9781911576938" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=M.%20K.+BouDagher-Fadel&publication_year=2018&book=Evolution+and+Geological+Significance+of+Larger+Benthic+Foraminifera&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B32" id="B32"></a> Bracchi V. A., Caronni S., Meroni A. N., Burguett E. G., Atzori F., Cadoni N., et al. (2022). Morphostructural Characterization of the Heterogeneous Rhodolith Bed at the Marine Protected Area “Capo Carbonara” (Italy) and Hydrodynamics. <i>Diversity</i> 14, 51. doi: 10.3390/d14010051</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3390/d14010051" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.%20A.+Bracchi&author=S.+Caronni&author=A.%20N.+Meroni&author=E.%20G.+Burguett&author=F.+Atzori&author=N.+Cadoni&publication_year=2022&title=Morphostructural%20Characterization%20of%20the%20Heterogeneous%20Rhodolith%20Bed%20at%20the%20Marine%20Protected%20Area%20%E2%80%9CCapo%20Carbonara%E2%80%9D%20%28Italy%29%20and%20Hydrodynamics&journal=Diversity&volume=14&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B33" id="B33"></a> Braga J. C. (2017). “Neogene Rhodoliths in the Mediterranean Basins,” in <i>Rhodolith/Maërl Beds: A Global Perspective</i>. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ), 169–193.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&publication_year=2017&title=Neogene%20Rhodoliths%20in%20the%20Mediterranean%20Basins&book=Rhodolith/Maërl+Beds:+A+Global+Perspective&pages=169" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B34" id="B34"></a> Braga J. C., Aguirre J. (1995). Taxonomy of Fossil Coralline Algal Species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) From Southern Spain. <i>Rev. Paleobot. Palynol.</i> 86, 265–285. doi: 10.1016/0034-6667(94)00135-7</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/0034-6667(94)00135-7" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&author=J.+Aguirre&publication_year=1995&title=Taxonomy%20of%20Fossil%20Coralline%20Algal%20Species%3A%20Neogene%20Lithophylloideae%20%28Rhodophyta%2C%20Corallinaceae%29%20From%20Southern%20Spain&journal=Rev.+Paleobot.+Palynol.&volume=86&pages=265" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B35" id="B35"></a> Braga J. C., Aguirre J. (2001). Coralline Algal Assemblages in Upper Neogene Reef and Temperate Carbonates in Southern Spain. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 175, 27–41. doi: 10.1016/S0031-0182(01)00384-4</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/S0031-0182(01)00384-4" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&author=J.+Aguirre&publication_year=2001&title=Coralline%20Algal%20Assemblages%20in%20Upper%20Neogene%20Reef%20and%20Temperate%20Carbonates%20in%20Southern%20Spain&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=175&pages=27" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B36" id="B36"></a> Braga J. C., Aguirre J. (2004). Coralline Algae Indicate Pleistocene Evolution From Deep, Open Platform to Outer Barrier Reef Environments in the Northern Great Barrier Reef Margin. <i>Coral Reefs</i> 23, 547–558. doi: 10.1007/s00338-004-0414-x</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1007/s00338-004-0414-x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&author=J.+Aguirre&publication_year=2004&title=Coralline%20Algae%20Indicate%20Pleistocene%20Evolution%20From%20Deep%2C%20Open%20Platform%20to%20Outer%20Barrier%20Reef%20Environments%20in%20the%20Northern%20Great%20Barrier%20Reef%20Margin&journal=Coral+Reefs&volume=23&pages=547" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B37" id="B37"></a> Braga J. C., Bassi D. (2007). Neogene History of <i>Sporolithon</i> Heydrich (Corallinales, Rhodophyta) in the Mediterranean Region. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 243, 189–203. doi: 10.1016/j.palaeo.2006.07.014</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2006.07.014" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&author=D.+Bassi&publication_year=2007&title=Neogene%20History%20of%20Sporolithon%20Heydrich%20%28Corallinales%2C%20Rhodophyta%29%20in%20the%20Mediterranean%20Region&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=243&pages=189" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B38" id="B38"></a> Braga J. C., Martín J. M. (1988). Neogene Coralline-Algal Growth-Forms and Their Palaeoenvironments in the Almanzora River Valley (Almeria, S.E. Spain). <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 67, 285–303. doi: 10.1016/0031-0182(88)90157-5</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/0031-0182(88)90157-5" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&author=J.%20M.+Mart%C3%ADn&publication_year=1988&title=Neogene%20Coralline-Algal%20Growth-Forms%20and%20Their%20Palaeoenvironments%20in%20the%20Almanzora%20River%20Valley%20%28Almeria%2C%20S.E.%20Spain%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=67&pages=285" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B39" id="B39"></a> Braga J. C., Vescogni A., Bosellini F., Aguirre J. (2009). Coralline Algae (Corallinales, Rhodophyta) in Western and Central Mediterranean Messinian Reefs. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 275, 113–128. doi: 10.1016/j.palaeo.2009.02.022</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2009.02.022" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Braga&author=A.+Vescogni&author=F.+Bosellini&author=J.+Aguirre&publication_year=2009&title=Coralline%20Algae%20%28Corallinales%2C%20Rhodophyta%29%20in%20Western%20and%20Central%20Mediterranean%20Messinian%20Reefs&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=275&pages=113" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B40" id="B40"></a> Brandano M. (2017). “Oligocene Rhodolith Beds in the Central Mediterranean Area,” in <i>Rhodolith/Maërl Beds: A Global Perspective</i>. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ), 195–219.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.+Brandano&publication_year=2017&title=Oligocene%20Rhodolith%20Beds%20in%20the%20Central%20Mediterranean%20Area&book=Rhodolith/Maërl+Beds:+A+Global+Perspective&pages=195" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B41" id="B41"></a> Büdenbender J., Riebesell U., Form A. (2011). Calcification of the Arctic Coralline Red Algae <i>Lithothamnion Glaciale</i> in Response to Elevated CO<sub>2</sub>. <i>Mar. Ecol. Progr. Ser.</i> 441, 79–87. doi: 10.3354/meps09405</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3354/meps09405" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+B%C3%BCdenbender&author=U.+Riebesell&author=A.+Form&publication_year=2011&title=Calcification%20of%20the%20Arctic%20Coralline%20Red%20Algae%20Lithothamnion%20Glaciale%20in%20Response%20to%20Elevated%20CO2&journal=Mar.+Ecol.+Progr.+Ser.&volume=441&pages=79" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B42" id="B42"></a> Burke K. D., Williams J. W., Chandler M. A., Haywood A. M., Lunt D. J., Otto-Bliesner B. (2018). Pliocene and Eocene Provide Best Analogues for Near-Future Climates. <i>Proc. Natl. Acad. Sci.</i> 115, 13288–13293. doi: 10.1073/pnas.1809600115</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1073/pnas.1809600115" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=K.%20D.+Burke&author=J.%20W.+Williams&author=M.%20A.+Chandler&author=A.%20M.+Haywood&author=D.%20J.+Lunt&author=B.+Otto-Bliesner&publication_year=2018&title=Pliocene%20and%20Eocene%20Provide%20Best%20Analogues%20for%20Near-Future%20Climates&journal=Proc.+Natl.+Acad.+Sci.&volume=115&pages=13288" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B43" id="B43"></a> Canals M., Ballesteros E. (1997). Production of Carbonate Particles by Phytobenthic Communities on the Mallorca-Menorca Shelf, Northwestern Mediterranean Sea. <i>Deep-Sea Res. II</i> 44, 611–629. doi: 10.1016/S0967-0645(96)00095-1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/S0967-0645(96)00095-1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=M.+Canals&author=E.+Ballesteros&publication_year=1997&title=Production%20of%20Carbonate%20Particles%20by%20Phytobenthic%20Communities%20on%20the%20Mallorca-Menorca%20Shelf%2C%20Northwestern%20Mediterranean%20Sea&journal=Deep-Sea+Res.+II&volume=44&pages=611" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B44" id="B44"></a> Canudo J. I., Keller G., Molina E., Ortiz N. (1995). Planktic Foraminiferal Turnover and δ<sup>13</sup>C Isotopes Across the Paleocene–Eocene Transition at Caravaca and Zumaya, Spain. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 114, 75–100. doi: 10.1016/0031-0182(95)00073-U</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/0031-0182(95)00073-U" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20I.+Canudo&author=G.+Keller&author=E.+Molina&author=N.+Ortiz&publication_year=1995&title=Planktic%20Foraminiferal%20Turnover%20and%20%CE%B413C%20Isotopes%20Across%20the%20Paleocene%E2%80%93Eocene%20Transition%20at%20Caravaca%20and%20Zumaya%2C%20Spain&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=114&pages=75" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B45" id="B45"></a> Canudo J. I., Molina E. (1992). Planktic Foraminiferal Faunal Turnover and Bio-Chronostratigraphy of the Paleocene–Eocene Boundary at Zumaya, Northern Spain. <i>Rev. Soc Geol. Esp.</i> 5, 145–157.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20I.+Canudo&author=E.+Molina&publication_year=1992&title=Planktic%20Foraminiferal%20Faunal%20Turnover%20and%20Bio-Chronostratigraphy%20of%20the%20Paleocene%E2%80%93Eocene%20Boundary%20at%20Zumaya%2C%20Northern%20Spain&journal=Rev.+Soc+Geol.+Esp.&volume=5&pages=145" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B46" id="B46"></a> Conti S. (1945). “Le Corallinacee Del Calcare Miocenico (Leithakalk) Del Bacino Di Viena,” <i>Pubbl. Ist. Geol. Univ. Genova, Genova 2(Serie a)</i>, 31–68.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=S.+Conti&publication_year=1945&title=Le%20Corallinacee%20Del%20Calcare%20Miocenico%20%28Leithakalk%29%20Del%20Bacino%20Di%20Viena&book=Pubbl.+Ist.+Geol.+Univ.+Genova,+Genova+2(Serie+a)&pages=31" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B47" id="B47"></a> Cornwall C. E., Harvey B. P., Comeau S., Cornwall D. L., Hall-Spencer J. M., Peña V., et al. (2021). Understanding Coralline Algal Responses to Ocean Acidification: Meta-Analysis and Synthesis. <i>Global Change Biol.</i> 00, 1–13. doi: 10.1111/gcb.15899</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/gcb.15899" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=C.%20E.+Cornwall&author=B.%20P.+Harvey&author=S.+Comeau&author=D.%20L.+Cornwall&author=J.%20M.+Hall-Spencer&author=V.+Pe%C3%B1a&publication_year=2021&title=Understanding%20Coralline%20Algal%20Responses%20to%20Ocean%20Acidification%3A%20Meta-Analysis%20and%20Synthesis&journal=Global+Change+Biol.&volume=00&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B48" id="B48"></a> Couto R. P., Rosas-Alquicira E. F., Rodrigues A. S., Neto A. I. (2014). The Genus <i>Ellisolandia</i> (Corallinaceae, Corallinales, Rhodophyta) in the Azores (NE Atlantic): Character Expression and Taxonomic Evaluation. <i>Phytotaxa</i> 190, 5–16. doi: 10.11646/phytotaxa.190.1.3</p><p class="ReferencesCopy2"><a href="https://doi.org/10.11646/phytotaxa.190.1.3" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20P.+Couto&author=E.%20F.+Rosas-Alquicira&author=A.%20S.+Rodrigues&author=A.%20I.+Neto&publication_year=2014&title=The%20Genus%20Ellisolandia%20%28Corallinaceae%2C%20Corallinales%2C%20Rhodophyta%29%20in%20the%20Azores%20%28NE%20Atlantic%29%3A%20Character%20Expression%20and%20Taxonomic%20Evaluation&journal=Phytotaxa&volume=190&pages=5" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B49" id="B49"></a> Denizot M (1968). Les Algues Floridées Encoûtrantes (à l'exclusion des Corallinacées). <i>Mus. Nat. d'Hist. Nat., Paris, France</i> </p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M+Denizot&publication_year=1968&title=Les%20Algues%20Florid%C3%A9es%20Enco%C3%BBtrantes%20%28%C3%A0%20l%27exclusion%20des%20Corallinac%C3%A9es%29&journal=Mus.+Nat.+d'Hist.+Nat.,+Paris,+France&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B50" id="B50"></a> Diaz-Pulido G., Anthony K. R. N., Kline D. I., Dove S., Hoegh-Guldberg O. (2012). Interactions Between Ocean Acidification and Warming on the Mortality and Dissolution of Coralline Algae. <i>J. Phycol.</i> 48, 32–39. doi: 10.1111/j.1529-8817.2011.01084.x</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27009647/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1111/j.1529-8817.2011.01084.x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=G.+Diaz-Pulido&author=K.%20R.%20N.+Anthony&author=D.%20I.+Kline&author=S.+Dove&author=O.+Hoegh-Guldberg&publication_year=2012&title=Interactions%20Between%20Ocean%20Acidification%20and%20Warming%20on%20the%20Mortality%20and%20Dissolution%20of%20Coralline%20Algae&journal=J.+Phycol.&volume=48&pages=32" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B51" id="B51"></a> Dieni I., Massari F., Poignant A. F. (1979). Testimonianze Di Paleovene Marino in Sardegna. <i>Riv. Ital. Paleontol.</i> 85, 481–516.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=I.+Dieni&author=F.+Massari&author=A.%20F.+Poignant&publication_year=1979&title=Testimonianze%20Di%20Paleovene%20Marino%20in%20Sardegna&journal=Riv.+Ital.+Paleontol.&volume=85&pages=481" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B52" id="B52"></a> Dietrich W. O. (1927). Die Geologisch-Stratigraphischen Ergebnisse Der Routenaufnahmen durch Ostpersien-Sven Hedin, in Eine Routenaufnahmen Durch Ostpersien <i>Stockholm</i> 2, 447–464</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=W.%20O+Dietrich&publication_year=1927&title=Die%20Geologisch-Stratigraphischen%20Ergebnisse%20Der%20Routenaufnahmen%20durch%20Ostpersien-Sven%20Hedin%2C%20in%20Eine%20Routenaufnahmen%20Durch%20Ostpersien&journal=Stockholm&volume=2&pages=447" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B53" id="B53"></a> Domingo L., López-Martínez N., Leng M. J., Grimes S. T. (2009). The Paleocene–Eocene Thermal Maximum Record in the Organic Matter of the Claret and Tendruy Continental Sections (South-Central Pyrenees, Lleida, Spain). <i>Earth Planet. Sci. Lett.</i> 281, 226–237. doi: 10.1016/j.epsl.2009.02.025</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.epsl.2009.02.025" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=L.+Domingo&author=N.+L%C3%B3pez-Mart%C3%ADnez&author=M.%20J.+Leng&author=S.%20T.+Grimes&publication_year=2009&title=The%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%20Record%20in%20the%20Organic%20Matter%20of%20the%20Claret%20and%20Tendruy%20Continental%20Sections%20%28South-Central%20Pyrenees%2C%20Lleida%2C%20Spain%29&journal=Earth+Planet.+Sci.+Lett.&volume=281&pages=226" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B54" id="B54"></a> Duller R. A., Armitage J. J., Manners H. R., Grimes S., Dunkley Jones T. (2019). Delayed Sedimentary Response to Abrupt Climate Change at the Paleocene-Eocene Boundary, Northern Spain. <i>Geology</i> 47, 159–162. doi: 10.1130/G45631.1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/G45631.1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20A.+Duller&author=J.%20J.+Armitage&author=H.%20R.+Manners&author=S.+Grimes&author=T.+Dunkley%20Jones&publication_year=2019&title=Delayed%20Sedimentary%20Response%20to%20Abrupt%20Climate%20Change%20at%20the%20Paleocene-Eocene%20Boundary%2C%20Northern%20Spain&journal=Geology&volume=47&pages=159" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B55" id="B55"></a> Eichenseer H. (1988). <i>Facies Geology of Late Maestrichtian to Early Eocene Coastal and Shallow Marine Sediments (Tremp-Graus Basin,Northeastern Spain)</i> (Germany: Univ. Tübingen).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=H.+Eichenseer&publication_year=1988&book=Facies+Geology+of+Late+Maestrichtian+to+Early+Eocene+Coastal+and+Shallow+Marine+Sediments+(Tremp-Graus+Basin,Northeastern+Spain)&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B56" id="B56"></a> Eichenseer H., Luterbacher H. (1992). The Marine Paleogene of the Tremp Region (NE Spain) - Depositional Sequences, Facies History, Biostratigraphy and Controlling Factors. <i>Facies</i> 27, 119–152. doi: 10.1007/BF02536808</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1007/BF02536808" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=H.+Eichenseer&author=H.+Luterbacher&publication_year=1992&title=The%20Marine%20Paleogene%20of%20the%20Tremp%20Region%20%28NE%20Spain%29%20-%20Depositional%20Sequences%2C%20Facies%20History%2C%20Biostratigraphy%20and%20Controlling%20Factors&journal=Facies&volume=27&pages=119" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B57" id="B57"></a> Flügel E. (1985). “Diversity and Environments of Permian and Triassic Dasycladacean Algae,” in <i>Paleoalgology: Contemporary Research and Applications</i>. Eds. Toomey D. F., Nitecki M. H. (Berlin: Springer-Verlag), 344–351.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Fl%C3%BCgel&publication_year=1985&title=Diversity%20and%20Environments%20of%20Permian%20and%20Triassic%20Dasycladacean%20Algae&book=Paleoalgology:+Contemporary+Research+and+Applications&pages=344" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B58" id="B58"></a> Flügel E. (1991). “Triassic and Jurassic Marine Calcareous Algae: A Critical Review,” in <i>Calcareous Algae and Stromatolites</i>. Ed. Riding R. (Berlin: Springer-Verlag), 481–503.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Fl%C3%BCgel&publication_year=1991&title=Triassic%20and%20Jurassic%20Marine%20Calcareous%20Algae%3A%20A%20Critical%20Review&book=Calcareous+Algae+and+Stromatolites&pages=481" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B59" id="B59"></a> Flügel E., Kiessling W. (2002). “Patterns of Phanerozoic Reef Crises,” in <i>Phanerozoic Reef Patterns</i>. Eds. Kiessling W., Flügel E., Golonka J. (USA:SEPM Sp. Publ. 72), 691–733.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Fl%C3%BCgel&author=W.+Kiessling&publication_year=2002&title=Patterns%20of%20Phanerozoic%20Reef%20Crises&book=Phanerozoic+Reef+Patterns&pages=691" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B60" id="B60"></a> Foslie M (1909) <i>Algologiske Notiser VI. Kongelige Norske Videnskabers Selskabs Skrifter</i> 1909(2), 1–63.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M+Foslie&publication_year=1909&book=Algologiske+Notiser+VI.+Kongelige+Norske+Videnskabers+Selskabs+Skrifter&volume=1909&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B61" id="B61"></a> Fravega P. (1984). <i>Archaeolithothamnium Airoldii</i> Nomen Novum Ex <i>Lithothamnium Stefanini</i> Airoldi. <i>Riv. Ital. Paleontol. Stratigr.</i> 90, 103–108.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=P.+Fravega&publication_year=1984&title=Archaeolithothamnium%20Airoldii%20Nomen%20Novum%20Ex%20Lithothamnium%20Stefanini%20Airoldi&journal=Riv.+Ital.+Paleontol.+Stratigr.&volume=90&pages=103" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B62" id="B62"></a> Fravega P., Piazza M., Vannucci G. (1989). <i>Archaeolithothamnium</i> Rothpletz. Indicatore Ecologico-Stratigrafico? <i>Atti 3° Simp. Ecol. Paleoecol. Com. Benton.</i>, 729–743.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=P.+Fravega&author=M.+Piazza&author=G.+Vannucci&publication_year=1989&title=Archaeolithothamnium%20Rothpletz.%20Indicatore%20Ecologico-Stratigrafico&journal=Atti+3°+Simp.+Ecol.+Paleoecol.+Com.+Benton.&pages=729" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B63" id="B63"></a> Garbary D. J., Johansen H. M. (1982). Scanning Electron Microscopy of <i>Corallina</i> and <i>Haliptilon</i> (Corallinaceae Rhodophyta): Surfaces Features and Their Taxonomic Implications. <i>J. Phycol.</i> 18, 211–219. doi: 10.1111/j.1529-8817.1982.tb03176.x</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/j.1529-8817.1982.tb03176.x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=D.%20J.+Garbary&author=H.%20M.+Johansen&publication_year=1982&title=Scanning%20Electron%20Microscopy%20of%20Corallina%20and%20Haliptilon%20%28Corallinaceae%20Rhodophyta%29%3A%20Surfaces%20Features%20and%20Their%20Taxonomic%20Implications&journal=J.+Phycol.&volume=18&pages=211" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B64" id="B64"></a> Gattuso J. P., Hansson L. (2011). “Ocean Acidification: Background and History,” in <i>Ocean Acidification</i>. Eds. Gattuso J. P., Hansson L. (UK:Oxford University Press), 1–20.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20P.+Gattuso&author=L.+Hansson&publication_year=2011&title=Ocean%20Acidification%3A%20Background%20and%20History&book=Ocean+Acidification&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B65" id="B65"></a> Ghosh A. K., Maithy P. K (1996). On the Present Status of Coralline Red Alga <i>Archaeolithothamnium</i> Roth. From India.. <i>The Palaeobot</i> 45, 64–70</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.%20K.+Ghosh&author=P.%20K+Maithy&publication_year=1996&title=On%20the%20Present%20Status%20of%20Coralline%20Red%20Alga%20Archaeolithothamnium%20Roth.%20From%20India&journal=The+Palaeobot&volume=45&pages=64" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B66" id="B66"></a> Gibbs S. J., Bown P. R., Sessa J. A., Bralower T. J., Wilson P. A. (2006a). Nannoplankton Extinction and Origination Across the Paleocene-Eocene Thermal Maximum. <i>Science</i> 314, 1770–1773. doi: 10.1126/science.1133902</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17170303/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.1133902" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=S.%20J.+Gibbs&author=P.%20R.+Bown&author=J.%20A.+Sessa&author=T.%20J.+Bralower&author=P.%20A.+Wilson&publication_year=2006&title=Nannoplankton%20Extinction%20and%20Origination%20Across%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Science&volume=314&pages=1770" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B67" id="B67"></a> Gibbs S. J., Bralower T. J., Bown P. R., Zachos J. C., Bybell L. M. (2006b). Shelf and Open-Ocean Calcareous Phytoplankton Assemblages Across the Paleocene-Eocene Thermal Maximum: Implications for Global Productivity Gradients. <i>Geology</i> 34, 233–236. doi: 10.1130/G22381.1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/G22381.1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=S.%20J.+Gibbs&author=T.%20J.+Bralower&author=P.%20R.+Bown&author=J.%20C.+Zachos&author=L.%20M.+Bybell&publication_year=2006&title=Shelf%20and%20Open-Ocean%20Calcareous%20Phytoplankton%20Assemblages%20Across%20the%20Paleocene-Eocene%20Thermal%20Maximum%3A%20Implications%20for%20Global%20Productivity%20Gradients&journal=Geology&volume=34&pages=233" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B68" id="B68"></a> Guy-Haim T., Silverman J., Raddatz S., Wahl M., Israel A., Rilov G. (2016). The Carbon Turnover Response to Thermal Stress of a Dominant Coralline Alga on the Fast Warming Levant Coast. <i>Limnol. Ocecanogr.</i> 61, 1120–1133. doi: 10.1002/lno.10279</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1002/lno.10279" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=T.+Guy-Haim&author=J.+Silverman&author=S.+Raddatz&author=M.+Wahl&author=A.+Israel&author=G.+Rilov&publication_year=2016&title=The%20Carbon%20Turnover%20Response%20to%20Thermal%20Stress%20of%20a%20Dominant%20Coralline%20Alga%20on%20the%20Fast%20Warming%20Levant%20Coast&journal=Limnol.+Ocecanogr.&volume=61&pages=1120" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B69" id="B69"></a> Guy-Haim T., Silverman J., Wahl M., Aguirre J., Noisette F., Rilov G. (2020). Epiphytes Provide Micro-Scale Refuge From Ocean Acidification. <i>Mar. Exper. Res.</i> 161, 105093. doi: 10.1016/j.marenvres.2020.105093</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.marenvres.2020.105093" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=T.+Guy-Haim&author=J.+Silverman&author=M.+Wahl&author=J.+Aguirre&author=F.+Noisette&author=G.+Rilov&publication_year=2020&title=Epiphytes%20Provide%20Micro-Scale%20Refuge%20From%20Ocean%20Acidification&journal=Mar.+Exper.+Res.&volume=161&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B70" id="B70"></a> Hall-Spencer J., Rodolfo-Metalpa R., Martin S., Ransome E., Fine M., Turner S. M., et al. (2008). Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification. <i>Nature</i> 454, 96–99. doi: 10.1038/nature07051</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18536730/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature07051" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Hall-Spencer&author=R.+Rodolfo-Metalpa&author=S.+Martin&author=E.+Ransome&author=M.+Fine&author=S.%20M.+Turner&publication_year=2008&title=Volcanic%20Carbon%20Dioxide%20Vents%20Show%20Ecosystem%20Effects%20of%20Ocean%20Acidification&journal=Nature&volume=454&pages=96" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B71" id="B71"></a> Hamon Y., Deschamps R., Joseph P., Garcia D., Chanvry E. (2016). New Insight of Sedimentological and Geochemical Characterization of Siliciclastic-Carbonate Deposits (<i>Alveolina</i> Limestone Formation, Graus-Tremp Basin, Spain). <i>Bull. Soc. Geol. Fr.</i> 187, 133–153. doi: 10.2113/gssgfbull.187.3.133</p><p class="ReferencesCopy2"><a href="https://doi.org/10.2113/gssgfbull.187.3.133" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=Y.+Hamon&author=R.+Deschamps&author=P.+Joseph&author=D.+Garcia&author=E.+Chanvry&publication_year=2016&title=New%20Insight%20of%20Sedimentological%20and%20Geochemical%20Characterization%20of%20Siliciclastic-Carbonate%20Deposits%20%28Alveolina%20Limestone%20Formation%2C%20Graus-Tremp%20Basin%2C%20Spain%29&journal=Bull.+Soc.+Geol.+Fr.&volume=187&pages=133" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B72" id="B72"></a> Hansen J., Sato M., Russel G., Kharecha P. (2013). Climate Sensitivity, Sea Level and Atmospheric Carbon Dioxide. <i>Philos. Trans. R. Soc A</i> 371, 20120294. doi: 10.1098/rsta.2012.0294</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1098/rsta.2012.0294" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Hansen&author=M.+Sato&author=G.+Russel&author=P.+Kharecha&publication_year=2013&title=Climate%20Sensitivity%2C%20Sea%20Level%20and%20Atmospheric%20Carbon%20Dioxide&journal=Philos.+Trans.+R.+Soc+A&volume=371&pages=20120294" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B73" id="B73"></a> Haynes L. L., Hönisch B. (2020). The Seawater Carbon Inventory at the Paleocene-Eocene Thermal Maximum. <i>Proc. Nat. Am. Sc.</i> 117, 24088–24095. doi: 10.1073/pnas.2003197117</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1073/pnas.2003197117" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=L.%20L.+Haynes&author=B.+H%C3%B6nisch&publication_year=2020&title=The%20Seawater%20Carbon%20Inventory%20at%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Proc.+Nat.+Am.+Sc.&volume=117&pages=24088" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B74" id="B74"></a> Hönisch B., Ridgwell A., Schmidt D. N., Thomas E., Gibbs S. J., Sluijs A., et al. (2012). The Geological Record of Ocean Acidification. <i>Science</i> 335, 1058–1063. doi: 10.1126/science.1208277</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22383840/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.1208277" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=B.+H%C3%B6nisch&author=A.+Ridgwell&author=D.%20N.+Schmidt&author=E.+Thomas&author=S.%20J.+Gibbs&author=A.+Sluijs&publication_year=2012&title=The%20Geological%20Record%20of%20Ocean%20Acidification&journal=Science&volume=335&pages=1058" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B75" id="B75"></a> Hottinger L. (1960). Recherches Sur Les Alvéolines Du Paléocène Et De l'Eocène. <i>Schweiz. Palaeontolo. Abh.</i> 75–76, 1–243.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=L.+Hottinger&publication_year=1960&title=Recherches%20Sur%20Les%20Alv%C3%A9olines%20Du%20Pal%C3%A9oc%C3%A8ne%20Et%20De%20l%27Eoc%C3%A8ne&journal=Schweiz.+Palaeontolo.+Abh.&volume=75–76&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B76" id="B76"></a> Hottinger L., Schaub H. (1960). Zur Stufeneinteilung Das Paleocaens Uns Das Eocaens. Einführung Der Stufen Ilerdien Und Biarritzien. <i>Eclog. Geol. Helv.</i> 53, 453–479.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=L.+Hottinger&author=H.+Schaub&publication_year=1960&title=Zur%20Stufeneinteilung%20Das%20Paleocaens%20Uns%20Das%20Eocaens.%20Einf%C3%BChrung%20Der%20Stufen%20Ilerdien%20Und%20Biarritzien&journal=Eclog.+Geol.+Helv.&volume=53&pages=453" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B77" id="B77"></a> Howe M. A. (1919a). Tertiary Calcareous Algae From the Island of St. Bartholomew, Antigua and Anguilla. <i>Carn. Insti. Washington Publ.</i> 291, 11–20.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.%20A.+Howe&publication_year=1919&title=Tertiary%20Calcareous%20Algae%20From%20the%20Island%20of%20St.%20Bartholomew%2C%20Antigua%20and%20Anguilla&journal=Carn.+Insti.+Washington+Publ.&volume=291&pages=11" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B78" id="B78"></a> Howe M. A. (1919b). On Some Recent and Fossil Lithothamnieae of the Panama Canal Zone. <i>U.S. Nat. Hist. Mus. Bull.</i> 103, 2–6.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.%20A.+Howe&publication_year=1919&title=On%20Some%20Recent%20and%20Fossil%20Lithothamnieae%20of%20the%20Panama%20Canal%20Zone&journal=U.S.+Nat.+Hist.+Mus.+Bull.&volume=103&pages=2" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B79" id="B79"></a> Howe M. A. (1934). Eocene Marine Algae (Lithothamnieae) From the Sierra Blanca Limestone. <i>Bull. Geol. Soc Am.</i> 45, 507–518. doi: 10.1130/GSAB-45-507</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/GSAB-45-507" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=M.%20A.+Howe&publication_year=1934&title=Eocene%20Marine%20Algae%20%28Lithothamnieae%29%20From%20the%20Sierra%20Blanca%20Limestone&journal=Bull.+Geol.+Soc+Am.&volume=45&pages=507" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B80" id="B80"></a> Jeong S. Y., Nelson W. A., Sutherland J. E., Peña V., Le Gall L., Diaz-Pulido G., et al. (2021). Corallinapetrales and Corallinapetraceae: A New Order and New Family of Coralline Red Algae Including <i>Corallinapetra</i> Gabriellii Comb. Nov. <i>J. Phycol.</i> doi: 10.1111/jpy.13115-20-107</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/jpy.13115-20-107" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=S.%20Y.+Jeong&author=W.%20A.+Nelson&author=J.%20E.+Sutherland&author=V.+Pe%C3%B1a&author=L.+Le%20Gall&author=G.+Diaz-Pulido&publication_year=2021&title=Corallinapetrales%20and%20Corallinapetraceae%3A%20A%20New%20Order%20and%20New%20Family%20of%20Coralline%20Red%20Algae%20Including%20Corallinapetra%20Gabriellii%20Comb.%20Nov&journal=J.+Phycol.&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B81" id="B81"></a> Johnson J. H. (1957). Geology of Saipan, Mariana Islands. <i>Calcareous algae. U.S. Geol. Sur. Prof. Paper ROM 280</i>, 209–246.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20H.+Johnson&publication_year=1957&title=Geology%20of%20Saipan%2C%20Mariana%20Islands&journal=Calcareous+algae.+U.S.+Geol.+Sur.+Prof.+Paper+ROM+280&pages=209" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B82" id="B82"></a> Johnson J. H. (1964). Eocene Algae From Ishigaki-Shima Ryukyu-Retto. <i>U.S. Geol. Sur. Prof. Paper</i> 399, C1–C13. doi: 10.3133/pp399C</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3133/pp399C" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20H.+Johnson&publication_year=1964&title=Eocene%20Algae%20From%20Ishigaki-Shima%20Ryukyu-Retto&journal=U.S.+Geol.+Sur.+Prof.+Paper&volume=399&pages=C1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B83" id="B83"></a> Johnson J. H., Stewart W. A. (1953). Eocene Coralline Algae From Meganos Formation, California. <i>J. Paleontol.</i> 27, 130–136.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20H.+Johnson&author=W.%20A.+Stewart&publication_year=1953&title=Eocene%20Coralline%20Algae%20From%20Meganos%20Formation%2C%20California&journal=J.+Paleontol.&volume=27&pages=130" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B84" id="B84"></a> Johnson J. H., Tafur I. A. (1952). Coralline Algae From the Eocene Atascadero Limestone. <i>J. Paleontol.</i> 26, 537–543.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20H.+Johnson&author=I.%20A.+Tafur&publication_year=1952&title=Coralline%20Algae%20From%20the%20Eocene%20Atascadero%20Limestone&journal=J.+Paleontol.&volume=26&pages=537" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B85" id="B85"></a> Kamenos N. A., Burdett H. I., Aloisio E., Findlay H. S., Martin S., Longbone C., et al. (2013). Coralline Algal Structure Is More Sensitive T Orate, Rather Than the Magnitude, of Ocean Acidification. <i>Glob. Change Biol.</i> 19, 3621–3628. doi: 10.1111/gcb.12351</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/gcb.12351" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=N.%20A.+Kamenos&author=H.%20I.+Burdett&author=E.+Aloisio&author=H.%20S.+Findlay&author=S.+Martin&author=C.+Longbone&publication_year=2013&title=Coralline%20Algal%20Structure%20Is%20More%20Sensitive%20T%20Orate%2C%20Rather%20Than%20the%20Magnitude%2C%20of%20Ocean%20Acidification&journal=Glob.+Change+Biol.&volume=19&pages=3621" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B86" id="B86"></a> Keij A. J. (1963). <i>Distichoplax</i> in Sarawak and North Borneo. <i>Bull. Br. Born. Geol. Sur.</i> 4, 153–160.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.%20J.+Keij&publication_year=1963&title=Distichoplax%20in%20Sarawak%20and%20North%20Borneo&journal=Bull.+Br.+Born.+Geol.+Sur.&volume=4&pages=153" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B87" id="B87"></a> Keij A. J. (1964). <i>Distichoplax</i> From Kudat Peninsula and Bangui Island, Sabah, Borneo. <i>Rev. Micropaléontol.</i> 7, 115–118.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.%20J.+Keij&publication_year=1964&title=Distichoplax%20From%20Kudat%20Peninsula%20and%20Bangui%20Island%2C%20Sabah%2C%20Borneo&journal=Rev.+Micropaléontol.&volume=7&pages=115" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B88" id="B88"></a> Kelly D. C., Bralower T. J., Zachos J. C. (1998). Evolutionary Consequences of the Latest Paleocene Thermal Maximum for Tropical Planktonic Foraminifera. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 141, 139–161. doi: 10.1016/S0031-0182(98)00017-0</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/S0031-0182(98)00017-0" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=D.%20C.+Kelly&author=T.%20J.+Bralower&author=J.%20C.+Zachos&publication_year=1998&title=Evolutionary%20Consequences%20of%20the%20Latest%20Paleocene%20Thermal%20Maximum%20for%20Tropical%20Planktonic%20Foraminifera&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=141&pages=139" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B89" id="B89"></a> Kennett J. P., Stott L. D. (1991). Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. <i>Nature</i> 353, 225–229. doi: 10.1038/353225a0</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1038/353225a0" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20P.+Kennett&author=L.%20D.+Stott&publication_year=1991&title=Abrupt%20Deep-Sea%20Warming%2C%20Palaeoceanographic%20Changes%20and%20Benthic%20Extinctions%20at%20the%20End%20of%20the%20Palaeocene&journal=Nature&volume=353&pages=225" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B90" id="B90"></a> Kiessling W. (2010). Geologic and Biotic Controls on the Evolution of Reefs. <i>Ann. Rev. Ecol. Evol. Syst.</i> 40, 173–192. doi: 10.1146/annurev.ecolsys.110308.120251</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1146/annurev.ecolsys.110308.120251" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=W.+Kiessling&publication_year=2010&title=Geologic%20and%20Biotic%20Controls%20on%20the%20Evolution%20of%20Reefs&journal=Ann.+Rev.+Ecol.+Evol.+Syst.&volume=40&pages=173" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B91" id="B91"></a> Koch P. L., Zachos J. C., Gingerich P. D. (1992). Correlation Between Isotope Records in Marine and Continental Carbon Reservoirs Near the Paleocene/Eocene Boundary. <i>Nature</i> 358, 319–322. doi: 10.1038/358319a0</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1038/358319a0" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=P.%20L.+Koch&author=J.%20C.+Zachos&author=P.%20D.+Gingerich&publication_year=1992&title=Correlation%20Between%20Isotope%20Records%20in%20Marine%20and%20Continental%20Carbon%20Reservoirs%20Near%20the%20Paleocene%2FEocene%20Boundary&journal=Nature&volume=358&pages=319" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B92" id="B92"></a> Lemoine M. P. (1924). Contribution a L'étude Des Corallinacees Fossiles. VII. Mélobésiées Miocènes Recueillies Par M. Boucart En Albanie. <i>Bull. Soc. Géol. Fr.</i> 23, 275–283.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.%20P.+Lemoine&publication_year=1924&title=Contribution%20a%20L%27%C3%A9tude%20Des%20Corallinacees%20Fossiles.%20VII.%20M%C3%A9lob%C3%A9si%C3%A9es%20Mioc%C3%A8nes%20Recueillies%20Par%20M.%20Boucart%20En%20Albanie&journal=Bull.+Soc.+Géol.+Fr.&volume=23&pages=275" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B93" id="B93"></a> Lemoine M. P. (1928). Un Nouveau Genre De Mélobésiées: <i>Mesophyllum. Bull</i>. <i>Soc. Bot. Fr.</i> 5, 251–254. doi: 10.1080/00378941.1928.10836268</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1080/00378941.1928.10836268" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=M.%20P.+Lemoine&publication_year=1928&title=Un%20Nouveau%20Genre%20De%20M%C3%A9lob%C3%A9si%C3%A9es%3A%20Mesophyllum.%20Bull&journal=Soc.+Bot.+Fr.&volume=5&pages=251" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B94" id="B94"></a> Lemoine M. P. (1939). Les Algues Calcaires Fossiles De l'Algérie. Matériaux Pour La Carte Géologique De L'Algérie. <i>1er Paléontol.</i> 9, 1–128.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.%20P.+Lemoine&publication_year=1939&title=Les%20Algues%20Calcaires%20Fossiles%20De%20l%27Alg%C3%A9rie.%20Mat%C3%A9riaux%20Pour%20La%20Carte%20G%C3%A9ologique%20De%20L%27Alg%C3%A9rie&journal=1er+Paléontol.&volume=9&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B95" id="B95"></a> Lemoine M. P., Mengaud L. (1934). Algues Calcaires De L’Éocène De La Province De Santander (Espagne). <i>Bull. Soc Hist. Nat. Toulouse</i> 66, 171–180.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=M.%20P.+Lemoine&author=L.+Mengaud&publication_year=1934&title=Algues%20Calcaires%20De%20L%E2%80%99%C3%89oc%C3%A8ne%20De%20La%20Province%20De%20Santander%20%28Espagne%29&journal=Bull.+Soc+Hist.+Nat.+Toulouse&volume=66&pages=171" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B96" id="B96"></a> Li J., Hu X., Garzanti E., BouDagher-Fadel M. (2020). Climate-Driven Hydrological Change and Carbonate Platform Demise Induced by the Paleocene-Eocene Thermal Maximum (Southern Pyrenees). <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 567, 110250. doi: 10.1016/j.palaeo.2021.110250</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2021.110250" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Li&author=X.+Hu&author=E.+Garzanti&author=M.+BouDagher-Fadel&publication_year=2020&title=Climate-Driven%20Hydrological%20Change%20and%20Carbonate%20Platform%20Demise%20Induced%20by%20the%20Paleocene-Eocene%20Thermal%20Maximum%20%28Southern%20Pyrenees%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=567&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B97" id="B97"></a> Lunt D. J., Elderfield H., Pancost R., Ridgwell A., Foster G. L., Haywood A., et al. (2013). Warm Climates of the Past – a Lesson for the Future? <i>Phil. Trans. R. Soc</i>,A371. doi: 10.1098/rsta.2013.0146</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1098/rsta.2013.0146" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=D.%20J.+Lunt&author=H.+Elderfield&author=R.+Pancost&author=A.+Ridgwell&author=G.%20L.+Foster&author=A.+Haywood&publication_year=2013&title=Warm%20Climates%20of%20the%20Past%20%E2%80%93%20a%20Lesson%20for%20the%20Future&journal=Phil.+Trans.+R.+Soc&pages=A371" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B98" id="B98"></a> Manners H. R., Grimes S. T., Sutton P. A., Domingo L., Leng M. J., Twitchett R. J., et al. (2013). Magnitude and Profile of Organic Carbon Isotope Records From the Paleocene–Eocene Thermal Maximum: Evidence From Northern Spain. <i>Earth Planet. Sc. Lett.</i> 376, 220–230. doi: 10.1016/j.epsl.2013.06.016</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.epsl.2013.06.016" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=H.%20R.+Manners&author=S.%20T.+Grimes&author=P.%20A.+Sutton&author=L.+Domingo&author=M.%20J.+Leng&author=R.%20J.+Twitchett&publication_year=2013&title=Magnitude%20and%20Profile%20of%20Organic%20Carbon%20Isotope%20Records%20From%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%3A%20Evidence%20From%20Northern%20Spain&journal=Earth+Planet.+Sc.+Lett.&volume=376&pages=220" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B99" id="B99"></a> Martin S., Gattuso J. P. (2009). Response of Mediterranean Coralline Algae to Ocean Acidification and Elevated Temperature. <i>Glob. Change Biol.</i> 15, 2089–2100. doi: 10.1111/j.1365-2486.2009.01874.x</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/j.1365-2486.2009.01874.x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=S.+Martin&author=J.%20P.+Gattuso&publication_year=2009&title=Response%20of%20Mediterranean%20Coralline%20Algae%20to%20Ocean%20Acidification%20and%20Elevated%20Temperature&journal=Glob.+Change+Biol.&volume=15&pages=2089" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B100" id="B100"></a> Martin S., Hall-Spencer J. M. (2017). “Effects of Ocean Warming and Acidification on Rhodolih/Maërl Beds,” in <i>Rhodolith/Maërl Beds: A Global Perspective</i>. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ), 55–85.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=S.+Martin&author=J.%20M.+Hall-Spencer&publication_year=2017&title=Effects%20of%20Ocean%20Warming%20and%20Acidification%20on%20Rhodolih%2FMa%C3%ABrl%20Beds&book=Rhodolith/Maërl+Beds:+A+Global+Perspective&pages=55" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B101" id="B101"></a> Maslov V.P. (1962). <i>Fossil Red Algae of USSR Trud. Instit. Akad. Nauk SSSR</i> 53, 1–222 (in Russian).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=V.P.+Maslov&publication_year=1962&book=Fossil+Red+Algae+of+USSR+Trud.+Instit.+Akad.+Nauk+SSSR&volume=53&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B102" id="B102"></a> Mastrorilli V. I. (1967). Nuovo Contributo Allo Studio Delle Corallinacee Dell’oligocene Ligure-Piemontese: I Reperti Della Tavoletta Ponzone. <i>Atti Ist. Geol. Univ. Genova</i> 5, 153–406.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=V.%20I.+Mastrorilli&publication_year=1967&title=Nuovo%20Contributo%20Allo%20Studio%20Delle%20Corallinacee%20Dell%E2%80%99oligocene%20Ligure-Piemontese%3A%20I%20Reperti%20Della%20Tavoletta%20Ponzone&journal=Atti+Ist.+Geol.+Univ.+Genova&volume=5&pages=153" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B103" id="B103"></a> Mastrorrilli V. I. (1973). Flore Fossili a Corallinacee Di Alcune Localitá Venete Tra I Berici E L’Altopiano Di Asiago. <i>Atti. Soc Ital. Sci. Nat. Mus. civ. Stor. Nat. Milano</i> 114, 209–292.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=V.%20I.+Mastrorrilli&publication_year=1973&title=Flore%20Fossili%20a%20Corallinacee%20Di%20Alcune%20Localit%C3%A1%20Venete%20Tra%20I%20Berici%20E%20L%E2%80%99Altopiano%20Di%20Asiago&journal=Atti.+Soc+Ital.+Sci.+Nat.+Mus.+civ.+Stor.+Nat.+Milano&volume=114&pages=209" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B104" id="B104"></a> McInerney F. A., Wing S. L. (2011). The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere With Implications for the Future. <i>Ann. Rev. Earth Planet. Sc.</i> 39, 489–516. doi: 10.1146/annurev-earth-040610-133431</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1146/annurev-earth-040610-133431" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=F.%20A.+McInerney&author=S.%20L.+Wing&publication_year=2011&title=The%20Paleocene-Eocene%20Thermal%20Maximum%3A%20A%20Perturbation%20of%20Carbon%20Cycle%2C%20Climate%2C%20and%20Biosphere%20With%20Implications%20for%20the%20Future&journal=Ann.+Rev.+Earth+Planet.+Sc.&volume=39&pages=489" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B105" id="B105"></a> Minnery G. A. (1990). Crustose Coralline Algae From the Flower Garden Banks, Northwestern Gulf of Mexico: Controls on Distribution and Growth Morphology. <i>J. Sediment. Petrol.</i> 60, 992–1007. doi: 10.1306/D4267663-2B26-11D7-8648000102C1865D</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1306/D4267663-2B26-11D7-8648000102C1865D" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=G.%20A.+Minnery&publication_year=1990&title=Crustose%20Coralline%20Algae%20From%20the%20Flower%20Garden%20Banks%2C%20Northwestern%20Gulf%20of%20Mexico%3A%20Controls%20on%20Distribution%20and%20Growth%20Morphology&journal=J.+Sediment.+Petrol.&volume=60&pages=992" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B106" id="B106"></a> Minnery G. A., Rezak R., Bright T. J. (1985). “Depth Zonation and Growth Form of Crustose Coralline Algae: Flower Garden Banks, Northwestern Gulf of Mexico,” in <i>Paleoalgology: Contemporary Research and Applications</i>. Eds. Toomey D. F., Nitecki H. M. (Berlin: Springer), 237–247.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=G.%20A.+Minnery&author=R.+Rezak&author=T.%20J.+Bright&publication_year=1985&title=Depth%20Zonation%20and%20Growth%20Form%20of%20Crustose%20Coralline%20Algae%3A%20Flower%20Garden%20Banks%2C%20Northwestern%20Gulf%20of%20Mexico&book=Paleoalgology:+Contemporary+Research+and+Applications&pages=237" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B107" id="B107"></a> Molina E., Angori E., Arenillas I., Brinkhuis H., Crouch E. M., Luterbacher H., et al. (2003). Correlation Between the Paleocene/Eocene Boundary and the Ilerdian at Campo, Spain. <i>Rev. Micropaleontol.</i> 46, 95–109. doi: 10.1016/S0035-1598(03)00012-6</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/S0035-1598(03)00012-6" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=E.+Molina&author=E.+Angori&author=I.+Arenillas&author=H.+Brinkhuis&author=E.%20M.+Crouch&author=H.+Luterbacher&publication_year=2003&title=Correlation%20Between%20the%20Paleocene%2FEocene%20Boundary%20and%20the%20Ilerdian%20at%20Campo%2C%20Spain&journal=Rev.+Micropaleontol.&volume=46&pages=95" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B108" id="B108"></a> Mudelsee M., Bickert T., Lear C. H., Lohmann G. (2014). Cenozoic Climate Changes: A Review Based on Times Series Analysis of Marine Benthic δ<sup>18</sup>O Records. <i>Rev. Geoph.</i> 52, 333–374. doi: 10.1002/2013RG000440</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1002/2013RG000440" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=M.+Mudelsee&author=T.+Bickert&author=C.%20H.+Lear&author=G.+Lohmann&publication_year=2014&title=Cenozoic%20Climate%20Changes%3A%20A%20Review%20Based%20on%20Times%20Series%20Analysis%20of%20Marine%20Benthic%20%CE%B418O%20Records&journal=Rev.+Geoph.&volume=52&pages=333" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B109" id="B109"></a> Murray J. W. (1991). <i>Ecology and Palaeoecology of Benthic Foraminifera</i> (UK: Longman Sc. & Tech).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20W.+Murray&publication_year=1991&book=Ecology+and+Palaeoecology+of+Benthic+Foraminifera&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B110" id="B110"></a> Murray J. W. (2006). <i>Ecology and Applications of Benthic Foraminifera</i> (Cambridge: Cambridge Univ. Press).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.%20W.+Murray&publication_year=2006&book=Ecology+and+Applications+of+Benthic+Foraminifera&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B111" id="B111"></a> Norris R. D., Kirtland Turner S., Hull P. M., Ridgwell A. (2013). Marine Ecosystem Responses to Cenozoic Global Change. <i>Science</i> 341, 492–498. doi: 10.1126/science.1240543</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23908226/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.1240543" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20D.+Norris&author=S.+Kirtland%20Turner&author=P.%20M.+Hull&author=A.+Ridgwell&publication_year=2013&title=Marine%20Ecosystem%20Responses%20to%20Cenozoic%20Global%20Change&journal=Science&volume=341&pages=492" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B112" id="B112"></a> O’Connell L. G., James N. P., Harvey A. S., Luick J., Bone Y., Shepherd S. A. (2020). Reevaluation of the Inferred Relationship Between Living Rhodolith Morphologies, Their Movements, and Water Energy: Implications for Interpreting Paleoceanographic Conditions. <i>Palaios</i> 35, 543–556. doi: 10.2110/palo.2019.101</p><p class="ReferencesCopy2"><a href="https://doi.org/10.2110/palo.2019.101" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=L.%20G.+O%E2%80%99Connell&author=N.%20P.+James&author=A.%20S.+Harvey&author=J.+Luick&author=Y.+Bone&author=S.%20A.+Shepherd&publication_year=2020&title=Reevaluation%20of%20the%20Inferred%20Relationship%20Between%20Living%20Rhodolith%20Morphologies%2C%20Their%20Movements%2C%20and%20Water%20Energy%3A%20Implications%20for%20Interpreting%20Paleoceanographic%20Conditions&journal=Palaios&volume=35&pages=543" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B113" id="B113"></a> Orue-Etxebarria X., Pujalte V., Bernaola G., Apellaniz E., Baceta J. I., Payros A., et al. (2001). Did the Late Paleocene Thermal Maximum Affect the Evolution of Larger Foraminifers? Evidence From Calcareous Plankton of the Campo Section (Pyrenees, Spain). <i>Mar. Micropaleontol.</i> 41, 45–71. doi: 10.1016/S0377-8398(00)00052-9</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/S0377-8398(00)00052-9" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=X.+Orue-Etxebarria&author=V.+Pujalte&author=G.+Bernaola&author=E.+Apellaniz&author=J.%20I.+Baceta&author=A.+Payros&publication_year=2001&title=Did%20the%20Late%20Paleocene%20Thermal%20Maximum%20Affect%20the%20Evolution%20of%20Larger%20Foraminifers%3F%20Evidence%20From%20Calcareous%20Plankton%20of%20the%20Campo%20Section%20%28Pyrenees%2C%20Spain%29&journal=Mar.+Micropaleontol.&volume=41&pages=45" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B114" id="B114"></a> Payros A., Pujalte V., Baceta J. I., Bernaola G., Orue-Etxebarria X., Apellaniz E., et al. (2000). Lithostratigraphy and Sequence Stratigraphy of the Upper Thanetian to Middle Ilerdian Strata of the Campo Section (Southern Pyrenees, Spain): Revision and New Data. <i>Rev. Soc Geol. Esp.</i> 13, 213–226.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.+Payros&author=V.+Pujalte&author=J.%20I.+Baceta&author=G.+Bernaola&author=X.+Orue-Etxebarria&author=E.+Apellaniz&publication_year=2000&title=Lithostratigraphy%20and%20Sequence%20Stratigraphy%20of%20the%20Upper%20Thanetian%20to%20Middle%20Ilerdian%20Strata%20of%20the%20Campo%20Section%20%28Southern%20Pyrenees%2C%20Spain%29%3A%20Revision%20and%20New%20Data&journal=Rev.+Soc+Geol.+Esp.&volume=13&pages=213" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B115" id="B115"></a> Peña V., Harvey B. P., Agostini S., Porzio L., Milazzo M., Horta P., et al. (2020a). Major Loss of Coralline Algal Diversity in Response to Ocean Acidification. <i>Glob. Change Biol</i>. doi: 10.1111/gcb.15757</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/gcb.15757" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pe%C3%B1a&author=B.%20P.+Harvey&author=S.+Agostini&author=L.+Porzio&author=M.+Milazzo&author=P.+Horta&publication_year=2020&title=Major%20Loss%20of%20Coralline%20Algal%20Diversity%20in%20Response%20to%20Ocean%20Acidification&journal=Glob.+Change+Biol&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B116" id="B116"></a> Peña V., Vieira C., Braga J. C., Aguirre J., Rösler A., Baele G., et al. (2020b). Radiation of the Coralline Red Algae (Corallinophycidae, Rhodophyta) Crown Group as Inferred From a Multilocus Time-Calibrated Phylogeny. <i>Mol. Phylog. Evol.</i> 150, 106845. doi: 10.1016/j.ympev.2020.106845</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ympev.2020.106845" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pe%C3%B1a&author=C.+Vieira&author=J.%20C.+Braga&author=J.+Aguirre&author=A.+R%C3%B6sler&author=G.+Baele&publication_year=2020&title=Radiation%20of%20the%20Coralline%20Red%20Algae%20%28Corallinophycidae%2C%20Rhodophyta%29%20Crown%20Group%20as%20Inferred%20From%20a%20Multilocus%20Time-Calibrated%20Phylogeny&journal=Mol.+Phylog.+Evol.&volume=150&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B117" id="B117"></a> Perrin C., Bosence D. W. J., Rosen B. (1995). “Quantitative Approaches to Palaeozonation and Palaeobathymetry of Corals and Coralline Algae in Cenozoic Reefs,” in <i>Marine Palaeoenvironmental Analysis From Fossils</i>. Eds. Bosence D. W. J., Allison P. A., 181–229. UK: Geol. Soc. Lond. Sp. Publ. 83.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=C.+Perrin&author=D.%20W.%20J.+Bosence&author=B.+Rosen&publication_year=1995&title=Quantitative%20Approaches%20to%20Palaeozonation%20and%20Palaeobathymetry%20of%20Corals%20and%20Coralline%20Algae%20in%20Cenozoic%20Reefs&book=Marine+Palaeoenvironmental+Analysis+From+Fossils&pages=181" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B118" id="B118"></a> Perrin C., Kiessling W. (2010). “Latitudinal Trends in Cenozoic Reef Patterns and Their Relationship to Climate,” in <i>Carbonate Systems During the Oligocene-Miocene Climatic Transition</i>. Eds. Mutti M., Piller W. E., Betzler C. (USA: IAS Sp. Publ. 42), 17–34.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=C.+Perrin&author=W.+Kiessling&publication_year=2010&title=Latitudinal%20Trends%20in%20Cenozoic%20Reef%20Patterns%20and%20Their%20Relationship%20to%20Climate&book=Carbonate+Systems+During+the+Oligocene-Miocene+Climatic+Transition&pages=17" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B119" id="B119"></a> Pfender J. (1926). Sur Les Organismes du Nummulitique de La Colline de San Salvador Près Camarasa. <i>Bol. R. Acad. Esp. Hist. Nat.</i> 26, 321–330.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Pfender&publication_year=1926&title=Sur%20Les%20Organismes%20du%20Nummulitique%20de%20La%20Colline%20de%20San%20Salvador%20Pr%C3%A8s%20Camarasa&journal=Bol.+R.+Acad.+Esp.+Hist.+Nat.&volume=26&pages=321" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B120" id="B120"></a> Pfender J. (1939). Sur un calcaire phytogène du Lias inférieur d'Espagne et l'extension de ce faciès en quelques autres régions. <i>Bull. Soc. Vaudoise Sc. nat.</i> 60, 213–228.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Pfender&publication_year=1939&title=Sur%20un%20calcaire%20phytog%C3%A8ne%20du%20Lias%20inf%C3%A9rieur%20d%27Espagne%20et%20l%27extension%20de%20ce%20faci%C3%A8s%20en%20quelques%20autres%20r%C3%A9gions&journal=Bull.+Soc.+Vaudoise+Sc.+nat.&volume=60&pages=213" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B121" id="B121"></a> Piller W. E. (1994). <i>Nullipora Ramosissima</i> Reuss 1847—a Rediscovery. <i>Beitr. Paletontol.</i> 19, 181–189.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=W.%20E.+Piller&publication_year=1994&title=Nullipora%20Ramosissima%20Reuss%201847%E2%80%94a%20Rediscovery&journal=Beitr.+Paletontol.&volume=19&pages=181" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B122" id="B122"></a> Pujalte V., Baceta J. I., Payros A., Orue-Etxebarria X., Schmitz B. (2000b). Upper Paleocene-Lower Eocene Strata of the Western Pyrenees, Spain: A Shelf-to-Basin Correlation. <i>GFF</i> 122, 129–130. doi: 10.1080/11035890001221129</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1080/11035890001221129" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=J.%20I.+Baceta&author=A.+Payros&author=X.+Orue-Etxebarria&author=B.+Schmitz&publication_year=2000&title=Upper%20Paleocene-Lower%20Eocene%20Strata%20of%20the%20Western%20Pyrenees%2C%20Spain%3A%20A%20Shelf-to-Basin%20Correlation&journal=GFF&volume=122&pages=129" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B123" id="B123"></a> Pujalte V., Baceta J. I., Schmitz B., Orue-Etxebarria X., Payros A., Bernaola G., et al. (2009a). Redefinition of the Ilerdian Stage (Early Eocene). <i>Geol. Acta</i> 7, 177–194. doi: 10.1344/105.000000268</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1344/105.000000268" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=J.%20I.+Baceta&author=B.+Schmitz&author=X.+Orue-Etxebarria&author=A.+Payros&author=G.+Bernaola&publication_year=2009&title=Redefinition%20of%20the%20Ilerdian%20Stage%20%28Early%20Eocene%29&journal=Geol.+Acta&volume=7&pages=177" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B124" id="B124"></a> Pujalte V., Orue-Etxebarria X., Schmitz B., Tosquella J., Baceta J. I., Payros A., et al. (2003). “Basal Ilerdian (Earliest Eocene) Turnover of Larger Foraminifera: Age Constraints Based on Calcareous Plankton and δ<sup>13</sup>C Isotopic Profiles From New Southern Pyrenean Sections (Spain),” in <i>Causes and Consequences of Globally Warm Climates in the Early Paleogene</i>. Eds. Wing S. L., Gingerich P. D., Schmitz B., Thomas E., 205–221. USA: Boulder, Colorado, Geol. Soc. Am. Sp. Paper, 369.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=X.+Orue-Etxebarria&author=B.+Schmitz&author=J.+Tosquella&author=J.%20I.+Baceta&author=A.+Payros&publication_year=2003&title=Basal%20Ilerdian%20%28Earliest%20Eocene%29%20Turnover%20of%20Larger%20Foraminifera%3A%20Age%20Constraints%20Based%20on%20Calcareous%20Plankton%20and%20%CE%B413C%20Isotopic%20Profiles%20From%20New%20Southern%20Pyrenean%20Sections%20%28Spain%29&book=Causes+and+Consequences+of+Globally+Warm+Climates+in+the+Early+Paleogene&pages=205" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B125" id="B125"></a> Pujalte V., Robles S., Orue-Etxebarria X., Baceta J. I., Payros A., Larruzea I. F. (2000a). Uppermost Cretaceous-Middle Eocene Strata of the Basque-Cantabrian Region and Western Pyrenees: A Sequence Stratigraphic Perspective. <i>Rev. Soc Geol. Esp.</i> 13, 191–211.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=S.+Robles&author=X.+Orue-Etxebarria&author=J.%20I.+Baceta&author=A.+Payros&author=I.%20F.+Larruzea&publication_year=2000&title=Uppermost%20Cretaceous-Middle%20Eocene%20Strata%20of%20the%20Basque-Cantabrian%20Region%20and%20Western%20Pyrenees%3A%20A%20Sequence%20Stratigraphic%20Perspective&journal=Rev.+Soc+Geol.+Esp.&volume=13&pages=191" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B126" id="B126"></a> Pujalte V., Schmitz B., Baceta J. I. (2014). Sea-Level Changes Across the Paleocene-Eocene Interval in the Spanish Pyrenees, and Their Possible Relationship With North Atlantic Magmatism. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 393, 45–60. doi: 10.1016/j.palaeo.2013.10.016</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2013.10.016" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=B.+Schmitz&author=J.%20I.+Baceta&publication_year=2014&title=Sea-Level%20Changes%20Across%20the%20Paleocene-Eocene%20Interval%20in%20the%20Spanish%20Pyrenees%2C%20and%20Their%20Possible%20Relationship%20With%20North%20Atlantic%20Magmatism&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=393&pages=45" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B127" id="B127"></a> Pujalte V., Schmitz B., Baceta J. I., Orue-Etxebarria X., Bernaola G., Dinarés-Turell J., et al. (2009b). Correlation of the Thanetian-Ilerdian Turnover of Larger Foraminifera and the Paleocene-Eocene Thermal Maximum: Confirming Evidence From the Campo Area (Pyrenees, Spain). <i>Geol. Acta</i> 7, 161–175. doi: 10.1344/105.000000276</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1344/105.000000276" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=B.+Schmitz&author=J.%20I.+Baceta&author=X.+Orue-Etxebarria&author=G.+Bernaola&author=J.+Dinar%C3%A9s-Turell&publication_year=2009&title=Correlation%20of%20the%20Thanetian-Ilerdian%20Turnover%20of%20Larger%20Foraminifera%20and%20the%20Paleocene-Eocene%20Thermal%20Maximum%3A%20Confirming%20Evidence%20From%20the%20Campo%20Area%20%28Pyrenees%2C%20Spain%29&journal=Geol.+Acta&volume=7&pages=161" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B128" id="B128"></a> Pujalte V., Schmitz B., Payros A. (2022). A Rapid Sedimentary Response to the Paleocene-Eocene Thermal Maximum Hydrological Change: New Data From Alluvial Units of the Tremp-Graus Basin (Spanish Pyrenees). <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 589, 110818. doi: 10.1016/j.palaeo.2021.110818. 1.</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2021.110818" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=V.+Pujalte&author=B.+Schmitz&author=A.+Payros&publication_year=2022&title=A%20Rapid%20Sedimentary%20Response%20to%20the%20Paleocene-Eocene%20Thermal%20Maximum%20Hydrological%20Change%3A%20New%20Data%20From%20Alluvial%20Units%20of%20the%20Tremp-Graus%20Basin%20%28Spanish%20Pyrenees%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=589&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B129" id="B129"></a> Quaranta F., Tomassetti L., Vannucci G., Brandano M. (2012). Coralline Algae as Environmental Indicators: A Case Study From the Attard Member (Chattian, Malta). <i>Geodiversitas</i> 34, 151–166. doi: 10.5252/g2012n1a9</p><p class="ReferencesCopy2"><a href="https://doi.org/10.5252/g2012n1a9" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=F.+Quaranta&author=L.+Tomassetti&author=G.+Vannucci&author=M.+Brandano&publication_year=2012&title=Coralline%20Algae%20as%20Environmental%20Indicators%3A%20A%20Case%20Study%20From%20the%20Attard%20Member%20%28Chattian%2C%20Malta%29&journal=Geodiversitas&volume=34&pages=151" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B130" id="B130"></a> Raffi I., De Bernardi B. (2008). Response of Calcareous Nannofossils to the Paleocene–Eocene Thermal Maximum: Observations on Composition, Preservation and Calcification in Sediments From ODP Site 1263 (Walvis Ridge — SW Atlantic). <i>Mar. Micropaleontol.</i> 69, 119–138. doi: 10.1016/j.marmicro.2008.07.002</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.marmicro.2008.07.002" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=I.+Raffi&author=B.+De%20Bernardi&publication_year=2008&title=Response%20of%20Calcareous%20Nannofossils%20to%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%3A%20Observations%20on%20Composition%2C%20Preservation%20and%20Calcification%20in%20Sediments%20From%20ODP%20Site%201263%20%28Walvis%20Ridge%20%E2%80%94%20SW%20Atlantic%29&journal=Mar.+Micropaleontol.&volume=69&pages=119" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B131" id="B131"></a> Ridgwell A., Schmidt D. N. (2010). Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. <i>Nat. Geosc.</i> 3, 196–200. doi: 10.1038/ngeo755</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1038/ngeo755" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=A.+Ridgwell&author=D.%20N.+Schmidt&publication_year=2010&title=Past%20Constraints%20on%20the%20Vulnerability%20of%20Marine%20Calcifiers%20to%20Massive%20Carbon%20Dioxide%20Release&journal=Nat.+Geosc.&volume=3&pages=196" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B132" id="B132"></a> Robador A. (2008). <i>El Paleoceno E Ilerdiense Inferior Del Pirineo Occidental: Estratigrafía Y Sedimentología</i> (Ph.D. Thesis University of the Basque Spain. Publ. Inst. Geol. Min. Esp., Ser. Tesis Doctorales 12).</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.+Robador&publication_year=2008&book=El+Paleoceno+E+Ilerdiense+Inferior+Del+Pirineo+Occidental:+Estratigrafía+Y+Sedimentología&" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B133" id="B133"></a> Robador A., Pujalte V., Samsó J. M., Payros A. (2009). Registro Geológico Del Máximo Térmico Del Paleoceno-Eoceno En El Parque Nacional De Ordesa Y Monte Perdido (Pirineo Central). <i>Geogaceta</i> 46, 111–114.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.+Robador&author=V.+Pujalte&author=J.%20M.+Sams%C3%B3&author=A.+Payros&publication_year=2009&title=Registro%20Geol%C3%B3gico%20Del%20M%C3%A1ximo%20T%C3%A9rmico%20Del%20Paleoceno-Eoceno%20En%20El%20Parque%20Nacional%20De%20Ordesa%20Y%20Monte%20Perdido%20%28Pirineo%20Central%29&journal=Geogaceta&volume=46&pages=111" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B134" id="B134"></a> Rösler A., Perfectti F., Peña V., Aguirre J., Braga J.C. (2017). Timing of the Evolutionary History of Corallinaceae (Corallinales, Rhodophyta). <i>J. Phycol.</i> 53, 567–576.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28191634/" target="_blank">PubMed Abstract</a> | <a href="http://scholar.google.com/scholar_lookup?author=A.+R%C3%B6sler&author=F.+Perfectti&author=V.+Pe%C3%B1a&author=J.+Aguirre&author=J.C.+Braga&publication_year=2017&title=Timing%20of%20the%20Evolutionary%20History%20of%20Corallinaceae%20%28Corallinales%2C%20Rhodophyta%29&journal=J.+Phycol.&volume=53&pages=567" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B135" id="B135"></a> Sarkar S. (2018). The Enigmatic Palaeocene-Eocene Coralline <i>Distichoplax</i>: Approaching the Structural Complexities, Ecological Affinities and Extinction Hypotheses. <i>Mar. Micropaleontol.</i> 139, 72–83. doi: 10.1016/j.marmicro.2017.12.001</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.marmicro.2017.12.001" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=S.+Sarkar&publication_year=2018&title=The%20Enigmatic%20Palaeocene-Eocene%20Coralline%20Distichoplax%3A%20Approaching%20the%20Structural%20Complexities%2C%20Ecological%20Affinities%20and%20Extinction%20Hypotheses&journal=Mar.+Micropaleontol.&volume=139&pages=72" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B136" id="B136"></a> Schaub H. (1951). Stratigraphie Und Paläontologie Des Schlierenflysches Mit Besonderer Berücksichtigung Der Paleocaenen Und Untereocaenen Nummuliten Und Assilinen. <i>Schw. Paläontol. Abh.</i> 68, 1–222.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=H.+Schaub&publication_year=1951&title=Stratigraphie%20Und%20Pal%C3%A4ontologie%20Des%20Schlierenflysches%20Mit%20Besonderer%20Ber%C3%BCcksichtigung%20Der%20Paleocaenen%20Und%20Untereocaenen%20Nummuliten%20Und%20Assilinen&journal=Schw.+Paläontol.+Abh.&volume=68&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B137" id="B137"></a> Schaub H. (1973). “La Sección De Campo (Prov. De Huesca: Enadimsa),” in <i>Libro-Guía Del XIII Coloquio Europeo De Micropaleontología</i>. Ed. Enadimsa(España), 139–158.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=H.+Schaub&publication_year=1973&title=La%20Secci%C3%B3n%20De%20Campo%20%28Prov.%20De%20Huesca%3A%20Enadimsa%29&book=Libro-Guía+Del+XIII+Coloquio+Europeo+De+Micropaleontología&pages=139" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B138" id="B138"></a> Scheibner C., Rasser M. W., Mutti M. (2007). The Campo Section (Pyrenees, Spain) Revisited: Implications for Changing Benthic Carbonate Assemblages Across the Paleocene-Eocene Boundary. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 248, 145–168. doi: 10.1016/j.palaeo.2006.12.007</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2006.12.007" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=C.+Scheibner&author=M.%20W.+Rasser&author=M.+Mutti&publication_year=2007&title=The%20Campo%20Section%20%28Pyrenees%2C%20Spain%29%20Revisited%3A%20Implications%20for%20Changing%20Benthic%20Carbonate%20Assemblages%20Across%20the%20Paleocene-Eocene%20Boundary&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=248&pages=145" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B139" id="B139"></a> Scheibner C., Speijer R. P. (2008). Late Paleocene-Early Eocene Tethyan Carbonate Platform Evolution – A Response to Long- and Short-Term Paleoclimatic Change. <i>Earth-Sc. Rev.</i> 90, 71–102. doi: 10.1016/j.earscirev.2008.07.002</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.earscirev.2008.07.002" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=C.+Scheibner&author=R.%20P.+Speijer&publication_year=2008&title=Late%20Paleocene-Early%20Eocene%20Tethyan%20Carbonate%20Platform%20Evolution%20%E2%80%93%20A%20Response%20to%20Long-%20and%20Short-Term%20Paleoclimatic%20Change&journal=Earth-Sc.+Rev.&volume=90&pages=71" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B140" id="B140"></a> Scheibner C., Speijer R. P., Marzouk A. (2005). Larger Foraminiferal Turnover During the Paleocene/Eocene Thermal Maximum and Paleoclimatic Control on the Evolution of Platform Ecosystems. <i>Geology</i> 33, 493–496. doi: 10.1130/G21237.1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/G21237.1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=C.+Scheibner&author=R.%20P.+Speijer&author=A.+Marzouk&publication_year=2005&title=Larger%20Foraminiferal%20Turnover%20During%20the%20Paleocene%2FEocene%20Thermal%20Maximum%20and%20Paleoclimatic%20Control%20on%20the%20Evolution%20of%20Platform%20Ecosystems&journal=Geology&volume=33&pages=493" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B141" id="B141"></a> Schmitz B., Pujalte V. (2003). Sea-Level, Humidity, and Land-Erosion Records Across the Initial Eocene Thermal Maximum From a Continental-Marine Transect in Northern Spain. <i>Geology</i> 31, 689–692. doi: 10.1130/G19527.1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/G19527.1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=B.+Schmitz&author=V.+Pujalte&publication_year=2003&title=Sea-Level%2C%20Humidity%2C%20and%20Land-Erosion%20Records%20Across%20the%20Initial%20Eocene%20Thermal%20Maximum%20From%20a%20Continental-Marine%20Transect%20in%20Northern%20Spain&journal=Geology&volume=31&pages=689" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B142" id="B142"></a> Schmitz B., Pujalte V. (2007). Abrupt Increase in Seasonal Extreme Precipitation at the Paleocene–Eocene Boundary. <i>Geology</i> 35, 215–218. doi: 10.1130/G23261A.1</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/G23261A.1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=B.+Schmitz&author=V.+Pujalte&publication_year=2007&title=Abrupt%20Increase%20in%20Seasonal%20Extreme%20Precipitation%20at%20the%20Paleocene%E2%80%93Eocene%20Boundary&journal=Geology&volume=35&pages=215" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B143" id="B143"></a> Segonzac G., Charollais J. (1974). Sur Quelques Algues Calcaires (Corallinacées, Payssoneliacées) Des Calcaires À Petites Nummulites Des Chaînes Subalpines Septentrionales (Massif Des Bornes, Haute-Savoie, France). <i>Arch. Sc. Genève</i> 27, 111–132.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=G.+Segonzac&author=J.+Charollais&publication_year=1974&title=Sur%20Quelques%20Algues%20Calcaires%20%28Corallinac%C3%A9es%2C%20Payssoneliac%C3%A9es%29%20Des%20Calcaires%20%C3%80%20Petites%20Nummulites%20Des%20Cha%C3%AEnes%20Subalpines%20Septentrionales%20%28Massif%20Des%20Bornes%2C%20Haute-Savoie%2C%20France%29&journal=Arch.+Sc.+Genève&volume=27&pages=111" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B144" id="B144"></a> Serra-Kiel J., Canudo J. I., Dinarés-Turell J., Molina E., Ortiz N., Pascual J. O., et al. (1994). Cronoestratigrafía De Los Sedimentos Marinos Del Terciario Inferior De La Cuenca De Graus-Tremp (Zona Central Surpirenaica). <i>Rev. Soc Geol. Esp.</i> 7, 273–297.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Serra-Kiel&author=J.%20I.+Canudo&author=J.+Dinar%C3%A9s-Turell&author=E.+Molina&author=N.+Ortiz&author=J.%20O.+Pascual&publication_year=1994&title=Cronoestratigraf%C3%ADa%20De%20Los%20Sedimentos%20Marinos%20Del%20Terciario%20Inferior%20De%20La%20Cuenca%20De%20Graus-Tremp%20%28Zona%20Central%20Surpirenaica%29&journal=Rev.+Soc+Geol.+Esp.&volume=7&pages=273" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B145" id="B145"></a> Serra-Kiel J., Hottinger L., Caus E., Drobne K., Ferràndez C., Jauhri A. K., et al. (1998). Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. <i>Bull. Soc Géol. Fr.</i> 169, 281–299.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=J.+Serra-Kiel&author=L.+Hottinger&author=E.+Caus&author=K.+Drobne&author=C.+Ferr%C3%A0ndez&author=A.%20K.+Jauhri&publication_year=1998&title=Larger%20Foraminiferal%20Biostratigraphy%20of%20the%20Tethyan%20Paleocene%20and%20Eocene&journal=Bull.+Soc+Géol.+Fr.&volume=169&pages=281" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B146" id="B146"></a> Serra-Kiel J., Vicedo V., Baceta J. I., Bernaola G., Robador A. (2020). Paleocene Larger Foraminifera From the Pyrenean Basin With a Recalibration of the Paleocene Shallow Benthic Zones. <i>Geol. Acta</i> 18.8, 1–69. doi: 10.1344/GeologicaActa2020.18.8</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1344/GeologicaActa2020.18.8" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.+Serra-Kiel&author=V.+Vicedo&author=J.%20I.+Baceta&author=G.+Bernaola&author=A.+Robador&publication_year=2020&title=Paleocene%20Larger%20Foraminifera%20From%20the%20Pyrenean%20Basin%20With%20a%20Recalibration%20of%20the%20Paleocene%20Shallow%20Benthic%20Zones&journal=Geol.+Acta&volume=18.8&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B147" id="B147"></a> Sluijs A., Bowen G. J., Brinkhuis H., Lourens L. J., Thomas E. (2007). “The Palaeocene–Eocene Thermal Maximum Super Greenhouse: Biotic and Geochemical Signatures, Age Models and Mechanisms of Global Change,” in <i>Deep-Time Perspectives on Climate Change: Marrying the Signal From Computer Models and Biological Proxies</i>. Eds. Williams M., Haywood A. M., Gregory F. J., Schmidt D. N. (London: Micropalaeontol. Soc., Geol. Soc., Sp. Publ), 323–349.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=A.+Sluijs&author=G.%20J.+Bowen&author=H.+Brinkhuis&author=L.%20J.+Lourens&author=E.+Thomas&publication_year=2007&title=The%20Palaeocene%E2%80%93Eocene%20Thermal%20Maximum%20Super%20Greenhouse%3A%20Biotic%20and%20Geochemical%20Signatures%2C%20Age%20Models%20and%20Mechanisms%20of%20Global%20Change&book=Deep-Time+Perspectives+on+Climate+Change:+Marrying+the+Signal+From+Computer+Models+and+Biological+Proxies&pages=323" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B148" id="B148"></a> Speijer R. P., Morsi A. M. M. (2002). Ostracode Turnover and Sea-Level Changes Associated With the Paleocene-Eocene Thermal Maximum. <i>Geology</i> 30, 23–26. doi: 10.1130/0091-7613(2002)030<0023:OTASLC>2.0.CO;2</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1130/0091-7613(2002)030<0023:OTASLC>2.0.CO;2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20P.+Speijer&author=A.%20M.%20M.+Morsi&publication_year=2002&title=Ostracode%20Turnover%20and%20Sea-Level%20Changes%20Associated%20With%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Geology&volume=30&pages=23" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B149" id="B149"></a> Speijer R. P., Scheibner C., Stassen P., Morsi A. M. M. (2012). Response of Marine Ecosystems to Deep-Time Global Warming: A Synthesis of Biotic Patterns Across the Paleocene-Eocene Thermal Maximum (PETM). <i>Aust. J. Earth Sc.</i> 105, 6–16.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=R.%20P.+Speijer&author=C.+Scheibner&author=P.+Stassen&author=A.%20M.%20M.+Morsi&publication_year=2012&title=Response%20of%20Marine%20Ecosystems%20to%20Deep-Time%20Global%20Warming%3A%20A%20Synthesis%20of%20Biotic%20Patterns%20Across%20the%20Paleocene-Eocene%20Thermal%20Maximum%20%28PETM%29&journal=Aust.+J.+Earth+Sc.&volume=105&pages=6" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B150" id="B150"></a> Stockar R. (1997). Contributo Alla Conoscenza Dell'eocene Nel Canton Ticino: L'associazione Ad Alghe Calcaree Fossili Di Prella (Mendrisiotto). <i>Boll. Soc Ticinese Sci. Nat.</i> 85, 23–46.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=R.+Stockar&publication_year=1997&title=Contributo%20Alla%20Conoscenza%20Dell%27eocene%20Nel%20Canton%20Ticino%3A%20L%27associazione%20Ad%20Alghe%20Calcaree%20Fossili%20Di%20Prella%20%28Mendrisiotto%29&journal=Boll.+Soc+Ticinese+Sci.+Nat.&volume=85&pages=23" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B151" id="B151"></a> Stockar R. (2000). Fossil Coralline Algae From the Paleocene Montorfano Member Type-Section (Tabiago Formation, Northern Italy). <i>Eclog. Geol. Helv.</i> 93, 409–427.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=R.+Stockar&publication_year=2000&title=Fossil%20Coralline%20Algae%20From%20the%20Paleocene%20Montorfano%20Member%20Type-Section%20%28Tabiago%20Formation%2C%20Northern%20Italy%29&journal=Eclog.+Geol.+Helv.&volume=93&pages=409" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B152" id="B152"></a> Taylor J. D., Glover E. A. (2006). Lucinidae (Bivalvia) – the Most Diverse Group of Chemosymbiotic Molluscs. <i>Zool. J. Lin. Soc</i> 148, 421–438. doi: 10.1111/j.1096-3642.2006.00261.x</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1111/j.1096-3642.2006.00261.x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20D.+Taylor&author=E.%20A.+Glover&publication_year=2006&title=Lucinidae%20%28Bivalvia%29%20%E2%80%93%20the%20Most%20Diverse%20Group%20of%20Chemosymbiotic%20Molluscs&journal=Zool.+J.+Lin.+Soc&volume=148&pages=421" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B153" id="B153"></a> Thomas E. (1990). “Late Cretaceous Through Neogene Deep-Sea Benthic Fora- minifers (Maud Rise, Weddell Sea, Antarctica),” in <i>Proceedings of the Ocean Drilling Program, Scientific Results</i>, vol. 113 . Ed. Barker P. F., Kennett J. P., O'Connell S., Berkovitz S., Bryant W. R., Burckle L. H., et al (Texas, USA: Texas A & M University, College Station), 571–594.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Thomas&publication_year=1990&title=Late%20Cretaceous%20Through%20Neogene%20Deep-Sea%20Benthic%20Fora-%20minifers%20%28Maud%20Rise%2C%20Weddell%20Sea%2C%20Antarctica%29&book=Proceedings+of+the+Ocean+Drilling+Program,+Scientific+Results&volume=113&pages=571" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B154" id="B154"></a> Thomas E. (2003). “Extinction and Food at the Seafloor: A High-Resolution Benthic Foraminiferal Record Across the Initial Eocene Thermal Maximum, Southern Ocean Site 690,” in <i>Causes and Consequences of Globally Warm Climates in the Early Paleogene</i>, vol. 369 . Eds. Wing S. L., Gingerich P. D., Schmitz B., Thomas E., 319–332. USA: Geol. Soc. Am. Sp. Publ.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Thomas&publication_year=2003&title=Extinction%20and%20Food%20at%20the%20Seafloor%3A%20A%20High-Resolution%20Benthic%20Foraminiferal%20Record%20Across%20the%20Initial%20Eocene%20Thermal%20Maximum%2C%20Southern%20Ocean%20Site%20690&book=Causes+and+Consequences+of+Globally+Warm+Climates+in+the+Early+Paleogene&volume=369&pages=319" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B155" id="B155"></a> Thomas E. (2007). “Cenozoic Mass Extinctions in the Deep Sea: What Perturbs the Largest Habitat on Earth?,” in <i>Large Ecosystem Perturbations: Causes and Consequences</i>, vol. 424 . Eds. Monechi S., Coccioni R., Rampino M. R., 1–23. USA: Geol. Soc. Am. Sp. Papers.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Thomas&publication_year=2007&title=Cenozoic%20Mass%20Extinctions%20in%20the%20Deep%20Sea%3A%20What%20Perturbs%20the%20Largest%20Habitat%20on%20Earth&book=Large+Ecosystem+Perturbations:+Causes+and+Consequences&volume=424&pages=1" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B156" id="B156"></a> Thomas E., Shackleton N. J. (1996). “The Paleocene-Eocene Benthic Foraminiferal Extinction and Stable Isotope Anomalies,” in <i>Correlation of the Early Paleogene in Northwest Europe</i>, vol. 101 . Eds. Knox R. W. O. B., Corfield R., Dunay R. E., 401–441. London, UK: Geol. Soc., Sp. Publ.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=E.+Thomas&author=N.%20J.+Shackleton&publication_year=1996&title=The%20Paleocene-Eocene%20Benthic%20Foraminiferal%20Extinction%20and%20Stable%20Isotope%20Anomalies&book=Correlation+of+the+Early+Paleogene+in+Northwest+Europe&volume=101&pages=401" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B157" id="B157"></a> Vannucci G. (1970). Microfacies a Nullipore in Un Ciottolo Calcareo Della Morena Del Garda. <i>Atti Istit. Geol. Univ. Gennova</i> 7, 427–482.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=G.+Vannucci&publication_year=1970&title=Microfacies%20a%20Nullipore%20in%20Un%20Ciottolo%20Calcareo%20Della%20Morena%20Del%20Garda&journal=Atti+Istit.+Geol.+Univ.+Gennova&volume=7&pages=427" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B158" id="B158"></a> Vannucci G., Quaranta F., Basso D. (2008). Revision and Re-Documentation of M. Airoldi’s Species of <i>Lithophyllum</i> From the Tertiary Piedmont Basin. <i>Riv. Ital. Paleontol. Stratigr.</i> 114, 515–528. doi: 10.13130/2039-4942/5915</p><p class="ReferencesCopy2"><a href="https://doi.org/10.13130/2039-4942/5915" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=G.+Vannucci&author=F.+Quaranta&author=D.+Basso&publication_year=2008&title=Revision%20and%20Re-Documentation%20of%20M.%20Airoldi%E2%80%99s%20Species%20of%20Lithophyllum%20From%20the%20Tertiary%20Piedmont%20Basin&journal=Riv.+Ital.+Paleontol.+Stratigr.&volume=114&pages=515" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B159" id="B159"></a> Vannucci G., Quaranta F., Basso D. (2010). Revision and Re-Documentation of M. Airoldi Species of <i>Lithothamnion</i> From the Tertiary Piedmont Basin. <i>Riv. It. Paleont. Strat.</i> 116, 223–235. doi: 10.13130/2039-4942/5952</p><p class="ReferencesCopy2"><a href="https://doi.org/10.13130/2039-4942/5952" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=G.+Vannucci&author=F.+Quaranta&author=D.+Basso&publication_year=2010&title=Revision%20and%20Re-Documentation%20of%20M.%20Airoldi%20Species%20of%20Lithothamnion%20From%20the%20Tertiary%20Piedmont%20Basin&journal=Riv.+It.+Paleont.+Strat.&volume=116&pages=223" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B160" id="B160"></a> Woelkerling W. J., Irvine L. M., Harvey A. (1993). Growth-Forms in non-Geniculate Coralline Red Algae (Corallinales, Rhodophyta). <i>Aust. Syst. Bot.</i> 6, 277–293. doi: 10.1071/SB9930277</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1071/SB9930277" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=W.%20J.+Woelkerling&author=L.%20M.+Irvine&author=A.+Harvey&publication_year=1993&title=Growth-Forms%20in%20non-Geniculate%20Coralline%20Red%20Algae%20%28Corallinales%2C%20Rhodophyta%29&journal=Aust.+Syst.+Bot.&volume=6&pages=277" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B161" id="B161"></a> Yamaguchi T., Norris R. D., Bornemann A. (2012). Dwarfing of Ostracodes During the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and Its Implication for Changes in Organic Carbon Cycle in Deep-Sea Benthic Ecosystem. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> 346-347, 130–144. doi: 10.1016/j.palaeo.2012.06.004</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.palaeo.2012.06.004" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=T.+Yamaguchi&author=R.%20D.+Norris&author=A.+Bornemann&publication_year=2012&title=Dwarfing%20of%20Ostracodes%20During%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%20at%20DSDP%20Site%20401%20%28Bay%20of%20Biscay%2C%20North%20Atlantic%29%20and%20Its%20Implication%20for%20Changes%20in%20Organic%20Carbon%20Cycle%20in%20Deep-Sea%20Benthic%20Ecosystem&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=346-347&pages=130" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B162" id="B162"></a> Zachos J. C., Dickens G. R., Zeebe R. E. (2008). An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics. <i>Nature</i> 451, 279–283. doi: 10.1038/nature06588</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18202643/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature06588" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Zachos&author=G.%20R.+Dickens&author=R.%20E.+Zeebe&publication_year=2008&title=An%20Early%20Cenozoic%20Perspective%20on%20Greenhouse%20Warming%20and%20Carbon-Cycle%20Dynamics&journal=Nature&volume=451&pages=279" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B163" id="B163"></a> Zachos J. C., Röhl U., Schellenberg S. A., Sluijs A., Hodell D. A., Kelly D. C., et al. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. <i>Science</i> 308, 1611–1615. doi: 10.1126/science.1109004</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/15947184/" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.1109004" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=J.%20C.+Zachos&author=U.+R%C3%B6hl&author=S.%20A.+Schellenberg&author=A.+Sluijs&author=D.%20A.+Hodell&author=D.%20C.+Kelly&publication_year=2005&title=Rapid%20Acidification%20of%20the%20Ocean%20During%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Science&volume=308&pages=1611" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B164" id="B164"></a> Zeebe R. E. (2012). History of Seawater Carbonate Chemistry, Atmospheric CO<sub>2</sub>, and Ocean Acidification. <i>Ann. Rev. Earth Planet. Sc.</i> 40, 141–165. doi: 10.1146/annurev-earth-042711-105521</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1146/annurev-earth-042711-105521" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20E.+Zeebe&publication_year=2012&title=History%20of%20Seawater%20Carbonate%20Chemistry%2C%20Atmospheric%20CO2%2C%20and%20Ocean%20Acidification&journal=Ann.+Rev.+Earth+Planet.+Sc.&volume=40&pages=141" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B165" id="B165"></a> Zeebe R. E., Ridgwell A. (2011). “Past Changes in Ocean Carbonate Chemistry,” in <i>Ocean Acidification</i>. Eds. Gattuso J. P., Hansson L. (UK: Oxford Univ. Press), 21–40.</p><p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?author=R.%20E.+Zeebe&author=A.+Ridgwell&publication_year=2011&title=Past%20Changes%20in%20Ocean%20Carbonate%20Chemistry&book=Ocean+Acidification&pages=21" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B166" id="B166"></a> Zeebe R. E., Westbroek P. (2003). A Simple Model for the CaCO<sub>3</sub> Saturation State of the Ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean. <i>Geochem. Geoph. Geosys.</i> 4, 1104. doi: 10.1029/2003GC000538</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1029/2003GC000538" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20E.+Zeebe&author=P.+Westbroek&publication_year=2003&title=A%20Simple%20Model%20for%20the%20CaCO3%20Saturation%20State%20of%20the%20Ocean%3A%20The%20%E2%80%9CStrangelove%2C%E2%80%9D%20the%20%E2%80%9CNeritan%2C%E2%80%9D%20and%20the%20%E2%80%9CCretan%E2%80%9D%20Ocean&journal=Geochem.+Geoph.+Geosys.&volume=4&pages=1104" target="_blank">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B167" id="B167"></a> Zeebe R. E., Zachos J. C. (2013). Long-Term Legacy of Massive Carbon Input to the Earth System: Anthropocene Versus Eocene. <i>Philos. Trans. R. Soc A</i> 371, 20120006. doi: 10.1098/rsta.2012.0006</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1098/rsta.2012.0006" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?author=R.%20E.+Zeebe&author=J.%20C.+Zachos&publication_year=2013&title=Long-Term%20Legacy%20of%20Massive%20Carbon%20Input%20to%20the%20Earth%20System%3A%20Anthropocene%20Versus%20Eocene&journal=Philos.+Trans.+R.+Soc+A&volume=371&pages=20120006" target="_blank">Google Scholar</a></p></div></div><div class="thinLineM20"></div><div class="AbstractSummary"><p><span>Keywords:</span> rhodolith beds, thermal maximum, paleocene/eocene boundary, ocean acidification, pyrenean basin</p><p><span>Citation:</span> Aguirre J, Baceta JI and Braga JC (2022) Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain). <i>Front. Mar. Sci.</i> 9:899877. doi: 10.3389/fmars.2022.899877</p><p id="timestamps"><span>Received:</span> 19 March 2022; <span>Accepted:</span> 23 May 2022;<br><span>Published:</span> 04 July 2022.</p><div><p>Edited by:</p><a href="https://loop.frontiersin.org/people/496848">Gang Li</a>, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China</div><div><p>Reviewed by:</p><a href="https://loop.frontiersin.org/people/1756246">Amit K. Ghosh</a>, Birbal Sahni Institute of Palaeosciences (BSIP), India<br><a href="https://loop.frontiersin.org/people/1628090">Sherif Farouk</a>, Egyptian Petroleum Research Institute, Egypt</div><p><span>Copyright</span> © 2022 Aguirre, Baceta and Braga. This is an open-access article distributed under the terms of the <a rel="license" href="http://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution License (CC BY)</a>. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</p><p><span>*Correspondence:</span> Julio Aguirre, <a href="mailto:jaguirre@ugr.es">jaguirre@ugr.es</a></p><p><span><sup>†</sup></span>These authors have contributed equally to this work</p><div class="clear"></div></div></div></div> <p class="AbstractSummary__disclaimer"><span>Disclaimer: </span> All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. </p></div></section></main></div> <div><!----></div></div></div> <!----> <footer class="Footer"><h1 class="acc-hidden">Footer</h1> <div class="Footer__wrapper"><div class="Footer__sections"><ul class="Accordion"><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Guidelines</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://www.frontiersin.org/guidelines/author-guidelines" target="_self" data-event="footer-block_0-a_authorGuidelines">Author guidelines</a></li><li><a href="https://www.frontiersin.org/guidelines/editor-guidelines" target="_self" data-event="footer-block_0-a_editorGuidelines">Editor guidelines</a></li><li><a href="https://www.frontiersin.org/guidelines/policies-and-publication-ethics" target="_self" data-event="footer-block_0-a_policiesAndPublicationE">Policies and publication ethics</a></li><li><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="footer-block_0-a_feePolicy">Fee policy</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Explore</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://www.frontiersin.org/articles" target="_self" data-event="footer-block_1-a_articles">Articles</a></li><li><a href="https://www.frontiersin.org/research-topics" target="_self" data-event="footer-block_1-a_researchTopics">Research Topics </a></li><li><a href="https://www.frontiersin.org/journals" target="_self" data-event="footer-block_1-a_journals">Journals</a></li><li><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="footer-block_1-a_howWePublish">How we publish</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Outreach</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://forum.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersForum">Frontiers Forum </a></li><li><a href="https://policylabs.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersPolicyLabs">Frontiers Policy Labs </a></li><li><a href="https://kids.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersForYoungMinds">Frontiers for Young Minds</a></li><li><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="footer-block_2-a_frontiersPlanetPrize">Frontiers Planet Prize</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Connect</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://helpcenter.frontiersin.org" target="_blank" data-event="footer-block_3-a_helpCenter">Help center</a></li><li><a href="https://loop.frontiersin.org/settings/email-preferences?a=publishers" target="_blank" data-event="footer-block_3-a_emailsAndAlerts">Emails and alerts </a></li><li><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="footer-block_3-a_contactUs">Contact us </a></li><li><a href="https://www.frontiersin.org/submission/submit" target="_self" data-event="footer-block_3-a_submit">Submit</a></li><li><a href="https://careers.frontiersin.org/" target="_blank" data-event="footer-block_3-a_careerOpportunities">Career opportunities</a></li></ul></div></li></ul> <div class="Footer__socialLinks"><div class="Footer__socialLinks__title">Follow us</div> <span class="Link__wrapper"><a aria-label="Frontiers Facebook" href="https://www.facebook.com/Frontiersin" target="_blank" data-event="footer-facebook-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--facebook Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers Twitter" href="https://twitter.com/frontiersin" target="_blank" data-event="footer-twitter-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--twitter Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers LinkedIn" href="https://www.linkedin.com/company/frontiers" target="_blank" data-event="footer-linkedIn-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--linkedin Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers Instagram" href="https://www.instagram.com/frontiersin_" target="_blank" data-event="footer-instagram-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--instagram Link--right"><span></span></a></span></div></div> <div class="Footer__copyright"><div><span>漏 2024 Frontiers Media S.A. All rights reserved</span></div> <div><a href="https://www.frontiersin.org/legal/privacy-policy" target="_blank">Privacy policy</a> <span>|</span> <a href="https://www.frontiersin.org/legal/terms-and-conditions" target="_blank">Terms and conditions</a></div></div></div></footer> <div class="SnackbarWrapper"><ul class="SnackbarContainer"></ul></div></div></div></div><script>window.__NUXT__=(function(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,_,$,aa,ab,ac,ad,ae,af,ag,ah,ai,aj,ak,al,am,an,ao,ap,aq,ar,as,at,au,av,aw,ax,ay,az,aA,aB,aC,aD,aE,aF,aG,aH,aI,aJ,aK,aL,aM,aN,aO,aP,aQ,aR,aS,aT,aU,aV,aW,aX,aY,aZ,a_,a$,ba,bb,bc,bd,be,bf,bg,bh,bi,bj,bk,bl,bm,bn,bo,bp,bq,br,bs,bt,bu,bv,bw,bx,by,bz,bA,bB,bC,bD,bE,bF,bG,bH,bI,bJ,bK,bL,bM,bN,bO,bP,bQ,bR,bS,bT,bU,bV,bW,bX,bY,bZ,b_,b$,ca,cb,cc,cd,ce,cf,cg,ch,ci,cj,ck,cl,cm,cn,co,cp,cq,cr,cs,ct,cu,cv,cw,cx,cy,cz,cA){al.id=am;al.name=an;al.slug=ao;al.specialtyId=634;al.__typename="journal_section";return {layout:"ArticleLayout",data:[{}],fetch:{},error:e,state:{currentJournal:{identifier:q,name:n,slug:r,banner:[{id:"AB731B5E-557C-4DEA-88680B655CE21F43",src:R,name:"FMARS_Main Visual_Cyan_Website",tags:["Megaptera Novaeangliae","Whale","Danita Delimont","Blue","Wildlife","Humpback Whale","RF","Pacific Ocean","Baleen","Breaching","Stuart Westmorland","Lanai","Usa","Hawaii"],type:S,width:5760,height:3840,idHash:"6697d5d20c4e57f6",archive:m,brandId:"22C10171-81B3-4DA6-99342F272A32E8BB",limited:m,fileSize:14818508,isPublic:c,original:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002F6697d5d20c4e57f6\u002Foriginal\u002FFMARS_Main-Visual_Cyan_Website.jpg",copyright:"Copyright 漏 Robin Westmorland \u002F Danita Delimont",extension:["jpg"],thumbnails:{mini:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002Fmini-27409EC6-0151-4F4A-953B830157E0F792.png",thul:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002Fthul-725E5077-AECB-4796-85B60409AC983F4C.png",webimage:R,Guidelines:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002F9C3665D1-80E8-44FC-A115BB703255BBC3\u002FGuidelines-FMARS_Main Visual_Cyan_Website.png",WebsiteJpg_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002F9C3665D1-80E8-44FC-A115BB703255BBC3\u002FWebsiteJpg_XL-FMARS_Main Visual_Cyan_Website.jpg",WebsiteWebP_L:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002F9C3665D1-80E8-44FC-A115BB703255BBC3\u002FWebsiteWebP_L-FMARS_Main Visual_Cyan_Website.webp",WebsiteWebP_M:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002F9C3665D1-80E8-44FC-A115BB703255BBC3\u002FWebsiteWebP_M-FMARS_Main Visual_Cyan_Website.webp",WebsiteWebP_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002F9C3665D1-80E8-44FC-A115BB703255BBC3\u002FWebsiteWebP_XL-FMARS_Main Visual_Cyan_Website.webp"},dateCreated:T,description:"Humpback Whales (Megaptera novaeangliae) near Lanai Island, Hawaii, USA",orientation:"landscape",userCreated:"Caroline Sutter",watermarked:m,dateModified:T,datePublished:"2015-01-15T13:51:43Z",ecsArchiveFiles:[],propertyOptions:["414FB2D4-2283-43FD-BE14E534ECA67928","6C18119B-14BD-4951-B437696F4357BD33","7C692885-DB25-4858-B1FB4FF47B241E9B","D88C0047-EC30-4506-A7DF28A4D765E1CF"],property_Channel:["frontiersin_org"],"property_Sub-Type":["Main_Visual"],property_Asset_Type:["Photography"],activeOriginalFocusPoint:{x:2880,y:u},property_Office_Department:["Publishing"]}],description:"The most cited marine鈥痑nd freshwater biology journal,鈥痑dvancing鈥痮ur understanding of鈥痬arine systems鈥痑nd addressing鈥痝lobal challenges including overfishing, pollution, and climate change.",mission:"\u003Cp\u003EFrontiers in Marine Science is the most cited journal in its field, advancing our understanding of marine species, ecosystems, and processes as well as human interactions with, and impacts on, ocean environments.\u003C\u002Fp\u003E\n\n\u003Cp\u003EThe journal is led by Field Chief Editor Prof Carlos M. Duarte (King Abdullah University of Science and Technology, Saudi Arabia) and indexed in Scopus, Web of Science and DOAJ. It welcomes submissions on all aspects of marine biology and ocean systems, on human activities that exploit or affect oceans and marine life, and the protection and restoration of marine ecosystems. Topics of interest include, but are not limited to:\u003C\u002Fp\u003E\n\u003Cul\u003E\n \u003Cli\u003Ecoral reef and deep-sea ecology\u003C\u002Fli\u003E\n \u003Cli\u003Eglobal change and the future ocean\u003C\u002Fli\u003E\n \u003Cli\u003Emarine affairs and policy\u003C\u002Fli\u003E\n \u003Cli\u003Emarine biogeochemistry\u003C\u002Fli\u003E\n \u003Cli\u003Emarine biology, biogeography, and biodiversity\u003C\u002Fli\u003E\n \u003Cli\u003Emarine biotechnology and bioproducts\u003C\u002Fli\u003E\n \u003Cli\u003Emarine conservation and sustainability\u003C\u002Fli\u003E\n \u003Cli\u003Emarine fisheries, aquaculture, and living resources\u003C\u002Fli\u003E\n \u003Cli\u003Emarine pollution\u003C\u002Fli\u003E\n \u003Cli\u003Ephysical oceanography\u003C\u002Fli\u003E\n \u003Cli\u003Eocean observation.\u003C\u002Fli\u003E\n\u003C\u002Ful\u003E\n\n\u003Cp\u003EFrontiers in Marine Science particularly welcomes new ideas and approaches for ocean-based solutions and which support and advance the UN鈥檚 Sustainable Development Goals (SDGs), notably SDG 14: life below water. This includes studies on sustainable blue economies, improved forecasting and observational capacities, understanding biodiversity and ecosystem issues at a local and global level, and effective strategies to manage marine resources and maintain ocean health.\u003C\u002Fp\u003E\n\n\u003Cp\u003EManuscripts that do not directly relate to marine environments, such as those focusing primarily on freshwater or terrestrial ecosystems and non-marine-related engineering and technology studies, are also out of scope. Additionally, research that predominately concerns human health, social sciences, or economics, without a clear link to marine science, will not be considered.\u003C\u002Fp\u003E\n\n\u003Cp\u003EFrontiers in Marine Science is committed to advancing our understanding and sustainable use of the world鈥檚 oceans and their resources by communicating scientific knowledge to researchers and the public alike, to enable the scientific breakthroughs of the future.\u003C\u002Fp\u003E",palette:"cyan",impactFactor:"3.7",citeScore:"5.2",citations:"121000",showTagline:e,twitter:"@FrontMarineSci",__typename:"Journal"},currentFrontiersJournal:{id:q,name:n,slug:r,printISSN:e,shortName:D,electronicISSN:E,abbreviation:U,specialtyId:e,publicationDate:e,isOnline:g,isOpenForSubmissions:g,spaceId:c,field:{id:V,domainId:c,__typename:W},__typename:a},articleHubSlug:h,articleHubPage:F,currentArticle:{id:899877,doi:X,title:Y,acceptanceDate:new Date(1653317509000),receptionDate:new Date(1647688513000),publicationDate:new Date(1656892800000),isPublished:g,abstract:Z,researchTopic:{id:26653,title:"Coralline Algae: Past, Present, and Future Perspectives",articlesCount:_,isMagazinePage:g,slug:"coralline-algae-past-present-and-future-perspectives",isOpenForSubmission:l},articleType:{id:24,name:"Original Research"},stage:{id:G,name:h},keywords:["Rhodolith beds","Thermal maximum","Paleocene\u002FEocene boundary","ocean acidification","Pyrenean Basin"],authors:[{id:$,firstName:aa,lastName:"Aguirre",givenNames:aa,isCorresponding:g,isProfilePublic:g,userId:$,affiliations:[{organizationName:ab,countryName:H,cityName:h,stateName:h,zipCode:h}]},{id:m,firstName:ac,lastName:"Baceta",givenNames:ac,isCorresponding:l,isProfilePublic:l,userId:m,affiliations:[{organizationName:"Departamento de Geolog铆a, Facultad de Ciencia y Tecnolog铆a, Universidad del Pa铆s Vasco",countryName:H,cityName:h,stateName:h,zipCode:h}]},{id:ad,firstName:ae,lastName:"Braga",givenNames:ae,isCorresponding:l,isProfilePublic:g,userId:ad,affiliations:[{organizationName:ab,countryName:H,cityName:h,stateName:h,zipCode:h}]}],editors:[{id:af,firstName:ag,lastName:"Li",givenNames:ag,isCorresponding:l,isProfilePublic:g,userId:af,affiliations:[{organizationName:"South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS)",countryName:"China",cityName:h,stateName:h,zipCode:h}]}],reviewers:[{id:ah,firstName:ai,lastName:"Farouk",givenNames:ai,isCorresponding:l,isProfilePublic:g,userId:ah,affiliations:[{organizationName:"Egyptian Petroleum Research Institute",countryName:"Egypt",cityName:h,stateName:h,zipCode:h}]},{id:aj,firstName:ak,lastName:"GHOSH",givenNames:ak,isCorresponding:l,isProfilePublic:g,userId:aj,affiliations:[{organizationName:"Birbal Sahni Institute of Palaeosciences (BSIP)",countryName:"India",cityName:h,stateName:h,zipCode:h}]}],journal:{id:q,slug:r,name:n,shortName:D,electronicISSN:E,field:{id:V,domainId:c,__typename:W},specialtyId:e,journalSectionPaths:[{section:al,__typename:"journal_journalSectionPath"}],__typename:a},section:al,impactMetrics:{views:2471,downloads:673,citations:i},volume:I,articleVolume:"Volume 9 - 2022",relatedArticles:[],isPublishedV2:l,contents:{fullTextHtml:"\u003Cdiv class=\"JournalAbstract\"\u003E\u003Ch1\u003ECoralline Algae at the Paleocene\u002FEocene Thermal Maximum in the Southern Pyrenees (N Spain)\u003C\u002Fh1\u003E\u003Ca id=\"h1\" name=\"h1\"\u003E\u003C\u002Fa\u003E\u003Cdiv class=\"authors\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Fpeople\u002Fu\u002F515704\" class=\"user-id-515704\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F515704\u002F24\" onerror=\"this.src='http:\u002F\u002F3b76aaf63d1816bb57bf-a34624e694c43cdf8b40aa048a644ca4.r96.cf2.rackcdn.com\u002FDesign\u002FImages\u002Fnewprofile_default_profileimage_new.jpg'\"\u003E\u003C\u002Fimg\u003EJulio Aguirre\u003C\u002Fa\u003E\u003Csup\u003E1*†\u003C\u002Fsup\u003E, \u003Cimg class=\"pr5\" src=\"http:\u002F\u002F3b76aaf63d1816bb57bf-a34624e694c43cdf8b40aa048a644ca4.r96.cf2.rackcdn.com\u002FDesign\u002FImages\u002Fnewprofile_default_profileimage_new.jpg\"\u003E\u003C\u002Fimg\u003EJuan I. Baceta\u003Csup\u003E2†\u003C\u002Fsup\u003E and \u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Fpeople\u002Fu\u002F648405\" class=\"user-id-648405\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F648405\u002F24\" onerror=\"this.src='http:\u002F\u002F3b76aaf63d1816bb57bf-a34624e694c43cdf8b40aa048a644ca4.r96.cf2.rackcdn.com\u002FDesign\u002FImages\u002Fnewprofile_default_profileimage_new.jpg'\"\u003E\u003C\u002Fimg\u003EJuan C. Braga\u003C\u002Fa\u003E\u003Csup\u003E1†\u003C\u002Fsup\u003E\u003C\u002Fdiv\u003E\u003Cul class=\"notes\"\u003E\u003Cli\u003E\u003Cspan\u003E\u003Csup\u003E1\u003C\u002Fsup\u003E\u003C\u002Fspan\u003EDpto. Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Granada, Spain\u003C\u002Fli\u003E\u003Cli\u003E\u003Cspan\u003E\u003Csup\u003E2\u003C\u002Fsup\u003E\u003C\u002Fspan\u003EDepartamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Bilbao, Spain\u003C\u002Fli\u003E\u003C\u002Ful\u003E\u003Cp\u003EDuring the Paleocene\u002FEocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO\u003Csub\u003E2\u003C\u002Fsub\u003E. This event lasted for ~100 thousands of years with the consequent ocean acidification (estimated pH = 7.8-7.6). In this paper, we analyze the effects of this global environmental shift on coralline algal assemblages in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain), where the PETM is recorded within coastal-to-shallow marine carbonate and siliciclastic deposits. In both sections, coralline algae occur mostly as fragments, although rhodoliths and crusts coating other organisms are also frequent. Rhodoliths occur either dispersed or locally forming dense concentrations (rhodolith beds). \u003Ci\u003EDistichoplax biserialis\u003C\u002Fi\u003E and geniculate forms (mostly \u003Ci\u003EJania nummulitica\u003C\u002Fi\u003E) of the order Corallinales dominated the algal assemblages followed by Sporolithales and Hapalidiales. Other representatives of Corallinales, namely \u003Ci\u003ESpongites\u003C\u002Fi\u003E, \u003Ci\u003ELithoporella\u003C\u002Fi\u003E as well as \u003Ci\u003ENeogoniolithon\u003C\u002Fi\u003E, \u003Ci\u003EKarpathia\u003C\u002Fi\u003E, and \u003Ci\u003EHydrolithon\u003C\u002Fi\u003E, are less abundant. Species composition does not change throughout the Paleocene\u002FEocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a reduction. They were abundant during the late Thanetian but became rare during the early Ypresian. This abundance decrease is due to a drastic change in the local paleoenvironmental conditions immediately after the boundary. A hardground at the top of the Thanetian carbonates was followed by continental sedimentation. After that, marine sedimentation resumed in shallow, very restricted lagoon and peritidal settings, where muddy carbonates rich in benthic foraminifera, e.g., milioliids (with abundant \u003Ci\u003EAlveolina\u003C\u002Fi\u003E) and soritids, and eventually stromatolites were deposited. These initial restricted conditions were unfavorable for coralline algae. Adverse conditions continued to the end of the study sections although coralline algae reappeared and were locally frequent in some beds, where they occurred associated with corals. In Serraduy, the marine reflooding was also accompanied by significant terrigenous supply, precluding algal development. Therefore, the observed changes in coralline algal assemblages during the PETM in the Pyrenees were most likely related to local paleoenvironmental shifts rather than to global oceanic or atmospheric alterations.\u003C\u002Fp\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"JournalFullText\"\u003E\u003Ca id=\"h2\" name=\"h2\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EIntroduction\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003ERecent studies on the present-day global change, particularly increasing temperature and ocean acidification linked to the massive release of greenhouse gasses to the atmosphere due to anthropogenic activities, are progressively demanding detailed analyses of events of similar magnitude throughout the Earth history (\u003Ca href=\"#B131\"\u003ERidgwell and Schmidt, 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B64\"\u003EGattuso and Hansson, 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B74\"\u003EHönisch et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B72\"\u003EHansen et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B97\"\u003ELunt et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B167\"\u003EZeebe and Zachos, 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B42\"\u003EBurke et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B73\"\u003EHaynes and Hönisch, 2020\u003C\u002Fa\u003E). One of the targets is to analyze the effects of these global processes on marine calcified biota in the geological record to model and compare with the predicted biological changes for the future. The Paleocene\u002FEocene thermal maximum (PETM) is a spike-like thermal event (\u003Ca href=\"#B89\"\u003EKennett and Stott, 1991\u003C\u002Fa\u003E; \u003Ca href=\"#B156\"\u003EThomas and Shackleton, 1996\u003C\u002Fa\u003E), at which researchers are looking as an ancient analogue to understand the ongoing biotic changes (\u003Ca href=\"#B166\"\u003EZeebe and Westbroek, 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B147\"\u003ESluijs et al., 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B131\"\u003ERidgwell and Schmidt, 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B104\"\u003EMcInerney and Wing, 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B165\"\u003EZeebe and Ridgwell, 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B74\"\u003EHönisch et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B164\"\u003EZeebe, 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B111\"\u003ENorris et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B167\"\u003EZeebe and Zachos, 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B108\"\u003EMudelsee et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B73\"\u003EHaynes and Hönisch, 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EDuring the Paleocene\u002FEocene boundary ~55.6 million years ago (Ma), the Earth witnessed the warmest event of the last 66 Ma due to a huge delivery of CO\u003Csub\u003E2\u003C\u002Fsub\u003E to the atmosphere mostly linked to volcanism (\u003Ca href=\"#B73\"\u003EHaynes and Hönisch, 2020\u003C\u002Fa\u003E). This event is recorded by an abrupt negative carbon stable isotope (δ\u003Csup\u003E13\u003C\u002Fsup\u003EC) excursion (CIE) (\u003Ca href=\"#B91\"\u003EKoch et al., 1992\u003C\u002Fa\u003E). It is estimated that about 1,500 ppmv of CO\u003Csub\u003E2\u003C\u002Fsub\u003E were released to the atmosphere during a short time interval of 120-220 thousands of years (kyr) (e.g., \u003Ca href=\"#B147\"\u003ESluijs et al., 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B104\"\u003EMcInerney and Wing, 2011\u003C\u002Fa\u003E) or even less (\u003Ca href=\"#B89\"\u003EKennett and Stott, 1991\u003C\u002Fa\u003E; \u003Ca href=\"#B163\"\u003EZachos et al., 2005\u003C\u002Fa\u003E). The most recent time model suggests that there was a first pulse of CO\u003Csub\u003E2\u003C\u002Fsub\u003E release 5-6 kyr after the CIE that was followed by sustained high values for ca. 40 kyr and ended ~100 kyr (\u003Ca href=\"#B73\"\u003EHaynes and Hönisch, 2020\u003C\u002Fa\u003E). As a consequence, ocean pH decreased to 7.8-7.6 and global ocean surface temperature increased 5-9°C (\u003Ca href=\"#B163\"\u003EZachos et al., 2005\u003C\u002Fa\u003E; \u003Ca href=\"#B162\"\u003EZachos et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B104\"\u003EMcInerney and Wing, 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B165\"\u003EZeebe and Ridgwell, 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B164\"\u003EZeebe, 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B111\"\u003ENorris et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B167\"\u003EZeebe and Zachos, 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B108\"\u003EMudelsee et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B73\"\u003EHaynes and Hönisch, 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EDespite the drastic atmospheric, temperature, and oceanic alterations taking place during the PETM, only deep-sea benthic foraminifera were significantly affected, and 35-50% of the species became extinct (\u003Ca href=\"#B153\"\u003EThomas, 1990\u003C\u002Fa\u003E; \u003Ca href=\"#B155\"\u003EThomas, 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B19\"\u003EAlegret et al., 2009a\u003C\u002Fa\u003E; \u003Ca href=\"#B18\"\u003EAlegret et al., 2009b\u003C\u002Fa\u003E), whereas the event had a lesser impact on marginal platform inhabitants (\u003Ca href=\"#B154\"\u003EThomas, 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B17\"\u003EAlegret et al., 2005\u003C\u002Fa\u003E). Coral reef ecosystems also showed considerable reduction in coral species diversity, number of reef sites, reef size, and reef carbonate production during the Paleocene\u002FEocene boundary (\u003Ca href=\"#B59\"\u003EFlügel and Kiessling, 2002\u003C\u002Fa\u003E; \u003Ca href=\"#B139\"\u003ESchneibner and Speijer, 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B90\"\u003EKiessling, 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B118\"\u003EPerrin and Kiessling, 2010\u003C\u002Fa\u003E). \u003Ca href=\"#B111\"\u003ENorris et al. (2013)\u003C\u002Fa\u003E called this reef collapse as the early Eocene reef gap.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003ELarger benthic and planktonic foraminifera, calcareous nannoplankton and deep-sea ostracods experienced diversity turnovers during the PETM (\u003Ca href=\"#B136\"\u003ESchaub, 1951\u003C\u002Fa\u003E; \u003Ca href=\"#B75\"\u003EHottinger, 1960\u003C\u002Fa\u003E; \u003Ca href=\"#B45\"\u003ECanudo and Molina, 1992\u003C\u002Fa\u003E; \u003Ca href=\"#B44\"\u003ECanudo et al., 1995\u003C\u002Fa\u003E; \u003Ca href=\"#B88\"\u003EKelly et al., 1998\u003C\u002Fa\u003E; \u003Ca href=\"#B148\"\u003ESpeijer and Morsi, 2002\u003C\u002Fa\u003E; \u003Ca href=\"#B140\"\u003EScheibner et al., 2005\u003C\u002Fa\u003E; \u003Ca href=\"#B66\"\u003EGibbs et al., 2006a\u003C\u002Fa\u003E; \u003Ca href=\"#B67\"\u003EGibbs et al., 2006b\u003C\u002Fa\u003E; \u003Ca href=\"#B149\"\u003ESpeijer et al., 2012\u003C\u002Fa\u003E). In addition, aberrant forms (teratologies) of calcareous nannoplankton (\u003Ca href=\"#B130\"\u003ERaffi and De Bernardi, 2008\u003C\u002Fa\u003E), as well as dwarfism in deep-sea ostracods (\u003Ca href=\"#B161\"\u003EYamaguchi et al., 2012\u003C\u002Fa\u003E), have been recorded.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003ECoralline algae, fully calcified marine autotrophic organisms, are one of the most endangered algal groups due to global temperature increase and ocean acidification (e.g., \u003Ca href=\"#B100\"\u003EMartin and Hall-Spencer, 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003ECornwall et al., 2021\u003C\u002Fa\u003E). Laboratory studies and field observations indicate that coralline algae might be negatively affected due to ocean acidification derived from the greenhouse gasses release (\u003Ca href=\"#B20\"\u003EAnthony et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B70\"\u003EHall-Spencer et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B99\"\u003EMartin and Gattuso, 2009\u003C\u002Fa\u003E; \u003Ca href=\"#B41\"\u003EBüdenbender et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B50\"\u003EDiaz-Pulido et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B85\"\u003EKamenos et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B68\"\u003EGuy-Haim et al., 2016\u003C\u002Fa\u003E; \u003Ca href=\"#B100\"\u003EMartin and Hall-Spencer, 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B115\"\u003EPeña et al., 2020a\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003ECornwall et al., 2021\u003C\u002Fa\u003E). Nonetheless, contradictory or non-conclusive results have also been obtained (\u003Ca href=\"#B100\"\u003EMartin and Hall-Spencer, 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B115\"\u003EPeña et al., 2020a\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003ECornwall et al., 2021\u003C\u002Fa\u003E; and references therein) due to acclimation of coralline algae to acidification, physiological advantages (pre-adaptations) or interaction with other non-calcified epiphytes growing on corallines (\u003Ca href=\"#B100\"\u003EMartin and Hall-Spencer, 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B69\"\u003EGuy-Haim et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B115\"\u003EPeña et al., 2020a\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003ECornwall et al., 2021\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EIn order to explore the long-term effects of the global change on coralline algae and their biological\u002Fevolutionary responses to these environmental alterations, here we analyzed coralline algal assemblages across the Paleocene\u002FEocene boundary and the PETM. The main aim was to assess how behaved\u002Fresponded coralline algae to this major temperature change and ocean acidification event. We studied the classical sections of Campo and Serraduy, in the south-central Pyrenees (Huesca province, N Spain), which record upper Thanetian and lower Ypresian shallow-water carbonates as well as the PETM. These sections have been largely studied mostly focusing on the stratigraphy, sedimentology, biostratigraphy, and geochemistry across the Paleocene\u002FEocene interval (\u003Ca href=\"#B56\"\u003EEichenseer and Luterbacher, 1992\u003C\u002Fa\u003E; \u003Ca href=\"#B114\"\u003EPayros et al., 2000\u003C\u002Fa\u003E; \u003Ca href=\"#B125\"\u003EPujalte et al., 2000a\u003C\u002Fa\u003E; \u003Ca href=\"#B122\"\u003EPujalte et al., 2000b\u003C\u002Fa\u003E; \u003Ca href=\"#B113\"\u003EOrue-Etxebarria et al., 2001\u003C\u002Fa\u003E; \u003Ca href=\"#B107\"\u003EMolina et al., 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B124\"\u003EPujalte et al., 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B141\"\u003ESchmitz and Pujalte, 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B142\"\u003ESchmitz and Pujalte, 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B138\"\u003EScheibner et al., 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B53\"\u003EDomingo et al., 2009\u003C\u002Fa\u003E; \u003Ca href=\"#B123\"\u003EPujalte et al., 2009a\u003C\u002Fa\u003E; \u003Ca href=\"#B127\"\u003EPujalte et al., 2009b\u003C\u002Fa\u003E; \u003Ca href=\"#B133\"\u003ERobador et al., 2009\u003C\u002Fa\u003E; \u003Ca href=\"#B21\"\u003EArostegi et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B98\"\u003EManners et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B126\"\u003EPujalte et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B71\"\u003EHamon et al., 2016\u003C\u002Fa\u003E; \u003Ca href=\"#B54\"\u003EDuller et al., 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B96\"\u003ELi et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003ESerra-Kiel et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B128\"\u003EPujalte et al., 2022\u003C\u002Fa\u003E). Regarding the fossil content, studies have focused mostly on planktonic and benthic foraminifera (both larger and small forms) as well as corals (\u003Ca href=\"#B144\"\u003ESerra-Kiel et al., 1994\u003C\u002Fa\u003E; \u003Ca href=\"#B113\"\u003EOrue-Etxebarria et al., 2001\u003C\u002Fa\u003E; \u003Ca href=\"#B107\"\u003EMolina et al., 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B138\"\u003EScheibner et al., 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B96\"\u003ELi et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003ESerra-Kiel et al., 2020\u003C\u002Fa\u003E). Nonetheless, no detailed analysis of the coralline algae throughout the Paleocene-Eocene transition has been carried out. We analyze the type of occurrence, species diversity and relative abundance of coralline algae with respect to other fossils throughout the late Thanetian (late Paleocene)-early Ypresian (early Eocene) interval to check how global alterations during the PETM affected coralline algae. In the case of rhodoliths, we also examine the coralline algal growth forms, as well as the inner algal arrangements and external morphology.\u003C\u002Fp\u003E\u003Ca id=\"h3\" name=\"h3\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EGeological Setting\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EThe Pyrenees is a reference area in Western Europe for the study of Paleogene shallow to deep-marine deposits and the series of distinct biotic and physical events that punctuated the beginning of the Cenozoic. During the Paleocene and early Eocene, the Pyrenean basin was a large marine embayment opening to the Bay of Biscay, to the WNW, with a central (hemi)pelagic trough flanked on the north, south and east by extensive shallow marine carbonate platforms (\u003Ca href=\"#B25\"\u003EBaceta et al., 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E) (\u003Ca href=\"#f1\"\u003EFigure 1A\u003C\u002Fa\u003E). The platform systems evolved with general ramp profiles and most sectors exhibit a wide range of carbonate facies representative of beaches, tidal flats, lagoons, seagrass banks, shoals, tidal bars and a variety of reefal constructions. Most inner to mid ramp lithofacies are relatively rich in photic-dependent organisms (calcareous red algae, corals, larger benthic foraminifera –LBF–) and also comprise a varied heterozoan biota, represented by mollusks, bryozoans, echinoderms (\u003Ca href=\"#B55\"\u003EEichenseer, 1988\u003C\u002Fa\u003E; \u003Ca href=\"#B144\"\u003ESerra-Kiel et al., 1994\u003C\u002Fa\u003E; \u003Ca href=\"#B24\"\u003EBaceta, 1996\u003C\u002Fa\u003E; \u003Ca href=\"#B25\"\u003EBaceta et al., 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B132\"\u003ERobador, 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E). Landwards, the platform successions interfinger with siliciclastic and mixed sediments with subordinate evaporites and discontinuous paleosols, known as the Garumnian facies, which represent alluvial to coastal plain depositional environments (\u003Ca href=\"#f1\"\u003EFigure 1A\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 1\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g001.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g001.gif\" id=\"f1\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 1\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E General paleogeography of the Pyrenean area during the earliest Eocene, at the time of the so-called Ilerdian transgression (adapted from \u003Ca href=\"#B25\"\u003EBaceta et al., 2004\u003C\u002Fa\u003E). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E Enlarged geographic map of part of the Ainsa-Tremp sector of the Pyrenean basin with location of the Campo and Serraduy sections (yellow starts). \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E Integrated stratigraphy of the upper Paleocene-lowermost Eocene strata of the Ainsa-Tremp area (adapted from \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B126\"\u003EPujalte et al., 2014\u003C\u002Fa\u003E). The rectangles indicate the position of the two study stratigraphic sections within the general stratigraphic framework.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb15 w100pc float_left mt15\"\u003ESedimentation during the Paleocene and early Eocene in the Pyrenean basin margins evolved under general transgressive conditions, punctuated by a number of third order relative sea-level falls of variable magnitude and regional extent. These sea level drops are recorded by abrupt facies shifts and more or less prominent erosional discontinuities, commonly associated to enhanced subaerial exposure. Based on mapping and regional correlation, up to five depositional sequences recording shallow marine settings have been distinguished within the upper Thanetian-lower Ypresian succession (\u003Ca href=\"#B56\"\u003EEichenseer and Luterbacher, 1992\u003C\u002Fa\u003E; \u003Ca href=\"#B24\"\u003EBaceta, 1996\u003C\u002Fa\u003E; \u003Ca href=\"#B25\"\u003EBaceta et al., 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EOur study focuses on the Paleocene to lower Eocene coralline red algae recorded in the Campo and Serraduy sections, which form part of continuous outcrops along the Ferrera and Morillo-Merli ridges, on the northern flank of the Tremp-Ainsa area (\u003Ca href=\"#f1\"\u003EFigure 1B\u003C\u002Fa\u003E). Previous studies in these two sections and on coeval outcrops in the whole Tremp-Ainsa area have provided a well-constrained stratigraphic framework for the alluvial-coastal to shallow marine successions embedding the PETM event (e.g., \u003Ca href=\"#B55\"\u003EEichenseer, 1988\u003C\u002Fa\u003E; \u003Ca href=\"#B114\"\u003EPayros et al., 2000\u003C\u002Fa\u003E; \u003Ca href=\"#B25\"\u003EBaceta et al., 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E). A detailed biostratigraphic scheme has been proposed based on LBF biozonation calibrated with standard calcareous plankton zonations and magnetostratigraphy (e.g., \u003Ca href=\"#B76\"\u003EHottinger and Schaub, 1960\u003C\u002Fa\u003E; \u003Ca href=\"#B137\"\u003ESchaub, 1973\u003C\u002Fa\u003E; \u003Ca href=\"#B144\"\u003ESerra-Kiel et al., 1994\u003C\u002Fa\u003E; \u003Ca href=\"#B145\"\u003ESerra-Kiel et al., 1998\u003C\u002Fa\u003E; \u003Ca href=\"#B113\"\u003EOrue-Etxebarria et al., 2001\u003C\u002Fa\u003E; \u003Ca href=\"#B127\"\u003EPujalte et al., 2009b\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003ESerra-Kiel et al., 2020\u003C\u002Fa\u003E) (\u003Ca href=\"#f1\"\u003EFigure 1C\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe upper Paleocene to lower Eocene strata of the area involves the interbedding of four lithostratigraphic formations (\u003Ca href=\"#f1\"\u003EFigure 1C\u003C\u002Fa\u003E). The Esplugafreda and Claret Formations are made up of siliciclastic deposits formed in alluvial to coastal settings. The Navarri and Serraduy Formations are dominated by carbonate lithofacies representing coastal, lagoonal and shallow marine environments. In terms of sequence stratigraphy, the upper Paleocene Esplugafreda and Navarri Formations embrace two third-order depositional sequences (the Th-1 and Th-2) and the lower Ypresian Claret and Serraduy Formations comprise three depositional sequences (IL-1, IL-2 and IL-3) (\u003Ca href=\"#f1\"\u003EFigure 1C\u003C\u002Fa\u003E). The PETM, as determined from detailed geochemical and isotopic studies (\u003Ca href=\"#B126\"\u003EPujalte et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B128\"\u003EPujalte et al., 2022\u003C\u002Fa\u003E) lies within the lowermost Ypresian IL-1 sequence, encompassing most of the alluvial Claret Fm. and the lowermost marine deposits of the Serraduy Formation (\u003Ca href=\"#f1\"\u003EFigure 1C\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EAccording to paleogeographic reconstructions of the area (\u003Ca href=\"#B126\"\u003EPujalte et al., 2014\u003C\u002Fa\u003E), the Serraduy section represents a shallower position relative to the Campo section. This is clearly evidenced by the architecture of the upper Paleocene succession, which at Campo section mainly consists of shallow marine carbonates, whereas at Serraduy section it is mostly made up of continental Garumnian facies. In both sections, the early Eocene comprises coastal and shallow-marine carbonates defining a deepening succession that culminates with middle to outer ramp deposits. In most outcrops of the Tremp-Ainsa area, the PETM event lies within continental siliciclastic deposits. In the Campo section, it is recorded within an interval of continental clastics with discontinuous palustrine carbonates passing vertically to inner ramp and restricted tidal flat carbonates (\u003Ca href=\"#f1\"\u003EFigure 1C\u003C\u002Fa\u003E). The vertical facies succession of the Paleocene-lower Eocene deposits exposed at Campo and Serraduy is synthetized in \u003Ca href=\"#f2\"\u003EFigure 2\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 2\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g002.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g002.gif\" id=\"f2\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 2\u003C\u002Fstrong\u003E Stratigraphic logs of the Campo \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E and Serraduy \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E sections, with indication of facies, main intervals, stratigraphic sequences (Th and IL), biostratigraphy, and the location of the samples studied for coralline algae (after \u003Ca href=\"#B55\"\u003EEichenseer, 1988\u003C\u002Fa\u003E; \u003Ca href=\"#B144\"\u003ESerra-Kiel et al., 1994\u003C\u002Fa\u003E; \u003Ca href=\"#B132\"\u003ERobador, 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B26\"\u003EBaceta et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003ESerra-Kiel et al., 2020\u003C\u002Fa\u003E). Wck, Wackestone; Pck, Packstone; Grst, Grainstone; Rudst, Rudstone; Flst, Floastone; SB, Sequence boundary.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ca id=\"h4\" name=\"h4\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EStratigraphic Sections\u003C\u002Fh2\u003E\u003Ch3\u003ECampo Section\u003C\u002Fh3\u003E\u003Cp class=\"mb15\"\u003EThis section is located along the banks of the Esera River, 1 km south from the village of Campo (\u003Ca href=\"#f1\"\u003EFigure 1B\u003C\u002Fa\u003E). Three main outcrops (along the old road to Ainsa, the local road to Navarri, and the road from Campo to Graus) allow the bed-by-bed analysis of 173 m of the upper Paleocene to lower Eocene deposits (\u003Ca href=\"#f2\"\u003EFigure 2A\u003C\u002Fa\u003E). Sampling was focused in two intervals. The lower one comprises the uppermost 38 m of the Thanetian Th-2 sequence, which is made up of middle ramp bioclastic carbonates with decimeter- to meter-thick sigmoidal cross bedded tidal bars trending towards the east and southeast. This interval culminates with a massive muddy limestone rich in corals, red algae and mollusks, just below the prominent discontinuity at the top of the Th-2 sequence that marks the Paleocene-Eocene boundary. According to \u003Ca href=\"#B144\"\u003ESerra-Kiel et al. (1994\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003E2020\u003C\u002Fa\u003E), the LBF assemblage of this upper part of the Th-2 sequence comprises \u003Ci\u003EGlomalveolina levis\u003C\u002Fi\u003E, \u003Ci\u003EAssilina yvettae\u003C\u002Fi\u003E, \u003Ci\u003EA. azilensis\u003C\u002Fi\u003E, and \u003Ci\u003EDaviesina garumnensis\u003C\u002Fi\u003E, all characteristic of the SBZ4 biozone of \u003Ca href=\"#B145\"\u003ESerra-Kiel et al. (1998)\u003C\u002Fa\u003E (\u003Ca href=\"#f2\"\u003EFigure 2A\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe upper interval, up to 41 m thick, belongs to the lower Eocene and comprises the upper part of the IL-1 and most of the IL-2 depositional sequences (\u003Ca href=\"#f2\"\u003EFigure 2A\u003C\u002Fa\u003E). This interval mainly consists of shallow, inner-ramp carbonates rich in alveolinids, small milioliids, and soritids, associated with subordinate gastropods and bivalves (oysters and lucinids). A 2.5 m thick massive coral-rich limestone bed defining the base of sequence IL-2 was the only providing significant amounts of coralline algae. Therefore, this bed was sampled in two different outcrops: 1) samples CPE-14 and 15 on the new road to Graus, and, 2) samples CPN-1 to 3 on the old road to Ainsa. According to \u003Ca href=\"#B144\"\u003ESerra-Kiel et al. (1994\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003E2020)\u003C\u002Fa\u003E, this interval encompasses LBF association characteristic of the SBZ5 (\u003Ci\u003EAlveolina vredenburgi\u003C\u002Fi\u003E, \u003Ci\u003EA. aramea\u003C\u002Fi\u003E, \u003Ci\u003EA. varians\u003C\u002Fi\u003E) and the lower part of SBZ6 (\u003Ci\u003EA. ellipsoidalis\u003C\u002Fi\u003E, \u003Ci\u003EA. pasticillata\u003C\u002Fi\u003E, \u003Ci\u003EA.\u003C\u002Fi\u003E aff\u003Ci\u003E. aragonensis\u003C\u002Fi\u003E) (\u003Ca href=\"#f2\"\u003EFigure 2A\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ch3\u003ESerraduy Section\u003C\u002Fh3\u003E\u003Cp class=\"mb15\"\u003EThe Serraduy section is located 0.5 km north of Serraduy del Pont, on the Isabena valley, ~12 km to the SE of Campo (\u003Ca href=\"#f1\"\u003EFigure 1B\u003C\u002Fa\u003E). Correlation through mapping of the outcrops on both river banks, the Serraduy East and Serraduy West, allowed analyzing in detail a 130 m thick section of upper Paleocene (66 m) and lower Eocene (64 m) deposits (\u003Ca href=\"#f2\"\u003EFigure 2B\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe upper Paleocene is mostly siliciclastic and consists of red to brownish calcareous lutites with intercalations of medium to coarse-grained lithic sandstones forming lenses, sheets and discrete channel fills (alluvial floodplain deposits), and discontinuous development of calcrete paleosols. Two discrete intervals of shallow marine carbonates, respectively up to 4 and 8 m thick, define the maximum flooding stages within the upper Paleocene depositional sequences Th-1 and Th-2 (\u003Ca href=\"#f1\"\u003EFigures 1C\u003C\u002Fa\u003E, \u003Ca href=\"#f2\"\u003E2B\u003C\u002Fa\u003E). We sampled the upper one (Th-2 sequence) (\u003Ca href=\"#f2\"\u003EFigure 2B\u003C\u002Fa\u003E). The lower beds of this upper limestone unit are sandy coralgal limestones, which are the only ones in the Thanetian of Serraduy section containing significant amount of red algae (samples SEW-0 to 2). According to \u003Ca href=\"#B144\"\u003ESerra-Kiel et al. (1994\u003C\u002Fa\u003E; \u003Ca href=\"#B146\"\u003E2020)\u003C\u002Fa\u003E, the lower limestone interval (Th-1 sequence) comprises a LBF assemblage of \u003Ci\u003EGlomalveolina primaeva\u003C\u002Fi\u003E, \u003Ci\u003EIdalina sinjarica\u003C\u002Fi\u003E, and \u003Ci\u003EMiscellanea yvettae\u003C\u002Fi\u003E, indicative of the SBZ3, whereas the upper limestone interval (Th-2 sequence) includes \u003Ci\u003EGlomalveolina levis\u003C\u002Fi\u003E and \u003Ci\u003EDaviesina garumnensis\u003C\u002Fi\u003E, two characteristic taxa of the SBZ4 (\u003Ca href=\"#f2\"\u003EFigure 2B\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe lower Eocene deposits belong to depositional sequences IL-1 to IL-3 (\u003Ca href=\"#f2\"\u003EFigure 2B\u003C\u002Fa\u003E). The IL-1 is entirely made up of continental deposits, including the characteristic Claret conglomerate member of the Claret Formation, which according to \u003Ca href=\"#B126\"\u003EPujalte et al. (2014\u003C\u002Fa\u003E; \u003Ca href=\"#B128\"\u003E2022)\u003C\u002Fa\u003E marks the beginning of the PETM event in the whole Tremp-Ainsa area.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe IL-2 consists of shallow marine carbonates. The bulk deposits correspond to bedded packstone-grainstones rich in alveolinids and soritids with a LBF assemblage of \u003Ci\u003EAlveolina vredenbrigi\u003C\u002Fi\u003E, \u003Ci\u003EA. aramea\u003C\u002Fi\u003E and \u003Ci\u003EOpertorbitolites gracilis\u003C\u002Fi\u003E (SBZ5) in the lower beds, and \u003Ci\u003EA. ellipsoidalis\u003C\u002Fi\u003E, \u003Ci\u003EA. dolioliformis\u003C\u002Fi\u003E and \u003Ci\u003EOpertorbitolites\u003C\u002Fi\u003E (lower part of SBZ6) in the upper beds (\u003Ca href=\"#f2\"\u003EFigure 2B\u003C\u002Fa\u003E). On the Serraduy West outcrop, a bed with scattered corals 13 m above the base of the sequence is the only one with significant red algal content (samples SEW-3). On the east outcrops of the valley, a distinct massive bed package of coralgal limestones, up to 17 m thick, interfingers with the dominant \u003Ci\u003EAlveolina\u003C\u002Fi\u003E-rich deposits and comprises the main interval sampled for red algae (samples SEE-1 to 10) (\u003Ca href=\"#f2\"\u003EFigure 2B\u003C\u002Fa\u003E). \u003Ca href=\"#B56\"\u003EEichenseer and Luterbacher (1992)\u003C\u002Fa\u003E interpreted these massive limestones as a low-relief coral biostrome.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe overlying IL-3 sequence rests unconformably onto the IL-2 sequence and consists mainly of bioturbated sandstones, silty marls, and sandy limestones that eventually form meter-thick tidal bars with sigmoidal cross bedding trending towards the northeast and southeast. The fossil content in the mixed deposits is a mixture of small nummulitids, milioliids, rare \u003Ci\u003EAlveolina\u003C\u002Fi\u003E, green algae (dasyclads), bivalves, echinoids and gastropods. Vertically, the basal mixed deposits of the IL-3 pass gradually into \u003Ci\u003EAlveolina\u003C\u002Fi\u003E-rich packstone-grainstones, similar to those defining the bulk of sequence IL-2. The LBF assemblage of these uppermost limestones comprises \u003Ci\u003EAlveolina ellipsoidalis\u003C\u002Fi\u003E, \u003Ci\u003EA. dolioliformis\u003C\u002Fi\u003E, \u003Ci\u003EGlomalveolina lepidula\u003C\u002Fi\u003E, \u003Ci\u003EOpertorbitolites\u003C\u002Fi\u003E, and \u003Ci\u003ENummulites bigurdensis\u003C\u002Fi\u003E, defining the upper part of the SBZ6 (\u003Ca href=\"#B145\"\u003ESerra-Kiel et al., 1998\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h5\" name=\"h5\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EMethods\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003ECoralline algae occur mostly as fragments, which do not preserve enough taxonomic features to be identified at any precise taxonomic level. In these cases, we estimate the relative abundance of coralline algal fragments using the charts of \u003Ca href=\"#B23\"\u003EBaccelle and Bosellini (1956)\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EIn the upper Thanetian carbonates, coralline algae occur forming rhodoliths concentrated in particular beds. Here, preservation of the coralline algae is better allowing more precise taxonomic identifications. In these cases, the relative abundance of species was quantified by point-counting the area occupied by each taxon (\u003Ca href=\"#B117\"\u003EPerrin et al., 1995\u003C\u002Fa\u003E). We identified the coralline algae at the lowest possible taxonomic level, in most cases at species level. When the specimens could not be confidently assigned to a described species, we used an open specific nomenclature. The taxonomic schemes of orders, families, subfamilies and genera follow recent molecular phylogenies (\u003Ca href=\"#B116\"\u003EPeña et al., 2020b\u003C\u002Fa\u003E; \u003Ca href=\"#B80\"\u003EJeong et al., 2021\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe external rhodolith morphology was examined in different 2-D sections at the outcrops, as extraction of complete and isolated rhodoliths was impossible due to cementation of limestones. The internal arrangement, algal growth form, and algal composition of rhodoliths were analyzed in thin sections. We use the terminology proposed by \u003Ca href=\"#B160\"\u003EWoelkerling et al. (1993)\u003C\u002Fa\u003E, as well as the recent terminology updated by \u003Ca href=\"#B8\"\u003EAguirre et al. (2017)\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EAll data are compiled in \u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E, and a discussion of some of the identified taxa is provided in the Taxonomic Appendix.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003ETABLE 1\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-t001.jpg\" name=\"table 1\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-t001.gif\" id=\"T1\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003ETable 1\u003C\u002Fstrong\u003E Coralline algal species distribution in the two study sections, indicating presence (X) of each taxon in the samples.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ca id=\"h6\" name=\"h6\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EResults\u003C\u002Fh2\u003E\u003Ch3\u003ECoralline Algal Occurrences\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EMost of the coralline algae occur as fragments in rudstone, grainstone and packstone lithofacies. They occur with other bioclasts, mostly, larger and small benthic foraminifers, corals, mollusks, bryozoans, echinoids, serpulids, and barnacles, as well as additional rhodophytes, such as \u003Ci\u003EMarinella lugeoni\u003C\u002Fi\u003E \u003Ca href=\"#B120\"\u003EPfender 1939\u003C\u002Fa\u003E and the peyssonneliacean \u003Ci\u003EPolystrata alba\u003C\u002Fi\u003E, \u003Ca href=\"#B49\"\u003E(Pfender) Denizot 1968\u003C\u002Fa\u003E and chlorophytes of the orders Dasycladales and Bryopsidales (\u003Ci\u003EHalimeda\u003C\u002Fi\u003E spp) (\u003Ca href=\"#f3\"\u003EFigure 3\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 3\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g003.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g003.gif\" id=\"f3\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 3\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E Superimposed thalli of \u003Ci\u003EPolystrata alba\u003C\u002Fi\u003E (nucleus of the rhodolith) and coralline algae (sample SEW-15). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E \u003Ci\u003EMarinella lugeoni\u003C\u002Fi\u003E (sample CPE-7). \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E Longitudinal section of a \u003Ci\u003EHalimeda\u003C\u002Fi\u003E plate (sample CPE-5). \u003Cstrong\u003E(D)\u003C\u002Fstrong\u003E Oblique section of a dasycladalean green alga (sample SEE-6i).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb0\"\u003ECoralline algal fragments are small (up to 2 mm; very exceptionally larger) and abraded due to reworking (\u003Ca href=\"#f4\"\u003EFigures 4A, B\u003C\u002Fa\u003E). In both sections, coralline algae represent up to 30% of the rock volume in the upper Thanetian sediments. The proportion decreases substantially in the lower Ypresian deposits, with values ranging from 1 to 5% (exceptionally, up to 10% in sample CPE-15).\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 4\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g004.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g004.gif\" id=\"f4\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 4\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A, B)\u003C\u002Fstrong\u003E Grainstone-rudstones of bioclasts including geniculate coralline algae (gen), \u003Ci\u003ED. biserialis\u003C\u002Fi\u003E (Db), larger benthic foraminifera (LBF), echinoids (ech), small benthic foraminifera (sbf), and \u003Ci\u003EM. lugeoni\u003C\u002Fi\u003E (Ml) (A: sample CPE-4; B: sample CPE-7). \u003Cstrong\u003E(C, D)\u003C\u002Fstrong\u003E Thin laminar encrusting coralline algae coating corals (Co) embedded in a wackestone matrix (\u003Cstrong\u003EC\u003C\u002Fstrong\u003E: sample SEW-2ii; D: sample SEE-6). \u003Cstrong\u003E(E)\u003C\u002Fstrong\u003E \u003Ci\u003ESporolithon\u003C\u002Fi\u003E sp. engulfing geniculate coralline algae (sample SEW-1ii).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb15 w100pc float_left mt15\"\u003EDue to high fragmentation and abrasion in these lithofacies, most coralline algal remains do not show diagnostic characteristics to be properly identified, even at family and order levels. Nonetheless, in some fragments reproductive structures are preserved allowing their identification. In the case of \u003Ci\u003EDistichoplax biserialis\u003C\u002Fi\u003E, the characteristic laminar growth forms and the isobilateral cell arrangements facilitate its identification.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EIn the small coral buildups found both in the upper Thanetian and lower Ypresian deposits, coralline algae occur as fragments in the matrix and as thin laminar crusts attached to corals (\u003Ca href=\"#f4\"\u003EFigures 4C, D\u003C\u002Fa\u003E). More rarely, they form small rhodoliths with bioclastic nuclei, mostly corals or other algal fragments (\u003Ca href=\"#f4\"\u003EFigure 4E\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ECoralline algae also occur loosely to densely packed in rhodolith beds (\u003Ca href=\"#B8\"\u003EAguirre et al., 2017\u003C\u002Fa\u003E), such as those found in the upper part of the Navarri Formation in the Campo section (samples CPE-8 and CPE-10) (\u003Ca href=\"#f5\"\u003EFigures 5A–E\u003C\u002Fa\u003E). The loosely packed beds consist of ellipsoidal rhodoliths, from 1 to 3 cm in largest diameter, made up of encrusting to warty corallines (\u003Ca href=\"#f5\"\u003EFigures 5A, C\u003C\u002Fa\u003E). They are embedded in a fine-grained packstone-wackestone matrix with accompanying organisms such as echinoids, benthic foraminifers, and bryozoans. Densely packed rhodolith beds contain spheroidal to ellipsoidal rhodoliths, up to 7 cm in largest diameter, consisting of encrusting, fruticose and warty corallines (\u003Ca href=\"#f5\"\u003EFigures 5B, D, E\u003C\u002Fa\u003E). In this case, rhodoliths are included in a packstone (rarely grainstone) matrix.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 5\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g005.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g005.gif\" id=\"f5\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 5\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E Loosely packed rhodolith bed. \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E Densely packed rhodolith bed. \u003Cstrong\u003E(C–E)\u003C\u002Fstrong\u003E Detail of warty-fruticose rhodliths. \u003Cstrong\u003E(F)\u003C\u002Fstrong\u003E Thin encrusting algae coating corals. \u003Cstrong\u003E(A–E)\u003C\u002Fstrong\u003E: pictures of the upper part of the Navarri Fm. (late Thanetian) in the Campo section. \u003Cstrong\u003E(F)\u003C\u002Fstrong\u003E picture of the lower part of the Serraduy Fm. (early Ypresian) in the Campo section.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb0\"\u003EInternally, rhodoliths are either multispecific or monospecific (\u003Ca href=\"#f6\"\u003EFigure 6\u003C\u002Fa\u003E). They are built up by coralline algae intergrown with encrusting foraminifera (mainly \u003Ci\u003ESolenomeris\u003C\u002Fi\u003E), serpulids, bryozoans, and \u003Ci\u003EPolystrata alba\u003C\u002Fi\u003E (\u003Ca href=\"#f3\"\u003EFigures 3A\u003C\u002Fa\u003E, \u003Ca href=\"#f6\"\u003E6\u003C\u002Fa\u003E). The nuclei of rhodoliths consist of lithoclasts or bioclasts, such as corals (\u003Ca href=\"#f5\"\u003EFigures 5F\u003C\u002Fa\u003E, \u003Ca href=\"#f6\"\u003E6\u003C\u002Fa\u003E). Internal voids are filled with the matrix sediment or are open and later filled up with cement. In some cases, rhodoliths are asymmetrical and geopetal structures indicate that the preferential algal growth coincided with the upright position of the rhodolith. This suggests that rhodoliths are preserved in their original growth position, without substantial reworking.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 6\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g006.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g006.gif\" id=\"f6\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 6\u003C\u002Fstrong\u003E Composite pictures of three rhodoliths. \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E Rhodolith formed by the intergrowth of encrusting coralline algae and \u003Ci\u003ESolenomeris\u003C\u002Fi\u003E (So) embedded in a packstone matrix (sample CPE-8iii). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E Encrusting-warty thalli of \u003Ci\u003ESporolithon\u003C\u002Fi\u003E spp. overgrowing a lithified carbonate nucleus. Geopetal filling, coinciding with the asymmetrical algal development to the upper part of the picture, is indicated in the lower part of the photo (sample CPE-8). \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E Laminar-encrusting algae overgrowing corals. The rhodolith is embedded in a wackestone-mudstone marly matrix (sample CPE-10).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ch3\u003ECoralline Algal Diversity\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EThe orders Corallinales, Hapalidiales, and Sporolithales are represented throughout the late Thanetian-early Ypresian interval in the study sections, being the two former groups the most diversified (\u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E; \u003Ca href=\"#f7\"\u003EFigure 7\u003C\u002Fa\u003E). In the late Thanetian, coralline assemblages include up to 16 species. Maximum coralline diversification is found in the coral floatstone facies sampled at Serraduy section (samples SEW-0 and SEW-1) (\u003Ca href=\"#f2\"\u003EFigures 2B\u003C\u002Fa\u003E, \u003Ca href=\"#f7\"\u003E7\u003C\u002Fa\u003E). The three algal orders underwent a drastic reduction in the number of species in the earliest Ypresian, with a virtual disappearance within the first marine beds encompassing and immediately above the PETM at the Campo section. Here, the limestones were almost exclusively dominated by LBF packstones-grainstones, with alveolinids and subordinate soritids. After this interval, the species richness of corallines increases in the early Ypresian. This diversity recovery is associated with the development of coral buildups at the base of IL-2 in both Campo and Serraduy sections.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 7\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g007.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g007.gif\" id=\"f7\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 7\u003C\u002Fstrong\u003E Coralline algal species abundance in the study sections.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb0\"\u003EThe estimation of the relative abundance of species is hampered by preservation. Among the easily identifiable ones, the best represented is \u003Ci\u003EDistichoplax biserialis\u003C\u002Fi\u003E, which occurs in all samples, followed by geniculate species. The abundance of \u003Ci\u003ED. biserialis\u003C\u002Fi\u003E embedded in a packstone-wackestone matrix found in the uppermost Thanetian carbonates in the Campo section (samples CPE-9 and CPE-10) is remarkable, as it ranges from 73% to 95% of the coralline assemblages (\u003Ca href=\"#f8\"\u003EFigure 8\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 8\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g008.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g008.gif\" id=\"f8\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 8\u003C\u002Fstrong\u003E \u003Ci\u003EDisctichoplax biserialis\u003C\u002Fi\u003E concentration at the upper part of the Navarri Formation (late Thanetian) in the Campo section (sample CEP-9).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb15 w100pc float_left mt15\"\u003EIn contrast, preservation of coralline algae in the upper Thanetian rhodolith beds of Campo allows estimating species abundance. Here, members of the order Sporolithales were the most abundant (up to 75%), being \u003Ci\u003ESporolithon lugeoni\u003C\u002Fi\u003E the best-represented species, followed by \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 1, a few Hapalidiales, and anecdotal presence of laminar crusts of \u003Ci\u003ELithoporella\u003C\u002Fi\u003E spp.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe thin laminar algae encrusting corals, both in the Thanetian and in the Ypresian, are mostly \u003Ci\u003ELithoporella\u003C\u002Fi\u003E spp, and \u003Ci\u003ELithothamnion crispithallus\u003C\u002Fi\u003E and \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp 5.\u003C\u002Fp\u003E\u003Ca id=\"h7\" name=\"h7\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EDiscussion\u003C\u002Fh2\u003E\u003Ch3\u003EPaleoenvironmental Evolution\u003C\u002Fh3\u003E\u003Cp class=\"mb15\"\u003EHigh fragmentation and rounding of coralline algae and other bioclasts, in the cross-bedded deposits defining the lower part of the upper Thanetian Navarri Formation indicate high-energy conditions in an open inner ramp setting. Dominance of Corallinales is consistent with these shallow water conditions (\u003Ca href=\"#B38\"\u003EBraga and Martín, 1988\u003C\u002Fa\u003E; \u003Ca href=\"#B35\"\u003EBraga and Aguirre, 2001\u003C\u002Fa\u003E; \u003Ca href=\"#B36\"\u003EBraga and Aguirre, 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B8\"\u003EAguirre et al., 2017\u003C\u002Fa\u003E). Particularly interesting is the relative abundance of geniculate coralline algae, which dominate in high-energy intertidal, shallow-subtidal settings, both in the present day (\u003Ca href=\"#B63\"\u003EGarbary and Johansen, 1982\u003C\u002Fa\u003E; \u003Ca href=\"#B43\"\u003ECanals and Ballesteros, 1997\u003C\u002Fa\u003E; \u003Ca href=\"#B48\"\u003ECouto et al., 2014\u003C\u002Fa\u003E) and in the fossil record (\u003Ca href=\"#B138\"\u003EScheibner et al., 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B129\"\u003EQuaranta et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B40\"\u003EBrandano, 2017\u003C\u002Fa\u003E). In these settings, they are prone to disarticulation and breakage after death, thus, reducing their fossilization potential (\u003Ca href=\"#B14\"\u003EAguirre et al., 2000a\u003C\u002Fa\u003E; \u003Ca href=\"#B12\"\u003EAguirre et al., 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B27\"\u003EBasso, 2012\u003C\u002Fa\u003E). During the late Thanetian, coralline algae diversified in small coral buildups, such as those found in the Serraduy section (samples SEW-0 and SEW-1) (\u003Ca href=\"#f2\"\u003EFigures 2B\u003C\u002Fa\u003E, \u003Ca href=\"#f7\"\u003E7\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EIn addition to coralline algal fragments, loosely and densely packed rhodolith beds developed at the upper part of the Navarri Formation. Although rhodolith shape and algal growth forms in the outer parts of the rhodoliths can be water-depth and hydrodynamic indicators (\u003Ca href=\"#B32\"\u003EBracchi et al., 2022\u003C\u002Fa\u003E), laboratory experiments and field observations have shown that in most cases there is no correlation between those factors (\u003Ca href=\"#B8\"\u003EAguirre et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B33\"\u003EBraga, 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B112\"\u003EO’Connell et al., 2020\u003C\u002Fa\u003E; and references therein). In the Campo section, several evidences suggest that rhodolith beds formed in relatively deep, calm marine settings, most likely in a middle ramp: 1) the matrix surrounding the rhodoliths is fine grained-muddy carbonate; 2) \u003Ci\u003ESporolithon\u003C\u002Fi\u003E spp. are major components of the rhodoliths, indicating growth in relative deep waters (several tens of meters), as abundance of Sporolithales increases with water depth (\u003Ca href=\"#B3\"\u003EAdey and Macintyre, 1973\u003C\u002Fa\u003E; \u003Ca href=\"#B1\"\u003EAdey, 1979\u003C\u002Fa\u003E; \u003Ca href=\"#B106\"\u003EMinnery et al., 1985\u003C\u002Fa\u003E; \u003Ca href=\"#B2\"\u003EAdey, 1986\u003C\u002Fa\u003E; \u003Ca href=\"#B62\"\u003EFravega et al., 1989\u003C\u002Fa\u003E; \u003Ca href=\"#B105\"\u003EMinnery, 1990\u003C\u002Fa\u003E; \u003Ca href=\"#B14\"\u003EAguirre et al., 2000a\u003C\u002Fa\u003E; \u003Ca href=\"#B35\"\u003EBraga and Aguirre, 2001\u003C\u002Fa\u003E; \u003Ca href=\"#B36\"\u003EBraga and Aguirre, 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B37\"\u003EBraga and Bassi, 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B39\"\u003EBraga et al., 2009\u003C\u002Fa\u003E); and, 3) geopetal fillings point to a normal polarity of rhodoliths and preservation in growth position without significant reworking.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe uppermost carbonate beds of the upper Thanetian Navarri Formation, immediately below the karst surface, are overwhelmingly dominated by large laminar thalli of \u003Ci\u003ED. biserialis\u003C\u002Fi\u003E dispersed in a muddy (packstone-wackestone) matrix (\u003Ca href=\"#f8\"\u003EFigure 8\u003C\u002Fa\u003E). Loose laminar growth forms of this coralline alga in fine-grained sediments suggest low energy conditions. These sediments at the top of the Navarri Formation are interpreted as middle ramp deposits as well (\u003Ca href=\"#B138\"\u003EScheibner et al, 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B96\"\u003ELi et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EIn the Campo section, the Paleocene-Eocene boundary is represented by a subaerial erosional surface that reflects a profound paleoenvironmental change in the study region. Overlying the unconformity, continental clays, sands, and discontinuous palustrine limestones of the Claret Formation formed. Continental sedimentation was coeval with a sea level lowering during the carbon isotope excursion (CIE) recorded at the Paleocene\u002FEocene transition (e.g., \u003Ca href=\"#B126\"\u003EPujalte et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B128\"\u003EPujalte et al., 2022\u003C\u002Fa\u003E). In the Campo section, the continental interval is overlain by packstone-wackestone beds of alveolinids, which are topped, in turn, by laminated microbial carbonates (upper deposits of IL-1 sequence). The almost exclusive dominance of \u003Ci\u003EAlveolina\u003C\u002Fi\u003E indicates that they formed in a very restricted lagoon with probable fluctuations in salinity (\u003Ca href=\"#B31\"\u003EBouDagher-Fadel, 2018\u003C\u002Fa\u003E). The profuse development of microbial laminites, with evaporite minerals, reveals marginal\u002Fvery restricted to eventually hypersaline environmental conditions. Coralline algae were absent in all these settings. Stratal geometry of these first marine beds shows an onlap indicating relative sea-level rise, which increased accommodation.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EHigher up into the study sections, milioliids and locally oysters (sample CPE-14), together with \u003Ci\u003EAlveolina\u003C\u002Fi\u003E, dominate the fossil assemblages. Milioliids are small benthic foraminifers preferentially inhabiting lagoons (\u003Ca href=\"#B109\"\u003EMurray, 1991\u003C\u002Fa\u003E; \u003Ca href=\"#B110\"\u003EMurray, 2006\u003C\u002Fa\u003E). Dasyclads are also abundant in the lower Ypresian carbonates, particularly in the Serraduy section (\u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E). They preferentially inhabit low latitude, shallow bays and lagoons (\u003Ca href=\"#B57\"\u003EFlügel, 1985\u003C\u002Fa\u003E; \u003Ca href=\"#B58\"\u003EFlügel, 1991\u003C\u002Fa\u003E; \u003Ca href=\"#B30\"\u003EBerger and Kaever, 1992\u003C\u002Fa\u003E; \u003Ca href=\"#B13\"\u003EAguirre and Riding, 2005\u003C\u002Fa\u003E; \u003Ca href=\"#B29\"\u003EBerger, 2006\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003ELocally, small coral patches, corresponding to samples CPE-15 and CPN-3 of the Campo section, as well as samples SEW-3 and SEE-5—SEE-9 of the Serraduy section, grew in these shallow-water environments dominated by alveolinids. Corals are embedded in a wackestone-packstone matrix, very rich in milioliids, and suggest relatively normal marine conditions, probably in lagoonal areas with connection with open marine waters. The only records of corallines in the lower Ypresian deposits of the Campo section are found in the coral patches at the base of sequence IL-2. In the Serraduy section, coralline algae are present but scarce in all samples from the lower Ypresian IL-2 sequence, being more abundant in the coral buildups (\u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EIn the Campo section, the lower Ypresian carbonates above the coral buildups represent a progressive deepening trend, as inferred by the progressive diversification of the larger benthic foraminifer assemblages (particularly, nummulitids) as well as other invertebrates (bivalves, gastropods, and echinoderms). In the uppermost part of the section, a monospecific bed of lucinids preserved in life position (below sample CPE-19) is found. The family Lucinidae is one of the most diversified groups of bivalves in chemosynthetic communities associated with hydrothermal vents and cold seeps, disoxic bottom conditions and\u002For eutrophic settings (\u003Ca href=\"#B152\"\u003ETaylor and Glover, 2006\u003C\u002Fa\u003E). This suggests the prevalence of harsh conditions for coralline algae during the early Ypresian deepening in the Campo section.\u003C\u002Fp\u003E\u003Ch3\u003ECoralline Algal Diversity During the PETM\u003C\u002Fh3\u003E\u003Cp class=\"mb15\"\u003EIn terms of number of species, coralline algae maintain similar species richness along the late Thanetian-early Ypresian interval in our study case (\u003Ca href=\"#f7\"\u003EFigure 7\u003C\u002Fa\u003E). During the Thanetian, diversity peaked in particular beds, such as the rhodolith beds of the Campo section and in the coral buildups of the Serraduy section. In addition, the three coralline algal groups, namely Sporolithales, Hapalidiales, and Corallinales, keep similar diversity values, being Corallinales and Hapalidiales the most diversified ones (\u003Ca href=\"#f7\"\u003EFigure 7\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EOur results also show that the species found in the early Ypresian are also found in the late Thanetian deposits (\u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E). This means that no extinction event is recorded at the Paleocene-Eocene transition at Campo and Serraduy sections. Furthermore, no significant turnover is observed since no new species occurred in the lower Ypresian deposits.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe global diversification history of coralline algae shows a slight increase in diversity during the late Paleocene-early Eocene transition due to the diversification of Hapalidiales (\u003Ca href=\"#B14\"\u003EAguirre et al., 2000a\u003C\u002Fa\u003E). Nonetheless, no significant diversity change is observed in the Pyrenean study areas. Both in Campo and Serraduy sections, coralline algae disappeared during the deposition of the Claret Formation and recovered long time after the Paleocene-Eocene boundary, within the Serraduy Formation.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EAfter the continentalization during the PETM interval, represented by the Claret Formation, marine deposition restarted in the early Ypresian but in very restricted lagoonal settings, unfavorable for the growth of coralline algae (\u003Ca href=\"#B160\"\u003EWoelkerling et al., 1993\u003C\u002Fa\u003E). These paleoenvironmental conditions remained during accumulation of \u003Ci\u003EAlveolina\u003C\u002Fi\u003E-rich deposits that form the bulk of the Serraduy Formation, inhibiting extensive coralline algal development. In the Campo section, siliciclastic content increases in the two topmost samples (CPE-19 and CPE-20) representing the inner to middle ramp transition. This might account for the virtual absence of coralline algae since terrigenous supply inhibits their profuse development (\u003Ca href=\"#B8\"\u003EAguirre et al., 2017\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003ECoralline algae, however, occurred associated with the lower Ypresian coral patch reefs, as laminar and thin crusts coating the coral colonies (\u003Ca href=\"#f4\"\u003EFigures 4C, D\u003C\u002Fa\u003E, \u003Ca href=\"#f5\"\u003E5F\u003C\u002Fa\u003E). Coral growth and expansion of coralline algae denote the reestablishment of fully marine conditions. In these settings, coralline algae became totally diversified, with species richness similar to that of the late Thanetian (\u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E; \u003Ca href=\"#f7\"\u003EFigure 7\u003C\u002Fa\u003E). It seems, therefore, that, in the Pyrenean localities, coralline algae disappeared after the PETM due to drastic shifts in local environmental conditions, not as a consequence of global events.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EWe are not able to ascertain that the massive release of CO\u003Csub\u003E2\u003C\u002Fsub\u003E to the atmosphere ~55.6 Ma, with the consequent ocean acidification due to lowering pH and temperature rise, affected negatively to coralline algae. Indeed, species richness and species composition were the same when fully marine conditions resumed in the region.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EFurthermore to analyze inventories of coralline algal species to evaluate diversity changes throughout the Paleocene-Eocene transition, it is also interesting to investigate the PETM effects on rhodolith beds. After the mass extinction affecting coralline algae at the end of the Cretaceous (\u003Ca href=\"#B14\"\u003EAguirre et al., 2000a\u003C\u002Fa\u003E; \u003Ca href=\"#B15\"\u003EAguirre et al., 2000b\u003C\u002Fa\u003E), rhodolith beds spread significantly during the late Danian and early Thanetian (\u003Ca href=\"#B4\"\u003EAguirre et al., 2007\u003C\u002Fa\u003E); i.e., after a long time of recovery. In the Pyrenees, rhodolith beds were present by the end of the Thanetian (uppermost interval of Navarri Formation) but they were absent during the early Ypresian. Globally, a significant reduction of rhodolith-rich deposits, which are rarely recorded, took place during the early Eocene (\u003Ca href=\"#B79\"\u003EHowe, 1934\u003C\u002Fa\u003E; \u003Ca href=\"#B95\"\u003ELemoine and Mengaud, 1934\u003C\u002Fa\u003E; \u003Ca href=\"#B5\"\u003EAguirre et al., 2011\u003C\u002Fa\u003E), and continued during the middle Eocene, at least in mid and high latitudes (\u003Ca href=\"#B11\"\u003EAguirre et al., 2020\u003C\u002Fa\u003E). Rhodolith beds became widely recorded again in the late Eocene (\u003Ca href=\"#B11\"\u003EAguirre et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h8\" name=\"h8\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EConclusions\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EWe studied coralline algal assemblages in shallow-marine carbonate and siliciclastic deposits during the Paleocene\u002FEocene Thermal Maximum (PETM) in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain). Coralline algae occur mostly as fragments of branches and forming rhodoliths, which occur either dispersed or in densely packed concentrations (rhodolith beds). Representatives of the orders Sporolithales, Hapalidiales, and Corallinales are present, being Corallinales and Hapalidiales the most diversified ones. Species composition and diversity do not change throughout the Paleocene\u002FEocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a considerable reduction: from abundant during the late Thanetian to scarce during the early Ypresian. This abundance drop was due to a drastic change in the local paleoenvironmental conditions immediately after the Paleocene\u002FEocene boundary. The Thanetian marine sedimentation ended with a hardground, which is followed, in turn, by continental deposits formed during the PETM. Marine deposition resumed in shallow, very restricted lagoon and peritidal settings, as indicated by the almost exclusive dominance of \u003Ci\u003EAlveolina\u003C\u002Fi\u003E, milioliids and soritids in muddy carbonates. These paleoenvironmental conditions were unfavorable for the development of coralline algae. They reappeared, and were locally abundant, associated with corals in lower Ypresian beds, where they show diversity values and species composition similar to pre-PETM deposits.\u003C\u002Fp\u003E\u003Ca id=\"h9\" name=\"h9\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003ETaxonomic Appendix\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003ESpecies identification of fossil specimens is always challenging since it is based on morpho-anatomical features and depends mostly on their preservation state. Concerning fossil coralline algae, taking into consideration the ongoing phylogenetic classification schemes of recent taxa, their identification is complicated even at supraspecific levels. Preservation of the sporangial reproductive structures is needed to assign fossil specimens to any of the four fully-calcified coralline algal orders (\u003Ca href=\"#B80\"\u003EJeong et al., 2021\u003C\u002Fa\u003E). Unfortunately, this is not always the case and many fossil specimens cannot be correctly identified at any supraspecific level. Based on characters usually preserved in the fossil record, the most feasible taxonomic approach is, at best, the subfamily or family level. The problem is exacerbated when trying to use an already proposed species epithet based on fossil material. Historically, authors have defined species based on ambiguous anatomical characters and have preferred to proposed new names for their findings instead of using already existing ones (\u003Ca href=\"#B34\"\u003EBraga and Aguirre, 1995\u003C\u002Fa\u003E; \u003Ca href=\"#B7\"\u003EAguirre and Braga, 2005\u003C\u002Fa\u003E). An additional trouble is the inconsistent use of published species names by other scientists to name their specimens. This has produced an overabundance of species names to designate entities that cannot be unambiguously separated (\u003Ca href=\"#B7\"\u003EAguirre and Braga, 2005\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ERegarding our study case, we checked species names of coralline algae described in Paleocene-Oligocene deposits. To avoid reinterpretations of original species definitions by later authors, we resort to the original descriptions and illustrations of the species. A description of the anatomical and reproductive features of some coralline algal species recognized in our samples and their similarities with closest species are given below. We focus only on those species that deserve some discussion since they underwent diverse taxonomic interpretations. Thus, we discuss the possible species names that can be assigned to some of the identified morphospecies. For those specimens that are not easily attributed to any species name, we keep an open species nomenclature. In addition, we provide a taxonomic key for all the identified species (\u003Ca href=\"#T2\"\u003ETable 2\u003C\u002Fa\u003E) and illustrate all of them in \u003Ca href=\"#f9\"\u003EFigures 9\u003C\u002Fa\u003E–\u003Ca href=\"#f12\"\u003E12\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003ETABLE 2\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-t002.jpg\" name=\"table 2\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-t002.gif\" id=\"T2\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003ETable 2\u003C\u002Fstrong\u003E Identification key with the anatomical and reproductive features characterizing the genera and species found in the study areas.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 9\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g009.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g009.gif\" id=\"f9\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 9\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E \u003Ci\u003ESporolithon oulianovii\u003C\u002Fi\u003E (sample CPE-10). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E \u003Ci\u003ESporolithon\u003C\u002Fi\u003E sp. 1 (sample CPN-3). \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E \u003Ci\u003ESporolithon brevium\u002Fairoldii\u003C\u002Fi\u003E (sample CPE-3). \u003Cstrong\u003E(D)\u003C\u002Fstrong\u003E \u003Ci\u003ESporolithon lugeonii\u003C\u002Fi\u003E (sample CPE-8). \u003Cstrong\u003E(E)\u003C\u002Fstrong\u003E Spermetangial conceptacles of \u003Ci\u003ES. lugeonii\u003C\u002Fi\u003E (sample CPE-8). \u003Cstrong\u003E(F)\u003C\u002Fstrong\u003E \u003Ci\u003EMelobesia\u003C\u002Fi\u003E sp. Arrowheads indicacte two pore canals at the conceptacle roof (sample CPE-8). \u003Cstrong\u003E(G)\u003C\u002Fstrong\u003E Branch of \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E cf. \u003Ci\u003Ecorallioides\u003C\u002Fi\u003E (sample CPE-6).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cp class=\"mb15\"\u003EOrder Sporolithales (\u003Ca href=\"#f9\"\u003EFigures 9A–E\u003C\u002Fa\u003E)\u003C\u002Fp\u003E\u003Cp style=\"margin-top:1em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E1. \u003Ci\u003ESporolithon lugeonii\u003C\u002Fi\u003E (Pfender) Ghosh and Maithy 1996 (\u003Ca href=\"#f9\"\u003EFigures 9D, E\u003C\u002Fa\u003E) We have identified some plants with small uniporate, pear-like shaped conceptacles (100-125 μm in diameter and 100 μm in height) (\u003Ca href=\"#f9\"\u003EFigure 9E\u003C\u002Fa\u003E). They show vegetative anatomy and cell sizes similar to \u003Ci\u003ESporolithon lugeonii\u003C\u002Fi\u003E. Therefore, we interpret these plants as gametangial (male) conceptacles of \u003Ci\u003ES. lugeonii\u003C\u002Fi\u003E. Nonetheless, these gametangial conceptacles coincide both in shape and size to those described as \u003Ci\u003ESporolithon\u003C\u002Fi\u003E sp. 2 by \u003Ca href=\"#B28\"\u003EBasso et al. (2019)\u003C\u002Fa\u003E or as \u003Ci\u003ES. airoldii\u003C\u002Fi\u003E by \u003Ca href=\"#B159\"\u003EVannucci et al. (2010)\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E2. \u003Ci\u003ESporolithon brevium\u003C\u002Fi\u003E (Lemoine) Aguirre and Braga 1988\u002F\u003Ci\u003ESporolithon airoldii\u003C\u002Fi\u003E (\u003Ca href=\"#B61\"\u003EFravega\u003C\u002Fa\u003E) \u003Ca href=\"#B159\"\u003EVannucci, Quaranta and Basso 2010\u003C\u002Fa\u003E (\u003Ca href=\"#f9\"\u003EFigure 9C\u003C\u002Fa\u003E). Based on vegetative anatomy, thallus construction and reproductive structures, this species shows similarities with \u003Ci\u003ESporolithon airoldii\u003C\u002Fi\u003E (\u003Ca href=\"#B61\"\u003EFravega, 1984\u003C\u002Fa\u003E; \u003Ca href=\"#B159\"\u003EVannucci et al., 2010\u003C\u002Fa\u003E). It also recalls the type material of \u003Ci\u003ESporolithon brevium\u003C\u002Fi\u003E (\u003Ca href=\"#B6\"\u003EAguirre and Braga, 1998\u003C\u002Fa\u003E), and \u003Ci\u003ESporolithon keenani\u003C\u002Fi\u003E \u003Ca href=\"#B79\"\u003EHowe 1934\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E3. \u003Ci\u003ESporolithon\u003C\u002Fi\u003E sp. 1 (\u003Ca href=\"#f9\"\u003EFigure 9B\u003C\u002Fa\u003E). This species has been found in one sample. It is a monomerous plant with a laminar and encrusting growth form. Thallus is thin, with a thin plumose ventral core, made up by 2-3 cell rows that bend upwards to the peripheral region, which consists of up to 15 cell rows. Reproductive structures consist of a few isolated sporangial cavities (3-5 cavities) grouped into very protruding nemathecia-like sori.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:1em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E4. Undifferentiated Sporolithales. Under this category, we include small unidentifiable fragments of plants preserving sori.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EOrder Hapalidales (\u003Ca href=\"#f9\"\u003EFigures 9F, G\u003C\u002Fa\u003E, \u003Ca href=\"#f10\"\u003E10\u003C\u002Fa\u003E, \u003Ca href=\"#f11\"\u003E11A–C\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp style=\"margin-top:1em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E1. \u003Ci\u003EMelobesia\u003C\u002Fi\u003E sp. (\u003Ca href=\"#f9\"\u003EFigure 9F\u003C\u002Fa\u003E). This species shows dimerous, laminar, very thin thalli made up of 2-3 cell rows that thicken around multiporate conceptacle cavities. The study specimens show similarities with \u003Ci\u003EMelobesia\u003C\u002Fi\u003E sp. from the middle Eocene from the Subbetic of the Betic Cordillera (S Spain) (\u003Ca href=\"#B11\"\u003EAguirre et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E2. \u003Ci\u003ELithothamnion concretum\u003C\u002Fi\u003E \u003Ca href=\"#B77\"\u003EHowe 1919a\u003C\u002Fa\u003E (\u003Ca href=\"#f10\"\u003EFigure 10C\u003C\u002Fa\u003E). The study material fits with the original description of this species by \u003Ca href=\"#B77\"\u003EHowe (1919a)\u003C\u002Fa\u003E. That is, fruticose plants, occasionally encrusting, with cell filaments arranged in regular zones in the center of the branches, with a relatively well-defined lateral alignment of cells of adjacent filaments. Sporangial conceptacles are up to 750 μm in diameter and 100 μm in height and do not protrude on the thallus surface. This species is close to \u003Ci\u003ELithothamnion pianfolchi\u003C\u002Fi\u003E \u003Ca href=\"#B102\"\u003EMastrorilli, 1967\u003C\u002Fa\u003E and that identified as \u003Ci\u003EMesophyllum ryukyuensis\u003C\u002Fi\u003E \u003Ca href=\"#B82\"\u003EJohnson, 1964\u003C\u002Fa\u003E. Nonetheless, these two species have smaller sporangial conceptacles. The species also resembles \u003Ci\u003ELithothamnion ramosissimum\u003C\u002Fi\u003E (Reuss) \u003Ca href=\"#B121\"\u003EPiller 1994\u003C\u002Fa\u003E (\u003Ca href=\"#B121\"\u003EPiller, 1994\u003C\u002Fa\u003E; \u003Ca href=\"#B10\"\u003EAguirre et al., 1996\u003C\u002Fa\u003E), although this species is more recent (Neogene).\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E3. \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E cf. \u003Ci\u003Ecorallinaeforme\u003C\u002Fi\u003E \u003Ca href=\"#B92\"\u003ELemoine 1924\u003C\u002Fa\u003E (\u003Ca href=\"#f9\"\u003EFigures 9G\u003C\u002Fa\u003E, \u003Ca href=\"#f10\"\u003E10A\u003C\u002Fa\u003E). The specimens identified within this species epithet show growth form, thallus construction, vegetative anatomy and reproductive structures comparable with the type material of \u003Ci\u003EL. corallinaeforme\u003C\u002Fi\u003E \u003Ca href=\"#B92\"\u003ELemoine, 1924\u003C\u002Fa\u003E as reassessed by \u003Ca href=\"#B9\"\u003EAguirre et al. (2012)\u003C\u002Fa\u003E. \u003Ci\u003ELithothamnion marianae\u003C\u002Fi\u003E \u003Ca href=\"#B81\"\u003EJohnson, 1957\u003C\u002Fa\u003E presents similarities with Lemoine’s species. The growth forms (slender, long branches), as well as the cell size and shape (rectangular to polygonal with a thickened cell wall) are anatomical features highlighted both by \u003Ca href=\"#B81\"\u003EJohnson (1957)\u003C\u002Fa\u003E and by \u003Ca href=\"#B9\"\u003EAguirre et al. (2012)\u003C\u002Fa\u003E in the description of the two species.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E4. \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E cf. \u003Ci\u003Eexuberans\u003C\u002Fi\u003E \u003Ca href=\"#B102\"\u003EMastrorilli 1967\u003C\u002Fa\u003E (\u003Ca href=\"#f10\"\u003EFigure 10D\u003C\u002Fa\u003E). This species occurs as fragmented branches. Cell filaments in the center of the branch form regular growth zones. Sporangial conceptacles slightly protrude above the thallus surface and measure about 200 μm in diameter and 100-130 μm in height. They are slightly trapezoidal but irregular in shape and possess conspicuous pore canals in the roof. The specimens showing these features can be assigned to the species \u003Ci\u003ELithothamnion exuberans\u003C\u002Fi\u003E \u003Ca href=\"#B102\"\u003EMastrorilli, 1967\u003C\u002Fa\u003E, who highlighted the irregular shape of the sporangial conceptacles, which is a typical character of the study material. Similar coralline algae were described as \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 4 by \u003Ca href=\"#B11\"\u003EAguirre et al. (2020)\u003C\u002Fa\u003E from the middle Eocene carbonates of Subbetic Zones, Betic Cordillera (S Spain), Colombia, and Dominican Republic.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E5. \u003Ci\u003ELithothamnion crispithallus\u003C\u002Fi\u003E \u003Ca href=\"#B81\"\u003EJohnson 1957\u003C\u002Fa\u003E (\u003Ca href=\"#f10\"\u003EFigure 10H\u003C\u002Fa\u003E). Thin thallus with a well-developed plumose ventral core and a thin peripheral region, which thickens substantially surrounding conceptacles. Sporangial conceptacles, which are crowded in portions of the thallus, protrude on the thallus surface generating a wart-like structure. They are rectangular or dome-like in shape ranging from 190 μm to 250 μm in diameter and from 100 μm to 140 μm in height. This alga occurs attached to hard skeletons or as crusts isolated in the sediment. \u003Ca href=\"#B81\"\u003EJohnson (1957)\u003C\u002Fa\u003E highlighted the crowding of the conceptacles as characteristic of the species.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E   \u003Ci\u003ELithothamnion charollaisi\u003C\u002Fi\u003E \u003Ca href=\"#B143\"\u003ESegonzac and Charollais 1974\u003C\u002Fa\u003E shows similarities with \u003Ci\u003EL. crispithallus\u003C\u002Fi\u003E. Nonetheless, the description of the species is very limited precluding feasible comparisons. \u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E6. \u003Ci\u003ELithothamnion vaughani\u003C\u002Fi\u003E \u003Ca href=\"#B78\"\u003EHowe 1919b\u003C\u002Fa\u003E (\u003Ca href=\"#f10\"\u003EFigure 10E\u003C\u002Fa\u003E). In the protologue of this species, \u003Ca href=\"#B78\"\u003EHowe (1919b)\u003C\u002Fa\u003E indicated “primary hypothallia somewhat reduced, …. rather irregularly arranged (i.e., not distinctly “coaxial”)” (\u003Ca href=\"#B78\"\u003EHowe, 1919b\u003C\u002Fa\u003E; p. 6). Later, Lemoine (1928; see also \u003Ca href=\"#B94\"\u003ELemoine, 1939\u003C\u002Fa\u003E) transferred the species to the new genus \u003Ci\u003EMesophyllum\u003C\u002Fi\u003E that she described: “Les espèces fossiles qui me paraissent faire partie du genre \u003Ci\u003EMesophylllum\u003C\u002Fi\u003E sont: … \u003Ci\u003EM. vaughani\u003C\u002Fi\u003E Howe” (\u003Ca href=\"#B93\"\u003ELemoine, 1928\u003C\u002Fa\u003E; p. 253). This new genus attribution has been followed by later authors. Nonetheless, taking into consideration the clear reference to the plumose ventral core we keep the original genus attribution by \u003Ca href=\"#B78\"\u003EHowe (1919b)\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E7. \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 2 (\u003Ca href=\"#f10\"\u003EFigure 10G\u003C\u002Fa\u003E). This species occurs as fruticose or encrusting plants with branches showing irregular internal zones. The most characteristic feature is that numerous multiporate sporangial conceptacles are grouped in the tips of branches or warts. They are mostly secondarily filled by adventitious cells. Thallus morphology, internal organization, conceptacle shapes and sizes, and their distribution allow comparing this species with \u003Ci\u003EMesophyllum schenckii\u003C\u002Fi\u003E \u003Ca href=\"#B79\"\u003EHowe, 1934\u003C\u002Fa\u003E, \u003Ci\u003ELithothamnion wallisium\u003C\u002Fi\u003E \u003Ca href=\"#B84\"\u003EJohnson and Tafur, 1952\u003C\u002Fa\u003E, later figured by \u003Ca href=\"#B83\"\u003EJohnson and Stewart (1953)\u003C\u002Fa\u003E, and \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. \u003Ca href=\"#B151\"\u003EStockar (2000)\u003C\u002Fa\u003E. It also shows certain resemblance with \u003Ci\u003EMesophyllum galettoi\u003C\u002Fi\u003E \u003Ca href=\"#B102\"\u003EMastrorilli, 1967\u003C\u002Fa\u003E. Members of the genus \u003Ci\u003EMesophyllum\u003C\u002Fi\u003E present a predominantly coaxial hypothallus. Nonetheless, in the protologue of \u003Ci\u003EM. schenckii\u003C\u002Fi\u003E and \u003Ci\u003EM. galettoi\u003C\u002Fi\u003E, both \u003Ca href=\"#B79\"\u003EHowe (1934)\u003C\u002Fa\u003E and \u003Ca href=\"#B102\"\u003EMastrorilli (1967)\u003C\u002Fa\u003E, respectively, indicate the presence of a plumose ventral core. The specimens we have studied show plumose ventral core, so, we assign them to \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E   One specimen in sample SEW-1 shows a large triangular conceptacle with a long single pore in the roof. The pore canal protrudes above the thallus surface generating a wart-like protuberance. This alga shows the same growth morphology and thallus organization as that of \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 2, thus, we interpret it as a gametangial plant of the species.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:1em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E8. Undifferentiated Hapalidiales. Under this category, we include small unidentifiable fragments of encrusting thalli with well-developed plumose hypothallus and a thin perithallus, which thickens around sporangial multiporate conceptacles.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EOrder Corallinales (\u003Ca href=\"#f11\"\u003EFigures 11D–M\u003C\u002Fa\u003E, \u003Ca href=\"#f12\"\u003E12\u003C\u002Fa\u003E)\u003C\u002Fp\u003E\u003Cp style=\"margin-top:1em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E1. Geniculate sp. 1 (\u003Ca href=\"#f11\"\u003EFigure 11E\u003C\u002Fa\u003E). It occurs as calcified disarticulated portions of intergenicula with cell fusions. One portion presents a uniporate conceptacle located in a terminal position of the intergeniculum (\u003Ca href=\"#f11\"\u003EFigure 11E\u003C\u002Fa\u003E). Fragmentation precludes genus identification; however, preserved features remind those of \u003Ci\u003ECorallina prisca\u003C\u002Fi\u003E \u003Ca href=\"#B81\"\u003EJohnson, 1957\u003C\u002Fa\u003E from the late Eocene of Saipan (Mariana Islands).\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E2. Geniculate sp. 2 (\u003Ca href=\"#f11\"\u003EFigures 11F, G\u003C\u002Fa\u003E). Dispersed fragments of portions of calcified intergenicula with cell fusions. Two of these intergenicula preserve uniporate conceptacles in the terminal position that are surrounded by lateral branches. One of the specimens show a small conceptacle with a high pore canal (\u003Ca href=\"#f11\"\u003EFigure 11F\u003C\u002Fa\u003E) and the other is bigger with a short pore canal (\u003Ca href=\"#f11\"\u003EFigure 11G\u003C\u002Fa\u003E). The former is tentatively interpreted as a possible gametangial conceptacle of the same taxon.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E3. Geniculate sp. 3 (\u003Ca href=\"#f11\"\u003EFigure 11H\u003C\u002Fa\u003E). A single thallus showing cell fusions and a big uniporate sporangial conceptacle derived from cortical cells in a lateral position of the intergeniculum.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E4. \u003Ci\u003EDistichoplax biserialis\u003C\u002Fi\u003E \u003Ca href=\"#B52\"\u003EDietrich 1927\u003C\u002Fa\u003E (\u003Ca href=\"#f12\"\u003EFigures 12B–D\u003C\u002Fa\u003E). This is a widely known species, although its attribution has been debated. In the study material, we have found laminar thalli of \u003Ci\u003ED. biserialis\u003C\u002Fi\u003E showing both conceptacle primordia and void uniporate sporangial conceptacles (\u003Ca href=\"#f12\"\u003EFigure 12C\u003C\u002Fa\u003E), enabling the assignment of this species to the order Corallinales. Similar reproductive structures have been figured by Kiej (\u003Ca href=\"#B86\"\u003E1963\u003C\u002Fa\u003E; \u003Ca href=\"#B87\"\u003E1964\u003C\u002Fa\u003E) and \u003Ca href=\"#B51\"\u003EDieni et al. (1979)\u003C\u002Fa\u003E. Recently, \u003Ca href=\"#B135\"\u003ESarkar (2018)\u003C\u002Fa\u003E included this species within the subfamily Lithophylloideae, based on the absence of cell fusions, an interpretation also erroneously made by \u003Ca href=\"#B12\"\u003EAguirre et al. (2010)\u003C\u002Fa\u003E. This species shows evident cell fusions, although they are sometimes nearly absent in some portions of the thallus (\u003Ca href=\"#f12\"\u003EFigures 12C, D\u003C\u002Fa\u003E). Therefore, it cannot be considered a lithophylloid any longer (\u003Ca href=\"#B134\"\u003ERösler et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B116\"\u003EPeña et al., 2020b\u003C\u002Fa\u003E). \u003Ca href=\"#B22\"\u003EAthanasiadis (1995)\u003C\u002Fa\u003E already questioned the attribution of \u003Ci\u003EDistichoplax\u003C\u002Fi\u003E to Lithophylloideae and proposed its affinity with \u003Ci\u003EMastophora\u003C\u002Fi\u003E or \u003Ci\u003ELithoporella.\u003C\u002Fi\u003E\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E5. \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 1 (\u003Ca href=\"#f12\"\u003EFigure 12G\u003C\u002Fa\u003E). This species is relatively frequent in the study material. It occurs as crusts or broken branches and is characterized by uniporate sporangial conceptacles that show slightly eccentric pore canals in the conceptacle roof. (\u003Ca href=\"#f12\"\u003EFigure 12G\u003C\u002Fa\u003E). The eccentric pore canal is highlighted by \u003Ca href=\"#B150\"\u003EStockar (1997)\u003C\u002Fa\u003E while describing what he identified as \u003Ci\u003ELithophyllum atrum\u003C\u002Fi\u003E \u003Ca href=\"#B46\"\u003EConti 1945\u003C\u002Fa\u003E. Nonetheless, \u003Ca href=\"#B46\"\u003EConti (1945)\u003C\u002Fa\u003E did not mention this feature in the original description of the species. Furthermore, sporangial conceptacles of \u003Ci\u003EL. atrum\u003C\u002Fi\u003E are much bigger than those found in the present study. Based on the vegetative anatomy and the reproductive structures, additional names that fit with our material are those originally described as \u003Ci\u003ELithophyllum vicetinum\u003C\u002Fi\u003E \u003Ca href=\"#B103\"\u003EMastrorrilli, 1973\u003C\u002Fa\u003E or \u003Ci\u003ELithophyllum ligusticum\u003C\u002Fi\u003E \u003Ca href=\"#B16\"\u003EAiroldi, 1932\u003C\u002Fa\u003E. \u003Ca href=\"#B157\"\u003EVannucci (1970)\u003C\u002Fa\u003E figured a specimen identified as \u003Ci\u003ELithophyllum ligusticum\u003C\u002Fi\u003E showing a uniporate sporangial conceptacle with an eccentric pore canal. The reassessment of the Airoldi’s type material by \u003Ca href=\"#B158\"\u003EVannucci et al. (2008)\u003C\u002Fa\u003E led them to synonymize \u003Ci\u003EL. ligusticum\u003C\u002Fi\u003E and \u003Ci\u003ELithophyllum perrandoi\u003C\u002Fi\u003E, Airoldi 1932 favoring the latter as the valid species name. \u003Ca href=\"#B16\"\u003EAiroldi (1932)\u003C\u002Fa\u003E described a coaxial ventral core, the same thallus organization that can be observed in Figure (\u003Ca href=\"#f1\"\u003E1A\u003C\u002Fa\u003E and \u003Ca href=\"#f4\"\u003EFigure 4\u003C\u002Fa\u003E) of \u003Ca href=\"#B158\"\u003EVannucci et al. (2008)\u003C\u002Fa\u003E. Nonetheless, these authors described the type material as having a plumose ventral core (their \u003Ca href=\"#f2\"\u003EFigure 2\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E6. \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 2 (\u003Ca href=\"#f12\"\u003EFigure 12F\u003C\u002Fa\u003E). Fragment of a fruticose plant obliquely cut showing numerous cell fusions. At the tip of the branch, a uniporate conceptacle, 270 μm in diameter and 110 μm in height, is observed. The pore canal is partially visible.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:0em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E7. \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 3 (\u003Ca href=\"#f12\"\u003EFigure 12E\u003C\u002Fa\u003E). Thin encrusting monomerous plant with thin ventral core and peripheral region. The latter thickens around a protruding uniporate conceptacle 310 μm in diameter and 115 μm in height (\u003Ca href=\"#f12\"\u003EFigure 12E\u003C\u002Fa\u003E). Conceptacle shape and size remember \u003Ci\u003ELithophyllum bassanense\u003C\u002Fi\u003E \u003Ca href=\"#B103\"\u003EMastrorrilli, 1973\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cp style=\"margin-top:0em;margin-bottom:1em;margin-left:1em;text-indent:-1em;text-align:left\"\u003E8. Undifferentiated Corallinales. Fragments of coralline algae that show cell fusions and uniporate sporangial conceptacles but that do not show enough features to assign them to any species.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 10\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g010.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g010.gif\" id=\"f10\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 10\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E Spermatangial conceptacle of \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E cf. \u003Ci\u003Ecorallioides\u003C\u002Fi\u003E (sample CPE-6). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion camarasae\u003C\u002Fi\u003E (sample CPE-6). \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion concretum\u003C\u002Fi\u003E (sample SEW-1). \u003Cstrong\u003E(D)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E cf. \u003Ci\u003Eexhuberans\u003C\u002Fi\u003E (sample CPE-15). \u003Cstrong\u003E(E)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion vaughanii\u003C\u002Fi\u003E (sample SEW-1). \u003Cstrong\u003E(F)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 1 (sample CPE-7). \u003Cstrong\u003E(G)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 2 (sample SEE-2). \u003Cstrong\u003E(H)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion crispithallus\u003C\u002Fi\u003E (sample SEE-6).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 11\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g011.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g011.gif\" id=\"f11\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 11\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 3 (sample CPE-15). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 4 (sample SEE-5i). \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E sp. 5 (sample SEW-3ii). \u003Cstrong\u003E(D)\u003C\u002Fstrong\u003E \u003Ci\u003EJania nummulitica\u003C\u002Fi\u003E (sample CPE-4i). \u003Cstrong\u003E(E)\u003C\u002Fstrong\u003E Geniculate sp. 1 (cf. \u003Ci\u003ECorallina prisca\u003C\u002Fi\u003E) (sample CPE-4). \u003Cstrong\u003E(F)\u003C\u002Fstrong\u003E Geniculate sp. 2 [sample (CPE-4ii)]. \u003Cstrong\u003E(G)\u003C\u002Fstrong\u003E Geniculate sp. 2 (sample SEE-5i). \u003Cstrong\u003E(H)\u003C\u002Fstrong\u003E Geniculate sp. 3 (sample SEE-6i). \u003Cstrong\u003E(I)\u003C\u002Fstrong\u003E \u003Ci\u003EKarpathia sphaerocellulosa\u003C\u002Fi\u003E (sample CPE-5iii). \u003Cstrong\u003E(J)\u003C\u002Fstrong\u003E \u003Ci\u003EHydrolithon lemoineii\u003C\u002Fi\u003E (sample SEE-6i). \u003Cstrong\u003E(K)\u003C\u002Fstrong\u003E \u003Ci\u003ELithoporella minus\u003C\u002Fi\u003E (sample SEW-1i). \u003Cstrong\u003E(L)\u003C\u002Fstrong\u003E \u003Ci\u003EL. minus\u003C\u002Fi\u003E showing a uniporate sporangial conceptacle partially preserved (sample CPE-8iii). \u003Cstrong\u003E(M)\u003C\u002Fstrong\u003E \u003Ci\u003ELithoporella melobesioides\u003C\u002Fi\u003E (sample CPE-10iii).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 12\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g012.jpg\" name=\"\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_t\u002Ffmars-09-899877-g012.gif\" id=\"f12\" alt=\"www.frontiersin.org\"\u003E\u003C\u002Fimg\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cstrong\u003EFigure 12\u003C\u002Fstrong\u003E \u003Cstrong\u003E(A)\u003C\u002Fstrong\u003E \u003Ci\u003ELithoporella melobesioides\u003C\u002Fi\u003E (sample SEW-3ii). \u003Cstrong\u003E(B)\u003C\u002Fstrong\u003E Laminar thalli of \u003Ci\u003EDistichoplax biserialis\u003C\u002Fi\u003E in a wackestone matrix (sample CPE-9). Arrows mark cell fusions. \u003Cstrong\u003E(C)\u003C\u002Fstrong\u003E \u003Ci\u003ED. dbiserialis\u003C\u002Fi\u003E showing a uniporate sporangial conceptacle (sample SEE-9). Arrow marks cell fusions. \u003Cstrong\u003E(D)\u003C\u002Fstrong\u003E Oblique section of a lamina of \u003Ci\u003ED\u003C\u002Fi\u003E. \u003Ci\u003Ebiserialis\u003C\u002Fi\u003E (sample CPE-9). Arrows mark cell fusions. \u003Cstrong\u003E(E)\u003C\u002Fstrong\u003E \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 3 (sample CPN-3). \u003Cstrong\u003E(F)\u003C\u002Fstrong\u003E \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 2 (sample CPN-5ii). \u003Cstrong\u003E(G)\u003C\u002Fstrong\u003E \u003Ci\u003ESpongites\u003C\u002Fi\u003E sp. 1 (sample CPE-7).\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ca id=\"h10\" name=\"h10\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EData Availability Statement\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EThe original contributions presented in the study are included in the article\u002Fsupplementary material. Further inquiries can be directed to the corresponding author.\u003C\u002Fp\u003E\u003Ca id=\"h11\" name=\"h11\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EAuthor Contributions\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EAll authors contributed to the article and approved the submitted version.\u003C\u002Fp\u003E\u003Ca id=\"h12\" name=\"h12\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EFunding \u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EJA and JCB were funded by the research project PGC2018-099391-B-100 of the Spanish Ministerio de Ciencia e Innovación and by the Research Group RNM-190 of the Junta de Andalucía. JIB acknowledges funding through the Research Group IT930-16 of the Basque Government Research Programme.\u003C\u002Fp\u003E\u003Ca id=\"h13\" name=\"h13\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EConflict of Interest\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.\u003C\u002Fp\u003E\u003Ca id=\"h14\" name=\"h14\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EPublisher’s Note\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003EAll claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.\u003C\u002Fp\u003E\u003Ca id=\"h15\" name=\"h15\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EReferences\u003C\u002Fh2\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B1\" id=\"B1\"\u003E\u003C\u002Fa\u003E Adey W. H. (1979). “Crustose Coralline Algae as Microenvironmental Indicators in the Tertiary,” in \u003Ci\u003EHistorical Biogeography, Plate Tectonics and the Changing Environment\u003C\u002Fi\u003E. Eds. Gray J., Boucot A. J. (USA:Oregon State Univ. Press, Corvallis), 459–464.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.%20H.+Adey&publication_year=1979&title=Crustose%20Coralline%20Algae%20as%20Microenvironmental%20Indicators%20in%20the%20Tertiary&book=Historical+Biogeography,+Plate+Tectonics+and+the+Changing+Environment&pages=459\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B2\" id=\"B2\"\u003E\u003C\u002Fa\u003E Adey W. H. (1986). “Coralline Algae as Indicators of Sea-Level,” in \u003Ci\u003ESea-Level Research: A Manual for the Collection and Evaluation of Data\u003C\u002Fi\u003E. Ed. van de Plassche (Netherlands: Free Univ. Amsterdam), 229–280.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.%20H.+Adey&publication_year=1986&title=Coralline%20Algae%20as%20Indicators%20of%20Sea-Level&book=Sea-Level+Research:+A+Manual+for+the+Collection+and+Evaluation+of+Data&pages=229\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B3\" id=\"B3\"\u003E\u003C\u002Fa\u003E Adey W. H., Macintyre I. G. (1973). Crustose Coralline Algae: A Re-Evaluation in the Geological Sciences. \u003Ci\u003EGeol. Soc Am. Bull.\u003C\u002Fi\u003E 84, 883–904. doi: 10.1130\u002F0016-7606(1973)84<883:CCAARI>2.0.CO;2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002F0016-7606(1973)84<883:CCAARI>2.0.CO;2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.%20H.+Adey&author=I.%20G.+Macintyre&publication_year=1973&title=Crustose%20Coralline%20Algae%3A%20A%20Re-Evaluation%20in%20the%20Geological%20Sciences&journal=Geol.+Soc+Am.+Bull.&volume=84&pages=883\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B4\" id=\"B4\"\u003E\u003C\u002Fa\u003E Aguirre J., Baceta J. I., Braga J. C. (2007). Recovery of Marine Primary Producers After the Cretaceous-Tertiary Mass Extinction: Paleocene Calcareous Red Algae From the Iberian Peninsula. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 249, 393–411. doi: 10.1016\u002Fj.palaeo.2007.02.009\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2007.02.009\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20I.+Baceta&author=J.%20C.+Braga&publication_year=2007&title=Recovery%20of%20Marine%20Primary%20Producers%20After%20the%20Cretaceous-Tertiary%20Mass%20Extinction%3A%20Paleocene%20Calcareous%20Red%20Algae%20From%20the%20Iberian%20Peninsula&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=249&pages=393\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B5\" id=\"B5\"\u003E\u003C\u002Fa\u003E Aguirre J., Bassi D., Braga J. C. (2011). Taxonomic Assessment of Coralline Algal Species (Rhodophyta; Corallinales and Sporolithales) Described by Pfender, Lemoine, and Miranda From Northern Spain Type Localities. \u003Ci\u003EAnn. Naturhist. Mus. Wien Ser. A\u003C\u002Fi\u003E 113, 267–289.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=D.+Bassi&author=J.%20C.+Braga&publication_year=2011&title=Taxonomic%20Assessment%20of%20Coralline%20Algal%20Species%20%28Rhodophyta%3B%20Corallinales%20and%20Sporolithales%29%20Described%20by%20Pfender%2C%20Lemoine%2C%20and%20Miranda%20From%20Northern%20Spain%20Type%20Localities&journal=Ann.+Naturhist.+Mus.+Wien+Ser.+A&volume=113&pages=267\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B6\" id=\"B6\"\u003E\u003C\u002Fa\u003E Aguirre J., Braga J. C. (1998). Redescription of Lemoine’s, (1939) Types of Coralline Algal Species From Algeria. \u003Ci\u003EPalaeontology\u003C\u002Fi\u003E 41, 489–507.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&publication_year=1998&title=Redescription%20of%20Lemoine%E2%80%99s%2C%20%281939%29%20Types%20of%20Coralline%20Algal%20Species%20From%20Algeria&journal=Palaeontology&volume=41&pages=489\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B7\" id=\"B7\"\u003E\u003C\u002Fa\u003E Aguirre J., Braga J. C. (2005). The Citation of Nongeniculate Fossil Coralline Red Algal Species in the Twentieth Century Literature: An Analysis With Implications. \u003Ci\u003ERev. Esp. Micropaleontol.\u003C\u002Fi\u003E 37, 57–62.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&publication_year=2005&title=The%20Citation%20of%20Nongeniculate%20Fossil%20Coralline%20Red%20Algal%20Species%20in%20the%20Twentieth%20Century%20Literature%3A%20An%20Analysis%20With%20Implications&journal=Rev.+Esp.+Micropaleontol.&volume=37&pages=57\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B8\" id=\"B8\"\u003E\u003C\u002Fa\u003E Aguirre J., Braga J. C., Bassi D. (2017). “Rhodoliths and Rhodolith Beds in the Rock Record,” in \u003Ci\u003ERhodolith\u002FMaërl Beds: A Global Perspective\u003C\u002Fi\u003E. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ.), 105–138.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=D.+Bassi&publication_year=2017&title=Rhodoliths%20and%20Rhodolith%20Beds%20in%20the%20Rock%20Record&book=Rhodolith\u002FMaërl+Beds:+A+Global+Perspective&pages=105\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B9\" id=\"B9\"\u003E\u003C\u002Fa\u003E Aguirre J., Braga J. C., Martín J. M., Betzler C. (2012). Palaeoenvironmental and Stratigraphic Significance of Pliocene Rhodolith Beds and Coralline Algal Bioconstructions From the Carboneras Basin (SE Spain). \u003Ci\u003EGeodiversitas\u003C\u002Fi\u003E 34, 115–136. doi: 10.5252\u002Fg2012n1a7\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.5252\u002Fg2012n1a7\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=J.%20M.+Mart%C3%ADn&author=C.+Betzler&publication_year=2012&title=Palaeoenvironmental%20and%20Stratigraphic%20Significance%20of%20Pliocene%20Rhodolith%20Beds%20and%20Coralline%20Algal%20Bioconstructions%20From%20the%20Carboneras%20Basin%20%28SE%20Spain%29&journal=Geodiversitas&volume=34&pages=115\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B10\" id=\"B10\"\u003E\u003C\u002Fa\u003E Aguirre J., Braga J. C., Piller W. E. (1996). Reassessment of \u003Ci\u003EPalaeothamnium\u003C\u002Fi\u003E Conti 1946 (Corallinales, Rhodophyta). \u003Ci\u003ERev. Palaeobot. Palynol.\u003C\u002Fi\u003E 94, 1–9. doi: 10.1016\u002FS0034-6667(96)00013-9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0034-6667(96)00013-9\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=W.%20E.+Piller&publication_year=1996&title=Reassessment%20of%20Palaeothamnium%20Conti%201946%20%28Corallinales%2C%20Rhodophyta%29&journal=Rev.+Palaeobot.+Palynol.&volume=94&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B11\" id=\"B11\"\u003E\u003C\u002Fa\u003E Aguirre J., Braga J. C., Pujalte V., Orue-Etxebarria X., Salazar-Ortiz E., Rincón-Martínez D., et al. (2020). Middle Eocene Rhodoliths From the Tropical and Mid-Latitude Regions. \u003Ci\u003EDiversity\u003C\u002Fi\u003E 12, 117. doi: 10.3390\u002Fd12030117\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fd12030117\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=J.%20C.+Braga&author=V.+Pujalte&author=X.+Orue-Etxebarria&author=E.+Salazar-Ortiz&author=D.+Rinc%C3%B3n-Mart%C3%ADnez&publication_year=2020&title=Middle%20Eocene%20Rhodoliths%20From%20the%20Tropical%20and%20Mid-Latitude%20Regions&journal=Diversity&volume=12&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B12\" id=\"B12\"\u003E\u003C\u002Fa\u003E Aguirre J., Perfectti F., Braga J. C. (2010). Integrating Phylogeny, Molecular Clocks and the Fossil Record in the Evolution of Coralline Algae (Corallinales, Rhodophyta). \u003Ci\u003EPaleobiology\u003C\u002Fi\u003E 36, 519–533. doi: 10.1666\u002F09041.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1666\u002F09041.1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=F.+Perfectti&author=J.%20C.+Braga&publication_year=2010&title=Integrating%20Phylogeny%2C%20Molecular%20Clocks%20and%20the%20Fossil%20Record%20in%20the%20Evolution%20of%20Coralline%20Algae%20%28Corallinales%2C%20Rhodophyta%29&journal=Paleobiology&volume=36&pages=519\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B13\" id=\"B13\"\u003E\u003C\u002Fa\u003E Aguirre J., Riding R. (2005). Dasycladalean Algal Biodiversity Compared With Global Variations in Temperature and Sea Level Over the Past 350 Myr. \u003Ci\u003EPalaios\u003C\u002Fi\u003E 20, 581–588. doi: 10.2110\u002Fpalo.2004.p04-33\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2110\u002Fpalo.2004.p04-33\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=R.+Riding&publication_year=2005&title=Dasycladalean%20Algal%20Biodiversity%20Compared%20With%20Global%20Variations%20in%20Temperature%20and%20Sea%20Level%20Over%20the%20Past%20350%20Myr&journal=Palaios&volume=20&pages=581\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B14\" id=\"B14\"\u003E\u003C\u002Fa\u003E Aguirre J., Riding R., Braga J. C. (2000a). Diversity of Coralline Red Algae: Origination and Extinction Patterns From the Early Cretaceous to the Pleistocene. \u003Ci\u003EPaleobiology\u003C\u002Fi\u003E 26, 651–667. doi: 10.1666\u002F0094-8373(2000)026<0651:DOCRAO>2.0.CO;2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1666\u002F0094-8373(2000)026<0651:DOCRAO>2.0.CO;2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=R.+Riding&author=J.%20C.+Braga&publication_year=2000&title=Diversity%20of%20Coralline%20Red%20Algae%3A%20Origination%20and%20Extinction%20Patterns%20From%20the%20Early%20Cretaceous%20to%20the%20Pleistocene&journal=Paleobiology&volume=26&pages=651\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B15\" id=\"B15\"\u003E\u003C\u002Fa\u003E Aguirre J., Riding R., Braga J. C. (2000b). Late Cretaceous Incident Light Reduction: Evidence From Benthic Algae. \u003Ci\u003ELethaia\u003C\u002Fi\u003E 33, 205–213. doi: 10.1080\u002F00241160025100062\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F00241160025100062\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Aguirre&author=R.+Riding&author=J.%20C.+Braga&publication_year=2000&title=Late%20Cretaceous%20Incident%20Light%20Reduction%3A%20Evidence%20From%20Benthic%20Algae&journal=Lethaia&volume=33&pages=205\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B16\" id=\"B16\"\u003E\u003C\u002Fa\u003E Airoldi M. (1932). Contributo Allo Studio Delle Corallinacee Del Terziario Italiano. I – Le Corallinacee Dell’Oligocene Ligure-Piemontese. \u003Ci\u003EPaleontogr. Ital.\u003C\u002Fi\u003E 33, 55–83.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.+Airoldi&publication_year=1932&title=Contributo%20Allo%20Studio%20Delle%20Corallinacee%20Del%20Terziario%20Italiano.%20I%20%E2%80%93%20Le%20Corallinacee%20Dell%E2%80%99Oligocene%20Ligure-Piemontese&journal=Paleontogr.+Ital.&volume=33&pages=55\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B17\" id=\"B17\"\u003E\u003C\u002Fa\u003E Alegret L., Ortiz S., Arenillas I., Molina E. (2005). Paleoenvironmental Turnover Across the Paleocene\u002FEocene Boundary at the Stratotype Section in Dababiya (Egypt) Based on Benthic Foraminifera. \u003Ci\u003ETerra Nova\u003C\u002Fi\u003E 17, 526–536. doi: 10.1111\u002Fj.1365-3121.2005.00645.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1365-3121.2005.00645.x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Alegret&author=S.+Ortiz&author=I.+Arenillas&author=E.+Molina&publication_year=2005&title=Paleoenvironmental%20Turnover%20Across%20the%20Paleocene%2FEocene%20Boundary%20at%20the%20Stratotype%20Section%20in%20Dababiya%20%28Egypt%29%20Based%20on%20Benthic%20Foraminifera&journal=Terra+Nova&volume=17&pages=526\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B18\" id=\"B18\"\u003E\u003C\u002Fa\u003E Alegret L., Ortiz S., Molina E. (2009b). Extinction and Recovery of Benthic Foraminifera Across the Paleocene–Eocene Thermal Maximum at the Alamedilla Section (Southern Spain). \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 279, 186–200. doi: 10.1016\u002Fj.palaeo.2009.05.009\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2009.05.009\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Alegret&author=S.+Ortiz&author=E.+Molina&publication_year=2009&title=Extinction%20and%20Recovery%20of%20Benthic%20Foraminifera%20Across%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%20at%20the%20Alamedilla%20Section%20%28Southern%20Spain%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=279&pages=186\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B19\" id=\"B19\"\u003E\u003C\u002Fa\u003E Alegret L., Ortiz S., Orue-Etxebarria X., Bernaola G., Baceta J. I., Monechi S., et al. (2009a). The Paleocene–Eocene Thermal Maximum: New Data on Microfossil Turnover at the Zumaia Section, Spain. \u003Ci\u003EPalaios\u003C\u002Fi\u003E 24, 318–328. doi: 10.2110\u002Fpalo.2008.p08-057r\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2110\u002Fpalo.2008.p08-057r\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Alegret&author=S.+Ortiz&author=X.+Orue-Etxebarria&author=G.+Bernaola&author=J.%20I.+Baceta&author=S.+Monechi&publication_year=2009&title=The%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%3A%20New%20Data%20on%20Microfossil%20Turnover%20at%20the%20Zumaia%20Section%2C%20Spain&journal=Palaios&volume=24&pages=318\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B20\" id=\"B20\"\u003E\u003C\u002Fa\u003E Anthony K. R. N., Kline D. I., Diaz-Pulido G., Dove S., Hoegh-Guldberg O. (2008). Ocean Acidification Causes Bleaching and Productivity Loss in Coral Reef Builders. \u003Ci\u003EProc. Nat. Acad. Sc.\u003C\u002Fi\u003E 105, 17442–17446. doi: 10.1073\u002Fpnas.0804478105\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1073\u002Fpnas.0804478105\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=K.%20R.%20N.+Anthony&author=D.%20I.+Kline&author=G.+Diaz-Pulido&author=S.+Dove&author=O.+Hoegh-Guldberg&publication_year=2008&title=Ocean%20Acidification%20Causes%20Bleaching%20and%20Productivity%20Loss%20in%20Coral%20Reef%20Builders&journal=Proc.+Nat.+Acad.+Sc.&volume=105&pages=17442\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B21\" id=\"B21\"\u003E\u003C\u002Fa\u003E Arostegi J., Baceta J. I., Pujalte V., Carracedo M. (2011). Late Cretaceous—Palaeocene Mid-Latitude Climates: Inferences From Clay Mineralogy of Continental-Coastal Sequences (Tremp-Graus Area, Southern Pyrenees, N Spain). \u003Ci\u003EClay Min.\u003C\u002Fi\u003E 46, 105–126. doi: 10.1180\u002Fclaymin.2011.046.1.105\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1180\u002Fclaymin.2011.046.1.105\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Arostegi&author=J.%20I.+Baceta&author=V.+Pujalte&author=M.+Carracedo&publication_year=2011&title=Late%20Cretaceous%E2%80%94Palaeocene%20Mid-Latitude%20Climates%3A%20Inferences%20From%20Clay%20Mineralogy%20of%20Continental-Coastal%20Sequences%20%28Tremp-Graus%20Area%2C%20Southern%20Pyrenees%2C%20N%20Spain%29&journal=Clay+Min.&volume=46&pages=105\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B22\" id=\"B22\"\u003E\u003C\u002Fa\u003E Athanasiadis A (1995). Morphology, Anatomy and Reproduction of the Eastern Mediterranean Coralline Tenarea Tortuosa and Its Relationship to Members of the Lithophylloideae and Mastophoroideae (Rhodophyta, Corallinales). \u003Ci\u003ENordic J. Bot\u003C\u002Fi\u003E 15, 655–63.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A+Athanasiadis&publication_year=1995&title=Morphology%2C%20Anatomy%20and%20Reproduction%20of%20the%20Eastern%20Mediterranean%20Coralline%20Tenarea%20Tortuosa%20and%20Its%20Relationship%20to%20Members%20of%20the%20Lithophylloideae%20and%20Mastophoroideae%20%28Rhodophyta%2C%20Corallinales%29&journal=Nordic+J.+Bot&volume=15&pages=655-63\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B23\" id=\"B23\"\u003E\u003C\u002Fa\u003E Baccelle L., Bosellini A. (1956). Diagrammi Per La Stima Visiva Della Composizione Percentuale Nelle Rocche Sedimentary. \u003Ci\u003EAnn. Univ. Ferrara (Nuova Ser.) Sez. 9 Sc. Geol. Paleontol.\u003C\u002Fi\u003E 1, 59–62.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Baccelle&author=A.+Bosellini&publication_year=1956&title=Diagrammi%20Per%20La%20Stima%20Visiva%20Della%20Composizione%20Percentuale%20Nelle%20Rocche%20Sedimentary&journal=Ann.+Univ.+Ferrara+(Nuova+Ser.)+Sez.+9+Sc.+Geol.+Paleontol.&volume=1&pages=59\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B24\" id=\"B24\"\u003E\u003C\u002Fa\u003E Baceta J. I. (1996). “El Maastrichtiense Superior, Paleoceno E Ilerdiense Inferior De La Región Vasco-Cantábrica: Secuencias Deposicionales, Facies Y Evolución Paleogeográfica,” in \u003Ci\u003EBasque Country UPV-EHU\u003C\u002Fi\u003E (Bilbao: Univ. Basque Country).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20I.+Baceta&publication_year=1996&title=El%20Maastrichtiense%20Superior%2C%20Paleoceno%20E%20Ilerdiense%20Inferior%20De%20La%20Regi%C3%B3n%20Vasco-Cant%C3%A1brica%3A%20Secuencias%20Deposicionales%2C%20Facies%20Y%20Evoluci%C3%B3n%20Paleogeogr%C3%A1fica&book=Basque+Country+UPV-EHU&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B25\" id=\"B25\"\u003E\u003C\u002Fa\u003E Baceta J. I., Pujalte V., Serra-Kiel J., Robador A., Orue-Etxebarría X. (2004). El Maastrichtiense Final, Paleoceno E Ilerdiense Inferior De La Cordillera Pirenaica, in Geología De España Madrid. \u003Ci\u003E(Soc. Geol. Esp.-Inst. Geol. Min. Esp.)\u003C\u002Fi\u003E, 308–313.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20I.+Baceta&author=V.+Pujalte&author=J.+Serra-Kiel&author=A.+Robador&author=X.+Orue-Etxebarr%C3%ADa&publication_year=2004&title=El%20Maastrichtiense%20Final%2C%20Paleoceno%20E%20Ilerdiense%20Inferior%20De%20La%20Cordillera%20Pirenaica%2C%20in%20Geolog%C3%ADa%20De%20Espa%C3%B1a%20Madrid&journal=(Soc.+Geol.+Esp.-Inst.+Geol.+Min.+Esp.)&pages=308\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B26\" id=\"B26\"\u003E\u003C\u002Fa\u003E Baceta J. I., Pujalte V., Wright V. P., Schmitz B. (2011). “Carbonate Platform Models, Sea-Level Changes and Extreme Climatic Events During the Paleocene–early Eocene Greenhouse Interval: A Basin–Platform–Coastal Plain Transect Across the Southern Pyrenean Basin,” in \u003Ci\u003EPre-Meeting Field-Trips Guidebook\u003C\u002Fi\u003E. Eds. Arenas C., Pomar L., Colombo F., 101–150. 28th IAS Meeting, Zaragoza. Soc. Geol. Esp., 7.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20I.+Baceta&author=V.+Pujalte&author=V.%20P.+Wright&author=B.+Schmitz&publication_year=2011&title=Carbonate%20Platform%20Models%2C%20Sea-Level%20Changes%20and%20Extreme%20Climatic%20Events%20During%20the%20Paleocene%E2%80%93early%20Eocene%20Greenhouse%20Interval%3A%20A%20Basin%E2%80%93Platform%E2%80%93Coastal%20Plain%20Transect%20Across%20the%20Southern%20Pyrenean%20Basin&book=Pre-Meeting+Field-Trips+Guidebook&pages=101\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B27\" id=\"B27\"\u003E\u003C\u002Fa\u003E Basso D. (2012). Carbonate Productivity by Calcareous Red Algae and Global Change. \u003Ci\u003EGeodiversitas\u003C\u002Fi\u003E 34, 13–33. doi: 10.5252\u002Fg2012n1a2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.5252\u002Fg2012n1a2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=D.+Basso&publication_year=2012&title=Carbonate%20Productivity%20by%20Calcareous%20Red%20Algae%20and%20Global%20Change&journal=Geodiversitas&volume=34&pages=13\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B28\" id=\"B28\"\u003E\u003C\u002Fa\u003E Basso D., Coletti G., Alice-Bracchi V., Yazdi-Moghadam M. (2019). Lower Oligocene Coralline Algae of the Uromieh Section (Qom Formation, NW Iran) and the Oldest Record of \u003Ci\u003ETitanoderma Pustulatum\u003C\u002Fi\u003E (Corallinophycidae, Rhodophyta). \u003Ci\u003ERiv. Ital. Paleont. Strat.\u003C\u002Fi\u003E 125, 197–218.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=D.+Basso&author=G.+Coletti&author=V.+Alice-Bracchi&author=M.+Yazdi-Moghadam&publication_year=2019&title=Lower%20Oligocene%20Coralline%20Algae%20of%20the%20Uromieh%20Section%20%28Qom%20Formation%2C%20NW%20Iran%29%20and%20the%20Oldest%20Record%20of%20Titanoderma%20Pustulatum%20%28Corallinophycidae%2C%20Rhodophyta%29&journal=Riv.+Ital.+Paleont.+Strat.&volume=125&pages=197\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B29\" id=\"B29\"\u003E\u003C\u002Fa\u003E Berger S. (2006). Photo-Atlas of Living Dasycladales. \u003Ci\u003ECarn. Geol\u003C\u002Fi\u003E:348pp. doi: 10.4267\u002F2042\u002F5831\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.4267\u002F2042\u002F5831\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.+Berger&publication_year=2006&title=Photo-Atlas%20of%20Living%20Dasycladales&journal=Carn.+Geol&pages=348pp.\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B30\" id=\"B30\"\u003E\u003C\u002Fa\u003E Berger S., Kaever M. J. (1992). “Dasycladales,” in \u003Ci\u003EAn Illustrated Monograph of a Fascinating Algal Order\u003C\u002Fi\u003E (Stuttgart: G. Thieme Verlag).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.+Berger&author=M.%20J.+Kaever&publication_year=1992&title=Dasycladales&book=An+Illustrated+Monograph+of+a+Fascinating+Algal+Order&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B31\" id=\"B31\"\u003E\u003C\u002Fa\u003E BouDagher-Fadel M. K. (2018). \u003Ci\u003EEvolution and Geological Significance of Larger Benthic Foraminifera\u003C\u002Fi\u003E. 2nd Ed (London: UCL Press). doi: 10.14324\u002F111.9781911576938\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.14324\u002F111.9781911576938\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20K.+BouDagher-Fadel&publication_year=2018&book=Evolution+and+Geological+Significance+of+Larger+Benthic+Foraminifera&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B32\" id=\"B32\"\u003E\u003C\u002Fa\u003E Bracchi V. A., Caronni S., Meroni A. N., Burguett E. G., Atzori F., Cadoni N., et al. (2022). Morphostructural Characterization of the Heterogeneous Rhodolith Bed at the Marine Protected Area “Capo Carbonara” (Italy) and Hydrodynamics. \u003Ci\u003EDiversity\u003C\u002Fi\u003E 14, 51. doi: 10.3390\u002Fd14010051\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fd14010051\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.%20A.+Bracchi&author=S.+Caronni&author=A.%20N.+Meroni&author=E.%20G.+Burguett&author=F.+Atzori&author=N.+Cadoni&publication_year=2022&title=Morphostructural%20Characterization%20of%20the%20Heterogeneous%20Rhodolith%20Bed%20at%20the%20Marine%20Protected%20Area%20%E2%80%9CCapo%20Carbonara%E2%80%9D%20%28Italy%29%20and%20Hydrodynamics&journal=Diversity&volume=14&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B33\" id=\"B33\"\u003E\u003C\u002Fa\u003E Braga J. C. (2017). “Neogene Rhodoliths in the Mediterranean Basins,” in \u003Ci\u003ERhodolith\u002FMaërl Beds: A Global Perspective\u003C\u002Fi\u003E. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ), 169–193.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&publication_year=2017&title=Neogene%20Rhodoliths%20in%20the%20Mediterranean%20Basins&book=Rhodolith\u002FMaërl+Beds:+A+Global+Perspective&pages=169\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B34\" id=\"B34\"\u003E\u003C\u002Fa\u003E Braga J. C., Aguirre J. (1995). Taxonomy of Fossil Coralline Algal Species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) From Southern Spain. \u003Ci\u003ERev. Paleobot. Palynol.\u003C\u002Fi\u003E 86, 265–285. doi: 10.1016\u002F0034-6667(94)00135-7\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002F0034-6667(94)00135-7\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&author=J.+Aguirre&publication_year=1995&title=Taxonomy%20of%20Fossil%20Coralline%20Algal%20Species%3A%20Neogene%20Lithophylloideae%20%28Rhodophyta%2C%20Corallinaceae%29%20From%20Southern%20Spain&journal=Rev.+Paleobot.+Palynol.&volume=86&pages=265\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B35\" id=\"B35\"\u003E\u003C\u002Fa\u003E Braga J. C., Aguirre J. (2001). Coralline Algal Assemblages in Upper Neogene Reef and Temperate Carbonates in Southern Spain. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 175, 27–41. doi: 10.1016\u002FS0031-0182(01)00384-4\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0031-0182(01)00384-4\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&author=J.+Aguirre&publication_year=2001&title=Coralline%20Algal%20Assemblages%20in%20Upper%20Neogene%20Reef%20and%20Temperate%20Carbonates%20in%20Southern%20Spain&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=175&pages=27\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B36\" id=\"B36\"\u003E\u003C\u002Fa\u003E Braga J. C., Aguirre J. (2004). Coralline Algae Indicate Pleistocene Evolution From Deep, Open Platform to Outer Barrier Reef Environments in the Northern Great Barrier Reef Margin. \u003Ci\u003ECoral Reefs\u003C\u002Fi\u003E 23, 547–558. doi: 10.1007\u002Fs00338-004-0414-x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs00338-004-0414-x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&author=J.+Aguirre&publication_year=2004&title=Coralline%20Algae%20Indicate%20Pleistocene%20Evolution%20From%20Deep%2C%20Open%20Platform%20to%20Outer%20Barrier%20Reef%20Environments%20in%20the%20Northern%20Great%20Barrier%20Reef%20Margin&journal=Coral+Reefs&volume=23&pages=547\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B37\" id=\"B37\"\u003E\u003C\u002Fa\u003E Braga J. C., Bassi D. (2007). Neogene History of \u003Ci\u003ESporolithon\u003C\u002Fi\u003E Heydrich (Corallinales, Rhodophyta) in the Mediterranean Region. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 243, 189–203. doi: 10.1016\u002Fj.palaeo.2006.07.014\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2006.07.014\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&author=D.+Bassi&publication_year=2007&title=Neogene%20History%20of%20Sporolithon%20Heydrich%20%28Corallinales%2C%20Rhodophyta%29%20in%20the%20Mediterranean%20Region&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=243&pages=189\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B38\" id=\"B38\"\u003E\u003C\u002Fa\u003E Braga J. C., Martín J. M. (1988). Neogene Coralline-Algal Growth-Forms and Their Palaeoenvironments in the Almanzora River Valley (Almeria, S.E. Spain). \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 67, 285–303. doi: 10.1016\u002F0031-0182(88)90157-5\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002F0031-0182(88)90157-5\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&author=J.%20M.+Mart%C3%ADn&publication_year=1988&title=Neogene%20Coralline-Algal%20Growth-Forms%20and%20Their%20Palaeoenvironments%20in%20the%20Almanzora%20River%20Valley%20%28Almeria%2C%20S.E.%20Spain%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=67&pages=285\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B39\" id=\"B39\"\u003E\u003C\u002Fa\u003E Braga J. C., Vescogni A., Bosellini F., Aguirre J. (2009). Coralline Algae (Corallinales, Rhodophyta) in Western and Central Mediterranean Messinian Reefs. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 275, 113–128. doi: 10.1016\u002Fj.palaeo.2009.02.022\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2009.02.022\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Braga&author=A.+Vescogni&author=F.+Bosellini&author=J.+Aguirre&publication_year=2009&title=Coralline%20Algae%20%28Corallinales%2C%20Rhodophyta%29%20in%20Western%20and%20Central%20Mediterranean%20Messinian%20Reefs&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=275&pages=113\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B40\" id=\"B40\"\u003E\u003C\u002Fa\u003E Brandano M. (2017). “Oligocene Rhodolith Beds in the Central Mediterranean Area,” in \u003Ci\u003ERhodolith\u002FMaërl Beds: A Global Perspective\u003C\u002Fi\u003E. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ), 195–219.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.+Brandano&publication_year=2017&title=Oligocene%20Rhodolith%20Beds%20in%20the%20Central%20Mediterranean%20Area&book=Rhodolith\u002FMaërl+Beds:+A+Global+Perspective&pages=195\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B41\" id=\"B41\"\u003E\u003C\u002Fa\u003E Büdenbender J., Riebesell U., Form A. (2011). Calcification of the Arctic Coralline Red Algae \u003Ci\u003ELithothamnion Glaciale\u003C\u002Fi\u003E in Response to Elevated CO\u003Csub\u003E2\u003C\u002Fsub\u003E. \u003Ci\u003EMar. Ecol. Progr. Ser.\u003C\u002Fi\u003E 441, 79–87. doi: 10.3354\u002Fmeps09405\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3354\u002Fmeps09405\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+B%C3%BCdenbender&author=U.+Riebesell&author=A.+Form&publication_year=2011&title=Calcification%20of%20the%20Arctic%20Coralline%20Red%20Algae%20Lithothamnion%20Glaciale%20in%20Response%20to%20Elevated%20CO2&journal=Mar.+Ecol.+Progr.+Ser.&volume=441&pages=79\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B42\" id=\"B42\"\u003E\u003C\u002Fa\u003E Burke K. D., Williams J. W., Chandler M. A., Haywood A. M., Lunt D. J., Otto-Bliesner B. (2018). Pliocene and Eocene Provide Best Analogues for Near-Future Climates. \u003Ci\u003EProc. Natl. Acad. Sci.\u003C\u002Fi\u003E 115, 13288–13293. doi: 10.1073\u002Fpnas.1809600115\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1073\u002Fpnas.1809600115\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=K.%20D.+Burke&author=J.%20W.+Williams&author=M.%20A.+Chandler&author=A.%20M.+Haywood&author=D.%20J.+Lunt&author=B.+Otto-Bliesner&publication_year=2018&title=Pliocene%20and%20Eocene%20Provide%20Best%20Analogues%20for%20Near-Future%20Climates&journal=Proc.+Natl.+Acad.+Sci.&volume=115&pages=13288\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B43\" id=\"B43\"\u003E\u003C\u002Fa\u003E Canals M., Ballesteros E. (1997). Production of Carbonate Particles by Phytobenthic Communities on the Mallorca-Menorca Shelf, Northwestern Mediterranean Sea. \u003Ci\u003EDeep-Sea Res. II\u003C\u002Fi\u003E 44, 611–629. doi: 10.1016\u002FS0967-0645(96)00095-1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0967-0645(96)00095-1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.+Canals&author=E.+Ballesteros&publication_year=1997&title=Production%20of%20Carbonate%20Particles%20by%20Phytobenthic%20Communities%20on%20the%20Mallorca-Menorca%20Shelf%2C%20Northwestern%20Mediterranean%20Sea&journal=Deep-Sea+Res.+II&volume=44&pages=611\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B44\" id=\"B44\"\u003E\u003C\u002Fa\u003E Canudo J. I., Keller G., Molina E., Ortiz N. (1995). Planktic Foraminiferal Turnover and δ\u003Csup\u003E13\u003C\u002Fsup\u003EC Isotopes Across the Paleocene–Eocene Transition at Caravaca and Zumaya, Spain. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 114, 75–100. doi: 10.1016\u002F0031-0182(95)00073-U\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002F0031-0182(95)00073-U\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20I.+Canudo&author=G.+Keller&author=E.+Molina&author=N.+Ortiz&publication_year=1995&title=Planktic%20Foraminiferal%20Turnover%20and%20%CE%B413C%20Isotopes%20Across%20the%20Paleocene%E2%80%93Eocene%20Transition%20at%20Caravaca%20and%20Zumaya%2C%20Spain&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=114&pages=75\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B45\" id=\"B45\"\u003E\u003C\u002Fa\u003E Canudo J. I., Molina E. (1992). Planktic Foraminiferal Faunal Turnover and Bio-Chronostratigraphy of the Paleocene–Eocene Boundary at Zumaya, Northern Spain. \u003Ci\u003ERev. Soc Geol. Esp.\u003C\u002Fi\u003E 5, 145–157.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20I.+Canudo&author=E.+Molina&publication_year=1992&title=Planktic%20Foraminiferal%20Faunal%20Turnover%20and%20Bio-Chronostratigraphy%20of%20the%20Paleocene%E2%80%93Eocene%20Boundary%20at%20Zumaya%2C%20Northern%20Spain&journal=Rev.+Soc+Geol.+Esp.&volume=5&pages=145\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B46\" id=\"B46\"\u003E\u003C\u002Fa\u003E Conti S. (1945). “Le Corallinacee Del Calcare Miocenico (Leithakalk) Del Bacino Di Viena,” \u003Ci\u003EPubbl. Ist. Geol. Univ. Genova, Genova 2(Serie a)\u003C\u002Fi\u003E, 31–68.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.+Conti&publication_year=1945&title=Le%20Corallinacee%20Del%20Calcare%20Miocenico%20%28Leithakalk%29%20Del%20Bacino%20Di%20Viena&book=Pubbl.+Ist.+Geol.+Univ.+Genova,+Genova+2(Serie+a)&pages=31\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B47\" id=\"B47\"\u003E\u003C\u002Fa\u003E Cornwall C. E., Harvey B. P., Comeau S., Cornwall D. L., Hall-Spencer J. M., Peña V., et al. (2021). Understanding Coralline Algal Responses to Ocean Acidification: Meta-Analysis and Synthesis. \u003Ci\u003EGlobal Change Biol.\u003C\u002Fi\u003E 00, 1–13. doi: 10.1111\u002Fgcb.15899\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fgcb.15899\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=C.%20E.+Cornwall&author=B.%20P.+Harvey&author=S.+Comeau&author=D.%20L.+Cornwall&author=J.%20M.+Hall-Spencer&author=V.+Pe%C3%B1a&publication_year=2021&title=Understanding%20Coralline%20Algal%20Responses%20to%20Ocean%20Acidification%3A%20Meta-Analysis%20and%20Synthesis&journal=Global+Change+Biol.&volume=00&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B48\" id=\"B48\"\u003E\u003C\u002Fa\u003E Couto R. P., Rosas-Alquicira E. F., Rodrigues A. S., Neto A. I. (2014). The Genus \u003Ci\u003EEllisolandia\u003C\u002Fi\u003E (Corallinaceae, Corallinales, Rhodophyta) in the Azores (NE Atlantic): Character Expression and Taxonomic Evaluation. \u003Ci\u003EPhytotaxa\u003C\u002Fi\u003E 190, 5–16. doi: 10.11646\u002Fphytotaxa.190.1.3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.11646\u002Fphytotaxa.190.1.3\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20P.+Couto&author=E.%20F.+Rosas-Alquicira&author=A.%20S.+Rodrigues&author=A.%20I.+Neto&publication_year=2014&title=The%20Genus%20Ellisolandia%20%28Corallinaceae%2C%20Corallinales%2C%20Rhodophyta%29%20in%20the%20Azores%20%28NE%20Atlantic%29%3A%20Character%20Expression%20and%20Taxonomic%20Evaluation&journal=Phytotaxa&volume=190&pages=5\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B49\" id=\"B49\"\u003E\u003C\u002Fa\u003E Denizot M (1968). Les Algues Floridées Encoûtrantes (à l'exclusion des Corallinacées). \u003Ci\u003EMus. Nat. d'Hist. Nat., Paris, France\u003C\u002Fi\u003E \u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M+Denizot&publication_year=1968&title=Les%20Algues%20Florid%C3%A9es%20Enco%C3%BBtrantes%20%28%C3%A0%20l%27exclusion%20des%20Corallinac%C3%A9es%29&journal=Mus.+Nat.+d'Hist.+Nat.,+Paris,+France&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B50\" id=\"B50\"\u003E\u003C\u002Fa\u003E Diaz-Pulido G., Anthony K. R. N., Kline D. I., Dove S., Hoegh-Guldberg O. (2012). Interactions Between Ocean Acidification and Warming on the Mortality and Dissolution of Coralline Algae. \u003Ci\u003EJ. Phycol.\u003C\u002Fi\u003E 48, 32–39. doi: 10.1111\u002Fj.1529-8817.2011.01084.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27009647\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1529-8817.2011.01084.x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.+Diaz-Pulido&author=K.%20R.%20N.+Anthony&author=D.%20I.+Kline&author=S.+Dove&author=O.+Hoegh-Guldberg&publication_year=2012&title=Interactions%20Between%20Ocean%20Acidification%20and%20Warming%20on%20the%20Mortality%20and%20Dissolution%20of%20Coralline%20Algae&journal=J.+Phycol.&volume=48&pages=32\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B51\" id=\"B51\"\u003E\u003C\u002Fa\u003E Dieni I., Massari F., Poignant A. F. (1979). Testimonianze Di Paleovene Marino in Sardegna. \u003Ci\u003ERiv. Ital. Paleontol.\u003C\u002Fi\u003E 85, 481–516.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=I.+Dieni&author=F.+Massari&author=A.%20F.+Poignant&publication_year=1979&title=Testimonianze%20Di%20Paleovene%20Marino%20in%20Sardegna&journal=Riv.+Ital.+Paleontol.&volume=85&pages=481\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B52\" id=\"B52\"\u003E\u003C\u002Fa\u003E Dietrich W. O. (1927). Die Geologisch-Stratigraphischen Ergebnisse Der Routenaufnahmen durch Ostpersien-Sven Hedin, in Eine Routenaufnahmen Durch Ostpersien \u003Ci\u003EStockholm\u003C\u002Fi\u003E 2, 447–464\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.%20O+Dietrich&publication_year=1927&title=Die%20Geologisch-Stratigraphischen%20Ergebnisse%20Der%20Routenaufnahmen%20durch%20Ostpersien-Sven%20Hedin%2C%20in%20Eine%20Routenaufnahmen%20Durch%20Ostpersien&journal=Stockholm&volume=2&pages=447\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B53\" id=\"B53\"\u003E\u003C\u002Fa\u003E Domingo L., López-Martínez N., Leng M. J., Grimes S. T. (2009). The Paleocene–Eocene Thermal Maximum Record in the Organic Matter of the Claret and Tendruy Continental Sections (South-Central Pyrenees, Lleida, Spain). \u003Ci\u003EEarth Planet. Sci. Lett.\u003C\u002Fi\u003E 281, 226–237. doi: 10.1016\u002Fj.epsl.2009.02.025\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.epsl.2009.02.025\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Domingo&author=N.+L%C3%B3pez-Mart%C3%ADnez&author=M.%20J.+Leng&author=S.%20T.+Grimes&publication_year=2009&title=The%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%20Record%20in%20the%20Organic%20Matter%20of%20the%20Claret%20and%20Tendruy%20Continental%20Sections%20%28South-Central%20Pyrenees%2C%20Lleida%2C%20Spain%29&journal=Earth+Planet.+Sci.+Lett.&volume=281&pages=226\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B54\" id=\"B54\"\u003E\u003C\u002Fa\u003E Duller R. A., Armitage J. J., Manners H. R., Grimes S., Dunkley Jones T. (2019). Delayed Sedimentary Response to Abrupt Climate Change at the Paleocene-Eocene Boundary, Northern Spain. \u003Ci\u003EGeology\u003C\u002Fi\u003E 47, 159–162. doi: 10.1130\u002FG45631.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002FG45631.1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20A.+Duller&author=J.%20J.+Armitage&author=H.%20R.+Manners&author=S.+Grimes&author=T.+Dunkley%20Jones&publication_year=2019&title=Delayed%20Sedimentary%20Response%20to%20Abrupt%20Climate%20Change%20at%20the%20Paleocene-Eocene%20Boundary%2C%20Northern%20Spain&journal=Geology&volume=47&pages=159\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B55\" id=\"B55\"\u003E\u003C\u002Fa\u003E Eichenseer H. (1988). \u003Ci\u003EFacies Geology of Late Maestrichtian to Early Eocene Coastal and Shallow Marine Sediments (Tremp-Graus Basin,Northeastern Spain)\u003C\u002Fi\u003E (Germany: Univ. Tübingen).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=H.+Eichenseer&publication_year=1988&book=Facies+Geology+of+Late+Maestrichtian+to+Early+Eocene+Coastal+and+Shallow+Marine+Sediments+(Tremp-Graus+Basin,Northeastern+Spain)&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B56\" id=\"B56\"\u003E\u003C\u002Fa\u003E Eichenseer H., Luterbacher H. (1992). The Marine Paleogene of the Tremp Region (NE Spain) - Depositional Sequences, Facies History, Biostratigraphy and Controlling Factors. \u003Ci\u003EFacies\u003C\u002Fi\u003E 27, 119–152. doi: 10.1007\u002FBF02536808\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002FBF02536808\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=H.+Eichenseer&author=H.+Luterbacher&publication_year=1992&title=The%20Marine%20Paleogene%20of%20the%20Tremp%20Region%20%28NE%20Spain%29%20-%20Depositional%20Sequences%2C%20Facies%20History%2C%20Biostratigraphy%20and%20Controlling%20Factors&journal=Facies&volume=27&pages=119\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B57\" id=\"B57\"\u003E\u003C\u002Fa\u003E Flügel E. (1985). “Diversity and Environments of Permian and Triassic Dasycladacean Algae,” in \u003Ci\u003EPaleoalgology: Contemporary Research and Applications\u003C\u002Fi\u003E. Eds. Toomey D. F., Nitecki M. H. (Berlin: Springer-Verlag), 344–351.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Fl%C3%BCgel&publication_year=1985&title=Diversity%20and%20Environments%20of%20Permian%20and%20Triassic%20Dasycladacean%20Algae&book=Paleoalgology:+Contemporary+Research+and+Applications&pages=344\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B58\" id=\"B58\"\u003E\u003C\u002Fa\u003E Flügel E. (1991). “Triassic and Jurassic Marine Calcareous Algae: A Critical Review,” in \u003Ci\u003ECalcareous Algae and Stromatolites\u003C\u002Fi\u003E. Ed. Riding R. (Berlin: Springer-Verlag), 481–503.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Fl%C3%BCgel&publication_year=1991&title=Triassic%20and%20Jurassic%20Marine%20Calcareous%20Algae%3A%20A%20Critical%20Review&book=Calcareous+Algae+and+Stromatolites&pages=481\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B59\" id=\"B59\"\u003E\u003C\u002Fa\u003E Flügel E., Kiessling W. (2002). “Patterns of Phanerozoic Reef Crises,” in \u003Ci\u003EPhanerozoic Reef Patterns\u003C\u002Fi\u003E. Eds. Kiessling W., Flügel E., Golonka J. (USA:SEPM Sp. Publ. 72), 691–733.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Fl%C3%BCgel&author=W.+Kiessling&publication_year=2002&title=Patterns%20of%20Phanerozoic%20Reef%20Crises&book=Phanerozoic+Reef+Patterns&pages=691\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B60\" id=\"B60\"\u003E\u003C\u002Fa\u003E Foslie M (1909) \u003Ci\u003EAlgologiske Notiser VI. Kongelige Norske Videnskabers Selskabs Skrifter\u003C\u002Fi\u003E 1909(2), 1–63.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M+Foslie&publication_year=1909&book=Algologiske+Notiser+VI.+Kongelige+Norske+Videnskabers+Selskabs+Skrifter&volume=1909&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B61\" id=\"B61\"\u003E\u003C\u002Fa\u003E Fravega P. (1984). \u003Ci\u003EArchaeolithothamnium Airoldii\u003C\u002Fi\u003E Nomen Novum Ex \u003Ci\u003ELithothamnium Stefanini\u003C\u002Fi\u003E Airoldi. \u003Ci\u003ERiv. Ital. Paleontol. Stratigr.\u003C\u002Fi\u003E 90, 103–108.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=P.+Fravega&publication_year=1984&title=Archaeolithothamnium%20Airoldii%20Nomen%20Novum%20Ex%20Lithothamnium%20Stefanini%20Airoldi&journal=Riv.+Ital.+Paleontol.+Stratigr.&volume=90&pages=103\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B62\" id=\"B62\"\u003E\u003C\u002Fa\u003E Fravega P., Piazza M., Vannucci G. (1989). \u003Ci\u003EArchaeolithothamnium\u003C\u002Fi\u003E Rothpletz. Indicatore Ecologico-Stratigrafico? \u003Ci\u003EAtti 3° Simp. Ecol. Paleoecol. Com. Benton.\u003C\u002Fi\u003E, 729–743.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=P.+Fravega&author=M.+Piazza&author=G.+Vannucci&publication_year=1989&title=Archaeolithothamnium%20Rothpletz.%20Indicatore%20Ecologico-Stratigrafico&journal=Atti+3°+Simp.+Ecol.+Paleoecol.+Com.+Benton.&pages=729\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B63\" id=\"B63\"\u003E\u003C\u002Fa\u003E Garbary D. J., Johansen H. M. (1982). Scanning Electron Microscopy of \u003Ci\u003ECorallina\u003C\u002Fi\u003E and \u003Ci\u003EHaliptilon\u003C\u002Fi\u003E (Corallinaceae Rhodophyta): Surfaces Features and Their Taxonomic Implications. \u003Ci\u003EJ. Phycol.\u003C\u002Fi\u003E 18, 211–219. doi: 10.1111\u002Fj.1529-8817.1982.tb03176.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1529-8817.1982.tb03176.x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=D.%20J.+Garbary&author=H.%20M.+Johansen&publication_year=1982&title=Scanning%20Electron%20Microscopy%20of%20Corallina%20and%20Haliptilon%20%28Corallinaceae%20Rhodophyta%29%3A%20Surfaces%20Features%20and%20Their%20Taxonomic%20Implications&journal=J.+Phycol.&volume=18&pages=211\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B64\" id=\"B64\"\u003E\u003C\u002Fa\u003E Gattuso J. P., Hansson L. (2011). “Ocean Acidification: Background and History,” in \u003Ci\u003EOcean Acidification\u003C\u002Fi\u003E. Eds. Gattuso J. P., Hansson L. (UK:Oxford University Press), 1–20.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20P.+Gattuso&author=L.+Hansson&publication_year=2011&title=Ocean%20Acidification%3A%20Background%20and%20History&book=Ocean+Acidification&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B65\" id=\"B65\"\u003E\u003C\u002Fa\u003E Ghosh A. K., Maithy P. K (1996). On the Present Status of Coralline Red Alga \u003Ci\u003EArchaeolithothamnium\u003C\u002Fi\u003E Roth. From India.. \u003Ci\u003EThe Palaeobot\u003C\u002Fi\u003E 45, 64–70\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.%20K.+Ghosh&author=P.%20K+Maithy&publication_year=1996&title=On%20the%20Present%20Status%20of%20Coralline%20Red%20Alga%20Archaeolithothamnium%20Roth.%20From%20India&journal=The+Palaeobot&volume=45&pages=64\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B66\" id=\"B66\"\u003E\u003C\u002Fa\u003E Gibbs S. J., Bown P. R., Sessa J. A., Bralower T. J., Wilson P. A. (2006a). Nannoplankton Extinction and Origination Across the Paleocene-Eocene Thermal Maximum. \u003Ci\u003EScience\u003C\u002Fi\u003E 314, 1770–1773. doi: 10.1126\u002Fscience.1133902\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17170303\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.1133902\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.%20J.+Gibbs&author=P.%20R.+Bown&author=J.%20A.+Sessa&author=T.%20J.+Bralower&author=P.%20A.+Wilson&publication_year=2006&title=Nannoplankton%20Extinction%20and%20Origination%20Across%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Science&volume=314&pages=1770\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B67\" id=\"B67\"\u003E\u003C\u002Fa\u003E Gibbs S. J., Bralower T. J., Bown P. R., Zachos J. C., Bybell L. M. (2006b). Shelf and Open-Ocean Calcareous Phytoplankton Assemblages Across the Paleocene-Eocene Thermal Maximum: Implications for Global Productivity Gradients. \u003Ci\u003EGeology\u003C\u002Fi\u003E 34, 233–236. doi: 10.1130\u002FG22381.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002FG22381.1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.%20J.+Gibbs&author=T.%20J.+Bralower&author=P.%20R.+Bown&author=J.%20C.+Zachos&author=L.%20M.+Bybell&publication_year=2006&title=Shelf%20and%20Open-Ocean%20Calcareous%20Phytoplankton%20Assemblages%20Across%20the%20Paleocene-Eocene%20Thermal%20Maximum%3A%20Implications%20for%20Global%20Productivity%20Gradients&journal=Geology&volume=34&pages=233\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B68\" id=\"B68\"\u003E\u003C\u002Fa\u003E Guy-Haim T., Silverman J., Raddatz S., Wahl M., Israel A., Rilov G. (2016). The Carbon Turnover Response to Thermal Stress of a Dominant Coralline Alga on the Fast Warming Levant Coast. \u003Ci\u003ELimnol. Ocecanogr.\u003C\u002Fi\u003E 61, 1120–1133. doi: 10.1002\u002Flno.10279\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1002\u002Flno.10279\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=T.+Guy-Haim&author=J.+Silverman&author=S.+Raddatz&author=M.+Wahl&author=A.+Israel&author=G.+Rilov&publication_year=2016&title=The%20Carbon%20Turnover%20Response%20to%20Thermal%20Stress%20of%20a%20Dominant%20Coralline%20Alga%20on%20the%20Fast%20Warming%20Levant%20Coast&journal=Limnol.+Ocecanogr.&volume=61&pages=1120\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B69\" id=\"B69\"\u003E\u003C\u002Fa\u003E Guy-Haim T., Silverman J., Wahl M., Aguirre J., Noisette F., Rilov G. (2020). Epiphytes Provide Micro-Scale Refuge From Ocean Acidification. \u003Ci\u003EMar. Exper. Res.\u003C\u002Fi\u003E 161, 105093. doi: 10.1016\u002Fj.marenvres.2020.105093\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.marenvres.2020.105093\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=T.+Guy-Haim&author=J.+Silverman&author=M.+Wahl&author=J.+Aguirre&author=F.+Noisette&author=G.+Rilov&publication_year=2020&title=Epiphytes%20Provide%20Micro-Scale%20Refuge%20From%20Ocean%20Acidification&journal=Mar.+Exper.+Res.&volume=161&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B70\" id=\"B70\"\u003E\u003C\u002Fa\u003E Hall-Spencer J., Rodolfo-Metalpa R., Martin S., Ransome E., Fine M., Turner S. M., et al. (2008). Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification. \u003Ci\u003ENature\u003C\u002Fi\u003E 454, 96–99. doi: 10.1038\u002Fnature07051\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18536730\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature07051\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Hall-Spencer&author=R.+Rodolfo-Metalpa&author=S.+Martin&author=E.+Ransome&author=M.+Fine&author=S.%20M.+Turner&publication_year=2008&title=Volcanic%20Carbon%20Dioxide%20Vents%20Show%20Ecosystem%20Effects%20of%20Ocean%20Acidification&journal=Nature&volume=454&pages=96\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B71\" id=\"B71\"\u003E\u003C\u002Fa\u003E Hamon Y., Deschamps R., Joseph P., Garcia D., Chanvry E. (2016). New Insight of Sedimentological and Geochemical Characterization of Siliciclastic-Carbonate Deposits (\u003Ci\u003EAlveolina\u003C\u002Fi\u003E Limestone Formation, Graus-Tremp Basin, Spain). \u003Ci\u003EBull. Soc. Geol. Fr.\u003C\u002Fi\u003E 187, 133–153. doi: 10.2113\u002Fgssgfbull.187.3.133\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2113\u002Fgssgfbull.187.3.133\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=Y.+Hamon&author=R.+Deschamps&author=P.+Joseph&author=D.+Garcia&author=E.+Chanvry&publication_year=2016&title=New%20Insight%20of%20Sedimentological%20and%20Geochemical%20Characterization%20of%20Siliciclastic-Carbonate%20Deposits%20%28Alveolina%20Limestone%20Formation%2C%20Graus-Tremp%20Basin%2C%20Spain%29&journal=Bull.+Soc.+Geol.+Fr.&volume=187&pages=133\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B72\" id=\"B72\"\u003E\u003C\u002Fa\u003E Hansen J., Sato M., Russel G., Kharecha P. (2013). Climate Sensitivity, Sea Level and Atmospheric Carbon Dioxide. \u003Ci\u003EPhilos. Trans. R. Soc A\u003C\u002Fi\u003E 371, 20120294. doi: 10.1098\u002Frsta.2012.0294\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1098\u002Frsta.2012.0294\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Hansen&author=M.+Sato&author=G.+Russel&author=P.+Kharecha&publication_year=2013&title=Climate%20Sensitivity%2C%20Sea%20Level%20and%20Atmospheric%20Carbon%20Dioxide&journal=Philos.+Trans.+R.+Soc+A&volume=371&pages=20120294\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B73\" id=\"B73\"\u003E\u003C\u002Fa\u003E Haynes L. L., Hönisch B. (2020). The Seawater Carbon Inventory at the Paleocene-Eocene Thermal Maximum. \u003Ci\u003EProc. Nat. Am. Sc.\u003C\u002Fi\u003E 117, 24088–24095. doi: 10.1073\u002Fpnas.2003197117\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1073\u002Fpnas.2003197117\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.%20L.+Haynes&author=B.+H%C3%B6nisch&publication_year=2020&title=The%20Seawater%20Carbon%20Inventory%20at%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Proc.+Nat.+Am.+Sc.&volume=117&pages=24088\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B74\" id=\"B74\"\u003E\u003C\u002Fa\u003E Hönisch B., Ridgwell A., Schmidt D. N., Thomas E., Gibbs S. J., Sluijs A., et al. (2012). The Geological Record of Ocean Acidification. \u003Ci\u003EScience\u003C\u002Fi\u003E 335, 1058–1063. doi: 10.1126\u002Fscience.1208277\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22383840\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.1208277\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=B.+H%C3%B6nisch&author=A.+Ridgwell&author=D.%20N.+Schmidt&author=E.+Thomas&author=S.%20J.+Gibbs&author=A.+Sluijs&publication_year=2012&title=The%20Geological%20Record%20of%20Ocean%20Acidification&journal=Science&volume=335&pages=1058\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B75\" id=\"B75\"\u003E\u003C\u002Fa\u003E Hottinger L. (1960). Recherches Sur Les Alvéolines Du Paléocène Et De l'Eocène. \u003Ci\u003ESchweiz. Palaeontolo. Abh.\u003C\u002Fi\u003E 75–76, 1–243.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Hottinger&publication_year=1960&title=Recherches%20Sur%20Les%20Alv%C3%A9olines%20Du%20Pal%C3%A9oc%C3%A8ne%20Et%20De%20l%27Eoc%C3%A8ne&journal=Schweiz.+Palaeontolo.+Abh.&volume=75–76&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B76\" id=\"B76\"\u003E\u003C\u002Fa\u003E Hottinger L., Schaub H. (1960). Zur Stufeneinteilung Das Paleocaens Uns Das Eocaens. Einführung Der Stufen Ilerdien Und Biarritzien. \u003Ci\u003EEclog. Geol. Helv.\u003C\u002Fi\u003E 53, 453–479.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.+Hottinger&author=H.+Schaub&publication_year=1960&title=Zur%20Stufeneinteilung%20Das%20Paleocaens%20Uns%20Das%20Eocaens.%20Einf%C3%BChrung%20Der%20Stufen%20Ilerdien%20Und%20Biarritzien&journal=Eclog.+Geol.+Helv.&volume=53&pages=453\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B77\" id=\"B77\"\u003E\u003C\u002Fa\u003E Howe M. A. (1919a). Tertiary Calcareous Algae From the Island of St. Bartholomew, Antigua and Anguilla. \u003Ci\u003ECarn. Insti. Washington Publ.\u003C\u002Fi\u003E 291, 11–20.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20A.+Howe&publication_year=1919&title=Tertiary%20Calcareous%20Algae%20From%20the%20Island%20of%20St.%20Bartholomew%2C%20Antigua%20and%20Anguilla&journal=Carn.+Insti.+Washington+Publ.&volume=291&pages=11\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B78\" id=\"B78\"\u003E\u003C\u002Fa\u003E Howe M. A. (1919b). On Some Recent and Fossil Lithothamnieae of the Panama Canal Zone. \u003Ci\u003EU.S. Nat. Hist. Mus. Bull.\u003C\u002Fi\u003E 103, 2–6.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20A.+Howe&publication_year=1919&title=On%20Some%20Recent%20and%20Fossil%20Lithothamnieae%20of%20the%20Panama%20Canal%20Zone&journal=U.S.+Nat.+Hist.+Mus.+Bull.&volume=103&pages=2\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B79\" id=\"B79\"\u003E\u003C\u002Fa\u003E Howe M. A. (1934). Eocene Marine Algae (Lithothamnieae) From the Sierra Blanca Limestone. \u003Ci\u003EBull. Geol. Soc Am.\u003C\u002Fi\u003E 45, 507–518. doi: 10.1130\u002FGSAB-45-507\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002FGSAB-45-507\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20A.+Howe&publication_year=1934&title=Eocene%20Marine%20Algae%20%28Lithothamnieae%29%20From%20the%20Sierra%20Blanca%20Limestone&journal=Bull.+Geol.+Soc+Am.&volume=45&pages=507\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B80\" id=\"B80\"\u003E\u003C\u002Fa\u003E Jeong S. Y., Nelson W. A., Sutherland J. E., Peña V., Le Gall L., Diaz-Pulido G., et al. (2021). Corallinapetrales and Corallinapetraceae: A New Order and New Family of Coralline Red Algae Including \u003Ci\u003ECorallinapetra\u003C\u002Fi\u003E Gabriellii Comb. Nov. \u003Ci\u003EJ. Phycol.\u003C\u002Fi\u003E doi: 10.1111\u002Fjpy.13115-20-107\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fjpy.13115-20-107\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.%20Y.+Jeong&author=W.%20A.+Nelson&author=J.%20E.+Sutherland&author=V.+Pe%C3%B1a&author=L.+Le%20Gall&author=G.+Diaz-Pulido&publication_year=2021&title=Corallinapetrales%20and%20Corallinapetraceae%3A%20A%20New%20Order%20and%20New%20Family%20of%20Coralline%20Red%20Algae%20Including%20Corallinapetra%20Gabriellii%20Comb.%20Nov&journal=J.+Phycol.&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B81\" id=\"B81\"\u003E\u003C\u002Fa\u003E Johnson J. H. (1957). Geology of Saipan, Mariana Islands. \u003Ci\u003ECalcareous algae. U.S. Geol. Sur. Prof. Paper ROM 280\u003C\u002Fi\u003E, 209–246.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20H.+Johnson&publication_year=1957&title=Geology%20of%20Saipan%2C%20Mariana%20Islands&journal=Calcareous+algae.+U.S.+Geol.+Sur.+Prof.+Paper+ROM+280&pages=209\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B82\" id=\"B82\"\u003E\u003C\u002Fa\u003E Johnson J. H. (1964). Eocene Algae From Ishigaki-Shima Ryukyu-Retto. \u003Ci\u003EU.S. Geol. Sur. Prof. Paper\u003C\u002Fi\u003E 399, C1–C13. doi: 10.3133\u002Fpp399C\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3133\u002Fpp399C\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20H.+Johnson&publication_year=1964&title=Eocene%20Algae%20From%20Ishigaki-Shima%20Ryukyu-Retto&journal=U.S.+Geol.+Sur.+Prof.+Paper&volume=399&pages=C1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B83\" id=\"B83\"\u003E\u003C\u002Fa\u003E Johnson J. H., Stewart W. A. (1953). Eocene Coralline Algae From Meganos Formation, California. \u003Ci\u003EJ. Paleontol.\u003C\u002Fi\u003E 27, 130–136.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20H.+Johnson&author=W.%20A.+Stewart&publication_year=1953&title=Eocene%20Coralline%20Algae%20From%20Meganos%20Formation%2C%20California&journal=J.+Paleontol.&volume=27&pages=130\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B84\" id=\"B84\"\u003E\u003C\u002Fa\u003E Johnson J. H., Tafur I. A. (1952). Coralline Algae From the Eocene Atascadero Limestone. \u003Ci\u003EJ. Paleontol.\u003C\u002Fi\u003E 26, 537–543.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20H.+Johnson&author=I.%20A.+Tafur&publication_year=1952&title=Coralline%20Algae%20From%20the%20Eocene%20Atascadero%20Limestone&journal=J.+Paleontol.&volume=26&pages=537\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B85\" id=\"B85\"\u003E\u003C\u002Fa\u003E Kamenos N. A., Burdett H. I., Aloisio E., Findlay H. S., Martin S., Longbone C., et al. (2013). Coralline Algal Structure Is More Sensitive T Orate, Rather Than the Magnitude, of Ocean Acidification. \u003Ci\u003EGlob. Change Biol.\u003C\u002Fi\u003E 19, 3621–3628. doi: 10.1111\u002Fgcb.12351\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fgcb.12351\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=N.%20A.+Kamenos&author=H.%20I.+Burdett&author=E.+Aloisio&author=H.%20S.+Findlay&author=S.+Martin&author=C.+Longbone&publication_year=2013&title=Coralline%20Algal%20Structure%20Is%20More%20Sensitive%20T%20Orate%2C%20Rather%20Than%20the%20Magnitude%2C%20of%20Ocean%20Acidification&journal=Glob.+Change+Biol.&volume=19&pages=3621\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B86\" id=\"B86\"\u003E\u003C\u002Fa\u003E Keij A. J. (1963). \u003Ci\u003EDistichoplax\u003C\u002Fi\u003E in Sarawak and North Borneo. \u003Ci\u003EBull. Br. Born. Geol. Sur.\u003C\u002Fi\u003E 4, 153–160.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.%20J.+Keij&publication_year=1963&title=Distichoplax%20in%20Sarawak%20and%20North%20Borneo&journal=Bull.+Br.+Born.+Geol.+Sur.&volume=4&pages=153\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B87\" id=\"B87\"\u003E\u003C\u002Fa\u003E Keij A. J. (1964). \u003Ci\u003EDistichoplax\u003C\u002Fi\u003E From Kudat Peninsula and Bangui Island, Sabah, Borneo. \u003Ci\u003ERev. Micropaléontol.\u003C\u002Fi\u003E 7, 115–118.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.%20J.+Keij&publication_year=1964&title=Distichoplax%20From%20Kudat%20Peninsula%20and%20Bangui%20Island%2C%20Sabah%2C%20Borneo&journal=Rev.+Micropaléontol.&volume=7&pages=115\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B88\" id=\"B88\"\u003E\u003C\u002Fa\u003E Kelly D. C., Bralower T. J., Zachos J. C. (1998). Evolutionary Consequences of the Latest Paleocene Thermal Maximum for Tropical Planktonic Foraminifera. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 141, 139–161. doi: 10.1016\u002FS0031-0182(98)00017-0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0031-0182(98)00017-0\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=D.%20C.+Kelly&author=T.%20J.+Bralower&author=J.%20C.+Zachos&publication_year=1998&title=Evolutionary%20Consequences%20of%20the%20Latest%20Paleocene%20Thermal%20Maximum%20for%20Tropical%20Planktonic%20Foraminifera&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=141&pages=139\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B89\" id=\"B89\"\u003E\u003C\u002Fa\u003E Kennett J. P., Stott L. D. (1991). Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. \u003Ci\u003ENature\u003C\u002Fi\u003E 353, 225–229. doi: 10.1038\u002F353225a0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002F353225a0\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20P.+Kennett&author=L.%20D.+Stott&publication_year=1991&title=Abrupt%20Deep-Sea%20Warming%2C%20Palaeoceanographic%20Changes%20and%20Benthic%20Extinctions%20at%20the%20End%20of%20the%20Palaeocene&journal=Nature&volume=353&pages=225\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B90\" id=\"B90\"\u003E\u003C\u002Fa\u003E Kiessling W. (2010). Geologic and Biotic Controls on the Evolution of Reefs. \u003Ci\u003EAnn. Rev. Ecol. Evol. Syst.\u003C\u002Fi\u003E 40, 173–192. doi: 10.1146\u002Fannurev.ecolsys.110308.120251\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1146\u002Fannurev.ecolsys.110308.120251\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.+Kiessling&publication_year=2010&title=Geologic%20and%20Biotic%20Controls%20on%20the%20Evolution%20of%20Reefs&journal=Ann.+Rev.+Ecol.+Evol.+Syst.&volume=40&pages=173\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B91\" id=\"B91\"\u003E\u003C\u002Fa\u003E Koch P. L., Zachos J. C., Gingerich P. D. (1992). Correlation Between Isotope Records in Marine and Continental Carbon Reservoirs Near the Paleocene\u002FEocene Boundary. \u003Ci\u003ENature\u003C\u002Fi\u003E 358, 319–322. doi: 10.1038\u002F358319a0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002F358319a0\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=P.%20L.+Koch&author=J.%20C.+Zachos&author=P.%20D.+Gingerich&publication_year=1992&title=Correlation%20Between%20Isotope%20Records%20in%20Marine%20and%20Continental%20Carbon%20Reservoirs%20Near%20the%20Paleocene%2FEocene%20Boundary&journal=Nature&volume=358&pages=319\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B92\" id=\"B92\"\u003E\u003C\u002Fa\u003E Lemoine M. P. (1924). Contribution a L'étude Des Corallinacees Fossiles. VII. Mélobésiées Miocènes Recueillies Par M. Boucart En Albanie. \u003Ci\u003EBull. Soc. Géol. Fr.\u003C\u002Fi\u003E 23, 275–283.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20P.+Lemoine&publication_year=1924&title=Contribution%20a%20L%27%C3%A9tude%20Des%20Corallinacees%20Fossiles.%20VII.%20M%C3%A9lob%C3%A9si%C3%A9es%20Mioc%C3%A8nes%20Recueillies%20Par%20M.%20Boucart%20En%20Albanie&journal=Bull.+Soc.+Géol.+Fr.&volume=23&pages=275\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B93\" id=\"B93\"\u003E\u003C\u002Fa\u003E Lemoine M. P. (1928). Un Nouveau Genre De Mélobésiées: \u003Ci\u003EMesophyllum. Bull\u003C\u002Fi\u003E. \u003Ci\u003ESoc. Bot. Fr.\u003C\u002Fi\u003E 5, 251–254. doi: 10.1080\u002F00378941.1928.10836268\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F00378941.1928.10836268\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20P.+Lemoine&publication_year=1928&title=Un%20Nouveau%20Genre%20De%20M%C3%A9lob%C3%A9si%C3%A9es%3A%20Mesophyllum.%20Bull&journal=Soc.+Bot.+Fr.&volume=5&pages=251\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B94\" id=\"B94\"\u003E\u003C\u002Fa\u003E Lemoine M. P. (1939). Les Algues Calcaires Fossiles De l'Algérie. Matériaux Pour La Carte Géologique De L'Algérie. \u003Ci\u003E1er Paléontol.\u003C\u002Fi\u003E 9, 1–128.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20P.+Lemoine&publication_year=1939&title=Les%20Algues%20Calcaires%20Fossiles%20De%20l%27Alg%C3%A9rie.%20Mat%C3%A9riaux%20Pour%20La%20Carte%20G%C3%A9ologique%20De%20L%27Alg%C3%A9rie&journal=1er+Paléontol.&volume=9&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B95\" id=\"B95\"\u003E\u003C\u002Fa\u003E Lemoine M. P., Mengaud L. (1934). Algues Calcaires De L’Éocène De La Province De Santander (Espagne). \u003Ci\u003EBull. Soc Hist. Nat. Toulouse\u003C\u002Fi\u003E 66, 171–180.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.%20P.+Lemoine&author=L.+Mengaud&publication_year=1934&title=Algues%20Calcaires%20De%20L%E2%80%99%C3%89oc%C3%A8ne%20De%20La%20Province%20De%20Santander%20%28Espagne%29&journal=Bull.+Soc+Hist.+Nat.+Toulouse&volume=66&pages=171\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B96\" id=\"B96\"\u003E\u003C\u002Fa\u003E Li J., Hu X., Garzanti E., BouDagher-Fadel M. (2020). Climate-Driven Hydrological Change and Carbonate Platform Demise Induced by the Paleocene-Eocene Thermal Maximum (Southern Pyrenees). \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 567, 110250. doi: 10.1016\u002Fj.palaeo.2021.110250\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2021.110250\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Li&author=X.+Hu&author=E.+Garzanti&author=M.+BouDagher-Fadel&publication_year=2020&title=Climate-Driven%20Hydrological%20Change%20and%20Carbonate%20Platform%20Demise%20Induced%20by%20the%20Paleocene-Eocene%20Thermal%20Maximum%20%28Southern%20Pyrenees%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=567&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B97\" id=\"B97\"\u003E\u003C\u002Fa\u003E Lunt D. J., Elderfield H., Pancost R., Ridgwell A., Foster G. L., Haywood A., et al. (2013). Warm Climates of the Past – a Lesson for the Future? \u003Ci\u003EPhil. Trans. R. Soc\u003C\u002Fi\u003E,A371. doi: 10.1098\u002Frsta.2013.0146\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1098\u002Frsta.2013.0146\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=D.%20J.+Lunt&author=H.+Elderfield&author=R.+Pancost&author=A.+Ridgwell&author=G.%20L.+Foster&author=A.+Haywood&publication_year=2013&title=Warm%20Climates%20of%20the%20Past%20%E2%80%93%20a%20Lesson%20for%20the%20Future&journal=Phil.+Trans.+R.+Soc&pages=A371\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B98\" id=\"B98\"\u003E\u003C\u002Fa\u003E Manners H. R., Grimes S. T., Sutton P. A., Domingo L., Leng M. J., Twitchett R. J., et al. (2013). Magnitude and Profile of Organic Carbon Isotope Records From the Paleocene–Eocene Thermal Maximum: Evidence From Northern Spain. \u003Ci\u003EEarth Planet. Sc. Lett.\u003C\u002Fi\u003E 376, 220–230. doi: 10.1016\u002Fj.epsl.2013.06.016\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.epsl.2013.06.016\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=H.%20R.+Manners&author=S.%20T.+Grimes&author=P.%20A.+Sutton&author=L.+Domingo&author=M.%20J.+Leng&author=R.%20J.+Twitchett&publication_year=2013&title=Magnitude%20and%20Profile%20of%20Organic%20Carbon%20Isotope%20Records%20From%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%3A%20Evidence%20From%20Northern%20Spain&journal=Earth+Planet.+Sc.+Lett.&volume=376&pages=220\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B99\" id=\"B99\"\u003E\u003C\u002Fa\u003E Martin S., Gattuso J. P. (2009). Response of Mediterranean Coralline Algae to Ocean Acidification and Elevated Temperature. \u003Ci\u003EGlob. Change Biol.\u003C\u002Fi\u003E 15, 2089–2100. doi: 10.1111\u002Fj.1365-2486.2009.01874.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1365-2486.2009.01874.x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.+Martin&author=J.%20P.+Gattuso&publication_year=2009&title=Response%20of%20Mediterranean%20Coralline%20Algae%20to%20Ocean%20Acidification%20and%20Elevated%20Temperature&journal=Glob.+Change+Biol.&volume=15&pages=2089\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B100\" id=\"B100\"\u003E\u003C\u002Fa\u003E Martin S., Hall-Spencer J. M. (2017). “Effects of Ocean Warming and Acidification on Rhodolih\u002FMaërl Beds,” in \u003Ci\u003ERhodolith\u002FMaërl Beds: A Global Perspective\u003C\u002Fi\u003E. Eds. Riosmena-Rodríguez R., Nelson W., Aguirre J. (Basel, Switzerland: Springer Intern. Publ), 55–85.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.+Martin&author=J.%20M.+Hall-Spencer&publication_year=2017&title=Effects%20of%20Ocean%20Warming%20and%20Acidification%20on%20Rhodolih%2FMa%C3%ABrl%20Beds&book=Rhodolith\u002FMaërl+Beds:+A+Global+Perspective&pages=55\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B101\" id=\"B101\"\u003E\u003C\u002Fa\u003E Maslov V.P. (1962). \u003Ci\u003EFossil Red Algae of USSR Trud. Instit. Akad. Nauk SSSR\u003C\u002Fi\u003E 53, 1–222 (in Russian).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.P.+Maslov&publication_year=1962&book=Fossil+Red+Algae+of+USSR+Trud.+Instit.+Akad.+Nauk+SSSR&volume=53&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B102\" id=\"B102\"\u003E\u003C\u002Fa\u003E Mastrorilli V. I. (1967). Nuovo Contributo Allo Studio Delle Corallinacee Dell’oligocene Ligure-Piemontese: I Reperti Della Tavoletta Ponzone. \u003Ci\u003EAtti Ist. Geol. Univ. Genova\u003C\u002Fi\u003E 5, 153–406.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.%20I.+Mastrorilli&publication_year=1967&title=Nuovo%20Contributo%20Allo%20Studio%20Delle%20Corallinacee%20Dell%E2%80%99oligocene%20Ligure-Piemontese%3A%20I%20Reperti%20Della%20Tavoletta%20Ponzone&journal=Atti+Ist.+Geol.+Univ.+Genova&volume=5&pages=153\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B103\" id=\"B103\"\u003E\u003C\u002Fa\u003E Mastrorrilli V. I. (1973). Flore Fossili a Corallinacee Di Alcune Localitá Venete Tra I Berici E L’Altopiano Di Asiago. \u003Ci\u003EAtti. Soc Ital. Sci. Nat. Mus. civ. Stor. Nat. Milano\u003C\u002Fi\u003E 114, 209–292.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.%20I.+Mastrorrilli&publication_year=1973&title=Flore%20Fossili%20a%20Corallinacee%20Di%20Alcune%20Localit%C3%A1%20Venete%20Tra%20I%20Berici%20E%20L%E2%80%99Altopiano%20Di%20Asiago&journal=Atti.+Soc+Ital.+Sci.+Nat.+Mus.+civ.+Stor.+Nat.+Milano&volume=114&pages=209\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B104\" id=\"B104\"\u003E\u003C\u002Fa\u003E McInerney F. A., Wing S. L. (2011). The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere With Implications for the Future. \u003Ci\u003EAnn. Rev. Earth Planet. Sc.\u003C\u002Fi\u003E 39, 489–516. doi: 10.1146\u002Fannurev-earth-040610-133431\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1146\u002Fannurev-earth-040610-133431\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=F.%20A.+McInerney&author=S.%20L.+Wing&publication_year=2011&title=The%20Paleocene-Eocene%20Thermal%20Maximum%3A%20A%20Perturbation%20of%20Carbon%20Cycle%2C%20Climate%2C%20and%20Biosphere%20With%20Implications%20for%20the%20Future&journal=Ann.+Rev.+Earth+Planet.+Sc.&volume=39&pages=489\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B105\" id=\"B105\"\u003E\u003C\u002Fa\u003E Minnery G. A. (1990). Crustose Coralline Algae From the Flower Garden Banks, Northwestern Gulf of Mexico: Controls on Distribution and Growth Morphology. \u003Ci\u003EJ. Sediment. Petrol.\u003C\u002Fi\u003E 60, 992–1007. doi: 10.1306\u002FD4267663-2B26-11D7-8648000102C1865D\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1306\u002FD4267663-2B26-11D7-8648000102C1865D\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.%20A.+Minnery&publication_year=1990&title=Crustose%20Coralline%20Algae%20From%20the%20Flower%20Garden%20Banks%2C%20Northwestern%20Gulf%20of%20Mexico%3A%20Controls%20on%20Distribution%20and%20Growth%20Morphology&journal=J.+Sediment.+Petrol.&volume=60&pages=992\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B106\" id=\"B106\"\u003E\u003C\u002Fa\u003E Minnery G. A., Rezak R., Bright T. J. (1985). “Depth Zonation and Growth Form of Crustose Coralline Algae: Flower Garden Banks, Northwestern Gulf of Mexico,” in \u003Ci\u003EPaleoalgology: Contemporary Research and Applications\u003C\u002Fi\u003E. Eds. Toomey D. F., Nitecki H. M. (Berlin: Springer), 237–247.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.%20A.+Minnery&author=R.+Rezak&author=T.%20J.+Bright&publication_year=1985&title=Depth%20Zonation%20and%20Growth%20Form%20of%20Crustose%20Coralline%20Algae%3A%20Flower%20Garden%20Banks%2C%20Northwestern%20Gulf%20of%20Mexico&book=Paleoalgology:+Contemporary+Research+and+Applications&pages=237\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B107\" id=\"B107\"\u003E\u003C\u002Fa\u003E Molina E., Angori E., Arenillas I., Brinkhuis H., Crouch E. M., Luterbacher H., et al. (2003). Correlation Between the Paleocene\u002FEocene Boundary and the Ilerdian at Campo, Spain. \u003Ci\u003ERev. Micropaleontol.\u003C\u002Fi\u003E 46, 95–109. doi: 10.1016\u002FS0035-1598(03)00012-6\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0035-1598(03)00012-6\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Molina&author=E.+Angori&author=I.+Arenillas&author=H.+Brinkhuis&author=E.%20M.+Crouch&author=H.+Luterbacher&publication_year=2003&title=Correlation%20Between%20the%20Paleocene%2FEocene%20Boundary%20and%20the%20Ilerdian%20at%20Campo%2C%20Spain&journal=Rev.+Micropaleontol.&volume=46&pages=95\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B108\" id=\"B108\"\u003E\u003C\u002Fa\u003E Mudelsee M., Bickert T., Lear C. H., Lohmann G. (2014). Cenozoic Climate Changes: A Review Based on Times Series Analysis of Marine Benthic δ\u003Csup\u003E18\u003C\u002Fsup\u003EO Records. \u003Ci\u003ERev. Geoph.\u003C\u002Fi\u003E 52, 333–374. doi: 10.1002\u002F2013RG000440\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1002\u002F2013RG000440\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=M.+Mudelsee&author=T.+Bickert&author=C.%20H.+Lear&author=G.+Lohmann&publication_year=2014&title=Cenozoic%20Climate%20Changes%3A%20A%20Review%20Based%20on%20Times%20Series%20Analysis%20of%20Marine%20Benthic%20%CE%B418O%20Records&journal=Rev.+Geoph.&volume=52&pages=333\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B109\" id=\"B109\"\u003E\u003C\u002Fa\u003E Murray J. W. (1991). \u003Ci\u003EEcology and Palaeoecology of Benthic Foraminifera\u003C\u002Fi\u003E (UK: Longman Sc. & Tech).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20W.+Murray&publication_year=1991&book=Ecology+and+Palaeoecology+of+Benthic+Foraminifera&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B110\" id=\"B110\"\u003E\u003C\u002Fa\u003E Murray J. W. (2006). \u003Ci\u003EEcology and Applications of Benthic Foraminifera\u003C\u002Fi\u003E (Cambridge: Cambridge Univ. Press).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20W.+Murray&publication_year=2006&book=Ecology+and+Applications+of+Benthic+Foraminifera&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B111\" id=\"B111\"\u003E\u003C\u002Fa\u003E Norris R. D., Kirtland Turner S., Hull P. M., Ridgwell A. (2013). Marine Ecosystem Responses to Cenozoic Global Change. \u003Ci\u003EScience\u003C\u002Fi\u003E 341, 492–498. doi: 10.1126\u002Fscience.1240543\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23908226\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.1240543\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20D.+Norris&author=S.+Kirtland%20Turner&author=P.%20M.+Hull&author=A.+Ridgwell&publication_year=2013&title=Marine%20Ecosystem%20Responses%20to%20Cenozoic%20Global%20Change&journal=Science&volume=341&pages=492\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B112\" id=\"B112\"\u003E\u003C\u002Fa\u003E O’Connell L. G., James N. P., Harvey A. S., Luick J., Bone Y., Shepherd S. A. (2020). Reevaluation of the Inferred Relationship Between Living Rhodolith Morphologies, Their Movements, and Water Energy: Implications for Interpreting Paleoceanographic Conditions. \u003Ci\u003EPalaios\u003C\u002Fi\u003E 35, 543–556. doi: 10.2110\u002Fpalo.2019.101\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2110\u002Fpalo.2019.101\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=L.%20G.+O%E2%80%99Connell&author=N.%20P.+James&author=A.%20S.+Harvey&author=J.+Luick&author=Y.+Bone&author=S.%20A.+Shepherd&publication_year=2020&title=Reevaluation%20of%20the%20Inferred%20Relationship%20Between%20Living%20Rhodolith%20Morphologies%2C%20Their%20Movements%2C%20and%20Water%20Energy%3A%20Implications%20for%20Interpreting%20Paleoceanographic%20Conditions&journal=Palaios&volume=35&pages=543\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B113\" id=\"B113\"\u003E\u003C\u002Fa\u003E Orue-Etxebarria X., Pujalte V., Bernaola G., Apellaniz E., Baceta J. I., Payros A., et al. (2001). Did the Late Paleocene Thermal Maximum Affect the Evolution of Larger Foraminifers? Evidence From Calcareous Plankton of the Campo Section (Pyrenees, Spain). \u003Ci\u003EMar. Micropaleontol.\u003C\u002Fi\u003E 41, 45–71. doi: 10.1016\u002FS0377-8398(00)00052-9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0377-8398(00)00052-9\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=X.+Orue-Etxebarria&author=V.+Pujalte&author=G.+Bernaola&author=E.+Apellaniz&author=J.%20I.+Baceta&author=A.+Payros&publication_year=2001&title=Did%20the%20Late%20Paleocene%20Thermal%20Maximum%20Affect%20the%20Evolution%20of%20Larger%20Foraminifers%3F%20Evidence%20From%20Calcareous%20Plankton%20of%20the%20Campo%20Section%20%28Pyrenees%2C%20Spain%29&journal=Mar.+Micropaleontol.&volume=41&pages=45\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B114\" id=\"B114\"\u003E\u003C\u002Fa\u003E Payros A., Pujalte V., Baceta J. I., Bernaola G., Orue-Etxebarria X., Apellaniz E., et al. (2000). Lithostratigraphy and Sequence Stratigraphy of the Upper Thanetian to Middle Ilerdian Strata of the Campo Section (Southern Pyrenees, Spain): Revision and New Data. \u003Ci\u003ERev. Soc Geol. Esp.\u003C\u002Fi\u003E 13, 213–226.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.+Payros&author=V.+Pujalte&author=J.%20I.+Baceta&author=G.+Bernaola&author=X.+Orue-Etxebarria&author=E.+Apellaniz&publication_year=2000&title=Lithostratigraphy%20and%20Sequence%20Stratigraphy%20of%20the%20Upper%20Thanetian%20to%20Middle%20Ilerdian%20Strata%20of%20the%20Campo%20Section%20%28Southern%20Pyrenees%2C%20Spain%29%3A%20Revision%20and%20New%20Data&journal=Rev.+Soc+Geol.+Esp.&volume=13&pages=213\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B115\" id=\"B115\"\u003E\u003C\u002Fa\u003E Peña V., Harvey B. P., Agostini S., Porzio L., Milazzo M., Horta P., et al. (2020a). Major Loss of Coralline Algal Diversity in Response to Ocean Acidification. \u003Ci\u003EGlob. Change Biol\u003C\u002Fi\u003E. doi: 10.1111\u002Fgcb.15757\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fgcb.15757\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pe%C3%B1a&author=B.%20P.+Harvey&author=S.+Agostini&author=L.+Porzio&author=M.+Milazzo&author=P.+Horta&publication_year=2020&title=Major%20Loss%20of%20Coralline%20Algal%20Diversity%20in%20Response%20to%20Ocean%20Acidification&journal=Glob.+Change+Biol&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B116\" id=\"B116\"\u003E\u003C\u002Fa\u003E Peña V., Vieira C., Braga J. C., Aguirre J., Rösler A., Baele G., et al. (2020b). Radiation of the Coralline Red Algae (Corallinophycidae, Rhodophyta) Crown Group as Inferred From a Multilocus Time-Calibrated Phylogeny. \u003Ci\u003EMol. Phylog. Evol.\u003C\u002Fi\u003E 150, 106845. doi: 10.1016\u002Fj.ympev.2020.106845\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ympev.2020.106845\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pe%C3%B1a&author=C.+Vieira&author=J.%20C.+Braga&author=J.+Aguirre&author=A.+R%C3%B6sler&author=G.+Baele&publication_year=2020&title=Radiation%20of%20the%20Coralline%20Red%20Algae%20%28Corallinophycidae%2C%20Rhodophyta%29%20Crown%20Group%20as%20Inferred%20From%20a%20Multilocus%20Time-Calibrated%20Phylogeny&journal=Mol.+Phylog.+Evol.&volume=150&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B117\" id=\"B117\"\u003E\u003C\u002Fa\u003E Perrin C., Bosence D. W. J., Rosen B. (1995). “Quantitative Approaches to Palaeozonation and Palaeobathymetry of Corals and Coralline Algae in Cenozoic Reefs,” in \u003Ci\u003EMarine Palaeoenvironmental Analysis From Fossils\u003C\u002Fi\u003E. Eds. Bosence D. W. J., Allison P. A., 181–229. UK: Geol. Soc. Lond. Sp. Publ. 83.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=C.+Perrin&author=D.%20W.%20J.+Bosence&author=B.+Rosen&publication_year=1995&title=Quantitative%20Approaches%20to%20Palaeozonation%20and%20Palaeobathymetry%20of%20Corals%20and%20Coralline%20Algae%20in%20Cenozoic%20Reefs&book=Marine+Palaeoenvironmental+Analysis+From+Fossils&pages=181\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B118\" id=\"B118\"\u003E\u003C\u002Fa\u003E Perrin C., Kiessling W. (2010). “Latitudinal Trends in Cenozoic Reef Patterns and Their Relationship to Climate,” in \u003Ci\u003ECarbonate Systems During the Oligocene-Miocene Climatic Transition\u003C\u002Fi\u003E. Eds. Mutti M., Piller W. E., Betzler C. (USA: IAS Sp. Publ. 42), 17–34.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=C.+Perrin&author=W.+Kiessling&publication_year=2010&title=Latitudinal%20Trends%20in%20Cenozoic%20Reef%20Patterns%20and%20Their%20Relationship%20to%20Climate&book=Carbonate+Systems+During+the+Oligocene-Miocene+Climatic+Transition&pages=17\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B119\" id=\"B119\"\u003E\u003C\u002Fa\u003E Pfender J. (1926). Sur Les Organismes du Nummulitique de La Colline de San Salvador Près Camarasa. \u003Ci\u003EBol. R. Acad. Esp. Hist. Nat.\u003C\u002Fi\u003E 26, 321–330.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Pfender&publication_year=1926&title=Sur%20Les%20Organismes%20du%20Nummulitique%20de%20La%20Colline%20de%20San%20Salvador%20Pr%C3%A8s%20Camarasa&journal=Bol.+R.+Acad.+Esp.+Hist.+Nat.&volume=26&pages=321\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B120\" id=\"B120\"\u003E\u003C\u002Fa\u003E Pfender J. (1939). Sur un calcaire phytogène du Lias inférieur d'Espagne et l'extension de ce faciès en quelques autres régions. \u003Ci\u003EBull. Soc. Vaudoise Sc. nat.\u003C\u002Fi\u003E 60, 213–228.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Pfender&publication_year=1939&title=Sur%20un%20calcaire%20phytog%C3%A8ne%20du%20Lias%20inf%C3%A9rieur%20d%27Espagne%20et%20l%27extension%20de%20ce%20faci%C3%A8s%20en%20quelques%20autres%20r%C3%A9gions&journal=Bull.+Soc.+Vaudoise+Sc.+nat.&volume=60&pages=213\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B121\" id=\"B121\"\u003E\u003C\u002Fa\u003E Piller W. E. (1994). \u003Ci\u003ENullipora Ramosissima\u003C\u002Fi\u003E Reuss 1847—a Rediscovery. \u003Ci\u003EBeitr. Paletontol.\u003C\u002Fi\u003E 19, 181–189.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.%20E.+Piller&publication_year=1994&title=Nullipora%20Ramosissima%20Reuss%201847%E2%80%94a%20Rediscovery&journal=Beitr.+Paletontol.&volume=19&pages=181\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B122\" id=\"B122\"\u003E\u003C\u002Fa\u003E Pujalte V., Baceta J. I., Payros A., Orue-Etxebarria X., Schmitz B. (2000b). Upper Paleocene-Lower Eocene Strata of the Western Pyrenees, Spain: A Shelf-to-Basin Correlation. \u003Ci\u003EGFF\u003C\u002Fi\u003E 122, 129–130. doi: 10.1080\u002F11035890001221129\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F11035890001221129\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=J.%20I.+Baceta&author=A.+Payros&author=X.+Orue-Etxebarria&author=B.+Schmitz&publication_year=2000&title=Upper%20Paleocene-Lower%20Eocene%20Strata%20of%20the%20Western%20Pyrenees%2C%20Spain%3A%20A%20Shelf-to-Basin%20Correlation&journal=GFF&volume=122&pages=129\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B123\" id=\"B123\"\u003E\u003C\u002Fa\u003E Pujalte V., Baceta J. I., Schmitz B., Orue-Etxebarria X., Payros A., Bernaola G., et al. (2009a). Redefinition of the Ilerdian Stage (Early Eocene). \u003Ci\u003EGeol. Acta\u003C\u002Fi\u003E 7, 177–194. doi: 10.1344\u002F105.000000268\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1344\u002F105.000000268\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=J.%20I.+Baceta&author=B.+Schmitz&author=X.+Orue-Etxebarria&author=A.+Payros&author=G.+Bernaola&publication_year=2009&title=Redefinition%20of%20the%20Ilerdian%20Stage%20%28Early%20Eocene%29&journal=Geol.+Acta&volume=7&pages=177\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B124\" id=\"B124\"\u003E\u003C\u002Fa\u003E Pujalte V., Orue-Etxebarria X., Schmitz B., Tosquella J., Baceta J. I., Payros A., et al. (2003). “Basal Ilerdian (Earliest Eocene) Turnover of Larger Foraminifera: Age Constraints Based on Calcareous Plankton and δ\u003Csup\u003E13\u003C\u002Fsup\u003EC Isotopic Profiles From New Southern Pyrenean Sections (Spain),” in \u003Ci\u003ECauses and Consequences of Globally Warm Climates in the Early Paleogene\u003C\u002Fi\u003E. Eds. Wing S. L., Gingerich P. D., Schmitz B., Thomas E., 205–221. USA: Boulder, Colorado, Geol. Soc. Am. Sp. Paper, 369.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=X.+Orue-Etxebarria&author=B.+Schmitz&author=J.+Tosquella&author=J.%20I.+Baceta&author=A.+Payros&publication_year=2003&title=Basal%20Ilerdian%20%28Earliest%20Eocene%29%20Turnover%20of%20Larger%20Foraminifera%3A%20Age%20Constraints%20Based%20on%20Calcareous%20Plankton%20and%20%CE%B413C%20Isotopic%20Profiles%20From%20New%20Southern%20Pyrenean%20Sections%20%28Spain%29&book=Causes+and+Consequences+of+Globally+Warm+Climates+in+the+Early+Paleogene&pages=205\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B125\" id=\"B125\"\u003E\u003C\u002Fa\u003E Pujalte V., Robles S., Orue-Etxebarria X., Baceta J. I., Payros A., Larruzea I. F. (2000a). Uppermost Cretaceous-Middle Eocene Strata of the Basque-Cantabrian Region and Western Pyrenees: A Sequence Stratigraphic Perspective. \u003Ci\u003ERev. Soc Geol. Esp.\u003C\u002Fi\u003E 13, 191–211.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=S.+Robles&author=X.+Orue-Etxebarria&author=J.%20I.+Baceta&author=A.+Payros&author=I.%20F.+Larruzea&publication_year=2000&title=Uppermost%20Cretaceous-Middle%20Eocene%20Strata%20of%20the%20Basque-Cantabrian%20Region%20and%20Western%20Pyrenees%3A%20A%20Sequence%20Stratigraphic%20Perspective&journal=Rev.+Soc+Geol.+Esp.&volume=13&pages=191\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B126\" id=\"B126\"\u003E\u003C\u002Fa\u003E Pujalte V., Schmitz B., Baceta J. I. (2014). Sea-Level Changes Across the Paleocene-Eocene Interval in the Spanish Pyrenees, and Their Possible Relationship With North Atlantic Magmatism. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 393, 45–60. doi: 10.1016\u002Fj.palaeo.2013.10.016\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2013.10.016\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=B.+Schmitz&author=J.%20I.+Baceta&publication_year=2014&title=Sea-Level%20Changes%20Across%20the%20Paleocene-Eocene%20Interval%20in%20the%20Spanish%20Pyrenees%2C%20and%20Their%20Possible%20Relationship%20With%20North%20Atlantic%20Magmatism&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=393&pages=45\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B127\" id=\"B127\"\u003E\u003C\u002Fa\u003E Pujalte V., Schmitz B., Baceta J. I., Orue-Etxebarria X., Bernaola G., Dinarés-Turell J., et al. (2009b). Correlation of the Thanetian-Ilerdian Turnover of Larger Foraminifera and the Paleocene-Eocene Thermal Maximum: Confirming Evidence From the Campo Area (Pyrenees, Spain). \u003Ci\u003EGeol. Acta\u003C\u002Fi\u003E 7, 161–175. doi: 10.1344\u002F105.000000276\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1344\u002F105.000000276\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=B.+Schmitz&author=J.%20I.+Baceta&author=X.+Orue-Etxebarria&author=G.+Bernaola&author=J.+Dinar%C3%A9s-Turell&publication_year=2009&title=Correlation%20of%20the%20Thanetian-Ilerdian%20Turnover%20of%20Larger%20Foraminifera%20and%20the%20Paleocene-Eocene%20Thermal%20Maximum%3A%20Confirming%20Evidence%20From%20the%20Campo%20Area%20%28Pyrenees%2C%20Spain%29&journal=Geol.+Acta&volume=7&pages=161\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B128\" id=\"B128\"\u003E\u003C\u002Fa\u003E Pujalte V., Schmitz B., Payros A. (2022). A Rapid Sedimentary Response to the Paleocene-Eocene Thermal Maximum Hydrological Change: New Data From Alluvial Units of the Tremp-Graus Basin (Spanish Pyrenees). \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 589, 110818. doi: 10.1016\u002Fj.palaeo.2021.110818. 1.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2021.110818\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=V.+Pujalte&author=B.+Schmitz&author=A.+Payros&publication_year=2022&title=A%20Rapid%20Sedimentary%20Response%20to%20the%20Paleocene-Eocene%20Thermal%20Maximum%20Hydrological%20Change%3A%20New%20Data%20From%20Alluvial%20Units%20of%20the%20Tremp-Graus%20Basin%20%28Spanish%20Pyrenees%29&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=589&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B129\" id=\"B129\"\u003E\u003C\u002Fa\u003E Quaranta F., Tomassetti L., Vannucci G., Brandano M. (2012). Coralline Algae as Environmental Indicators: A Case Study From the Attard Member (Chattian, Malta). \u003Ci\u003EGeodiversitas\u003C\u002Fi\u003E 34, 151–166. doi: 10.5252\u002Fg2012n1a9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.5252\u002Fg2012n1a9\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=F.+Quaranta&author=L.+Tomassetti&author=G.+Vannucci&author=M.+Brandano&publication_year=2012&title=Coralline%20Algae%20as%20Environmental%20Indicators%3A%20A%20Case%20Study%20From%20the%20Attard%20Member%20%28Chattian%2C%20Malta%29&journal=Geodiversitas&volume=34&pages=151\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B130\" id=\"B130\"\u003E\u003C\u002Fa\u003E Raffi I., De Bernardi B. (2008). Response of Calcareous Nannofossils to the Paleocene–Eocene Thermal Maximum: Observations on Composition, Preservation and Calcification in Sediments From ODP Site 1263 (Walvis Ridge — SW Atlantic). \u003Ci\u003EMar. Micropaleontol.\u003C\u002Fi\u003E 69, 119–138. doi: 10.1016\u002Fj.marmicro.2008.07.002\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.marmicro.2008.07.002\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=I.+Raffi&author=B.+De%20Bernardi&publication_year=2008&title=Response%20of%20Calcareous%20Nannofossils%20to%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%3A%20Observations%20on%20Composition%2C%20Preservation%20and%20Calcification%20in%20Sediments%20From%20ODP%20Site%201263%20%28Walvis%20Ridge%20%E2%80%94%20SW%20Atlantic%29&journal=Mar.+Micropaleontol.&volume=69&pages=119\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B131\" id=\"B131\"\u003E\u003C\u002Fa\u003E Ridgwell A., Schmidt D. N. (2010). Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. \u003Ci\u003ENat. Geosc.\u003C\u002Fi\u003E 3, 196–200. doi: 10.1038\u002Fngeo755\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fngeo755\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.+Ridgwell&author=D.%20N.+Schmidt&publication_year=2010&title=Past%20Constraints%20on%20the%20Vulnerability%20of%20Marine%20Calcifiers%20to%20Massive%20Carbon%20Dioxide%20Release&journal=Nat.+Geosc.&volume=3&pages=196\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B132\" id=\"B132\"\u003E\u003C\u002Fa\u003E Robador A. (2008). \u003Ci\u003EEl Paleoceno E Ilerdiense Inferior Del Pirineo Occidental: Estratigrafía Y Sedimentología\u003C\u002Fi\u003E (Ph.D. Thesis University of the Basque Spain. Publ. Inst. Geol. Min. Esp., Ser. Tesis Doctorales 12).\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.+Robador&publication_year=2008&book=El+Paleoceno+E+Ilerdiense+Inferior+Del+Pirineo+Occidental:+Estratigrafía+Y+Sedimentología&\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B133\" id=\"B133\"\u003E\u003C\u002Fa\u003E Robador A., Pujalte V., Samsó J. M., Payros A. (2009). Registro Geológico Del Máximo Térmico Del Paleoceno-Eoceno En El Parque Nacional De Ordesa Y Monte Perdido (Pirineo Central). \u003Ci\u003EGeogaceta\u003C\u002Fi\u003E 46, 111–114.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.+Robador&author=V.+Pujalte&author=J.%20M.+Sams%C3%B3&author=A.+Payros&publication_year=2009&title=Registro%20Geol%C3%B3gico%20Del%20M%C3%A1ximo%20T%C3%A9rmico%20Del%20Paleoceno-Eoceno%20En%20El%20Parque%20Nacional%20De%20Ordesa%20Y%20Monte%20Perdido%20%28Pirineo%20Central%29&journal=Geogaceta&volume=46&pages=111\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B134\" id=\"B134\"\u003E\u003C\u002Fa\u003E Rösler A., Perfectti F., Peña V., Aguirre J., Braga J.C. (2017). Timing of the Evolutionary History of Corallinaceae (Corallinales, Rhodophyta). \u003Ci\u003EJ. Phycol.\u003C\u002Fi\u003E 53, 567–576.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28191634\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.+R%C3%B6sler&author=F.+Perfectti&author=V.+Pe%C3%B1a&author=J.+Aguirre&author=J.C.+Braga&publication_year=2017&title=Timing%20of%20the%20Evolutionary%20History%20of%20Corallinaceae%20%28Corallinales%2C%20Rhodophyta%29&journal=J.+Phycol.&volume=53&pages=567\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B135\" id=\"B135\"\u003E\u003C\u002Fa\u003E Sarkar S. (2018). The Enigmatic Palaeocene-Eocene Coralline \u003Ci\u003EDistichoplax\u003C\u002Fi\u003E: Approaching the Structural Complexities, Ecological Affinities and Extinction Hypotheses. \u003Ci\u003EMar. Micropaleontol.\u003C\u002Fi\u003E 139, 72–83. doi: 10.1016\u002Fj.marmicro.2017.12.001\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.marmicro.2017.12.001\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=S.+Sarkar&publication_year=2018&title=The%20Enigmatic%20Palaeocene-Eocene%20Coralline%20Distichoplax%3A%20Approaching%20the%20Structural%20Complexities%2C%20Ecological%20Affinities%20and%20Extinction%20Hypotheses&journal=Mar.+Micropaleontol.&volume=139&pages=72\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B136\" id=\"B136\"\u003E\u003C\u002Fa\u003E Schaub H. (1951). Stratigraphie Und Paläontologie Des Schlierenflysches Mit Besonderer Berücksichtigung Der Paleocaenen Und Untereocaenen Nummuliten Und Assilinen. \u003Ci\u003ESchw. Paläontol. Abh.\u003C\u002Fi\u003E 68, 1–222.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=H.+Schaub&publication_year=1951&title=Stratigraphie%20Und%20Pal%C3%A4ontologie%20Des%20Schlierenflysches%20Mit%20Besonderer%20Ber%C3%BCcksichtigung%20Der%20Paleocaenen%20Und%20Untereocaenen%20Nummuliten%20Und%20Assilinen&journal=Schw.+Paläontol.+Abh.&volume=68&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B137\" id=\"B137\"\u003E\u003C\u002Fa\u003E Schaub H. (1973). “La Sección De Campo (Prov. De Huesca: Enadimsa),” in \u003Ci\u003ELibro-Guía Del XIII Coloquio Europeo De Micropaleontología\u003C\u002Fi\u003E. Ed. Enadimsa(España), 139–158.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=H.+Schaub&publication_year=1973&title=La%20Secci%C3%B3n%20De%20Campo%20%28Prov.%20De%20Huesca%3A%20Enadimsa%29&book=Libro-Guía+Del+XIII+Coloquio+Europeo+De+Micropaleontología&pages=139\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B138\" id=\"B138\"\u003E\u003C\u002Fa\u003E Scheibner C., Rasser M. W., Mutti M. (2007). The Campo Section (Pyrenees, Spain) Revisited: Implications for Changing Benthic Carbonate Assemblages Across the Paleocene-Eocene Boundary. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 248, 145–168. doi: 10.1016\u002Fj.palaeo.2006.12.007\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2006.12.007\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=C.+Scheibner&author=M.%20W.+Rasser&author=M.+Mutti&publication_year=2007&title=The%20Campo%20Section%20%28Pyrenees%2C%20Spain%29%20Revisited%3A%20Implications%20for%20Changing%20Benthic%20Carbonate%20Assemblages%20Across%20the%20Paleocene-Eocene%20Boundary&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=248&pages=145\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B139\" id=\"B139\"\u003E\u003C\u002Fa\u003E Scheibner C., Speijer R. P. (2008). Late Paleocene-Early Eocene Tethyan Carbonate Platform Evolution – A Response to Long- and Short-Term Paleoclimatic Change. \u003Ci\u003EEarth-Sc. Rev.\u003C\u002Fi\u003E 90, 71–102. doi: 10.1016\u002Fj.earscirev.2008.07.002\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.earscirev.2008.07.002\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=C.+Scheibner&author=R.%20P.+Speijer&publication_year=2008&title=Late%20Paleocene-Early%20Eocene%20Tethyan%20Carbonate%20Platform%20Evolution%20%E2%80%93%20A%20Response%20to%20Long-%20and%20Short-Term%20Paleoclimatic%20Change&journal=Earth-Sc.+Rev.&volume=90&pages=71\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B140\" id=\"B140\"\u003E\u003C\u002Fa\u003E Scheibner C., Speijer R. P., Marzouk A. (2005). Larger Foraminiferal Turnover During the Paleocene\u002FEocene Thermal Maximum and Paleoclimatic Control on the Evolution of Platform Ecosystems. \u003Ci\u003EGeology\u003C\u002Fi\u003E 33, 493–496. doi: 10.1130\u002FG21237.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002FG21237.1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=C.+Scheibner&author=R.%20P.+Speijer&author=A.+Marzouk&publication_year=2005&title=Larger%20Foraminiferal%20Turnover%20During%20the%20Paleocene%2FEocene%20Thermal%20Maximum%20and%20Paleoclimatic%20Control%20on%20the%20Evolution%20of%20Platform%20Ecosystems&journal=Geology&volume=33&pages=493\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B141\" id=\"B141\"\u003E\u003C\u002Fa\u003E Schmitz B., Pujalte V. (2003). Sea-Level, Humidity, and Land-Erosion Records Across the Initial Eocene Thermal Maximum From a Continental-Marine Transect in Northern Spain. \u003Ci\u003EGeology\u003C\u002Fi\u003E 31, 689–692. doi: 10.1130\u002FG19527.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002FG19527.1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=B.+Schmitz&author=V.+Pujalte&publication_year=2003&title=Sea-Level%2C%20Humidity%2C%20and%20Land-Erosion%20Records%20Across%20the%20Initial%20Eocene%20Thermal%20Maximum%20From%20a%20Continental-Marine%20Transect%20in%20Northern%20Spain&journal=Geology&volume=31&pages=689\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B142\" id=\"B142\"\u003E\u003C\u002Fa\u003E Schmitz B., Pujalte V. (2007). Abrupt Increase in Seasonal Extreme Precipitation at the Paleocene–Eocene Boundary. \u003Ci\u003EGeology\u003C\u002Fi\u003E 35, 215–218. doi: 10.1130\u002FG23261A.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002FG23261A.1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=B.+Schmitz&author=V.+Pujalte&publication_year=2007&title=Abrupt%20Increase%20in%20Seasonal%20Extreme%20Precipitation%20at%20the%20Paleocene%E2%80%93Eocene%20Boundary&journal=Geology&volume=35&pages=215\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B143\" id=\"B143\"\u003E\u003C\u002Fa\u003E Segonzac G., Charollais J. (1974). Sur Quelques Algues Calcaires (Corallinacées, Payssoneliacées) Des Calcaires À Petites Nummulites Des Chaînes Subalpines Septentrionales (Massif Des Bornes, Haute-Savoie, France). \u003Ci\u003EArch. Sc. Genève\u003C\u002Fi\u003E 27, 111–132.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.+Segonzac&author=J.+Charollais&publication_year=1974&title=Sur%20Quelques%20Algues%20Calcaires%20%28Corallinac%C3%A9es%2C%20Payssoneliac%C3%A9es%29%20Des%20Calcaires%20%C3%80%20Petites%20Nummulites%20Des%20Cha%C3%AEnes%20Subalpines%20Septentrionales%20%28Massif%20Des%20Bornes%2C%20Haute-Savoie%2C%20France%29&journal=Arch.+Sc.+Genève&volume=27&pages=111\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B144\" id=\"B144\"\u003E\u003C\u002Fa\u003E Serra-Kiel J., Canudo J. I., Dinarés-Turell J., Molina E., Ortiz N., Pascual J. O., et al. (1994). Cronoestratigrafía De Los Sedimentos Marinos Del Terciario Inferior De La Cuenca De Graus-Tremp (Zona Central Surpirenaica). \u003Ci\u003ERev. Soc Geol. Esp.\u003C\u002Fi\u003E 7, 273–297.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Serra-Kiel&author=J.%20I.+Canudo&author=J.+Dinar%C3%A9s-Turell&author=E.+Molina&author=N.+Ortiz&author=J.%20O.+Pascual&publication_year=1994&title=Cronoestratigraf%C3%ADa%20De%20Los%20Sedimentos%20Marinos%20Del%20Terciario%20Inferior%20De%20La%20Cuenca%20De%20Graus-Tremp%20%28Zona%20Central%20Surpirenaica%29&journal=Rev.+Soc+Geol.+Esp.&volume=7&pages=273\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B145\" id=\"B145\"\u003E\u003C\u002Fa\u003E Serra-Kiel J., Hottinger L., Caus E., Drobne K., Ferràndez C., Jauhri A. K., et al. (1998). Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. \u003Ci\u003EBull. Soc Géol. Fr.\u003C\u002Fi\u003E 169, 281–299.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Serra-Kiel&author=L.+Hottinger&author=E.+Caus&author=K.+Drobne&author=C.+Ferr%C3%A0ndez&author=A.%20K.+Jauhri&publication_year=1998&title=Larger%20Foraminiferal%20Biostratigraphy%20of%20the%20Tethyan%20Paleocene%20and%20Eocene&journal=Bull.+Soc+Géol.+Fr.&volume=169&pages=281\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B146\" id=\"B146\"\u003E\u003C\u002Fa\u003E Serra-Kiel J., Vicedo V., Baceta J. I., Bernaola G., Robador A. (2020). Paleocene Larger Foraminifera From the Pyrenean Basin With a Recalibration of the Paleocene Shallow Benthic Zones. \u003Ci\u003EGeol. Acta\u003C\u002Fi\u003E 18.8, 1–69. doi: 10.1344\u002FGeologicaActa2020.18.8\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1344\u002FGeologicaActa2020.18.8\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.+Serra-Kiel&author=V.+Vicedo&author=J.%20I.+Baceta&author=G.+Bernaola&author=A.+Robador&publication_year=2020&title=Paleocene%20Larger%20Foraminifera%20From%20the%20Pyrenean%20Basin%20With%20a%20Recalibration%20of%20the%20Paleocene%20Shallow%20Benthic%20Zones&journal=Geol.+Acta&volume=18.8&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B147\" id=\"B147\"\u003E\u003C\u002Fa\u003E Sluijs A., Bowen G. J., Brinkhuis H., Lourens L. J., Thomas E. (2007). “The Palaeocene–Eocene Thermal Maximum Super Greenhouse: Biotic and Geochemical Signatures, Age Models and Mechanisms of Global Change,” in \u003Ci\u003EDeep-Time Perspectives on Climate Change: Marrying the Signal From Computer Models and Biological Proxies\u003C\u002Fi\u003E. Eds. Williams M., Haywood A. M., Gregory F. J., Schmidt D. N. (London: Micropalaeontol. Soc., Geol. Soc., Sp. Publ), 323–349.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=A.+Sluijs&author=G.%20J.+Bowen&author=H.+Brinkhuis&author=L.%20J.+Lourens&author=E.+Thomas&publication_year=2007&title=The%20Palaeocene%E2%80%93Eocene%20Thermal%20Maximum%20Super%20Greenhouse%3A%20Biotic%20and%20Geochemical%20Signatures%2C%20Age%20Models%20and%20Mechanisms%20of%20Global%20Change&book=Deep-Time+Perspectives+on+Climate+Change:+Marrying+the+Signal+From+Computer+Models+and+Biological+Proxies&pages=323\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B148\" id=\"B148\"\u003E\u003C\u002Fa\u003E Speijer R. P., Morsi A. M. M. (2002). Ostracode Turnover and Sea-Level Changes Associated With the Paleocene-Eocene Thermal Maximum. \u003Ci\u003EGeology\u003C\u002Fi\u003E 30, 23–26. doi: 10.1130\u002F0091-7613(2002)030<0023:OTASLC>2.0.CO;2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1130\u002F0091-7613(2002)030<0023:OTASLC>2.0.CO;2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20P.+Speijer&author=A.%20M.%20M.+Morsi&publication_year=2002&title=Ostracode%20Turnover%20and%20Sea-Level%20Changes%20Associated%20With%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Geology&volume=30&pages=23\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B149\" id=\"B149\"\u003E\u003C\u002Fa\u003E Speijer R. P., Scheibner C., Stassen P., Morsi A. M. M. (2012). Response of Marine Ecosystems to Deep-Time Global Warming: A Synthesis of Biotic Patterns Across the Paleocene-Eocene Thermal Maximum (PETM). \u003Ci\u003EAust. J. Earth Sc.\u003C\u002Fi\u003E 105, 6–16.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20P.+Speijer&author=C.+Scheibner&author=P.+Stassen&author=A.%20M.%20M.+Morsi&publication_year=2012&title=Response%20of%20Marine%20Ecosystems%20to%20Deep-Time%20Global%20Warming%3A%20A%20Synthesis%20of%20Biotic%20Patterns%20Across%20the%20Paleocene-Eocene%20Thermal%20Maximum%20%28PETM%29&journal=Aust.+J.+Earth+Sc.&volume=105&pages=6\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B150\" id=\"B150\"\u003E\u003C\u002Fa\u003E Stockar R. (1997). Contributo Alla Conoscenza Dell'eocene Nel Canton Ticino: L'associazione Ad Alghe Calcaree Fossili Di Prella (Mendrisiotto). \u003Ci\u003EBoll. Soc Ticinese Sci. Nat.\u003C\u002Fi\u003E 85, 23–46.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.+Stockar&publication_year=1997&title=Contributo%20Alla%20Conoscenza%20Dell%27eocene%20Nel%20Canton%20Ticino%3A%20L%27associazione%20Ad%20Alghe%20Calcaree%20Fossili%20Di%20Prella%20%28Mendrisiotto%29&journal=Boll.+Soc+Ticinese+Sci.+Nat.&volume=85&pages=23\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B151\" id=\"B151\"\u003E\u003C\u002Fa\u003E Stockar R. (2000). Fossil Coralline Algae From the Paleocene Montorfano Member Type-Section (Tabiago Formation, Northern Italy). \u003Ci\u003EEclog. Geol. Helv.\u003C\u002Fi\u003E 93, 409–427.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.+Stockar&publication_year=2000&title=Fossil%20Coralline%20Algae%20From%20the%20Paleocene%20Montorfano%20Member%20Type-Section%20%28Tabiago%20Formation%2C%20Northern%20Italy%29&journal=Eclog.+Geol.+Helv.&volume=93&pages=409\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B152\" id=\"B152\"\u003E\u003C\u002Fa\u003E Taylor J. D., Glover E. A. (2006). Lucinidae (Bivalvia) – the Most Diverse Group of Chemosymbiotic Molluscs. \u003Ci\u003EZool. J. Lin. Soc\u003C\u002Fi\u003E 148, 421–438. doi: 10.1111\u002Fj.1096-3642.2006.00261.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1096-3642.2006.00261.x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20D.+Taylor&author=E.%20A.+Glover&publication_year=2006&title=Lucinidae%20%28Bivalvia%29%20%E2%80%93%20the%20Most%20Diverse%20Group%20of%20Chemosymbiotic%20Molluscs&journal=Zool.+J.+Lin.+Soc&volume=148&pages=421\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B153\" id=\"B153\"\u003E\u003C\u002Fa\u003E Thomas E. (1990). “Late Cretaceous Through Neogene Deep-Sea Benthic Fora- minifers (Maud Rise, Weddell Sea, Antarctica),” in \u003Ci\u003EProceedings of the Ocean Drilling Program, Scientific Results\u003C\u002Fi\u003E, vol. 113 . Ed. Barker P. F., Kennett J. P., O'Connell S., Berkovitz S., Bryant W. R., Burckle L. H., et al (Texas, USA: Texas A & M University, College Station), 571–594.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Thomas&publication_year=1990&title=Late%20Cretaceous%20Through%20Neogene%20Deep-Sea%20Benthic%20Fora-%20minifers%20%28Maud%20Rise%2C%20Weddell%20Sea%2C%20Antarctica%29&book=Proceedings+of+the+Ocean+Drilling+Program,+Scientific+Results&volume=113&pages=571\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B154\" id=\"B154\"\u003E\u003C\u002Fa\u003E Thomas E. (2003). “Extinction and Food at the Seafloor: A High-Resolution Benthic Foraminiferal Record Across the Initial Eocene Thermal Maximum, Southern Ocean Site 690,” in \u003Ci\u003ECauses and Consequences of Globally Warm Climates in the Early Paleogene\u003C\u002Fi\u003E, vol. 369 . Eds. Wing S. L., Gingerich P. D., Schmitz B., Thomas E., 319–332. USA: Geol. Soc. Am. Sp. Publ.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Thomas&publication_year=2003&title=Extinction%20and%20Food%20at%20the%20Seafloor%3A%20A%20High-Resolution%20Benthic%20Foraminiferal%20Record%20Across%20the%20Initial%20Eocene%20Thermal%20Maximum%2C%20Southern%20Ocean%20Site%20690&book=Causes+and+Consequences+of+Globally+Warm+Climates+in+the+Early+Paleogene&volume=369&pages=319\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B155\" id=\"B155\"\u003E\u003C\u002Fa\u003E Thomas E. (2007). “Cenozoic Mass Extinctions in the Deep Sea: What Perturbs the Largest Habitat on Earth?,” in \u003Ci\u003ELarge Ecosystem Perturbations: Causes and Consequences\u003C\u002Fi\u003E, vol. 424 . Eds. Monechi S., Coccioni R., Rampino M. R., 1–23. USA: Geol. Soc. Am. Sp. Papers.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Thomas&publication_year=2007&title=Cenozoic%20Mass%20Extinctions%20in%20the%20Deep%20Sea%3A%20What%20Perturbs%20the%20Largest%20Habitat%20on%20Earth&book=Large+Ecosystem+Perturbations:+Causes+and+Consequences&volume=424&pages=1\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B156\" id=\"B156\"\u003E\u003C\u002Fa\u003E Thomas E., Shackleton N. J. (1996). “The Paleocene-Eocene Benthic Foraminiferal Extinction and Stable Isotope Anomalies,” in \u003Ci\u003ECorrelation of the Early Paleogene in Northwest Europe\u003C\u002Fi\u003E, vol. 101 . Eds. Knox R. W. O. B., Corfield R., Dunay R. E., 401–441. London, UK: Geol. Soc., Sp. Publ.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=E.+Thomas&author=N.%20J.+Shackleton&publication_year=1996&title=The%20Paleocene-Eocene%20Benthic%20Foraminiferal%20Extinction%20and%20Stable%20Isotope%20Anomalies&book=Correlation+of+the+Early+Paleogene+in+Northwest+Europe&volume=101&pages=401\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B157\" id=\"B157\"\u003E\u003C\u002Fa\u003E Vannucci G. (1970). Microfacies a Nullipore in Un Ciottolo Calcareo Della Morena Del Garda. \u003Ci\u003EAtti Istit. Geol. Univ. Gennova\u003C\u002Fi\u003E 7, 427–482.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.+Vannucci&publication_year=1970&title=Microfacies%20a%20Nullipore%20in%20Un%20Ciottolo%20Calcareo%20Della%20Morena%20Del%20Garda&journal=Atti+Istit.+Geol.+Univ.+Gennova&volume=7&pages=427\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B158\" id=\"B158\"\u003E\u003C\u002Fa\u003E Vannucci G., Quaranta F., Basso D. (2008). Revision and Re-Documentation of M. Airoldi’s Species of \u003Ci\u003ELithophyllum\u003C\u002Fi\u003E From the Tertiary Piedmont Basin. \u003Ci\u003ERiv. Ital. Paleontol. Stratigr.\u003C\u002Fi\u003E 114, 515–528. doi: 10.13130\u002F2039-4942\u002F5915\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.13130\u002F2039-4942\u002F5915\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.+Vannucci&author=F.+Quaranta&author=D.+Basso&publication_year=2008&title=Revision%20and%20Re-Documentation%20of%20M.%20Airoldi%E2%80%99s%20Species%20of%20Lithophyllum%20From%20the%20Tertiary%20Piedmont%20Basin&journal=Riv.+Ital.+Paleontol.+Stratigr.&volume=114&pages=515\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B159\" id=\"B159\"\u003E\u003C\u002Fa\u003E Vannucci G., Quaranta F., Basso D. (2010). Revision and Re-Documentation of M. Airoldi Species of \u003Ci\u003ELithothamnion\u003C\u002Fi\u003E From the Tertiary Piedmont Basin. \u003Ci\u003ERiv. It. Paleont. Strat.\u003C\u002Fi\u003E 116, 223–235. doi: 10.13130\u002F2039-4942\u002F5952\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.13130\u002F2039-4942\u002F5952\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=G.+Vannucci&author=F.+Quaranta&author=D.+Basso&publication_year=2010&title=Revision%20and%20Re-Documentation%20of%20M.%20Airoldi%20Species%20of%20Lithothamnion%20From%20the%20Tertiary%20Piedmont%20Basin&journal=Riv.+It.+Paleont.+Strat.&volume=116&pages=223\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B160\" id=\"B160\"\u003E\u003C\u002Fa\u003E Woelkerling W. J., Irvine L. M., Harvey A. (1993). Growth-Forms in non-Geniculate Coralline Red Algae (Corallinales, Rhodophyta). \u003Ci\u003EAust. Syst. Bot.\u003C\u002Fi\u003E 6, 277–293. doi: 10.1071\u002FSB9930277\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1071\u002FSB9930277\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=W.%20J.+Woelkerling&author=L.%20M.+Irvine&author=A.+Harvey&publication_year=1993&title=Growth-Forms%20in%20non-Geniculate%20Coralline%20Red%20Algae%20%28Corallinales%2C%20Rhodophyta%29&journal=Aust.+Syst.+Bot.&volume=6&pages=277\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B161\" id=\"B161\"\u003E\u003C\u002Fa\u003E Yamaguchi T., Norris R. D., Bornemann A. (2012). Dwarfing of Ostracodes During the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and Its Implication for Changes in Organic Carbon Cycle in Deep-Sea Benthic Ecosystem. \u003Ci\u003EPalaeogeogr. Palaeoclimatol. Palaeoecol.\u003C\u002Fi\u003E 346-347, 130–144. doi: 10.1016\u002Fj.palaeo.2012.06.004\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.palaeo.2012.06.004\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=T.+Yamaguchi&author=R.%20D.+Norris&author=A.+Bornemann&publication_year=2012&title=Dwarfing%20of%20Ostracodes%20During%20the%20Paleocene%E2%80%93Eocene%20Thermal%20Maximum%20at%20DSDP%20Site%20401%20%28Bay%20of%20Biscay%2C%20North%20Atlantic%29%20and%20Its%20Implication%20for%20Changes%20in%20Organic%20Carbon%20Cycle%20in%20Deep-Sea%20Benthic%20Ecosystem&journal=Palaeogeogr.+Palaeoclimatol.+Palaeoecol.&volume=346-347&pages=130\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B162\" id=\"B162\"\u003E\u003C\u002Fa\u003E Zachos J. C., Dickens G. R., Zeebe R. E. (2008). An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics. \u003Ci\u003ENature\u003C\u002Fi\u003E 451, 279–283. doi: 10.1038\u002Fnature06588\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18202643\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature06588\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Zachos&author=G.%20R.+Dickens&author=R.%20E.+Zeebe&publication_year=2008&title=An%20Early%20Cenozoic%20Perspective%20on%20Greenhouse%20Warming%20and%20Carbon-Cycle%20Dynamics&journal=Nature&volume=451&pages=279\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B163\" id=\"B163\"\u003E\u003C\u002Fa\u003E Zachos J. C., Röhl U., Schellenberg S. A., Sluijs A., Hodell D. A., Kelly D. C., et al. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. \u003Ci\u003EScience\u003C\u002Fi\u003E 308, 1611–1615. doi: 10.1126\u002Fscience.1109004\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F15947184\u002F\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.1109004\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=J.%20C.+Zachos&author=U.+R%C3%B6hl&author=S.%20A.+Schellenberg&author=A.+Sluijs&author=D.%20A.+Hodell&author=D.%20C.+Kelly&publication_year=2005&title=Rapid%20Acidification%20of%20the%20Ocean%20During%20the%20Paleocene-Eocene%20Thermal%20Maximum&journal=Science&volume=308&pages=1611\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B164\" id=\"B164\"\u003E\u003C\u002Fa\u003E Zeebe R. E. (2012). History of Seawater Carbonate Chemistry, Atmospheric CO\u003Csub\u003E2\u003C\u002Fsub\u003E, and Ocean Acidification. \u003Ci\u003EAnn. Rev. Earth Planet. Sc.\u003C\u002Fi\u003E 40, 141–165. doi: 10.1146\u002Fannurev-earth-042711-105521\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1146\u002Fannurev-earth-042711-105521\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20E.+Zeebe&publication_year=2012&title=History%20of%20Seawater%20Carbonate%20Chemistry%2C%20Atmospheric%20CO2%2C%20and%20Ocean%20Acidification&journal=Ann.+Rev.+Earth+Planet.+Sc.&volume=40&pages=141\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B165\" id=\"B165\"\u003E\u003C\u002Fa\u003E Zeebe R. E., Ridgwell A. (2011). “Past Changes in Ocean Carbonate Chemistry,” in \u003Ci\u003EOcean Acidification\u003C\u002Fi\u003E. Eds. Gattuso J. P., Hansson L. (UK: Oxford Univ. Press), 21–40.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20E.+Zeebe&author=A.+Ridgwell&publication_year=2011&title=Past%20Changes%20in%20Ocean%20Carbonate%20Chemistry&book=Ocean+Acidification&pages=21\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B166\" id=\"B166\"\u003E\u003C\u002Fa\u003E Zeebe R. E., Westbroek P. (2003). A Simple Model for the CaCO\u003Csub\u003E3\u003C\u002Fsub\u003E Saturation State of the Ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean. \u003Ci\u003EGeochem. Geoph. Geosys.\u003C\u002Fi\u003E 4, 1104. doi: 10.1029\u002F2003GC000538\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1029\u002F2003GC000538\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20E.+Zeebe&author=P.+Westbroek&publication_year=2003&title=A%20Simple%20Model%20for%20the%20CaCO3%20Saturation%20State%20of%20the%20Ocean%3A%20The%20%E2%80%9CStrangelove%2C%E2%80%9D%20the%20%E2%80%9CNeritan%2C%E2%80%9D%20and%20the%20%E2%80%9CCretan%E2%80%9D%20Ocean&journal=Geochem.+Geoph.+Geosys.&volume=4&pages=1104\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B167\" id=\"B167\"\u003E\u003C\u002Fa\u003E Zeebe R. E., Zachos J. C. (2013). Long-Term Legacy of Massive Carbon Input to the Earth System: Anthropocene Versus Eocene. \u003Ci\u003EPhilos. Trans. R. Soc A\u003C\u002Fi\u003E 371, 20120006. doi: 10.1098\u002Frsta.2012.0006\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1098\u002Frsta.2012.0006\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?author=R.%20E.+Zeebe&author=J.%20C.+Zachos&publication_year=2013&title=Long-Term%20Legacy%20of%20Massive%20Carbon%20Input%20to%20the%20Earth%20System%3A%20Anthropocene%20Versus%20Eocene&journal=Philos.+Trans.+R.+Soc+A&volume=371&pages=20120006\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"thinLineM20\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"AbstractSummary\"\u003E\u003Cp\u003E\u003Cspan\u003EKeywords:\u003C\u002Fspan\u003E rhodolith beds, thermal maximum, paleocene\u002Feocene boundary, ocean acidification, pyrenean basin\u003C\u002Fp\u003E\u003Cp\u003E\u003Cspan\u003ECitation:\u003C\u002Fspan\u003E Aguirre J, Baceta JI and Braga JC (2022) Coralline Algae at the Paleocene\u002FEocene Thermal Maximum in the Southern Pyrenees (N Spain). \u003Ci\u003EFront. Mar. Sci.\u003C\u002Fi\u003E 9:899877. doi: 10.3389\u002Ffmars.2022.899877\u003C\u002Fp\u003E\u003Cp id=\"timestamps\"\u003E\u003Cspan\u003EReceived:\u003C\u002Fspan\u003E 19 March 2022; \u003Cspan\u003EAccepted:\u003C\u002Fspan\u003E 23 May 2022;\u003Cbr\u002F\u003E\u003Cspan\u003EPublished:\u003C\u002Fspan\u003E 04 July 2022.\u003C\u002Fp\u003E\u003Cdiv\u003E\u003Cp\u003EEdited by:\u003C\u002Fp\u003E\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F496848\"\u003EGang Li\u003C\u002Fa\u003E, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China\u003C\u002Fdiv\u003E\u003Cdiv\u003E\u003Cp\u003EReviewed by:\u003C\u002Fp\u003E\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F1756246\"\u003EAmit K. Ghosh\u003C\u002Fa\u003E, Birbal Sahni Institute of Palaeosciences (BSIP), India\u003Cbr\u002F\u003E\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F1628090\"\u003ESherif Farouk\u003C\u002Fa\u003E, Egyptian Petroleum Research Institute, Egypt\u003C\u002Fdiv\u003E\u003Cp\u003E\u003Cspan\u003ECopyright\u003C\u002Fspan\u003E © 2022 Aguirre, Baceta and Braga. This is an open-access article distributed under the terms of the \u003Ca rel=\"license\" href=\"http:\u002F\u002Fcreativecommons.org\u002Flicenses\u002Fby\u002F4.0\u002F\" target=\"_blank\"\u003ECreative Commons Attribution License (CC BY)\u003C\u002Fa\u003E. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.\u003C\u002Fp\u003E\u003Cp\u003E\u003Cspan\u003E*Correspondence:\u003C\u002Fspan\u003E Julio Aguirre, \u003Ca href=\"mailto:jaguirre@ugr.es\"\u003Ejaguirre@ugr.es\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003Cp\u003E\u003Cspan\u003E\u003Csup\u003E†\u003C\u002Fsup\u003E\u003C\u002Fspan\u003EThese authors have contributed equally to this work\u003C\u002Fp\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003C\u002Fdiv\u003E",menuHtml:"\u003Cul class=\"flyoutJournal\"\u003E\u003Cli\u003E\u003Ca href=\"#h1\"\u003EAbstract\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h2\"\u003EIntroduction\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h3\"\u003EGeological Setting\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h4\"\u003EStratigraphic Sections\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h5\"\u003EMethods\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h6\"\u003EResults\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h7\"\u003EDiscussion\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h8\"\u003EConclusions\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h9\"\u003ETaxonomic Appendix\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h10\"\u003EData Availability Statement\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h11\"\u003EAuthor Contributions\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h12\"\u003EFunding \u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h13\"\u003EConflict of Interest\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h14\"\u003EPublisher’s Note\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h15\"\u003EReferences\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003C\u002Ful\u003E"},files:[{name:"EPUB.epub",fileServerPackageEntryId:h,type:{code:ap,name:ap}},{name:J,fileServerPackageEntryId:J,type:{code:o,name:o}},{name:J,fileServerPackageEntryId:h,type:{code:o,name:o}},{name:aq,fileServerPackageEntryId:aq,type:{code:"NLM_XML",name:"XML"}},{name:"Provisional PDF.pdf",fileServerPackageEntryId:h,type:{code:o,name:o}}]},currentArticlePageMetaInfo:{title:ar,link:[{rel:"canonical",href:as}],meta:[{hid:v,property:v,name:v,content:at},{hid:au,property:au,name:"title",content:ar},{hid:av,property:av,name:v,content:at},{hid:aw,name:aw,content:"Rhodolith beds,Thermal maximum,Paleocene\u002FEocene boundary,ocean acidification,Pyrenean Basin"},{hid:ax,property:ax,name:"site_name",content:w},{hid:ay,property:ay,name:S,content:"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=1200&f=png\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F899877\u002Ffmars-09-899877-HTML\u002Fimage_m\u002Ffmars-09-899877-g001.jpg"},{hid:az,property:az,name:"type",content:"article"},{hid:aA,property:aA,name:"url",content:as},{hid:aB,name:aB,content:"summary_large_image"},{hid:aC,name:aC,content:"9"},{hid:aD,name:aD,content:n},{hid:aE,name:aE,content:w},{hid:aF,name:aF,content:D},{hid:aG,name:aG,content:E},{hid:aH,name:aH,content:X},{hid:aI,name:aI,content:"899877"},{hid:aJ,name:aJ,content:"English"},{hid:aK,name:aK,content:Y},{hid:aL,name:aL,content:"Rhodolith beds; Thermal maximum; Paleocene\u002FEocene boundary; ocean acidification; Pyrenean Basin"},{hid:aM,name:aM,content:Z},{hid:aN,name:aN,content:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Farticles\u002F10.3389\u002Ffmars.2022.899877\u002Fpdf"},{hid:aO,name:aO,content:"2022\u002F05\u002F23"},{hid:aP,name:aP,content:"2022\u002F07\u002F04"},{hid:"citation_author_0",name:K,content:"Aguirre, Julio"},{hid:"citation_author_institution_0",name:L,content:aQ},{hid:"citation_author_1",name:K,content:"Baceta, Juan I."},{hid:"citation_author_institution_1",name:L,content:"Departamento de Geolog铆a, Facultad de Ciencia y Tecnolog铆a, Universidad del Pa铆s Vasco, Spain"},{hid:"citation_author_2",name:K,content:"Braga, Juan C."},{hid:"citation_author_institution_2",name:L,content:aQ},{hid:aR,name:aR,content:"doi:10.3389\u002Ffmars.2022.899877"}],script:[{src:"https:\u002F\u002Fcdnjs.cloudflare.com\u002Fpolyfill\u002Fv3\u002Fpolyfill.min.js?features=es6",body:g,async:g},{src:"https:\u002F\u002Fcdnjs.cloudflare.com\u002Fajax\u002Flibs\u002Fmathjax\u002F2.7.1\u002FMathJax.js?config=TeX-MML-AM_CHTML",body:g,async:g},{src:"https:\u002F\u002Fd1bxh8uas1mnw7.cloudfront.net\u002Fassets\u002Faltmetric_badges-f0bc9b243ff5677d05460c1eb71834ca998946d764eb3bc244ab4b18ba50d21e.js",body:g,async:g},{src:"https:\u002F\u002Fapi.altmetric.com\u002Fv1\u002Fdoi\u002F10.3389\u002Ffmars.2022.899877?callback=_altmetric.embed_callback&domain=www.frontiersin.org&key=3c130976ca2b8f2e88f8377633751ba1&cache_until=14-15",body:g,async:g},{src:"https:\u002F\u002Fwidgets.figshare.com\u002Fstatic\u002Ffigshare.js",body:g,async:g},{src:"https:\u002F\u002Fcrossmark-cdn.crossref.org\u002Fwidget\u002Fv2.0\u002Fwidget.js",body:g,async:g}]},articleHubArticlesList:[],showCrossmarkWidget:g,hasSupplementalData:l,isPreviewArticlePage:l,settingsFeaturesSwitchers:{displayTitlePillLabels:g,displayRelatedArticlesBox:g,showEditors:g,showReviewers:g,showLoopImpactLink:g},tenantConfig:{spaceId:c,name:w,availableJournalPages:[aS,aT,aU,"volumes","about"]},components:{ibar:{tenantLogo:h,journalLogo:h,aboutUs:[{title:"Who we are",links:[{text:"Mission and values",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fmission",target:f,ariaLabel:e},{text:"History",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fhistory",target:f,ariaLabel:e},{text:"Leadership",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fleadership",target:f,ariaLabel:e},{text:"Awards",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fawards",target:f,ariaLabel:e}]},{title:"Impact and progress",links:[{text:"Frontiers' impact",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fimpact",target:f,ariaLabel:e},{text:"Progress Report 2022",url:"https:\u002F\u002Fprogressreport.frontiersin.org\u002F?utm_source=fweb&utm_medium=frep&utm_campaign=pr20",target:k,ariaLabel:e},{text:"All progress reports",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fprogress-reports",target:f,ariaLabel:e}]},{title:"Publishing model",links:[{text:aV,url:aW,target:f,ariaLabel:e},{text:"Open access",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fopen-access",target:f,ariaLabel:e},{text:aX,url:aY,target:f,ariaLabel:e},{text:"Peer review",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fpeer-review",target:f,ariaLabel:e},{text:"Research integrity",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fresearch-integrity",target:f,ariaLabel:e},{text:aZ,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fresearch-topics",target:f,ariaLabel:e}]},{title:"Services",links:[{text:"Societies",url:"https:\u002F\u002Fpublishingpartnerships.frontiersin.org\u002F",target:k,ariaLabel:e},{text:"National consortia",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fopen-access-agreements\u002Fconsortia",target:f,ariaLabel:e},{text:"Institutional partnerships",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fopen-access-agreements",target:f,ariaLabel:e},{text:"Collaborators",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fcollaborators",target:f,ariaLabel:e}]},{title:"More from Frontiers",links:[{text:"Frontiers Forum",url:a_,target:k,ariaLabel:"this link will take you to the Frontiers Forum website"},{text:a$,url:ba,target:k,ariaLabel:bb},{text:"Press office",url:"https:\u002F\u002Fpressoffice.frontiersin.org\u002F",target:k,ariaLabel:"this link will take you to the Frontiers press office website"},{text:"Sustainability",url:"https:\u002F\u002Fwww.frontiersin.orgabout\u002Fsustainability",target:f,ariaLabel:"link to information about Frontiers' sustainability"},{text:bc,url:bd,target:k,ariaLabel:"this link will take you to the Frontiers careers website"},{text:"Contact us",url:be,target:f,ariaLabel:"this link will take you to the help pages to contact our support team"}]}],submitUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Fsubmission\u002Fsubmit?domainid=1&fieldid=45&specialtyid=0&entitytype=2&entityid=655",showSubmitButton:g,journal:{id:q,name:n,slug:r,sections:[{id:313,name:"Aquatic Microbiology",slug:"aquatic-microbiology"},{id:230,name:"Aquatic Physiology",slug:"aquatic-physiology"},{id:962,name:"Coastal Ocean Processes",slug:"coastal-ocean-processes"},{id:958,name:"Coral Reef Research",slug:"coral-reef-research"},{id:832,name:"Deep-Sea Environments and Ecology",slug:"deep-sea-environments-and-ecology"},{id:3472,name:"Discoveries",slug:"discoveries"},{id:780,name:"Global Change and the Future Ocean",slug:"global-change-and-the-future-ocean"},{id:742,name:"Marine Affairs and Policy",slug:"marine-affairs-and-policy"},{id:743,name:"Marine Biogeochemistry",slug:"marine-biogeochemistry"},{id:1539,name:"Marine Biology",slug:"marine-biology"},{id:764,name:"Marine Biotechnology and Bioproducts",slug:"marine-biotechnology-and-bioproducts"},{id:761,name:"Marine Conservation and Sustainability",slug:"marine-conservation-and-sustainability"},{id:am,name:an,slug:ao},{id:760,name:"Marine Evolutionary Biology, Biogeography and Species Diversity",slug:"marine-evolutionary-biology-biogeography-and-species-diversity"},{id:1091,name:"Marine Fisheries, Aquaculture and Living Resources",slug:"marine-fisheries-aquaculture-and-living-resources"},{id:793,name:"Marine Megafauna",slug:"marine-megafauna"},{id:737,name:"Marine Molecular Biology and Ecology",slug:"marine-molecular-biology-and-ecology"},{id:766,name:"Marine Pollution",slug:"marine-pollution"},{id:314,name:"Microbial Symbioses",slug:"microbial-symbioses"},{id:1185,name:"Ocean Observation",slug:"ocean-observation"},{id:794,name:"Ocean Solutions",slug:"ocean-solutions"},{id:1453,name:"Physical Oceanography",slug:"physical-oceanography"}]},sectionTerm:"Sections",aboutJournal:[{title:"Scope",links:[{text:"Field chief editors",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#about-editors",target:f,ariaLabel:e},{text:"Mission & scope",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#about-scope",target:f,ariaLabel:e},{text:"Facts",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#about-facts",target:f,ariaLabel:e},{text:"Journal sections",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#about-submission",target:f,ariaLabel:e},{text:"Open access statement",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#about-open",target:f,ariaLabel:e},{text:"Copyright statement",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#copyright-statement",target:f,ariaLabel:e},{text:"Quality",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Fabout#about-quality",target:f,ariaLabel:e}]},{title:"For authors",links:[{text:"Why submit?",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Fwhy-submit",target:f,ariaLabel:e},{text:"Article types",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Farticle-types",target:f,ariaLabel:e},{text:bf,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Fauthor-guidelines",target:f,ariaLabel:e},{text:bg,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Feditor-guidelines",target:f,ariaLabel:e},{text:"Publishing fees",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Fpublishing-fees",target:f,ariaLabel:e},{text:"Submission checklist",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Fsubmission-checklist",target:f,ariaLabel:e},{text:"Contact editorial office",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Ffor-authors\u002Fcontact-editorial-office",target:f,ariaLabel:e}]}],mainLinks:[{text:"All journals",url:bh,target:f,ariaLabel:e},{text:"All articles",url:bi,target:f,ariaLabel:e}],journalLinks:[{text:bj,url:aS,target:f,ariaLabel:e},{text:aZ,url:aU,target:f,ariaLabel:e},{text:"Editorial board",url:aT,target:f,ariaLabel:e}],helpCenterLink:{text:x,url:bk,target:k,ariaLabel:x}},footer:{blocks:[{title:"Guidelines",links:[{text:bf,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Fauthor-guidelines",target:f,ariaLabel:e},{text:bg,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Feditor-guidelines",target:f,ariaLabel:e},{text:"Policies and publication ethics",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Fpolicies-and-publication-ethics",target:f,ariaLabel:e},{text:aX,url:aY,target:f,ariaLabel:e}]},{title:"Explore",links:[{text:bj,url:bi,target:f,ariaLabel:e},{text:"Research Topics ",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fresearch-topics",target:f,ariaLabel:e},{text:"Journals",url:bh,target:f,ariaLabel:e},{text:aV,url:aW,target:f,ariaLabel:e}]},{title:"Outreach",links:[{text:"Frontiers Forum ",url:a_,target:k,ariaLabel:"Frontiers Forum website"},{text:"Frontiers Policy Labs ",url:"https:\u002F\u002Fpolicylabs.frontiersin.org\u002F",target:k,ariaLabel:e},{text:bl,url:"https:\u002F\u002Fkids.frontiersin.org\u002F",target:k,ariaLabel:"Frontiers for Young Minds journal"},{text:a$,url:ba,target:k,ariaLabel:bb}]},{title:"Connect",links:[{text:x,url:bk,target:k,ariaLabel:x},{text:"Emails and alerts ",url:"https:\u002F\u002Floop.frontiersin.org\u002Fsettings\u002Femail-preferences?a=publishers",target:k,ariaLabel:"Subscribe to Frontiers emails"},{text:"Contact us ",url:be,target:f,ariaLabel:"Subscribe to newsletter"},{text:"Submit",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fsubmission\u002Fsubmit",target:f,ariaLabel:e},{text:bc,url:bd,target:k,ariaLabel:e}]}],socialLinks:[{link:{text:bm,url:"https:\u002F\u002Fwww.facebook.com\u002FFrontiersin",target:k,ariaLabel:bm},type:y,color:z,icon:"Facebook",size:A,hiddenText:g},{link:{text:"Frontiers Twitter",url:"https:\u002F\u002Ftwitter.com\u002Ffrontiersin",target:k,ariaLabel:e},type:y,color:z,icon:"Twitter",size:A,hiddenText:g},{link:{text:"Frontiers LinkedIn",url:"https:\u002F\u002Fwww.linkedin.com\u002Fcompany\u002Ffrontiers",target:k,ariaLabel:e},type:y,color:z,icon:"LinkedIn",size:A,hiddenText:g},{link:{text:"Frontiers Instagram",url:"https:\u002F\u002Fwww.instagram.com\u002Ffrontiersin_",target:k,ariaLabel:e},type:y,color:z,icon:"Instagram",size:A,hiddenText:g}],copyright:"Frontiers Media S.A. All rights reserved",termsAndConditionsUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Flegal\u002Fterms-and-conditions",privacyPolicyUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Flegal\u002Fprivacy-policy"},newsletterComponent:e,snackbarItems:[]},mainHeader:{title:h,image:F,breadcrumbs:[],linksCollection:{total:m,items:[]},metricsCollection:{total:m,items:[]}},user:{loggedUserInfo:F},journals:[{id:I,name:bn,slug:bo,abbreviation:bp,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2445,name:bn,slug:bo,abbreviation:bp,space:{id:c,domainName:d,__typename:b},__typename:a},{id:u,name:"Test SSPH Journal",slug:"test-ssph-journal",abbreviation:"testjournal",space:{id:p,domainName:B,__typename:b},__typename:a},{id:bq,name:"TEST ALF Journal",slug:"test-alf-journal",abbreviation:"talfj",space:{id:s,domainName:M,__typename:b},__typename:a},{id:i,name:br,slug:bs,abbreviation:bt,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2360,name:br,slug:bs,abbreviation:bt,space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Smoke Test Field",slug:"smoke-test-field",abbreviation:"FJST",space:{id:N,domainName:bu,__typename:b},__typename:a},{id:bq,name:bv,slug:bw,abbreviation:bx,space:{id:p,domainName:B,__typename:b},__typename:a},{id:2077,name:bv,slug:bw,abbreviation:bx,space:{id:c,domainName:d,__typename:b},__typename:a},{id:u,name:by,slug:bz,abbreviation:bA,space:{id:s,domainName:M,__typename:b},__typename:a},{id:u,name:by,slug:bz,abbreviation:bA,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bB,name:bC,slug:bD,abbreviation:bE,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3776,name:bC,slug:bD,abbreviation:bE,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bF,name:bG,slug:bH,abbreviation:bI,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3765,name:bG,slug:bH,abbreviation:bI,space:{id:c,domainName:d,__typename:b},__typename:a},{id:14,name:bJ,slug:bK,abbreviation:bL,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3414,name:bJ,slug:bK,abbreviation:bL,space:{id:c,domainName:d,__typename:b},__typename:a},{id:20,name:bM,slug:bN,abbreviation:bO,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3754,name:bM,slug:bN,abbreviation:bO,space:{id:c,domainName:d,__typename:b},__typename:a},{id:N,name:bP,slug:bQ,abbreviation:bR,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2444,name:bP,slug:bQ,abbreviation:bR,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bS,name:bT,slug:bU,abbreviation:bV,space:{id:p,domainName:B,__typename:b},__typename:a},{id:bS,name:bT,slug:bU,abbreviation:bV,space:{id:c,domainName:d,__typename:b},__typename:a},{id:i,name:"GSL Test",slug:"gsl-test",abbreviation:"gslt",space:{id:t,domainName:O,__typename:b},__typename:a},{id:2356,name:"Frontiers in the Internet of Things",slug:"the-internet-of-things",abbreviation:"friot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:656,name:"Frontiers in Zoological Science",slug:"zoological-science",abbreviation:"fzoos",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1720,name:"Frontiers in Zoological Research",slug:"zoological-research",abbreviation:"fzolr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3162,name:"Frontiers in Wound Care",slug:"wound-care",abbreviation:"fwoca",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3136,name:"Frontiers in Worm Science",slug:"worm-science",abbreviation:"fwors",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3583,name:"Frontiers in Wind Energy",slug:"wind-energy",abbreviation:"fwinde",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1451,name:"Frontiers in Water",slug:"water",abbreviation:"frwa",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1561,name:"Frontiers in Virtual Reality",slug:"virtual-reality",abbreviation:"frvir",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2000,name:"Frontiers in Virology",slug:"virology",abbreviation:"fviro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:649,name:"Frontiers in Veterinary Science",slug:"veterinary-science",abbreviation:"fvets",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2176,name:"Frontiers in Urology",slug:"urology",abbreviation:"fruro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3099,name:"Frontiers in Tuberculosis",slug:"tuberculosis",abbreviation:"ftubr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1843,name:"Frontiers in Tropical Diseases",slug:"tropical-diseases",abbreviation:"fitd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2417,name:"Frontiers in Transplantation",slug:"transplantation",abbreviation:"frtra",space:{id:c,domainName:d,__typename:b},__typename:a},{id:473,name:"Frontiers in Toxicology",slug:"toxicology",abbreviation:"ftox",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2105,name:"Frontiers in Thermal Engineering",slug:"thermal-engineering",abbreviation:"fther",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3190,name:"Frontiers in The Neurobiology of Pain",slug:"the-neurobiology-of-pain",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:1967,name:"Frontiers in Test_Field_Science_Archive",slug:"testfieldsciencearchive",abbreviation:"fntesc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1347,name:"Frontiers in Test_Field_Humanities_Archive",slug:"testfieldhumanitiesarchive",abbreviation:"fntes",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3573,name:"Frontiers in Taxonomy",slug:"taxonomy",abbreviation:"Front. Taxon.",space:{id:c,domainName:d,__typename:b},__typename:a},{id:p,name:"Frontiers in Systems Neuroscience",slug:"systems-neuroscience",abbreviation:"fnsys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1721,name:"Frontiers in Systems Biology",slug:"systems-biology",abbreviation:"fsysb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3381,name:"Frontiers in Synthetic Biology",slug:"synthetic-biology",abbreviation:"fsybi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:22,name:"Frontiers in Synaptic Neuroscience",slug:"synaptic-neuroscience",abbreviation:"fnsyn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2299,name:"Frontiers in Sustainable Tourism",slug:"sustainable-tourism",abbreviation:"frsut",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2483,name:"Frontiers in Sustainable Resource Management",slug:"sustainable-resource-management",abbreviation:"fsrma",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1335,name:"Frontiers in Sustainable Food Systems",slug:"sustainable-food-systems",abbreviation:"fsufs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2726,name:"Frontiers in Sustainable Energy Policy",slug:"sustainable-energy-policy",abbreviation:"fsuep",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1468,name:"Frontiers in Sustainable Cities",slug:"sustainable-cities",abbreviation:"frsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1397,name:"Frontiers in Sustainable Business",slug:"sustainable-business",abbreviation:"fisb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1547,name:"Frontiers in Sustainability",slug:"sustainability",abbreviation:"frsus",space:{id:c,domainName:d,__typename:b},__typename:a},{id:604,name:"Frontiers in Surgery",slug:"surgery",abbreviation:"fsurg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2504,name:"Frontiers in Structural Biology",slug:"structural-biology",abbreviation:"frsbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2497,name:"Frontiers in Stroke",slug:"stroke",abbreviation:"fstro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3434,name:"Frontiers in Stem Cells",slug:"stem-cells",abbreviation:"fstce",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1482,name:"Frontiers in Sports and Active Living",slug:"sports-and-active-living",abbreviation:"fspor",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1695,name:"Frontiers in Space Technologies",slug:"space-technologies",abbreviation:"frspt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3519,name:"Frontiers in Solar Energy",slug:"solar-energy",abbreviation:"fsoln",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1718,name:"Frontiers in Soil Science",slug:"soil-science",abbreviation:"fsoil",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2346,name:"Frontiers in Soft Matter",slug:"soft-matter",abbreviation:"frsfm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1213,name:"Frontiers in Sociology",slug:"sociology",abbreviation:"fsoc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:P,name:"Frontiers in Society Journal Archive",slug:"society-journal-archive",abbreviation:Q,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2690,name:"Frontiers in Social Psychology",slug:"social-psychology",abbreviation:"frsps",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2819,name:"Frontiers in Smart Grids",slug:"smart-grids",abbreviation:"frsgr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2288,name:"Frontiers in Sleep",slug:"sleep",abbreviation:"frsle",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2552,name:"Frontiers in Skin Cancer",slug:"skin-cancer",abbreviation:"fskcr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1786,name:"Frontiers in Signal Processing",slug:"signal-processing",abbreviation:"frsip",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1704,name:"Frontiers in Sensors",slug:"sensors",abbreviation:"fsens",space:{id:c,domainName:d,__typename:b},__typename:a},{id:p,name:"Frontiers in Science archive",slug:"science-archive",abbreviation:C,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3737,name:"Frontiers in Science Diplomacy",slug:"science-diplomacy",abbreviation:"fsdip",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2766,name:"Frontiers in Science",slug:"science",abbreviation:"fsci",space:{id:c,domainName:d,__typename:b},__typename:a},{id:657,name:"Frontiers in Robotics and AI",slug:"robotics-and-ai",abbreviation:"frobt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1606,name:"Frontiers in Research Metrics and Analytics",slug:"research-metrics-and-analytics",abbreviation:"frma",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1479,name:"Frontiers in Reproductive Health",slug:"reproductive-health",abbreviation:"frph",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1830,name:"Frontiers in Remote Sensing",slug:"remote-sensing",abbreviation:"frsen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:659,name:"Frontiers in Rehabilitation Sciences",slug:"rehabilitation-sciences",abbreviation:"fresc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3550,name:"Frontiers in Regenerative Medicine",slug:"regenerative-medicine",abbreviation:"fregm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1949,name:"Frontiers in Radiology",slug:"radiology",abbreviation:"fradi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3189,name:"Frontiers in RNA Research",slug:"rna-research",abbreviation:"frnar",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2306,name:"Frontiers in Quantum Science and Technology",slug:"quantum-science-and-technology",abbreviation:"frqst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:P,name:"Frontiers in Public Health Archive",slug:"public-health-archive",abbreviation:Q,space:{id:p,domainName:B,__typename:b},__typename:a},{id:609,name:"Frontiers in Public Health",slug:"public-health",abbreviation:"fpubh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:36,name:"Frontiers in Psychology",slug:"psychology",abbreviation:"fpsyg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:71,name:"Frontiers in Psychiatry",slug:"psychiatry",abbreviation:"fpsyt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3267,name:"Frontiers in Protistology",slug:"protistology",abbreviation:"frpro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2452,name:"Frontiers in Proteomics",slug:"proteomics",abbreviation:"fprot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3171,name:"Frontiers in Prosthetics and Orthotics",slug:"prosthetics-and-orthotics",abbreviation:"fpror ",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3643,name:"Frontiers in Polymer Science",slug:"polymer-science",abbreviation:"fplms",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1558,name:"Frontiers in Political Science",slug:"political-science",abbreviation:"fpos",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3615,name:"Frontiers in Polar Science",slug:"polar-science",abbreviation:"fposc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:373,name:"Frontiers in Plant Science",slug:"plant-science",abbreviation:"fpls",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3477,name:"Frontiers in Plant Physiology",slug:"plant-physiology",abbreviation:"fphgy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3589,name:"Frontiers in Plant Genomics",slug:"plant-genomics",abbreviation:"fpgen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3579,name:"Frontiers in Plant Ecology",slug:"plant-ecology",abbreviation:"fpley",space:{id:c,domainName:d,__typename:b},__typename:a},{id:210,name:"Frontiers in Physiology",slug:"physiology",abbreviation:"fphys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:616,name:"Frontiers in Physics",slug:"physics",abbreviation:"fphy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1803,name:"Frontiers in Photonics",slug:"photonics",abbreviation:"fphot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3604,name:"Frontiers in Photobiology",slug:"photobiology",abbreviation:"fphbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:176,name:"Frontiers in Pharmacology",slug:"pharmacology",abbreviation:"fphar",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3388,name:"Frontiers in Personality Disorders",slug:"personality-disorders",abbreviation:"fprsd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:606,name:"Frontiers in Pediatrics",slug:"pediatrics",abbreviation:"fped",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2554,name:"Frontiers in Pediatric Dermatology",slug:"pediatric-dermatology",abbreviation:"fpdm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:P,name:"Frontiers in Pathology and Oncology Archive",slug:"pathology-and-oncology-archive",abbreviation:Q,space:{id:s,domainName:M,__typename:b},__typename:a},{id:610,name:bW,slug:bX,abbreviation:bY,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3351,name:bW,slug:bX,abbreviation:bY,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2705,name:"Frontiers in Parasitology",slug:"parasitology",abbreviation:"fpara",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1727,name:"Frontiers in Pain Research",slug:"pain-research",abbreviation:"fpain",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2679,name:"Frontiers in Organizational Psychology",slug:"organizational-psychology",abbreviation:"forgp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1702,name:"Frontiers in Oral Health",slug:"oral-health",abbreviation:"froh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2232,name:"Frontiers in Ophthalmology",slug:"ophthalmology",abbreviation:"fopht",space:{id:c,domainName:d,__typename:b},__typename:a},{id:451,name:"Frontiers in Oncology",slug:"oncology",abbreviation:"fonc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3123,name:"Frontiers in Ocean Sustainability",slug:"ocean-sustainability",abbreviation:"focsu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2612,name:"Frontiers in Occupational Therapy",slug:"occupational-therapy",abbreviation:"froct",space:{id:c,domainName:d,__typename:b},__typename:a},{id:628,name:"Frontiers in Nutrition",slug:"nutrition",abbreviation:"fnut",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2062,name:"Frontiers in Nuclear Medicine",slug:"nuclear-medicine",abbreviation:"fnume",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2172,name:"Frontiers in Nuclear Engineering",slug:"nuclear-engineering",abbreviation:"fnuen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in Neuroscience",slug:"neuroscience",abbreviation:"fnins",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bZ,name:"Frontiers in Neurorobotics",slug:"neurorobotics",abbreviation:"fnbot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3056,name:"Frontiers in Neuropsychiatry",slug:"neuropsychiatry",abbreviation:"fnpsy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:141,name:"Frontiers in Neurology",slug:"neurology",abbreviation:"fneur",space:{id:c,domainName:d,__typename:b},__typename:a},{id:b_,name:"Frontiers in Neuroinformatics",slug:"neuroinformatics",abbreviation:"fninf",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3283,name:"Frontiers in Neuroinflammation",slug:"neuroinflammation",abbreviation:"fnein",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1973,name:"Frontiers in Neuroimaging",slug:"neuroimaging",abbreviation:"fnimg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1833,name:"Frontiers in Neuroergonomics",slug:"neuroergonomics",abbreviation:"fnrgo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:G,name:"Frontiers in Neuroengineering",slug:"neuroengineering",abbreviation:"fneng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:b$,name:"Frontiers in Neuroenergetics",slug:"neuroenergetics",abbreviation:"fnene",space:{id:c,domainName:d,__typename:b},__typename:a},{id:s,name:"Frontiers in Neuroanatomy",slug:"neuroanatomy",abbreviation:"fnana",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bF,name:"Frontiers in Neural Circuits",slug:"neural-circuits",abbreviation:"fncir",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2021,name:"Frontiers in Network Physiology",slug:"network-physiology",abbreviation:"fnetp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3130,name:"Frontiers in Network Neuroscience",slug:"network-neuroscience",abbreviation:"fnnsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2357,name:"Frontiers in Nephrology",slug:"nephrology",abbreviation:"fneph",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2320,name:"Frontiers in Natural Products",slug:"natural-products",abbreviation:"fntpr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1528,name:"Frontiers in Nanotechnology",slug:"nanotechnology",abbreviation:"fnano",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2882,name:"Frontiers in Musculoskeletal Disorders",slug:"musculoskeletal-disorders",abbreviation:"fmscd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3275,name:"Frontiers in Multiple Sclerosis",slug:"multiple-sclerosis",abbreviation:"fmscr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3152,name:"Frontiers in Mollusk Science",slug:"mollusk-science",abbreviation:"fmlsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2031,name:"Frontiers in Molecular Neuroscience",slug:"molecular-neuroscience",abbreviation:"fnmol",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2086,name:"Frontiers in Molecular Medicine",slug:"molecular-medicine",abbreviation:"fmmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:698,name:"Frontiers in Molecular Biosciences",slug:"molecular-biosciences",abbreviation:"fmolb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2807,name:"Frontiers in Microbiomes",slug:"microbiomes",abbreviation:"frmbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:310,name:"Frontiers in Microbiology",slug:"microbiology",abbreviation:"fmicb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2327,name:"Frontiers in Metals and Alloys",slug:"metals-and-alloys",abbreviation:"ftmal",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2307,name:"Frontiers in Membrane Science and Technology",slug:"membrane-science-and-technology",abbreviation:"frmst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:602,name:"Frontiers in Medicine",slug:"medicine",abbreviation:"fmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1573,name:"Frontiers in Medical Technology",slug:"medical-technology",abbreviation:"fmedt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3135,name:"Frontiers in Medical Engineering",slug:"medical-engineering",abbreviation:"fmede",space:{id:c,domainName:d,__typename:b},__typename:a},{id:950,name:"Frontiers in Mechanical Engineering",slug:"mechanical-engineering",abbreviation:"fmech",space:{id:c,domainName:d,__typename:b},__typename:a},{id:608,name:"Frontiers in Materials",slug:"materials",abbreviation:"fmats",space:{id:c,domainName:d,__typename:b},__typename:a},{id:q,name:n,slug:r,abbreviation:U,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2100,name:"Frontiers in Manufacturing Technology",slug:"manufacturing-technology",abbreviation:"fmtec",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2931,name:"Frontiers in Mammal Science",slug:"mammal-science",abbreviation:"fmamm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2896,name:"Frontiers in Malaria",slug:"malaria",abbreviation:"fmala",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3107,name:"Frontiers in Lupus",slug:"lupus",abbreviation:"flupu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:435,name:"Frontiers in Linguistics",slug:"linguistics",abbreviation:"fling",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2636,name:"Frontiers in Language Sciences",slug:"language-sciences",abbreviation:"flang",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2670,name:"Frontiers in Lab on a Chip Technologies",slug:"lab-on-a-chip-technologies",abbreviation:"frlct",space:{id:c,domainName:d,__typename:b},__typename:a},{id:ca,name:"Frontiers in Integrative Neuroscience",slug:"integrative-neuroscience",abbreviation:"fnint",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1723,name:"Frontiers in Insect Science",slug:"insect-science",abbreviation:"finsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3093,name:"Frontiers in Influenza",slug:"influenza",abbreviation:"finfl",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3073,name:"Frontiers in Inflammation",slug:"inflammation",abbreviation:"finmn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3200,name:"Frontiers in Industrial Microbiology",slug:"industrial-microbiology",abbreviation:"finmi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3291,name:"Frontiers in Industrial Engineering",slug:"industrial-engineering",abbreviation:"fieng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2765,name:"Frontiers in Impact Journals",slug:"impact-journals",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3078,name:"Frontiers in Immunotherapeutics",slug:"immunotherapeutics",abbreviation:"fimms",space:{id:c,domainName:d,__typename:b},__typename:a},{id:276,name:"Frontiers in Immunology",slug:"immunology",abbreviation:"fimmu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2379,name:"Frontiers in Imaging",slug:"imaging",abbreviation:"fimag",space:{id:c,domainName:d,__typename:b},__typename:a},{id:629,name:"Frontiers in ICT",slug:"ict",abbreviation:"fict",space:{id:c,domainName:d,__typename:b},__typename:a},{id:16,name:"Frontiers in Humanities and Social Sciences Archive",slug:"humanities-and-social-sciences-archive",abbreviation:C,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3759,name:"Frontiers in Human Rights",slug:"human-rights",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:1588,name:"Frontiers in Human Neuroscience",slug:"human-neuroscience",abbreviation:"fnhum",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1533,name:"Frontiers in Human Dynamics",slug:"human-dynamics",abbreviation:"fhumd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2733,name:"Frontiers in Horticulture",slug:"horticulture",abbreviation:"fhort",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3316,name:"Frontiers in Histology",slug:"histology",abbreviation:"frhis",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2378,name:"Frontiers in High Performance Computing",slug:"high-performance-computing",abbreviation:"fhpcp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2456,name:"Frontiers in Hematology",slug:"hematology",abbreviation:"frhem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2063,name:"Frontiers in Health Services",slug:"health-services",abbreviation:"frhs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:s,name:"Frontiers in Health Archive",slug:"health-archive",abbreviation:C,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3508,name:"Frontiers in Green Chemistry",slug:"green-chemistry",abbreviation:"fgrch",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1728,name:"Frontiers in Global Women's Health",slug:"global-womens-health",abbreviation:"fgwh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2918,name:"Frontiers in Geochemistry",slug:"geochemistry",abbreviation:"fgeoc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1540,name:"Frontiers in Genome Editing",slug:"genome-editing",abbreviation:"fgeed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:240,name:"Frontiers in Genetics",slug:"genetics",abbreviation:"fgene",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3496,name:"Frontiers in Genetic Microbiology",slug:"genetic-microbiology",abbreviation:"fgemi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3227,name:"Frontiers in Genetic Disorders",slug:"genetic-disorders",abbreviation:"frged",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2333,name:"Frontiers in Gastroenterology",slug:"gastroenterology",abbreviation:"fgstr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1529,name:"Frontiers in Future Transportation",slug:"future-transportation",abbreviation:"ffutr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1725,name:"Frontiers in Fungal Biology",slug:"fungal-biology",abbreviation:"ffunb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2826,name:"Frontiers in Fuels",slug:"fuels",abbreviation:"ffuel",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3207,name:"Frontiers in Freshwater Science",slug:"freshwater-science",abbreviation:"ffwsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1366,name:"Frontiers in Forests and Global Change",slug:"forests-and-global-change",abbreviation:"ffgc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2689,name:"Frontiers in Forensic Science",slug:"forensic-science",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2289,name:"Frontiers in Food Science and Technology",slug:"food-science-and-technology",abbreviation:"frfst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3559,name:"Frontiers in Fluorescence",slug:"fluorescence",abbreviation:"fflur",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2987,name:"Frontiers in Fish Science",slug:"fish-science",abbreviation:"frish",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3489,name:"Frontiers in Fire Science and Technology",slug:"fire-science-and-technology",abbreviation:"firtc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2749,name:"Frontiers in Financial Economics",slug:"financial-economics",abbreviation:"ffecn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in FSHIP Test Journal",slug:"fship-test-journal",abbreviation:"ftest",space:{id:i,domainName:j,__typename:b},__typename:a},{id:bB,name:"Frontiers in Evolutionary Neuroscience",slug:"evolutionary-neuroscience",abbreviation:"fnevo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2955,name:"Frontiers in Ethology",slug:"ethology",abbreviation:"fetho",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3032,name:"Frontiers in Epigenetics and Epigenomics",slug:"epigenetics-and-epigenomics",abbreviation:"freae",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2394,name:"Frontiers in Epidemiology",slug:"epidemiology",abbreviation:"fepid",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3450,name:"Frontiers in Environmental Toxicology",slug:"environmental-toxicology",abbreviation:"fentx",space:{id:c,domainName:d,__typename:b},__typename:a},{id:627,name:"Frontiers in Environmental Science",slug:"environmental-science",abbreviation:"fenvs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2888,name:"Frontiers in Environmental Health",slug:"environmental-health",abbreviation:"fenvh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2851,name:"Frontiers in Environmental Engineering",slug:"environmental-engineering",abbreviation:"fenve",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2547,name:"Frontiers in Environmental Economics",slug:"environmental-economics",abbreviation:"frevc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1697,name:"Frontiers in Environmental Chemistry",slug:"environmental-chemistry",abbreviation:"fenvc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2756,name:"Frontiers in Environmental Archaeology",slug:"environmental-archaeology",abbreviation:"fearc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:15,name:"Frontiers in Engineering archive",slug:"engineering-archive",abbreviation:C,space:{id:i,domainName:j,__typename:b},__typename:a},{id:626,name:"Frontiers in Energy Research",slug:"energy-research",abbreviation:"fenrg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3115,name:"Frontiers in Energy Efficiency",slug:"energy-efficiency",abbreviation:"fenef",space:{id:c,domainName:d,__typename:b},__typename:a},{id:106,name:"Frontiers in Endocrinology",slug:"endocrinology",abbreviation:"fendo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1696,name:"Frontiers in Electronics",slug:"electronics",abbreviation:"felec",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1800,name:"Frontiers in Electronic Materials",slug:"electronic-materials",abbreviation:"femat",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2998,name:"Frontiers in Educational Psychology",slug:"educational-psychology",abbreviation:"fepys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1239,name:"Frontiers in Education",slug:"education",abbreviation:"feduc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:625,name:"Frontiers in Economics",slug:"economics",abbreviation:"fecon",space:{id:c,domainName:d,__typename:b},__typename:a},{id:471,name:"Frontiers in Ecology and Evolution",slug:"ecology-and-evolution",abbreviation:"fevo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in Earth Science Archive",slug:"earth-science-archive",abbreviation:"gslfj",space:{id:t,domainName:O,__typename:b},__typename:a},{id:654,name:"Frontiers in Earth Science",slug:"earth-science",abbreviation:"feart",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3309,name:"Frontiers in Earth Observation and Land Monitoring",slug:"earth-observation-and-land-monitoring",abbreviation:"feolm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2161,name:"Frontiers in Drug Safety and Regulation",slug:"drug-safety-and-regulation",abbreviation:"fdsfr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2137,name:"Frontiers in Drug Discovery",slug:"drug-discovery",abbreviation:"fddsv",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2136,name:"Frontiers in Drug Delivery",slug:"drug-delivery",abbreviation:"fddev",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2775,name:"Frontiers in Disaster and Emergency Medicine",slug:"disaster-and-emergency-medicine",abbreviation:"femer",space:{id:c,domainName:d,__typename:b},__typename:a},{id:788,name:"Frontiers in Digital Humanities",slug:"digital-humanities",abbreviation:"fdigh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1534,name:"Frontiers in Digital Health",slug:"digital-health",abbreviation:"fdgth",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2999,name:"Frontiers in Developmental Psychology",slug:"developmental-psychology",abbreviation:"fdpys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2873,name:"Frontiers in Detector Science and Technology",slug:"detector-science-and-technology",abbreviation:"fdest",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3611,name:"Frontiers in Design Engineering",slug:"design-engineering",abbreviation:"fdese",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2550,name:"Frontiers in Dermatological Research",slug:"dermatological-research",abbreviation:"fdmre",space:{id:c,domainName:d,__typename:b},__typename:a},{id:607,name:"Frontiers in Dental Medicine",slug:"dental-medicine",abbreviation:"fdmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2597,name:"Frontiers in Dementia",slug:"dementia",abbreviation:"frdem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1785,name:"Frontiers in Control Engineering",slug:"control-engineering",abbreviation:"fcteg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1724,name:"Frontiers in Conservation Science",slug:"conservation-science",abbreviation:"fcosc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3454,name:"Frontiers in Condensed Matter",slug:"condensed-matter",abbreviation:"fconm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1511,name:"Frontiers in Computer Science",slug:"computer-science",abbreviation:"fcomp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3566,name:"Frontiers in Computational Physiology",slug:"computational-physiology",abbreviation:"fcphy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:I,name:"Frontiers in Computational Neuroscience",slug:"computational-neuroscience",abbreviation:"fncom",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3234,name:"Frontiers in Complex Systems",slug:"complex-systems",abbreviation:"fcpxs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1787,name:"Frontiers in Communications and Networks",slug:"communications-and-networks",abbreviation:"frcmn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1238,name:"Frontiers in Communication",slug:"communication",abbreviation:"fcomm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2535,name:"Frontiers in Cognition",slug:"cognition",abbreviation:"fcogn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2857,name:"Frontiers in Coatings, Dyes and Interface Engineering",slug:"coatings-dyes-and-interface-engineering",abbreviation:"frcdi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3222,name:"Frontiers in Clinical Microbiology",slug:"clinical-microbiology",abbreviation:"fclmi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1729,name:"Frontiers in Clinical Diabetes and Healthcare",slug:"clinical-diabetes-and-healthcare",abbreviation:"fcdhc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2551,name:"Frontiers in Clinical Dermatology",slug:"clinical-dermatology",abbreviation:"fcldm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1490,name:"Frontiers in Climate",slug:"climate",abbreviation:"fclim",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3338,name:"Frontiers in Chromosome Research",slug:"chromosome-research",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2587,name:"Frontiers in Child and Adolescent Psychiatry",slug:"child-and-adolescent-psychiatry",abbreviation:"frcha",space:{id:c,domainName:d,__typename:b},__typename:a},{id:601,name:"Frontiers in Chemistry",slug:"chemistry",abbreviation:"fchem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1532,name:"Frontiers in Chemical Engineering",slug:"chemical-engineering",abbreviation:"fceng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3038,name:"Frontiers in Chemical Biology",slug:"chemical-biology",abbreviation:"fchbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3322,name:"Frontiers in Ceramics",slug:"ceramics",abbreviation:"fceic",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1440,name:"Frontiers in Cellular and Infection Microbiology",slug:"cellular-and-infection-microbiology",abbreviation:"fcimb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1523,name:"Frontiers in Cellular Neuroscience",slug:"cellular-neuroscience",abbreviation:"fncel",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3084,name:"Frontiers in Cellular Immunology",slug:"cellular-immunology",abbreviation:"fcimy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:403,name:"Frontiers in Cell and Developmental Biology",slug:"cell-and-developmental-biology",abbreviation:"fcell",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3178,name:"Frontiers in Cell Signaling",slug:"cell-signaling",abbreviation:"fcsig",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2655,name:"Frontiers in Cell Death",slug:"cell-death",abbreviation:"fceld",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1901,name:"Frontiers in Catalysis",slug:"catalysis",abbreviation:"fctls",space:{id:c,domainName:d,__typename:b},__typename:a},{id:755,name:"Frontiers in Cardiovascular Medicine",slug:"cardiovascular-medicine",abbreviation:"fcvm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2662,name:"Frontiers in Carbon",slug:"carbon",abbreviation:"frcrb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3513,name:"Frontiers in Cancer Interception",slug:"cancer-interception",abbreviation:"fcint",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3433,name:"Frontiers in Cancer Control and Society",slug:"cancer-control-and-society",abbreviation:"fcacs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:921,name:"Frontiers in Built Environment",slug:"built-environment",abbreviation:"fbuil",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1418,name:"Frontiers in Blockchain",slug:"blockchain",abbreviation:"fbloc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2971,name:"Frontiers in Bird Science",slug:"bird-science",abbreviation:"fbirs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3300,name:"Frontiers in Biophysics",slug:"biophysics",abbreviation:"frbis",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2222,name:"Frontiers in Biomaterials Science",slug:"biomaterials-science",abbreviation:"fbiom",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1722,name:"Frontiers in Bioinformatics",slug:"bioinformatics",abbreviation:"fbinf",space:{id:c,domainName:d,__typename:b},__typename:a},{id:452,name:"Frontiers in Bioengineering and Biotechnology",slug:"bioengineering-and-biotechnology",abbreviation:"fbioe",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1380,name:"Frontiers in Big Data",slug:"big-data",abbreviation:"fdata",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1589,name:"Frontiers in Behavioral Neuroscience",slug:"behavioral-neuroscience",abbreviation:"fnbeh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2432,name:"Frontiers in Behavioral Economics",slug:"behavioral-economics",abbreviation:"frbhe",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2796,name:"Frontiers in Bee Science",slug:"bee-science",abbreviation:"frbee",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3214,name:"Frontiers in Batteries and Electrochemistry",slug:"batteries-and-electrochemistry",abbreviation:"fbael",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3011,name:"Frontiers in Bacteriology",slug:"bacteriology",abbreviation:"fbrio",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3040,name:"Frontiers in Audiology and Otology",slug:"audiology-and-otology",abbreviation:"fauot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:603,name:"Frontiers in Astronomy and Space Sciences",slug:"astronomy-and-space-sciences",abbreviation:"fspas",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1437,name:"Frontiers in Artificial Intelligence",slug:"artificial-intelligence",abbreviation:"frai",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2940,name:"Frontiers in Arachnid Science",slug:"arachnid-science",abbreviation:"frchs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2834,name:"Frontiers in Aquaculture",slug:"aquaculture",abbreviation:"faquc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:981,name:"Frontiers in Applied Mathematics and Statistics",slug:"applied-mathematics-and-statistics",abbreviation:"fams",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3417,name:"Frontiers in Applied Environmental Microbiology",slug:"applied-environmental-microbiology",abbreviation:"faemi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2714,name:"Frontiers in Antibiotics",slug:"antibiotics",abbreviation:"frabi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3443,name:"Frontiers in Anti-Cancer Therapies",slug:"anti-cancer-therapies",abbreviation:"facth",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3253,name:"Frontiers in Antennas and Propagation",slug:"antennas-and-propagation",abbreviation:"fanpr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1719,name:"Frontiers in Animal Science",slug:"animal-science",abbreviation:"fanim",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2513,name:"Frontiers in Anesthesiology",slug:"anesthesiology",abbreviation:"fanes",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1989,name:"Frontiers in Analytical Science",slug:"analytical-science",abbreviation:"frans",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2909,name:"Frontiers in Amphibian and Reptile Science",slug:"amphibian-and-reptile-science",abbreviation:"famrs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1705,name:"Frontiers in Allergy",slug:"allergy",abbreviation:"falgy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1541,name:"Frontiers in Agronomy",slug:"agronomy",abbreviation:"fagro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3631,name:"Frontiers in Agricultural Engineering",slug:"agricultural-engineering",abbreviation:"faeng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2477,name:"Frontiers in Aging Neuroscience",slug:"aging-neuroscience",abbreviation:"fnagi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1566,name:"Frontiers in Aging",slug:"aging",abbreviation:"fragi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2449,name:"Frontiers in Aerospace Engineering",slug:"aerospace-engineering",abbreviation:"fpace",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2195,name:"Frontiers in Adolescent Medicine",slug:"adolescent-medicine",abbreviation:"fradm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3426,name:"Frontiers in Acoustics",slug:"acoustics",abbreviation:"facou",space:{id:c,domainName:d,__typename:b},__typename:a},{id:979,name:bl,slug:"frontiers-for-young-minds",abbreviation:"frym",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3260,name:"Frontiers In Ocean Engineering",slug:"frontiers-in-ocean-engineering",abbreviation:"focen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bZ,name:"FSHIP Test Journal 2",slug:"fship-test-journal-2",abbreviation:"FTJ2",space:{id:i,domainName:j,__typename:b},__typename:a},{id:i,name:cb,slug:cc,abbreviation:cd,space:{id:N,domainName:bu,__typename:b},__typename:a},{id:3746,name:cb,slug:cc,abbreviation:cd,space:{id:c,domainName:d,__typename:b},__typename:a},{id:b_,name:ce,slug:cf,abbreviation:cg,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3231,name:ce,slug:cf,abbreviation:cg,space:{id:c,domainName:d,__typename:b},__typename:a},{id:t,name:ch,slug:ci,abbreviation:cj,space:{id:t,domainName:O,__typename:b},__typename:a},{id:2078,name:ch,slug:ci,abbreviation:cj,space:{id:c,domainName:d,__typename:b},__typename:a},{id:ca,name:ck,slug:cl,abbreviation:cm,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2359,name:ck,slug:cl,abbreviation:cm,space:{id:c,domainName:d,__typename:b},__typename:a},{id:8,name:cn,slug:co,abbreviation:cp,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2446,name:cn,slug:co,abbreviation:cp,space:{id:c,domainName:d,__typename:b},__typename:a},{id:_,name:cq,slug:cr,abbreviation:cs,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3230,name:cq,slug:cr,abbreviation:cs,space:{id:c,domainName:d,__typename:b},__typename:a},{id:t,name:ct,slug:cu,abbreviation:cv,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2358,name:ct,slug:cu,abbreviation:cv,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3660,name:"Advanced Optical Technologies",slug:"advanced-optical-technologies",abbreviation:"aot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:b$,name:cw,slug:cx,abbreviation:cy,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3659,name:cw,slug:cx,abbreviation:cy,space:{id:c,domainName:d,__typename:b},__typename:a},{id:G,name:cz,slug:cA,abbreviation:"abp",space:{id:i,domainName:j,__typename:b},__typename:a},{id:3695,name:cz,slug:cA,abbreviation:"ABP",space:{id:c,domainName:d,__typename:b},__typename:a}]},serverRendered:g,routePath:"\u002Fjournals\u002Fmarine-science\u002Farticles\u002F10.3389\u002Ffmars.2022.899877\u002Ffull",config:{baseUrl:"https:\u002F\u002Fwww.frontiersin.org",appName:"article-pages-2022",spaceId:c,spaceName:w,domain:d,loopUrl:"https:\u002F\u002Floop.frontiersin.org",ssMainDomain:d,googleRecaptchaKeyName:"FrontiersRecaptchaV2",googleRecaptchaSiteKey:"6LdG3i0UAAAAAOC4qUh35ubHgJotEHp_STXHgr_v",linkedArticleCopyText:"'{\"articleTypeCopyText\":[{\"articleTypeId\":0,\"originalArticleCopyText\":\"Part of this article's content has been mentioned in:\",\"linkedArticleCopyText\":\"This article mentions parts of:\"},{\"articleTypeId\":122,\"originalArticleCopyText\":\"Parts of this article's content have been modified or rectified in:\",\"linkedArticleCopyText\":\"This article is an erratum on:\"},{\"articleTypeId\":129,\"originalArticleCopyText\":\"Parts of this article's content have been modified or rectified in:\",\"linkedArticleCopyText\":\"This article is an addendum to:\"},{\"articleTypeId\":128,\"originalArticleCopyText\":\"A correction has been applied to this article in:\",\"linkedArticleCopyText\":\"This article is a correction to:\"},{\"articleTypeId\":134,\"originalArticleCopyText\":\"A retraction of this article was approved in:\",\"linkedArticleCopyText\":\"This article is a retraction of:\"},{\"articleTypeId\":29,\"originalArticleCopyText\":\"A commentary has been posted on this article:\",\"linkedArticleCopyText\":\"This article is a commentary on:\"},{\"articleTypeId\":30,\"originalArticleCopyText\":\"A commentary has been posted on this article:\",\"linkedArticleCopyText\":\"This article is a commentary on:\"}],\"articleIdCopyText\":[]}'\n",articleTypeConfigurableLabel:"\u003C\u003Carticle-type:uppercase\u003E\u003E article",terminologySettings:"'{\"terms\":[{\"sequenceNumber\":1,\"key\":\"frontiers\",\"tenantTerm\":\"Frontiers\",\"frontiersDefaultTerm\":\"Frontiers\",\"category\":\"Customer\"},{\"sequenceNumber\":2,\"key\":\"submission_system\",\"tenantTerm\":\"submission system\",\"frontiersDefaultTerm\":\"submission system\",\"category\":\"Product\"},{\"sequenceNumber\":3,\"key\":\"public_pages\",\"tenantTerm\":\"public pages\",\"frontiersDefaultTerm\":\"public pages\",\"category\":\"Product\"},{\"sequenceNumber\":4,\"key\":\"my_frontiers\",\"tenantTerm\":\"my frontiers\",\"frontiersDefaultTerm\":\"my frontiers\",\"category\":\"Product\"},{\"sequenceNumber\":5,\"key\":\"digital_editorial_office\",\"tenantTerm\":\"digital editorial office\",\"frontiersDefaultTerm\":\"digital editorial office\",\"category\":\"Product\"},{\"sequenceNumber\":6,\"key\":\"deo\",\"tenantTerm\":\"DEO\",\"frontiersDefaultTerm\":\"DEO\",\"category\":\"Product\"},{\"sequenceNumber\":7,\"key\":\"digital_editorial_office_for_chiefs\",\"tenantTerm\":\"digital editorial office for chiefs\",\"frontiersDefaultTerm\":\"digital editorial office for chiefs\",\"category\":\"Product\"},{\"sequenceNumber\":8,\"key\":\"digital_editorial_office_for_eof\",\"tenantTerm\":\"digital editorial office for eof\",\"frontiersDefaultTerm\":\"digital editorial office for eof\",\"category\":\"Product\"},{\"sequenceNumber\":9,\"key\":\"editorial_office\",\"tenantTerm\":\"editorial office\",\"frontiersDefaultTerm\":\"editorial office\",\"category\":\"Product\"},{\"sequenceNumber\":10,\"key\":\"eof\",\"tenantTerm\":\"EOF\",\"frontiersDefaultTerm\":\"EOF\",\"category\":\"Product\"},{\"sequenceNumber\":11,\"key\":\"research_topic_management\",\"tenantTerm\":\"research topic management\",\"frontiersDefaultTerm\":\"research topic management\",\"category\":\"Product\"},{\"sequenceNumber\":12,\"key\":\"review_forum\",\"tenantTerm\":\"review forum\",\"frontiersDefaultTerm\":\"review forum\",\"category\":\"Product\"},{\"sequenceNumber\":13,\"key\":\"accounting_office\",\"tenantTerm\":\"accounting office\",\"frontiersDefaultTerm\":\"accounting office\",\"category\":\"Product\"},{\"sequenceNumber\":14,\"key\":\"aof\",\"tenantTerm\":\"AOF\",\"frontiersDefaultTerm\":\"AOF\",\"category\":\"Product\"},{\"sequenceNumber\":15,\"key\":\"publishing_office\",\"tenantTerm\":\"publishing office\",\"frontiersDefaultTerm\":\"publishing office\",\"category\":\"Product\"},{\"sequenceNumber\":16,\"key\":\"production_office\",\"tenantTerm\":\"production office forum\",\"frontiersDefaultTerm\":\"production office forum\",\"category\":\"Product\"},{\"sequenceNumber\":17,\"key\":\"pof\",\"tenantTerm\":\"POF\",\"frontiersDefaultTerm\":\"POF\",\"category\":\"Product\"},{\"sequenceNumber\":18,\"key\":\"book_office_forum\",\"tenantTerm\":\"book office forum\",\"frontiersDefaultTerm\":\"book office forum\",\"category\":\"Product\"},{\"sequenceNumber\":19,\"key\":\"bof\",\"tenantTerm\":\"BOF\",\"frontiersDefaultTerm\":\"BOF\",\"category\":\"Product\"},{\"sequenceNumber\":20,\"key\":\"aira\",\"tenantTerm\":\"AIRA\",\"frontiersDefaultTerm\":\"AIRA\",\"category\":\"Product\"},{\"sequenceNumber\":21,\"key\":\"editorial_board_management\",\"tenantTerm\":\"editorial board management\",\"frontiersDefaultTerm\":\"editorial board management\",\"category\":\"Product\"},{\"sequenceNumber\":22,\"key\":\"ebm\",\"tenantTerm\":\"EBM\",\"frontiersDefaultTerm\":\"EBM\",\"category\":\"Product\"},{\"sequenceNumber\":23,\"key\":\"domain\",\"tenantTerm\":\"domain\",\"frontiersDefaultTerm\":\"domain\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":24,\"key\":\"journal\",\"tenantTerm\":\"journal\",\"frontiersDefaultTerm\":\"journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":25,\"key\":\"section\",\"tenantTerm\":\"section\",\"frontiersDefaultTerm\":\"section\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":26,\"key\":\"domains\",\"tenantTerm\":\"domains\",\"frontiersDefaultTerm\":\"domains\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":27,\"key\":\"specialty_section\",\"tenantTerm\":\"specialty section\",\"frontiersDefaultTerm\":\"specialty section\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":28,\"key\":\"specialty_journal\",\"tenantTerm\":\"specialty journal\",\"frontiersDefaultTerm\":\"specialty journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":29,\"key\":\"journals\",\"tenantTerm\":\"journals\",\"frontiersDefaultTerm\":\"journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":30,\"key\":\"sections\",\"tenantTerm\":\"sections\",\"frontiersDefaultTerm\":\"sections\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":31,\"key\":\"specialty_sections\",\"tenantTerm\":\"specialty sections\",\"frontiersDefaultTerm\":\"specialty sections\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":32,\"key\":\"specialty_journals\",\"tenantTerm\":\"specialty journals\",\"frontiersDefaultTerm\":\"specialty journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":33,\"key\":\"manuscript\",\"tenantTerm\":\"manuscript\",\"frontiersDefaultTerm\":\"manuscript\",\"category\":\"Core\"},{\"sequenceNumber\":34,\"key\":\"manuscripts\",\"tenantTerm\":\"manuscripts\",\"frontiersDefaultTerm\":\"manuscripts\",\"category\":\"Core\"},{\"sequenceNumber\":35,\"key\":\"article\",\"tenantTerm\":\"article\",\"frontiersDefaultTerm\":\"article\",\"category\":\"Core\"},{\"sequenceNumber\":36,\"key\":\"articles\",\"tenantTerm\":\"articles\",\"frontiersDefaultTerm\":\"articles\",\"category\":\"Core\"},{\"sequenceNumber\":37,\"key\":\"article_type\",\"tenantTerm\":\"article type\",\"frontiersDefaultTerm\":\"article type\",\"category\":\"Core\"},{\"sequenceNumber\":38,\"key\":\"article_types\",\"tenantTerm\":\"article types\",\"frontiersDefaultTerm\":\"article types\",\"category\":\"Core\"},{\"sequenceNumber\":39,\"key\":\"author\",\"tenantTerm\":\"author\",\"frontiersDefaultTerm\":\"author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":40,\"key\":\"authors\",\"tenantTerm\":\"authors\",\"frontiersDefaultTerm\":\"authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":41,\"key\":\"authoring\",\"tenantTerm\":\"authoring\",\"frontiersDefaultTerm\":\"authoring\",\"category\":\"Core\"},{\"sequenceNumber\":42,\"key\":\"authored\",\"tenantTerm\":\"authored\",\"frontiersDefaultTerm\":\"authored\",\"category\":\"Core\"},{\"sequenceNumber\":43,\"key\":\"accept\",\"tenantTerm\":\"accept\",\"frontiersDefaultTerm\":\"accept\",\"category\":\"Process\"},{\"sequenceNumber\":44,\"key\":\"accepted\",\"tenantTerm\":\"accepted\",\"frontiersDefaultTerm\":\"accepted\",\"category\":\"Process\"},{\"sequenceNumber\":45,\"key\":\"assistant_field_chief_editor\",\"tenantTerm\":\"Assistant Field Chief Editor\",\"frontiersDefaultTerm\":\"Assistant Field Chief Editor\",\"description\":\"An editorial role on a Field Journal that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":46,\"key\":\"assistant_specialty_chief_editor\",\"tenantTerm\":\"Assistant Specialty Chief Editor\",\"frontiersDefaultTerm\":\"Assistant Specialty Chief Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":47,\"key\":\"assistant_specialty_chief_editors\",\"tenantTerm\":\"Assistant Specialty Chief Editors\",\"frontiersDefaultTerm\":\"Assistant Specialty Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":48,\"key\":\"associate_editor\",\"tenantTerm\":\"Associate Editor\",\"frontiersDefaultTerm\":\"Associate Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":49,\"key\":\"specialty_chief_editor\",\"tenantTerm\":\"Specialty Chief Editor\",\"frontiersDefaultTerm\":\"Specialty Chief Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":50,\"key\":\"specialty_chief_editors\",\"tenantTerm\":\"Specialty Chief Editors\",\"frontiersDefaultTerm\":\"Specialty Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":51,\"key\":\"chief_editor\",\"tenantTerm\":\"Chief Editor\",\"frontiersDefaultTerm\":\"Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":52,\"key\":\"chief_editors\",\"tenantTerm\":\"Chief Editors\",\"frontiersDefaultTerm\":\"Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":53,\"key\":\"call_for_participation\",\"tenantTerm\":\"call for participation\",\"frontiersDefaultTerm\":\"call for participation\",\"category\":\"Process\"},{\"sequenceNumber\":54,\"key\":\"citation\",\"tenantTerm\":\"citation\",\"frontiersDefaultTerm\":\"citation\",\"category\":\"Misc.\"},{\"sequenceNumber\":55,\"key\":\"citations\",\"tenantTerm\":\"citations\",\"frontiersDefaultTerm\":\"citations\",\"category\":\"Misc.\"},{\"sequenceNumber\":56,\"key\":\"contributor\",\"tenantTerm\":\"contributor\",\"frontiersDefaultTerm\":\"contributor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":57,\"key\":\"contributors\",\"tenantTerm\":\"contributors\",\"frontiersDefaultTerm\":\"contributors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":58,\"key\":\"corresponding_author\",\"tenantTerm\":\"corresponding author\",\"frontiersDefaultTerm\":\"corresponding author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":59,\"key\":\"corresponding_authors\",\"tenantTerm\":\"corresponding authors\",\"frontiersDefaultTerm\":\"corresponding authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":60,\"key\":\"decline\",\"tenantTerm\":\"decline\",\"frontiersDefaultTerm\":\"decline\",\"category\":\"Process\"},{\"sequenceNumber\":61,\"key\":\"declined\",\"tenantTerm\":\"declined\",\"frontiersDefaultTerm\":\"declined\",\"category\":\"Process\"},{\"sequenceNumber\":62,\"key\":\"reject\",\"tenantTerm\":\"reject\",\"frontiersDefaultTerm\":\"reject\",\"category\":\"Process\"},{\"sequenceNumber\":63,\"key\":\"rejected\",\"tenantTerm\":\"rejected\",\"frontiersDefaultTerm\":\"rejected\",\"category\":\"Process\"},{\"sequenceNumber\":64,\"key\":\"publish\",\"tenantTerm\":\"publish\",\"frontiersDefaultTerm\":\"publish\",\"category\":\"Core\"},{\"sequenceNumber\":65,\"key\":\"published\",\"tenantTerm\":\"published\",\"frontiersDefaultTerm\":\"published\",\"category\":\"Core\"},{\"sequenceNumber\":66,\"key\":\"publication\",\"tenantTerm\":\"publication\",\"frontiersDefaultTerm\":\"publication\",\"category\":\"Core\"},{\"sequenceNumber\":67,\"key\":\"peer_review\",\"tenantTerm\":\"peer review\",\"frontiersDefaultTerm\":\"peer review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":68,\"key\":\"peer_reviewed\",\"tenantTerm\":\"peer reviewed\",\"frontiersDefaultTerm\":\"peer reviewed\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":69,\"key\":\"initial_validation\",\"tenantTerm\":\"initial validation\",\"frontiersDefaultTerm\":\"initial validation\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":70,\"key\":\"editorial_assignment\",\"tenantTerm\":\"editorial assignment\",\"frontiersDefaultTerm\":\"editorial assignment\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":71,\"key\":\"independent_review\",\"tenantTerm\":\"independent review\",\"frontiersDefaultTerm\":\"independent review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":72,\"key\":\"interactive_review\",\"tenantTerm\":\"interactive review\",\"frontiersDefaultTerm\":\"interactive review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":73,\"key\":\"review\",\"tenantTerm\":\"review\",\"frontiersDefaultTerm\":\"review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":74,\"key\":\"reviewing\",\"tenantTerm\":\"reviewing\",\"frontiersDefaultTerm\":\"reviewing\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":75,\"key\":\"reviewer\",\"tenantTerm\":\"reviewer\",\"frontiersDefaultTerm\":\"reviewer\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":76,\"key\":\"reviewers\",\"tenantTerm\":\"reviewers\",\"frontiersDefaultTerm\":\"reviewers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":77,\"key\":\"review_finalized\",\"tenantTerm\":\"review finalized\",\"frontiersDefaultTerm\":\"review finalized\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":78,\"key\":\"final_decision\",\"tenantTerm\":\"final decision\",\"frontiersDefaultTerm\":\"final decision\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":79,\"key\":\"final_validation\",\"tenantTerm\":\"final validation\",\"frontiersDefaultTerm\":\"final validation\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":80,\"key\":\"ae_accept_manuscript\",\"tenantTerm\":\"recommend to accept manuscript\",\"frontiersDefaultTerm\":\"accept manuscript\",\"category\":\"Process\"},{\"sequenceNumber\":81,\"key\":\"fee\",\"tenantTerm\":\"fee\",\"frontiersDefaultTerm\":\"fee\",\"category\":\"Accounting\"},{\"sequenceNumber\":82,\"key\":\"fees\",\"tenantTerm\":\"fees\",\"frontiersDefaultTerm\":\"fees\",\"category\":\"Accounting\"},{\"sequenceNumber\":83,\"key\":\"guest_associate_editor\",\"tenantTerm\":\"Guest Associate Editor\",\"frontiersDefaultTerm\":\"Guest Associate Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":84,\"key\":\"guest_associate_editors\",\"tenantTerm\":\"Guest Associate Editors\",\"frontiersDefaultTerm\":\"Guest Associate Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":85,\"key\":\"in_review\",\"tenantTerm\":\"in review\",\"frontiersDefaultTerm\":\"in review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":86,\"key\":\"institutional_member\",\"tenantTerm\":\"institutional partner\",\"frontiersDefaultTerm\":\"institutional partner\",\"category\":\"Accounting\"},{\"sequenceNumber\":87,\"key\":\"institutional_membership\",\"tenantTerm\":\"institutional partnership\",\"frontiersDefaultTerm\":\"institutional partnership\",\"category\":\"Accounting\"},{\"sequenceNumber\":88,\"key\":\"article_processing_charge\",\"tenantTerm\":\"article processing charge\",\"frontiersDefaultTerm\":\"article processing charge\",\"category\":\"Accounting\"},{\"sequenceNumber\":89,\"key\":\"article_processing_charges\",\"tenantTerm\":\"article processing charges\",\"frontiersDefaultTerm\":\"article processing charges\",\"category\":\"Accounting\"},{\"sequenceNumber\":90,\"key\":\"apcs\",\"tenantTerm\":\"APCs\",\"frontiersDefaultTerm\":\"APCs\",\"category\":\"Accounting\"},{\"sequenceNumber\":91,\"key\":\"apc\",\"tenantTerm\":\"APC\",\"frontiersDefaultTerm\":\"APC\",\"category\":\"Accounting\"},{\"sequenceNumber\":92,\"key\":\"received\",\"tenantTerm\":\"received\",\"frontiersDefaultTerm\":\"received\",\"description\":\"Date manuscript was received on.\",\"category\":\"Core\"},{\"sequenceNumber\":93,\"key\":\"transferred\",\"tenantTerm\":\"transferred\",\"frontiersDefaultTerm\":\"transferred\",\"category\":\"Core\"},{\"sequenceNumber\":94,\"key\":\"transfer\",\"tenantTerm\":\"transfer\",\"frontiersDefaultTerm\":\"transfer\",\"category\":\"Core\"},{\"sequenceNumber\":95,\"key\":\"research_topic\",\"tenantTerm\":\"research topic\",\"frontiersDefaultTerm\":\"research topic\",\"category\":\"Core\"},{\"sequenceNumber\":96,\"key\":\"research_topics\",\"tenantTerm\":\"research topics\",\"frontiersDefaultTerm\":\"research topics\",\"category\":\"Core\"},{\"sequenceNumber\":97,\"key\":\"topic_editor\",\"tenantTerm\":\"Topic Editor\",\"frontiersDefaultTerm\":\"Topic Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":98,\"key\":\"review_editor\",\"tenantTerm\":\"Review Editor\",\"frontiersDefaultTerm\":\"Review Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":99,\"key\":\"title\",\"tenantTerm\":\"title\",\"frontiersDefaultTerm\":\"title\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":100,\"key\":\"running_title\",\"tenantTerm\":\"running title\",\"frontiersDefaultTerm\":\"running title\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":101,\"key\":\"submit\",\"tenantTerm\":\"submit\",\"frontiersDefaultTerm\":\"submit\",\"category\":\"Process\"},{\"sequenceNumber\":102,\"key\":\"submitted\",\"tenantTerm\":\"submitted\",\"frontiersDefaultTerm\":\"submitted\",\"category\":\"Process\"},{\"sequenceNumber\":103,\"key\":\"submitting\",\"tenantTerm\":\"submitting\",\"frontiersDefaultTerm\":\"submitting\",\"category\":\"Process\"},{\"sequenceNumber\":104,\"key\":\"t_e\",\"tenantTerm\":\"TE\",\"frontiersDefaultTerm\":\"TE\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":105,\"key\":\"topic\",\"tenantTerm\":\"topic\",\"frontiersDefaultTerm\":\"topic\",\"category\":\"Process\"},{\"sequenceNumber\":106,\"key\":\"topic_summary\",\"tenantTerm\":\"topic summary\",\"frontiersDefaultTerm\":\"topic summary\",\"category\":\"Process\"},{\"sequenceNumber\":107,\"key\":\"figure\",\"tenantTerm\":\"figure\",\"frontiersDefaultTerm\":\"figure\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":108,\"key\":\"figures\",\"tenantTerm\":\"figures\",\"frontiersDefaultTerm\":\"figures\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":109,\"key\":\"editorial_file\",\"tenantTerm\":\"editorial file\",\"frontiersDefaultTerm\":\"editorial file\",\"category\":\"Core\"},{\"sequenceNumber\":110,\"key\":\"editorial_files\",\"tenantTerm\":\"editorial files\",\"frontiersDefaultTerm\":\"editorial files\",\"category\":\"Core\"},{\"sequenceNumber\":111,\"key\":\"e_book\",\"tenantTerm\":\"e-book\",\"frontiersDefaultTerm\":\"e-book\",\"category\":\"Core\"},{\"sequenceNumber\":112,\"key\":\"organization\",\"tenantTerm\":\"organization\",\"frontiersDefaultTerm\":\"organization\",\"category\":\"Core\"},{\"sequenceNumber\":113,\"key\":\"institution\",\"tenantTerm\":\"institution\",\"frontiersDefaultTerm\":\"institution\",\"category\":\"Core\"},{\"sequenceNumber\":114,\"key\":\"reference\",\"tenantTerm\":\"reference\",\"frontiersDefaultTerm\":\"reference\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":115,\"key\":\"references\",\"tenantTerm\":\"references\",\"frontiersDefaultTerm\":\"references\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":116,\"key\":\"sce\",\"tenantTerm\":\"SCE\",\"frontiersDefaultTerm\":\"SCE\",\"description\":\"Abbreviation for Specialty Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":117,\"key\":\"submission\",\"tenantTerm\":\"submission\",\"frontiersDefaultTerm\":\"submission\",\"category\":\"Process\"},{\"sequenceNumber\":118,\"key\":\"submissions\",\"tenantTerm\":\"submissions\",\"frontiersDefaultTerm\":\"submissions\",\"category\":\"Process\"},{\"sequenceNumber\":119,\"key\":\"editing\",\"tenantTerm\":\"editing\",\"frontiersDefaultTerm\":\"editing\",\"category\":\"Process\"},{\"sequenceNumber\":120,\"key\":\"in_preparation\",\"tenantTerm\":\"in preparation\",\"frontiersDefaultTerm\":\"in preparation\",\"category\":\"Process\"},{\"sequenceNumber\":121,\"key\":\"country_region\",\"tenantTerm\":\"country\u002Fregion\",\"frontiersDefaultTerm\":\"country\u002Fregion\",\"description\":\"Because of political issues, some of the country listings are actually classified as `regions` and we need to include this. However other clients may not want to do this.\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":122,\"key\":\"countries_regions\",\"tenantTerm\":\"countries\u002Fregions\",\"frontiersDefaultTerm\":\"countries\u002Fregions\",\"description\":\"Because of political issues, some of the country listings are actually classified as `regions` and we need to include this. However other clients may not want to do this.\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":123,\"key\":\"specialty\",\"tenantTerm\":\"specialty\",\"frontiersDefaultTerm\":\"specialty\",\"category\":\"Core\"},{\"sequenceNumber\":124,\"key\":\"specialties\",\"tenantTerm\":\"specialties\",\"frontiersDefaultTerm\":\"specialties\",\"category\":\"Core\"},{\"sequenceNumber\":125,\"key\":\"associate_editors\",\"tenantTerm\":\"Associate Editors\",\"frontiersDefaultTerm\":\"Associate Editors\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":126,\"key\":\"reviewed\",\"tenantTerm\":\"reviewed\",\"frontiersDefaultTerm\":\"reviewed\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":127,\"key\":\"institutional_members\",\"tenantTerm\":\"institutional partners\",\"frontiersDefaultTerm\":\"institutional partners\",\"category\":\"Accounting\"},{\"sequenceNumber\":128,\"key\":\"institutional_memberships\",\"tenantTerm\":\"institutional partnerships\",\"frontiersDefaultTerm\":\"institutional partnerships\",\"category\":\"Accounting\"},{\"sequenceNumber\":129,\"key\":\"assistant_field_chief_editors\",\"tenantTerm\":\"Assistant Field Chief Editors\",\"frontiersDefaultTerm\":\"Assistant Field Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":130,\"key\":\"publications\",\"tenantTerm\":\"publications\",\"frontiersDefaultTerm\":\"publications\",\"category\":\"Process\"},{\"sequenceNumber\":131,\"key\":\"ae_accepted\",\"tenantTerm\":\"recommended acceptance\",\"frontiersDefaultTerm\":\"accepted\",\"category\":\"Process\"},{\"sequenceNumber\":132,\"key\":\"field_journal\",\"tenantTerm\":\"field journal\",\"frontiersDefaultTerm\":\"field journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":133,\"key\":\"field_journals\",\"tenantTerm\":\"field journals\",\"frontiersDefaultTerm\":\"field journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":134,\"key\":\"program_manager\",\"tenantTerm\":\"program manager\",\"frontiersDefaultTerm\":\"program manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":135,\"key\":\"journal_manager\",\"tenantTerm\":\"journal manager\",\"frontiersDefaultTerm\":\"journal manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":136,\"key\":\"journal_specialist\",\"tenantTerm\":\"journal specialist\",\"frontiersDefaultTerm\":\"journal specialist\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":137,\"key\":\"program_managers\",\"tenantTerm\":\"program managers\",\"frontiersDefaultTerm\":\"program managers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":138,\"key\":\"journal_managers\",\"tenantTerm\":\"journal managers\",\"frontiersDefaultTerm\":\"journal managers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":139,\"key\":\"journal_specialists\",\"tenantTerm\":\"journal specialists\",\"frontiersDefaultTerm\":\"journal specialists\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":140,\"key\":\"cover_letter\",\"tenantTerm\":\"manuscript contribution to the field\",\"frontiersDefaultTerm\":\"manuscript contribution to the field\",\"category\":\"Process\"},{\"sequenceNumber\":141,\"key\":\"ae_accepted_manuscript\",\"tenantTerm\":\"recommended to accept manuscript\",\"frontiersDefaultTerm\":\"accepted manuscript\",\"category\":\"Process\"},{\"sequenceNumber\":142,\"key\":\"recommend_for_rejection\",\"tenantTerm\":\"recommend for rejection\",\"frontiersDefaultTerm\":\"recommend for rejection\",\"category\":\"Process\"},{\"sequenceNumber\":143,\"key\":\"recommended_for_rejection\",\"tenantTerm\":\"recommended for rejection\",\"frontiersDefaultTerm\":\"recommended for rejection\",\"category\":\"Process\"},{\"sequenceNumber\":144,\"key\":\"ae\",\"tenantTerm\":\"AE\",\"frontiersDefaultTerm\":\"AE\",\"description\":\"Associate Editor - board member\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":145,\"key\":\"re\",\"tenantTerm\":\"RE\",\"frontiersDefaultTerm\":\"RE\",\"description\":\"Review Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":146,\"key\":\"rev\",\"tenantTerm\":\"REV\",\"frontiersDefaultTerm\":\"REV\",\"description\":\"Reviewer\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":147,\"key\":\"aut\",\"tenantTerm\":\"AUT\",\"frontiersDefaultTerm\":\"AUT\",\"description\":\"Author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":148,\"key\":\"coraut\",\"tenantTerm\":\"CORAUT\",\"frontiersDefaultTerm\":\"CORAUT\",\"description\":\"Corresponding author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":149,\"key\":\"saut\",\"tenantTerm\":\"SAUT\",\"frontiersDefaultTerm\":\"SAUT\",\"description\":\"Submitting author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":150,\"key\":\"coaut\",\"tenantTerm\":\"COAUT\",\"frontiersDefaultTerm\":\"COAUT\",\"description\":\"co-author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":151,\"key\":\"tsof\",\"tenantTerm\":\"TSOF\",\"frontiersDefaultTerm\":\"TSOF\",\"description\":\"Typesetter\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":152,\"key\":\"typesetting_office\",\"tenantTerm\":\"typesetting office\",\"frontiersDefaultTerm\":\"typesetting office\",\"category\":\"Product\"},{\"sequenceNumber\":153,\"key\":\"config\",\"tenantTerm\":\"CONFIG\",\"frontiersDefaultTerm\":\"CONFIG\",\"description\":\"Configuration office role\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":154,\"key\":\"jm\",\"tenantTerm\":\"JM\",\"frontiersDefaultTerm\":\"JM\",\"description\":\"Journal Manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":155,\"key\":\"rte\",\"tenantTerm\":\"RTE\",\"frontiersDefaultTerm\":\"RTE\",\"description\":\"Research topic editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":156,\"key\":\"organizations\",\"tenantTerm\":\"organizations\",\"frontiersDefaultTerm\":\"organizations\",\"category\":\"Core\"},{\"sequenceNumber\":157,\"key\":\"publishing\",\"tenantTerm\":\"publishing\",\"frontiersDefaultTerm\":\"publishing\",\"category\":\"Core\"},{\"sequenceNumber\":158,\"key\":\"acceptance\",\"tenantTerm\":\"acceptance\",\"frontiersDefaultTerm\":\"acceptance\",\"category\":\"Process\"},{\"sequenceNumber\":159,\"key\":\"preferred_associate_editor\",\"tenantTerm\":\"preferred associate editor\",\"frontiersDefaultTerm\":\"preferred associate editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":160,\"key\":\"topic_editors\",\"tenantTerm\":\"Topic Editors\",\"frontiersDefaultTerm\":\"Topic Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":161,\"key\":\"institutions\",\"tenantTerm\":\"institutions\",\"frontiersDefaultTerm\":\"institutions\",\"category\":\"Core\"},{\"sequenceNumber\":162,\"key\":\"author(s)\",\"tenantTerm\":\"author(s)\",\"frontiersDefaultTerm\":\"author(s)\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":163,\"key\":\"figure(s)\",\"tenantTerm\":\"figure(s)\",\"frontiersDefaultTerm\":\"figure(s)\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":164,\"key\":\"co-authors\",\"tenantTerm\":\"co-authors\",\"frontiersDefaultTerm\":\"co-authors\",\"description\":\"co-authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":165,\"key\":\"editorial_board_members\",\"tenantTerm\":\"editorial board members\",\"frontiersDefaultTerm\":\"editorial board members\",\"description\":\"editorial board members\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":166,\"key\":\"editorial_board\",\"tenantTerm\":\"editorial board\",\"frontiersDefaultTerm\":\"editorial board\",\"description\":\"editorial board\",\"category\":\"Product\"},{\"sequenceNumber\":167,\"key\":\"co-authorship\",\"tenantTerm\":\"co-authorship\",\"frontiersDefaultTerm\":\"co-authorship\",\"description\":\"co-authorship\",\"category\":\"Misc.\"},{\"sequenceNumber\":168,\"key\":\"role_id_1\",\"tenantTerm\":\"registration office\",\"frontiersDefaultTerm\":\"registration office\",\"category\":\"User Role\"},{\"sequenceNumber\":169,\"key\":\"role_id_2\",\"tenantTerm\":\"editorial office\",\"frontiersDefaultTerm\":\"editorial office\",\"category\":\"User Role\"},{\"sequenceNumber\":170,\"key\":\"role_id_7\",\"tenantTerm\":\"field chief editor\",\"frontiersDefaultTerm\":\"field chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":171,\"key\":\"role_id_8\",\"tenantTerm\":\"assistant field chief editor\",\"frontiersDefaultTerm\":\"assistant field chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":172,\"key\":\"role_id_9\",\"tenantTerm\":\"specialty chief editor\",\"frontiersDefaultTerm\":\"specialty chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":173,\"key\":\"role_id_10\",\"tenantTerm\":\"assistant specialty chief editor\",\"frontiersDefaultTerm\":\"assistant specialty chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":174,\"key\":\"role_id_11\",\"tenantTerm\":\"associate editor\",\"frontiersDefaultTerm\":\"associate editor\",\"category\":\"User Role\"},{\"sequenceNumber\":175,\"key\":\"role_id_12\",\"tenantTerm\":\"guest associate editor\",\"frontiersDefaultTerm\":\"guest associate editor\",\"category\":\"User Role\"},{\"sequenceNumber\":176,\"key\":\"role_id_13\",\"tenantTerm\":\"review editor\",\"frontiersDefaultTerm\":\"review editor\",\"category\":\"User Role\"},{\"sequenceNumber\":177,\"key\":\"role_id_14\",\"tenantTerm\":\"reviewer\",\"frontiersDefaultTerm\":\"reviewer\",\"category\":\"User Role\"},{\"sequenceNumber\":178,\"key\":\"role_id_15\",\"tenantTerm\":\"author\",\"frontiersDefaultTerm\":\"author\",\"category\":\"User Role\"},{\"sequenceNumber\":179,\"key\":\"role_id_16\",\"tenantTerm\":\"corresponding author\",\"frontiersDefaultTerm\":\"corresponding author\",\"category\":\"User Role\"},{\"sequenceNumber\":180,\"key\":\"role_id_17\",\"tenantTerm\":\"submitting author\",\"frontiersDefaultTerm\":\"submitting author\",\"category\":\"User Role\"},{\"sequenceNumber\":181,\"key\":\"role_id_18\",\"tenantTerm\":\"co-author\",\"frontiersDefaultTerm\":\"co-author\",\"category\":\"User Role\"},{\"sequenceNumber\":182,\"key\":\"role_id_20\",\"tenantTerm\":\"production office\",\"frontiersDefaultTerm\":\"production office\",\"category\":\"User Role\"},{\"sequenceNumber\":183,\"key\":\"role_id_22\",\"tenantTerm\":\"typesetting office (typesetter)\",\"frontiersDefaultTerm\":\"typesetting office (typesetter)\",\"category\":\"User Role\"},{\"sequenceNumber\":184,\"key\":\"role_id_24\",\"tenantTerm\":\"registered user\",\"frontiersDefaultTerm\":\"registered user\",\"category\":\"User Role\"},{\"sequenceNumber\":185,\"key\":\"role_id_35\",\"tenantTerm\":\"job office\",\"frontiersDefaultTerm\":\"job office\",\"category\":\"User Role\"},{\"sequenceNumber\":186,\"key\":\"role_id_41\",\"tenantTerm\":\"special event administrator\",\"frontiersDefaultTerm\":\"special event administrator\",\"category\":\"User Role\"},{\"sequenceNumber\":187,\"key\":\"role_id_42\",\"tenantTerm\":\"special event reviewer\",\"frontiersDefaultTerm\":\"special event reviewer\",\"category\":\"User Role\"},{\"sequenceNumber\":188,\"key\":\"role_id_43\",\"tenantTerm\":\"submit abstract\",\"frontiersDefaultTerm\":\"submit abstract\",\"category\":\"User Role\"},{\"sequenceNumber\":189,\"key\":\"role_id_52\",\"tenantTerm\":\"events office\",\"frontiersDefaultTerm\":\"events office\",\"category\":\"User Role\"},{\"sequenceNumber\":190,\"key\":\"role_id_53\",\"tenantTerm\":\"event administrator\",\"frontiersDefaultTerm\":\"event administrator\",\"category\":\"User Role\"},{\"sequenceNumber\":191,\"key\":\"role_id_89\",\"tenantTerm\":\"content management office\",\"frontiersDefaultTerm\":\"content management office\",\"category\":\"User Role\"},{\"sequenceNumber\":192,\"key\":\"role_id_98\",\"tenantTerm\":\"accounting office\",\"frontiersDefaultTerm\":\"accounting office\",\"category\":\"User Role\"},{\"sequenceNumber\":193,\"key\":\"role_id_99\",\"tenantTerm\":\"projects\",\"frontiersDefaultTerm\":\"projects\",\"category\":\"User Role\"},{\"sequenceNumber\":194,\"key\":\"role_id_103\",\"tenantTerm\":\"configuration office\",\"frontiersDefaultTerm\":\"configuration office\",\"category\":\"User Role\"},{\"sequenceNumber\":195,\"key\":\"role_id_104\",\"tenantTerm\":\"beta user\",\"frontiersDefaultTerm\":\"beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":196,\"key\":\"role_id_106\",\"tenantTerm\":\"wfconf\",\"frontiersDefaultTerm\":\"wfconf\",\"category\":\"User Role\"},{\"sequenceNumber\":197,\"key\":\"role_id_107\",\"tenantTerm\":\"rt management beta user\",\"frontiersDefaultTerm\":\"rt management beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":198,\"key\":\"role_id_108\",\"tenantTerm\":\"deo beta user\",\"frontiersDefaultTerm\":\"deo beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":199,\"key\":\"role_id_109\",\"tenantTerm\":\"search beta user\",\"frontiersDefaultTerm\":\"search beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":200,\"key\":\"role_id_110\",\"tenantTerm\":\"journal manager\",\"frontiersDefaultTerm\":\"journal manager\",\"category\":\"User Role\"},{\"sequenceNumber\":201,\"key\":\"role_id_111\",\"tenantTerm\":\"myfrontiers beta user\",\"frontiersDefaultTerm\":\"myfrontiers beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":202,\"key\":\"role_id_21\",\"tenantTerm\":\"copy editor\",\"frontiersDefaultTerm\":\"copy editor\",\"category\":\"User Role\"},{\"sequenceNumber\":203,\"key\":\"role_id_1_abr\",\"tenantTerm\":\"ROF\",\"frontiersDefaultTerm\":\"ROF\",\"category\":\"User Role\"},{\"sequenceNumber\":204,\"key\":\"role_id_2_abr\",\"tenantTerm\":\"EOF\",\"frontiersDefaultTerm\":\"EOF\",\"category\":\"User Role\"},{\"sequenceNumber\":205,\"key\":\"role_id_7_abr\",\"tenantTerm\":\"FCE\",\"frontiersDefaultTerm\":\"FCE\",\"category\":\"User Role\"},{\"sequenceNumber\":206,\"key\":\"role_id_8_abr\",\"tenantTerm\":\"AFCE\",\"frontiersDefaultTerm\":\"AFCE\",\"category\":\"User Role\"},{\"sequenceNumber\":207,\"key\":\"role_id_9_abr\",\"tenantTerm\":\"SCE\",\"frontiersDefaultTerm\":\"SCE\",\"category\":\"User Role\"},{\"sequenceNumber\":208,\"key\":\"role_id_10_abr\",\"tenantTerm\":\"ASCE\",\"frontiersDefaultTerm\":\"ASCE\",\"category\":\"User Role\"},{\"sequenceNumber\":209,\"key\":\"role_id_11_abr\",\"tenantTerm\":\"AE\",\"frontiersDefaultTerm\":\"AE\",\"category\":\"User Role\"},{\"sequenceNumber\":210,\"key\":\"role_id_12_abr\",\"tenantTerm\":\"GAE\",\"frontiersDefaultTerm\":\"GAE\",\"category\":\"User Role\"},{\"sequenceNumber\":211,\"key\":\"role_id_13_abr\",\"tenantTerm\":\"RE\",\"frontiersDefaultTerm\":\"RE\",\"category\":\"User Role\"},{\"sequenceNumber\":212,\"key\":\"role_id_14_abr\",\"tenantTerm\":\"REV\",\"frontiersDefaultTerm\":\"REV\",\"category\":\"User Role\"},{\"sequenceNumber\":213,\"key\":\"role_id_15_abr\",\"tenantTerm\":\"AUT\",\"frontiersDefaultTerm\":\"AUT\",\"category\":\"User Role\"},{\"sequenceNumber\":214,\"key\":\"role_id_16_abr\",\"tenantTerm\":\"CORAUT\",\"frontiersDefaultTerm\":\"CORAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":215,\"key\":\"role_id_17_abr\",\"tenantTerm\":\"SAUT\",\"frontiersDefaultTerm\":\"SAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":216,\"key\":\"role_id_18_abr\",\"tenantTerm\":\"COAUT\",\"frontiersDefaultTerm\":\"COAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":217,\"key\":\"role_id_20_abr\",\"tenantTerm\":\"POF\",\"frontiersDefaultTerm\":\"POF\",\"category\":\"User Role\"},{\"sequenceNumber\":218,\"key\":\"role_id_22_abr\",\"tenantTerm\":\"TSOF\",\"frontiersDefaultTerm\":\"TSOF\",\"category\":\"User Role\"},{\"sequenceNumber\":219,\"key\":\"role_id_24_abr\",\"tenantTerm\":\"RU\",\"frontiersDefaultTerm\":\"RU\",\"category\":\"User Role\"},{\"sequenceNumber\":220,\"key\":\"role_id_35_abr\",\"tenantTerm\":\"JOF\",\"frontiersDefaultTerm\":\"JOF\",\"category\":\"User Role\"},{\"sequenceNumber\":221,\"key\":\"role_id_41_abr\",\"tenantTerm\":\"SE-ADM\",\"frontiersDefaultTerm\":\"SE-ADM\",\"category\":\"User Role\"},{\"sequenceNumber\":222,\"key\":\"role_id_42_abr\",\"tenantTerm\":\"SE-REV\",\"frontiersDefaultTerm\":\"SE-REV\",\"category\":\"User Role\"},{\"sequenceNumber\":223,\"key\":\"role_id_43_abr\",\"tenantTerm\":\"SE-AUT\",\"frontiersDefaultTerm\":\"SE-AUT\",\"category\":\"User Role\"},{\"sequenceNumber\":224,\"key\":\"role_id_52_abr\",\"tenantTerm\":\"EVOF\",\"frontiersDefaultTerm\":\"EVOF\",\"category\":\"User Role\"},{\"sequenceNumber\":225,\"key\":\"role_id_53_abr\",\"tenantTerm\":\"EV-ADM\",\"frontiersDefaultTerm\":\"EV-ADM\",\"category\":\"User Role\"},{\"sequenceNumber\":226,\"key\":\"role_id_89_abr\",\"tenantTerm\":\"COMOF\",\"frontiersDefaultTerm\":\"COMOF\",\"category\":\"User Role\"},{\"sequenceNumber\":227,\"key\":\"role_id_98_abr\",\"tenantTerm\":\"AOF\",\"frontiersDefaultTerm\":\"AOF\",\"category\":\"User Role\"},{\"sequenceNumber\":228,\"key\":\"role_id_99_abr\",\"tenantTerm\":\"Projects\",\"frontiersDefaultTerm\":\"Projects\",\"category\":\"User Role\"},{\"sequenceNumber\":229,\"key\":\"role_id_103_abr\",\"tenantTerm\":\"CONFIG\",\"frontiersDefaultTerm\":\"CONFIG\",\"category\":\"User Role\"},{\"sequenceNumber\":230,\"key\":\"role_id_104_abr\",\"tenantTerm\":\"BETA\",\"frontiersDefaultTerm\":\"BETA\",\"category\":\"User Role\"},{\"sequenceNumber\":231,\"key\":\"role_id_106_abr\",\"tenantTerm\":\"WFCONF\",\"frontiersDefaultTerm\":\"WFCONF\",\"category\":\"User Role\"},{\"sequenceNumber\":232,\"key\":\"role_id_107_abr\",\"tenantTerm\":\"RTBETA\",\"frontiersDefaultTerm\":\"RTBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":233,\"key\":\"role_id_108_abr\",\"tenantTerm\":\"DEOBETA\",\"frontiersDefaultTerm\":\"DEOBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":234,\"key\":\"role_id_109_abr\",\"tenantTerm\":\"SEARCHBETA\",\"frontiersDefaultTerm\":\"SEARCHBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":235,\"key\":\"role_id_110_abr\",\"tenantTerm\":\"JM\",\"frontiersDefaultTerm\":\"JM\",\"category\":\"User Role\"},{\"sequenceNumber\":236,\"key\":\"role_id_111_abr\",\"tenantTerm\":\"MFBETA\",\"frontiersDefaultTerm\":\"MFBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":237,\"key\":\"role_id_21_abr\",\"tenantTerm\":\"COPED\",\"frontiersDefaultTerm\":\"COPED\",\"category\":\"User Role\"},{\"sequenceNumber\":238,\"key\":\"reviewer_editorial_board\",\"tenantTerm\":\"editorial board\",\"frontiersDefaultTerm\":\"editorial board\",\"description\":\"This is the label for the review editorial board\",\"category\":\"Label\"},{\"sequenceNumber\":239,\"key\":\"field_chief_editor\",\"tenantTerm\":\"Field Chief Editor\",\"frontiersDefaultTerm\":\"Field Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":240,\"key\":\"field_chief_editors\",\"tenantTerm\":\"Field Chief Editors\",\"frontiersDefaultTerm\":\"Field Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":241,\"key\":\"editor\",\"tenantTerm\":\"editor\",\"frontiersDefaultTerm\":\"editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":242,\"key\":\"editors\",\"tenantTerm\":\"editors\",\"frontiersDefaultTerm\":\"editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":243,\"key\":\"board\",\"tenantTerm\":\"board\",\"frontiersDefaultTerm\":\"board\",\"category\":\"Label\"},{\"sequenceNumber\":244,\"key\":\"boards\",\"tenantTerm\":\"boards\",\"frontiersDefaultTerm\":\"boards\",\"category\":\"Label\"},{\"sequenceNumber\":245,\"key\":\"article_collection\",\"tenantTerm\":\"article collection\",\"frontiersDefaultTerm\":\"article collection\",\"category\":\"Label\"},{\"sequenceNumber\":246,\"key\":\"article_collections\",\"tenantTerm\":\"article collections\",\"frontiersDefaultTerm\":\"article collections\",\"category\":\"Label\"},{\"sequenceNumber\":247,\"key\":\"handling_editor\",\"tenantTerm\":\"handling editor\",\"frontiersDefaultTerm\":\"associate editor\",\"description\":\"This terminology key is for the person assigned to edit a manuscript. It is a label for the temporary handling editor assignment.\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":248,\"key\":\"handling_editors\",\"tenantTerm\":\"handling editors\",\"frontiersDefaultTerm\":\"associate editors\",\"description\":\"This terminology key is for the person assigned to edit a manuscript. It is a label for the temporary handling editor assignment.\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":249,\"key\":\"ae_accept\",\"tenantTerm\":\"recommend acceptance\",\"frontiersDefaultTerm\":\"accept\",\"category\":\"Process\"},{\"sequenceNumber\":250,\"key\":\"rtm\",\"tenantTerm\":\"RTM\",\"frontiersDefaultTerm\":\"RTM\",\"category\":\"Product\"},{\"sequenceNumber\":251,\"key\":\"frontiers_media_sa\",\"tenantTerm\":\"Frontiers Media S.A\",\"frontiersDefaultTerm\":\"Frontiers Media S.A\",\"category\":\"Customer\"},{\"sequenceNumber\":252,\"key\":\"review_editors\",\"tenantTerm\":\"Review Editors\",\"frontiersDefaultTerm\":\"Review Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":253,\"key\":\"journal_card_chief_editor\",\"tenantTerm\":\"Chief Editor\",\"frontiersDefaultTerm\":\"Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":254,\"key\":\"journal_card_chief_editors\",\"tenantTerm\":\"Chief Editors\",\"frontiersDefaultTerm\":\"Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":255,\"key\":\"call_for_papers\",\"tenantTerm\":\"Call for papers\",\"frontiersDefaultTerm\":\"Call for papers\",\"category\":\"Label\"},{\"sequenceNumber\":256,\"key\":\"calls_for_papers\",\"tenantTerm\":\"Calls for papers\",\"frontiersDefaultTerm\":\"Calls for papers\",\"category\":\"Label\"},{\"sequenceNumber\":257,\"key\":\"supervising_editor\",\"tenantTerm\":\"Supervising Editor\",\"frontiersDefaultTerm\":\"Supervising Editor\",\"description\":\"A Chief or Assistant Chief editor who is assigned to a manuscript to supervise.\",\"category\":\"Role\",\"externalKey\":\"supervising_editor\"},{\"sequenceNumber\":258,\"key\":\"supervising_editors\",\"tenantTerm\":\"Supervising Editors\",\"frontiersDefaultTerm\":\"Supervising Editors\",\"description\":\"A Chief or Assistant Chief editor who is assigned to a manuscript to supervise.\",\"category\":\"Role\",\"externalKey\":\"supervising_editors\"},{\"sequenceNumber\":259,\"key\":\"reviewer_endorse\",\"tenantTerm\":\"endorse\",\"frontiersDefaultTerm\":\"endorse\",\"category\":\"Label\"},{\"sequenceNumber\":260,\"key\":\"reviewer_endorsed\",\"tenantTerm\":\"endorsed\",\"frontiersDefaultTerm\":\"endorsed\",\"category\":\"Label\"},{\"sequenceNumber\":261,\"key\":\"reviewer_endorse_publication\",\"tenantTerm\":\"endorse publication\",\"frontiersDefaultTerm\":\"endorse publication\",\"category\":\"Label\"},{\"sequenceNumber\":262,\"key\":\"reviewer_endorsed_publication\",\"tenantTerm\":\"endorsed publication\",\"frontiersDefaultTerm\":\"endorsed publication\",\"category\":\"Label\"},{\"sequenceNumber\":263,\"key\":\"editor_role\",\"tenantTerm\":\"editor role\",\"frontiersDefaultTerm\":\"Editor Role\",\"category\":\"Label\"},{\"sequenceNumber\":264,\"key\":\"editor_roles\",\"tenantTerm\":\"editor roles\",\"frontiersDefaultTerm\":\"Editor Roles\",\"category\":\"Label\"},{\"sequenceNumber\":265,\"key\":\"editorial_role\",\"tenantTerm\":\"editorial role\",\"frontiersDefaultTerm\":\"Editorial Role\",\"category\":\"Label\"},{\"sequenceNumber\":266,\"key\":\"editorial_roles\",\"tenantTerm\":\"editorial roles\",\"frontiersDefaultTerm\":\"Editorial Roles\",\"category\":\"Label\"},{\"sequenceNumber\":267,\"key\":\"call_for_paper\",\"tenantTerm\":\"Call for paper\",\"frontiersDefaultTerm\":\"Call for paper\",\"category\":\"Label\"},{\"sequenceNumber\":268,\"key\":\"research_topic_abstract\",\"tenantTerm\":\"manuscript summary\",\"frontiersDefaultTerm\":\"manuscript summary\",\"category\":\"Process\"},{\"sequenceNumber\":269,\"key\":\"research_topic_abstracts\",\"tenantTerm\":\"manuscript summaries\",\"frontiersDefaultTerm\":\"manuscript summaries\",\"category\":\"Process\"},{\"sequenceNumber\":270,\"key\":\"submissions_team_manager\",\"tenantTerm\":\"Content Manager\",\"frontiersDefaultTerm\":\"Content Manager\",\"category\":\"Process\"},{\"sequenceNumber\":271,\"key\":\"submissions_team\",\"tenantTerm\":\"Content Team\",\"frontiersDefaultTerm\":\"Content Team\",\"category\":\"Process\"},{\"sequenceNumber\":272,\"key\":\"topic_coordinator\",\"tenantTerm\":\"topic coordinator\",\"frontiersDefaultTerm\":\"topic coordinator\",\"category\":\"Process\"},{\"sequenceNumber\":273,\"key\":\"topic_coordinators\",\"tenantTerm\":\"topic coordinators\",\"frontiersDefaultTerm\":\"topic coordinators\",\"category\":\"Process\"}]}'\n",gtmId:"GTM-M322FV2",gtmAuth:"owVbWxfaJr21yQv1fe1cAQ",gtmServerUrl:"https:\u002F\u002Ftag-manager.frontiersin.org",gtmPreview:"env-1",faviconSize512:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002Fed3f9ce840a03d7\u002Ffavicon_512-tenantFavicon-Frontiers.png",socialMediaImg:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002F1c8bcb536c789e11\u002FGuidelines-Frontiers_Logo_1200x628_1-91to1.png",_app:{basePath:"\u002F",assetsPath:"\u002Farticle-pages\u002F_nuxt\u002F",cdnURL:e}},apollo:{contentfulJournalsDelivery:Object.create(null),contentfulJournalsPreview:Object.create(null),contentfulHomeDelivery:Object.create(null),contentfulHomePreview:Object.create(null),frontiersGraph:Object.create(null)}}}("journal_journal","public_space",1,"frontiersin.org",null,"_self",true,"",3,"frontierspartnerships.org","_blank",false,0,"Frontiers in Marine Science","PDF",5,655,"marine-science",4,2,1920,"description","Frontiers","Help center","Link","Grey","Medium","ssph-journal.org","fship","Front. Mar. Sci.","2296-7745",void 0,18,"Spain",9,"fmars-09-899877.pdf","citation_author","citation_author_institution","por-journal.com",7,"escubed.org",1918,"fipp","https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002FAB731B5E-557C-4DEA-88680B655CE21F43\u002Fwebimage-1EF4D612-84E1-4D62-93F35B2F4CEA3949.png","image","2022-06-27T10:00:00Z","fmars",45,"journal_field","10.3389\u002Ffmars.2022.899877","Coralline Algae at the Paleocene\u002FEocene Thermal Maximum in the Southern Pyrenees (N Spain)","\u003Cp\u003EDuring the Paleocene\u002FEocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO\u003Csub\u003E2\u003C\u002Fsub\u003E. This event lasted for ~100 thousands of years with the consequent ocean acidification (estimated pH = 7.8-7.6). In this paper, we analyze the effects of this global environmental shift on coralline algal assemblages in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain), where the PETM is recorded within coastal-to-shallow marine carbonate and siliciclastic deposits. In both sections, coralline algae occur mostly as fragments, although rhodoliths and crusts coating other organisms are also frequent. Rhodoliths occur either dispersed or locally forming dense concentrations (rhodolith beds). \u003Citalic\u003EDistichoplax biserialis\u003C\u002Fitalic\u003E and geniculate forms (mostly \u003Citalic\u003EJania nummulitica\u003C\u002Fitalic\u003E) of the order Corallinales dominated the algal assemblages followed by Sporolithales and Hapalidiales. Other representatives of Corallinales, namely \u003Citalic\u003ESpongites\u003C\u002Fitalic\u003E, \u003Citalic\u003ELithoporella\u003C\u002Fitalic\u003E as well as \u003Citalic\u003ENeogoniolithon\u003C\u002Fitalic\u003E, \u003Citalic\u003EKarpathia\u003C\u002Fitalic\u003E, and \u003Citalic\u003EHydrolithon\u003C\u002Fitalic\u003E, are less abundant. Species composition does not change throughout the Paleocene\u002FEocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a reduction. They were abundant during the late Thanetian but became rare during the early Ypresian. This abundance decrease is due to a drastic change in the local paleoenvironmental conditions immediately after the boundary. A hardground at the top of the Thanetian carbonates was followed by continental sedimentation. After that, marine sedimentation resumed in shallow, very restricted lagoon and peritidal settings, where muddy carbonates rich in benthic foraminifera, e.g., milioliids (with abundant \u003Citalic\u003EAlveolina\u003C\u002Fitalic\u003E) and soritids, and eventually stromatolites were deposited. These initial restricted conditions were unfavorable for coralline algae. Adverse conditions continued to the end of the study sections although coralline algae reappeared and were locally frequent in some beds, where they occurred associated with corals. In Serraduy, the marine reflooding was also accompanied by significant terrigenous supply, precluding algal development. Therefore, the observed changes in coralline algal assemblages during the PETM in the Pyrenees were most likely related to local paleoenvironmental shifts rather than to global oceanic or atmospheric alterations.\u003C\u002Fp\u003E",10,515704,"Julio","Dpto. Estratigraf铆a y Paleontolog铆a, Facultad de Ciencias, Universidad de Granada","Juan I.",648405,"Juan C.",496848,"Gang",1628090,"Sherif",1756246,"AMIT K.",{},747,"Marine Ecosystem Ecology","marine-ecosystem-ecology","EPUB","fmars-09-899877.xml","Frontiers | Coralline Algae at the Paleocene\u002FEocene Thermal Maximum in the Southern Pyrenees (N Spain)","https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fmarine-science\u002Farticles\u002F10.3389\u002Ffmars.2022.899877\u002Ffull","During the Paleocene\u002FEocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO2. This event ...","og:title","og:description","keywords","og:site_name","og:image","og:type","og:url","twitter:card","citation_volume","citation_journal_title","citation_publisher","citation_journal_abbrev","citation_issn","citation_doi","citation_firstpage","citation_language","citation_title","citation_keywords","citation_abstract","citation_pdf_url","citation_online_date","citation_publication_date","Dpto. Estratigraf铆a y Paleontolog铆a, Facultad de Ciencias, Universidad de Granada, Spain","dc.identifier","articles","editors","research-topics","How we publish","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fhow-we-publish","Fee policy","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Ffee-policy","Research Topics","https:\u002F\u002Fforum.frontiersin.org\u002F","Frontiers Planet Prize","https:\u002F\u002Fwww.frontiersplanetprize.org\u002F","this link will take you to the Frontiers Planet Prize website","Career opportunities","https:\u002F\u002Fcareers.frontiersin.org\u002F","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fcontact","Author guidelines","Editor guidelines","https:\u002F\u002Fwww.frontiersin.org\u002Fjournals","https:\u002F\u002Fwww.frontiersin.org\u002Farticles","Articles","https:\u002F\u002Fhelpcenter.frontiersin.org","Frontiers for Young Minds","Frontiers Facebook","Transplant International","transplant-international","ti",1921,"Spanish Journal of Soil Science","spanish-journal-of-soil-science","sjss","ebm-journal.org","Public Health Reviews","public-health-reviews","phrs","Pathology and Oncology Research","pathology-and-oncology-research","pore",21,"Pastoralism: Research, Policy and Practice","pastoralism-research-policy-and-practice","past",11,"Oncology Reviews","oncology-reviews","or","Journal of Pharmacy & Pharmaceutical Sciences","journal-of-pharmacy-pharmaceutical-sciences","jpps","Journal of Cutaneous Immunology and Allergy","journal-of-cutaneous-immunology-and-allergy","JCIA","Journal of Abdominal Wall Surgery","journal-of-abdominal-wall-surgery","jaws",1919,"International Journal of Public Health","international-journal-of-public-health","ijph","Frontiers in Pathology","pathology","fpath",13,12,17,6,"Experimental Biology and Medicine","experimental-biology-and-medicine","EBM","European Journal of Cultural Management and Policy","european-journal-of-cultural-management-and-policy","ejcmp","Earth Science, Systems and Society","earth-science-systems-and-society","esss","Dystonia","dystonia","dyst","British Journal of Biomedical Science","british-journal-of-biomedical-science","bjbs","Aerospace Research Communications","aerospace-research-communications","arc","Advances in Drug and Alcohol Research","advances-in-drug-and-alcohol-research","adar","Acta Virologica","acta-virologica","av","Acta Biochimica Polonica","acta-biochimica-polonica"));</script><script src="/article-pages/_nuxt/4764e3b.js" defer></script><script src="/article-pages/_nuxt/a07a553.js" defer></script><script src="/article-pages/_nuxt/94ee25c.js" defer></script><script src="/article-pages/_nuxt/5465e0e.js" defer></script><script src="/article-pages/_nuxt/fb04c78.js" defer></script><script src="/article-pages/_nuxt/f8f682e.js" defer></script><script src="/article-pages/_nuxt/8e7ee66.js" defer></script><script src="/article-pages/_nuxt/232bf4b.js" defer></script><script src="/article-pages/_nuxt/3b10072.js" defer></script><script data-n-head="ssr" src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6" data-body="true" async></script><script data-n-head="ssr" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML" data-body="true" async></script><script data-n-head="ssr" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/altmetric_badges-f0bc9b243ff5677d05460c1eb71834ca998946d764eb3bc244ab4b18ba50d21e.js" data-body="true" async></script><script data-n-head="ssr" src="https://api.altmetric.com/v1/doi/10.3389/fmars.2022.899877?callback=_altmetric.embed_callback&domain=www.frontiersin.org&key=3c130976ca2b8f2e88f8377633751ba1&cache_until=14-15" data-body="true" async></script><script data-n-head="ssr" src="https://widgets.figshare.com/static/figshare.js" data-body="true" async></script><script data-n-head="ssr" src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js" data-body="true" async></script> </body> </html>