CINXE.COM
quaternion in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> quaternion in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> quaternion </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/18430/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="arithmetic">Arithmetic</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/number+theory">number theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic">arithmetic</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+geometry">arithmetic geometry</a>, <a class="existingWikiWord" href="/nlab/show/arithmetic+topology">arithmetic topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+arithmetic+geometry">higher arithmetic geometry</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+arithmetic+geometry">E-∞ arithmetic geometry</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/number">number</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/natural+number">natural number</a>, <a class="existingWikiWord" href="/nlab/show/integer+number">integer number</a>, <a class="existingWikiWord" href="/nlab/show/rational+number">rational number</a>, <a class="existingWikiWord" href="/nlab/show/real+number">real number</a>, <a class="existingWikiWord" href="/nlab/show/irrational+number">irrational number</a>, <a class="existingWikiWord" href="/nlab/show/complex+number">complex number</a>, <a class="existingWikiWord" href="/nlab/show/quaternion">quaternion</a>, <a class="existingWikiWord" href="/nlab/show/octonion">octonion</a>, <a class="existingWikiWord" href="/nlab/show/adic+number">adic number</a>, <a class="existingWikiWord" href="/nlab/show/cardinal+number">cardinal number</a>, <a class="existingWikiWord" href="/nlab/show/ordinal+number">ordinal number</a>, <a class="existingWikiWord" href="/nlab/show/surreal+number">surreal number</a></li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/arithmetic">arithmetic</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Peano+arithmetic">Peano arithmetic</a>, <a class="existingWikiWord" href="/nlab/show/second-order+arithmetic">second-order arithmetic</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/transfinite+arithmetic">transfinite arithmetic</a>, <a class="existingWikiWord" href="/nlab/show/cardinal+arithmetic">cardinal arithmetic</a>, <a class="existingWikiWord" href="/nlab/show/ordinal+arithmetic">ordinal arithmetic</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/prime+field">prime field</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+integer">p-adic integer</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+rational+number">p-adic rational number</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+complex+number">p-adic complex number</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/arithmetic+geometry">arithmetic geometry</a></strong>, <a class="existingWikiWord" href="/nlab/show/function+field+analogy">function field analogy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+scheme">arithmetic scheme</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+curve">arithmetic curve</a>, <a class="existingWikiWord" href="/nlab/show/elliptic+curve">elliptic curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+genus">arithmetic genus</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+Chern-Simons+theory">arithmetic Chern-Simons theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+Chow+group">arithmetic Chow group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Weil-%C3%A9tale+topology+for+arithmetic+schemes">Weil-étale topology for arithmetic schemes</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/absolute+cohomology">absolute cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Weil+conjecture+on+Tamagawa+numbers">Weil conjecture on Tamagawa numbers</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Borger%27s+absolute+geometry">Borger's absolute geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Iwasawa-Tate+theory">Iwasawa-Tate theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/arithmetic+jet+space">arithmetic jet space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adelic+integration">adelic integration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/shtuka">shtuka</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Frobenioid">Frobenioid</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/Arakelov+geometry">Arakelov geometry</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+Riemann-Roch+theorem">arithmetic Riemann-Roch theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+algebraic+K-theory">differential algebraic K-theory</a></p> </li> </ul> </div></div> <h4 id="algebra">Algebra</h4> <div class="hide"><div> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>, <a class="existingWikiWord" href="/nlab/show/semigroup">semigroup</a>, <a class="existingWikiWord" href="/nlab/show/quasigroup">quasigroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/nonassociative+algebra">nonassociative algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/associative+unital+algebra">associative unital algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Jordan+algebra">Jordan algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Leibniz+algebra">Leibniz algebra</a>, <a class="existingWikiWord" href="/nlab/show/pre-Lie+algebra">pre-Lie algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+algebra">Frobenius algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>, <a class="existingWikiWord" href="/nlab/show/frame">frame</a>, <a class="existingWikiWord" href="/nlab/show/quantale">quantale</a></li> <li><a class="existingWikiWord" href="/nlab/show/Boolean+ring">Boolean ring</a>, <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a></li> <li><a class="existingWikiWord" href="/nlab/show/commutator">commutator</a>, <a class="existingWikiWord" href="/nlab/show/center">center</a></li> <li><a class="existingWikiWord" href="/nlab/show/monad">monad</a>, <a class="existingWikiWord" href="/nlab/show/comonad">comonad</a></li> <li><a class="existingWikiWord" href="/nlab/show/distributive+law">distributive law</a></li> </ul> <h2 id="group_theory">Group theory</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/normal+subgroup">normal subgroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/Cayley%27s+theorem">Cayley's theorem</a></li> <li><a class="existingWikiWord" href="/nlab/show/centralizer">centralizer</a>, <a class="existingWikiWord" href="/nlab/show/normalizer">normalizer</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>, <a class="existingWikiWord" href="/nlab/show/Galois+extension">Galois extension</a></li> <li><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a>, <a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>, <a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> <h2 id="ring_theory">Ring theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ring">ring</a>, <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+ring">local ring</a>, <a class="existingWikiWord" href="/nlab/show/Artinian+ring">Artinian ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Noetherian+ring">Noetherian ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/skewfield">skewfield</a>, <a class="existingWikiWord" href="/nlab/show/field">field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+domain">integral domain</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ideal">ideal</a>, <a class="existingWikiWord" href="/nlab/show/prime+ideal">prime ideal</a>, <a class="existingWikiWord" href="/nlab/show/maximal+ideal">maximal ideal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ore+localization">Ore localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/central+simple+algebra">central simple algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivation">derivation</a>, <a class="existingWikiWord" href="/nlab/show/Ore+extension">Ore extension</a></p> </li> </ul> <h2 id="module_theory">Module theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/bimodule">bimodule</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>, <a class="existingWikiWord" href="/nlab/show/linear+algebra">linear algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/matrix">matrix</a>, <a class="existingWikiWord" href="/nlab/show/eigenvalue">eigenvalue</a>, <a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/determinant">determinant</a>, <a class="existingWikiWord" href="/nlab/show/quasideterminant">quasideterminant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a>, <a class="existingWikiWord" href="/nlab/show/Schur+lemma">Schur lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extension+of+scalars">extension of scalars</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/restriction+of+scalars">restriction of scalars</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Frobenius+reciprocity">Frobenius reciprocity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Morita+equivalence">Morita equivalence</a>, <a class="existingWikiWord" href="/nlab/show/Morita+context">Morita context</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Wedderburn-Artin+theorem">Wedderburn-Artin theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a>, <a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> </ul> <h2 id=""><a class="existingWikiWord" href="/nlab/show/gebra+theory">Gebras</a></h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coalgebra">coalgebra</a>, <a class="existingWikiWord" href="/nlab/show/coring">coring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bialgebra">bialgebra</a>, <a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comodule">comodule</a>, <a class="existingWikiWord" href="/nlab/show/Hopf+module">Hopf module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yetter-Drinfeld+module">Yetter-Drinfeld module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associative+bialgebroid">associative bialgebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+gebra">dual gebra</a>, <a class="existingWikiWord" href="/nlab/show/cotensor+product">cotensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf-Galois+extension">Hopf-Galois extension</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#normed_division_algebra_structure'>Normed division algebra structure</a></li> <li><a href='#modules_and_bimodules'>Modules and bimodules</a></li> <li><a href='#automorphisms'>Automorphisms</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>quaternion</em> or <em>Hamilton number</em> is a kind of <a class="existingWikiWord" href="/nlab/show/number">number</a> similar to the <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a> but with three instead of one <a class="existingWikiWord" href="/nlab/show/square+root">square root</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(-1)</annotation></semantics></math> adjoined, satisfying certain relations.</p> <p>The <strong>quaternions</strong> form the largest <a class="existingWikiWord" href="/nlab/show/associative+algebra">associative</a> <a class="existingWikiWord" href="/nlab/show/normed+division+algebra">normed division algebra</a>, usually denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> after <a class="existingWikiWord" href="/nlab/show/William+Rowan+Hamilton">William Rowan Hamilton</a> (since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℚ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Q}</annotation></semantics></math> is taken for the <a class="existingWikiWord" href="/nlab/show/rational+numbers">rational numbers</a>).</p> <h2 id="properties">Properties</h2> <h3 id="normed_division_algebra_structure">Normed division algebra structure</h3> <p>The structure of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/associative+unital+algebra">algebra</a> is given by a basis <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{1, i, j, k\}</annotation></semantics></math> of the underlying <a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math>, equipped with a multiplication table where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/identity+element">identity element</a> and otherwise uniquely specified by the equations</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>i</mi> <mn>2</mn></msup><mo>=</mo><msup><mi>j</mi> <mn>2</mn></msup><mo>=</mo><msup><mi>k</mi> <mn>2</mn></msup><mo>=</mo><mi>i</mi><mi>j</mi><mi>k</mi><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo>,</mo></mrow><annotation encoding="application/x-tex">i^2 = j^2 = k^2 = i j k = -1,</annotation></semantics></math></div> <p>and extended by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math>-linearity to all of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math>. The norm on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> is given by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mrow><mo stretchy="false">‖</mo><mi>α</mi><mo stretchy="false">‖</mo></mrow> <mn>2</mn></msup><mo>=</mo><mi>α</mi><mover><mi>α</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">{\|\alpha\|}^2 = \alpha \widebar{\alpha}</annotation></semantics></math></div> <p>where given an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/linear+combination">linear combination</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>=</mo><mi>a</mi><mn>1</mn><mo>+</mo><mi>b</mi><mi>i</mi><mo>+</mo><mi>c</mi><mi>j</mi><mo>+</mo><mi>d</mi><mi>k</mi></mrow><annotation encoding="application/x-tex">\alpha = a 1 + b i + c j + d k</annotation></semantics></math>, we define the <em>conjugate</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>α</mi><mo>¯</mo></mover><mo>≔</mo><mi>a</mi><mn>1</mn><mo>−</mo><mi>b</mi><mi>i</mi><mo>−</mo><mi>c</mi><mi>j</mi><mo>−</mo><mi>d</mi><mi>k</mi></mrow><annotation encoding="application/x-tex">\widebar{\alpha} \coloneqq a 1 - b i - c j - d k</annotation></semantics></math>. A simple calculation yields</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mrow><mo stretchy="false">‖</mo><mi>α</mi><mo stretchy="false">‖</mo></mrow> <mn>2</mn></msup><mo>=</mo><msup><mi>a</mi> <mn>2</mn></msup><mo>+</mo><msup><mi>b</mi> <mn>2</mn></msup><mo>+</mo><msup><mi>c</mi> <mn>2</mn></msup><mo>+</mo><msup><mi>d</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">{\|\alpha\|}^2 = a^2 + b^2 + c^2 + d^2</annotation></semantics></math></div> <p>whence for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\alpha \neq 0</annotation></semantics></math>, the multiplicative <a class="existingWikiWord" href="/nlab/show/inverse">inverse</a> is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>α</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mrow><mo stretchy="false">‖</mo><mi>α</mi><mo stretchy="false">‖</mo></mrow> <mn>2</mn></msup></mrow></mfrac><mover><mi>α</mi><mo>¯</mo></mover><mo>.</mo></mrow><annotation encoding="application/x-tex">\alpha^{-1} = \frac1{{\|\alpha\|}^2} \widebar{\alpha}.</annotation></semantics></math></div> <p>In this way <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> is a normed division algebra.</p> <h3 id="modules_and_bimodules">Modules and bimodules</h3> <p>We have canonical left and right <a class="existingWikiWord" href="/nlab/show/module">module</a> structures on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℍ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{H}^n</annotation></semantics></math>, but as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> is not commutative, if we want to talk about tensor products of modules, we need to consider <a class="existingWikiWord" href="/nlab/show/bimodules">bimodules</a>. This also means that ordinary <a class="existingWikiWord" href="/nlab/show/linear+algebra">linear algebra</a> as is used over a field is not quite the same when dealing with quaternions. For instance, one needs to distinguish between <em>left</em> and <em>right</em> <a class="existingWikiWord" href="/nlab/show/eigenvalues">eigenvalues</a> of <a class="existingWikiWord" href="/nlab/show/matrices">matrices</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>M</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><mi>ℍ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">M_n(\mathbb{H})</annotation></semantics></math> (using the left and right module structures on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℍ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{H}^n</annotation></semantics></math> respectively), and only left eigenvalues relate to the <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a> of the associated linear operator.</p> <p>Using the conjugation operation one can define an inner product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">⟨</mo><mi>q</mi><mo>,</mo><mi>p</mi><mo stretchy="false">⟩</mo><mo>:</mo><mo>=</mo><mover><mi>q</mi><mo>¯</mo></mover><mi>p</mi></mrow><annotation encoding="application/x-tex">\langle q,p\rangle := \overline{q} p</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℍ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{H}^n</annotation></semantics></math> so that the corresponding <a class="existingWikiWord" href="/nlab/show/orthogonal+group+of+an+inner+product+space">orthogonal group</a> is the <a class="existingWikiWord" href="/nlab/show/compact+symplectic+group">compact symplectic group</a>.</p> <h3 id="automorphisms">Automorphisms</h3> <div class="num_prop" id="AutomorphismsOfQUatrnionsAlgebraIsSO3"> <h6 id="proposition">Proposition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/automorphism+group">automorphism group</a> of the quaternions, as a real algebra, is <a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">SO(3)</a>, <a class="existingWikiWord" href="/nlab/show/action">acting</a> canonically on their imaginary part (in generalization of how the product of <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a> respects the <a class="existingWikiWord" href="/nlab/show/complex+conjugation">complex conjugation</a> action)</p> </div> <p>See also at <em><a href="normed+division+algebra#Automorphisms">normed division algebra – automorphism</a></em></p> <p>(e.g. <a href="#KlimovZhuravlev">Klimov-Zhuravlev, p. 85</a>)</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quaternionic+vector+space">quaternionic vector space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quaternionic+vector+bundle">quaternionic vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dieudonn%C3%A9+determinant">Dieudonné determinant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/SL%282%2CH%29">SL(2,H)</a></p> </li> </ul> <div> <p><strong><a href="spin+group#ExceptionalIsomorphisms">exceptional</a> <a class="existingWikiWord" href="/nlab/show/spin+representation">spinors</a> and <a class="existingWikiWord" href="/nlab/show/real+numbers">real</a> <a class="existingWikiWord" href="/nlab/show/normed+division+algebras">normed division algebras</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/Lorentzian+spacetime">Lorentzian</a> <br /> <a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a> <br /> <a class="existingWikiWord" href="/nlab/show/dimension">dimension</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>AA</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{AA}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a></th><th><a class="existingWikiWord" href="/nlab/show/normed+division+algebra">normed division algebra</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/brane+scan">brane scan</a> entry</th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>3</mn><mo>=</mo><mn>2</mn><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">3 = 2+1</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>SL</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spin(2,1) \simeq SL(2,\mathbb{R})</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/real+numbers">real numbers</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/super+1-brane+in+3d">super 1-brane in 3d</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>4</mn><mo>=</mo><mn>3</mn><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">4 = 3+1</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>SL</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spin(3,1) \simeq SL(2, \mathbb{C})</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/super+2-brane+in+4d">super 2-brane in 4d</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>6</mn><mo>=</mo><mn>5</mn><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">6 = 5+1</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≃</mo></mrow><annotation encoding="application/x-tex">Spin(5,1) \simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/SL%282%2CH%29">SL(2,H)</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℍ</mi></mrow><annotation encoding="application/x-tex">\mathbb{H}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/quaternions">quaternions</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/little+string">little string</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>10</mn><mo>=</mo><mn>9</mn><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">10 = 9+1</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%289%2C1%29">Spin(9,1)</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">{\simeq}</annotation></semantics></math> “<a class="existingWikiWord" href="/nlab/show/SL%282%2CO%29">SL(2,O)</a>”</td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕆</mi></mrow><annotation encoding="application/x-tex">\mathbb{O}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/octonions">octonions</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/heterotic+string">heterotic</a>/<a class="existingWikiWord" href="/nlab/show/type+II+string">type II string</a></td></tr> </tbody></table> </div> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/supersymmetry+and+division+algebra">supersymmetry and division algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quaternionic+quantum+mechanics">quaternionic quantum mechanics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quaternion+group">quaternion group</a>, <a class="existingWikiWord" href="/nlab/show/quaternionic+unitary+group">quaternionic unitary group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tessarines">tessarines</a></p> </li> </ul> <h2 id="references">References</h2> <p>Monographs:</p> <ul> <li id="KlimovZhuravlev"> <p>D. M. Klimov, V. Ph. Zhuravlev, <em>Group-Theoretic Methods in Mechanics and Applied Mathematics</em>, Routledge (2004, 2020) [<a href="https://www.routledge.com/Group-Theoretic-Methods-in-Mechanics-and-Applied-Mathematics/Klimov-Zhuravlev/p/book/9780367446987">ISBN:9780367446987</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ernst+Binz">Ernst Binz</a>, Sonja Pods, Ch 1 in: <em>The geometry of Heisenberg groups — With Applications in Signal Theory, Optics, Quantization, and Field Quantization</em>, Mathematical Surveys and Monographs <strong>151</strong>, American Mathematical Society (2008) [<a href="https://bookstore.ams.org/surv-151">ams:surv-151</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tevian+Dray">Tevian Dray</a>, <a class="existingWikiWord" href="/nlab/show/Corinne+Manogue">Corinne Manogue</a>, Section 3.1 of: <em>The Geometry of Octonions</em>, World Scientific (2015) [<a href="https://doi.org/10.1142/8456">doi:10.1142/8456</a>]</p> </li> </ul> <p>See also:</p> <ul> <li>T. Y. Lam, <em>Hamilton’s Quaternions</em> (<a href="http://math.berkeley.edu/~lam/quat.ps">ps</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on August 21, 2024 at 02:07:18. See the <a href="/nlab/history/quaternion" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/quaternion" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/18430/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/quaternion/21" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/quaternion" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/quaternion" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a> <a href="/nlab/show/quaternion/cite" style="color: black">Cite</a> <a href="/nlab/print/quaternion" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/quaternion" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>