CINXE.COM
Search results for: cell cycle arrest
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: cell cycle arrest</title> <meta name="description" content="Search results for: cell cycle arrest"> <meta name="keywords" content="cell cycle arrest"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell cycle arrest" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell cycle arrest"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5710</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell cycle arrest</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5710</span> Camptothecin Promotes ROS-Mediated G2/M Phase Cell Cycle Arrest, Resulting from Autophagy-Mediated Cytoprotection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajapaksha%20Gedara%20Prasad%20Tharanga%20Jayasooriya">Rajapaksha Gedara Prasad Tharanga Jayasooriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Matharage%20Gayani%20Dilshara"> Matharage Gayani Dilshara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20Hyun%20Choi"> Yung Hyun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Young%20Kim"> Gi-Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Camptothecin (CPT) is a quinolone alkaloid which inhibits DNA topoisomerase I that induces cytotoxicity in a variety of cancer cell lines. We previously showed that CPT effectively inhibited invasion of prostate cancer cells and also combined treatment with subtoxic doses of CPT and TNF-related apoptosis-inducing ligand (TRAIL) potentially enhanced apoptosis in a caspase-dependent manner in hepatoma cancer cells. Here, we found that treatment with CPT caused an irreversible cell cycle arrest in the G2/M phase. CPT-induced cell cycle arrest was associated with a decrease in protein levels of cell division cycle 25C (Cdc25C) and increased the level of cyclin B and p21. The CPT-induced decrease in Cdc25C was blocked in the presence of proteasome inhibitor MG132, thus reversed the cell cycle arrest. In addition to that treatment of CPT-increased phosphorylation of Cdc25C was the resulted of activation of checkpoint kinase 2 (Chk2), which was associated with phosphorylation of ataxia telangiectasia-mutated. Interestingly CPT induced G2/M phase of the cell cycle arrest is reactive oxygen species (ROS) dependent where ROS inhibitors NAC and GSH reversed the CPT-induced cell cycle arrest. These results further confirm by using transient knockdown of nuclear factor-erythroid 2-related factor 2 (Nrf2) since it regulates the production of ROS. Our data reveal that treatment of siNrf2 increased the ROS level as well as further increased the CPT induce G2/M phase cell cycle arrest. Our data also indicate CPT-enhanced cell cycle arrest through the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) pathway. Inhibitors of ERK and JNK more decreased the Cdc25C expression and protein expression of p21 and cyclin B. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in G2/M arrest by CPT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camptothecin" title="camptothecin">camptothecin</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=checkpoint%20kinase%202" title=" checkpoint kinase 2"> checkpoint kinase 2</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20factor-erythroid%202-related%20factor%202" title=" nuclear factor-erythroid 2-related factor 2"> nuclear factor-erythroid 2-related factor 2</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/48508/camptothecin-promotes-ros-mediated-g2m-phase-cell-cycle-arrest-resulting-from-autophagy-mediated-cytoprotection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5709</span> Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Fadaeinasab">Mehran Fadaeinasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian"> Hamed Karimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Najihah%20Mohd%20Hashim"> Najihah Mohd Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apocynacea" title="apocynacea">apocynacea</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20alkaloid" title=" indole alkaloid"> indole alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest" title=" cell cycle arrest"> cell cycle arrest</a> </p> <a href="https://publications.waset.org/abstracts/13403/rauvolfine-b-isolated-from-the-bark-of-rauvolfia-reflexa-apocynaceae-induces-apoptosis-through-activation-of-caspase-9-coupled-with-s-phase-cell-cycle-arrest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5708</span> Inhibition of Variant Surface Glycoproteins Translation to Define the Essential Features of the Variant Surface Glycoprotein in Trypanosoma brucei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isobel%20Hambleton">Isobel Hambleton</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Carrington"> Mark Carrington</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trypanosoma brucei, the causal agent of a range of diseases in humans and livestock, evades the mammalian immune system through a population survival strategy based on the expression of a series of antigenically distinct variant surface glycoproteins (VSGs). RNAi mediated knockdown of the active VSG gene triggers a precytokinesis cell cycle arrest. To determine whether this phenotype is the result of reduced VSG transcript or depleted VSG protein, we used morpholino antisense oligonucleotides to block translation of VSG mRNA. The same precytokinesis cell cycle arrest was observed, suggesting that VSG protein abundance is monitored closely throughout the cell cycle. An inducible expression system has been developed to test various GPI-anchored proteins for their ability to rescue this cell cycle arrest. This system has been used to demonstrate that wild-type VSG expressed from a T7 promoter rescues this phenotype. This indicates that VSG expression from one of the specialised bloodstream expression sites (BES) is not essential for cell division. The same approach has been used to define the minimum essential features of a VSG necessary for function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bloodstream%20expression%20site" title="bloodstream expression site">bloodstream expression site</a>, <a href="https://publications.waset.org/abstracts/search?q=morpholino" title=" morpholino"> morpholino</a>, <a href="https://publications.waset.org/abstracts/search?q=precytokinesis%20cell%20cycle%20arrest" title=" precytokinesis cell cycle arrest"> precytokinesis cell cycle arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=variant%20surface%20glycoprotein" title=" variant surface glycoprotein"> variant surface glycoprotein</a> </p> <a href="https://publications.waset.org/abstracts/99030/inhibition-of-variant-surface-glycoproteins-translation-to-define-the-essential-features-of-the-variant-surface-glycoprotein-in-trypanosoma-brucei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5707</span> Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmi%20Mukherjee">Sharmi Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Anindita%20Chakraborty"> Anindita Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bystander%20effect" title="bystander effect">bystander effect</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxic%20damage" title=" genotoxic damage"> genotoxic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatoma" title=" hepatoma"> hepatoma</a> </p> <a href="https://publications.waset.org/abstracts/84927/analysis-of-cell-cycle-status-in-radiation-non-targeted-hepatoma-cells-using-flow-cytometry-evidence-of-dose-dependent-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5706</span> A Prenylflavanoid, HME5 with Antiproliferative Activity in Human Ovarian Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mashitoh%20Abd%20Rahman">Mashitoh Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Najihah%20Mohd%20Hashim"> Najihah Mohd Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiqah%20Ramli"> Faiqah Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Syam%20Mohan"> Syam Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noraziah%20Nordin"> Noraziah Nordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian"> Hamed Karimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ovarian cancer is the most lethal gynecological malignancies. HME5, a prenylflavanoid has been isolated from local medicinal plant. This compound has been reported to possess a broad spectrum of biological activities including anticancer property. However, the potential of HME5 as an antiproliferative and cytotoxic agent on an ovarian cancer cells has not yet been investigated. In this present study, we examined the antiproliferative and cytotoxic effect of HME5 on Caov-3 (Human Ovarian Adenocarcinoma) cell line by using 3-[4,5-dimethylthizol-2-y]-2,5-diphenyltetrazolium bromide (MTT) assay, Acridine orange and propidium Iodide (AOPi) and cell cycle analysis study. HME5 has shown to inhibit Caov-3 in a time-dependent manner with the IC50 values of 5µg/ml, 2µg/ml and 1µg/ml after 24h, 48h and 72h treatment, respectively. Morphological study from AOPi analysis showed that HME5 induced apoptosis after 24 and 48h post-treatment. Nevertheless, HME5 exhibited cell cycle arrest at G1 phase as indicated in flow cytometry cell cycle profiling. In conclusion, HME5 inhibited proliferation of Caov-3 through induction of apoptosis and cell cycle arrest at G1 phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=prenylflavanoid" title=" prenylflavanoid"> prenylflavanoid</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20cancer" title=" ovarian cancer"> ovarian cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=HME5" title=" HME5 "> HME5 </a> </p> <a href="https://publications.waset.org/abstracts/13503/a-prenylflavanoid-hme5-with-antiproliferative-activity-in-human-ovarian-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5705</span> Satureja bachtiarica Bunge Induce Apoptosis via Mitochondrial Intrinsic Pathway and G1 Cell Cycle Arrest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian">Hamed Karimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Noraziah%20Nordin"> Noraziah Nordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ibrahim%20Noordin"> Mohamad Ibrahim Noordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Syam%20Mohan"> Syam Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahboubeh%20Razavi"> Mahboubeh Razavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Najihah%20Mohd%20Hashim"> Najihah Mohd Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Happipah%20Mohd%20Ali"> Happipah Mohd Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satureja bachtiarica Bunge is a perennial medicinal plant belonging to the Lamiaceae family and endemic species in Iran. Satureja bachtiarica Bunge with the local name of Marzeh koohi is edible vegetable use as flavoring agent, anti-bacterial and to relieve cough and indigestion. In this study, the anti-cancer effect of Satureja bachtiarica Bunge on the MDA-MB-231 cell line as an Breast cancer cell model has been analyzed for the first time. Satureja bachtiarica Bunge was extracted using different solvents in the order of increasing polarity. Cytotoxicity activity of hexane extract of Satureja bachtiarica Bunge (SBHE) was observed using MTT assay. Acridine orange/Propidium iodide staining was used to detect early apoptosis; Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS), with Annexin-Vserving as a marker for apoptotic cells. Caspase 3/7, 8 and-9 assays showed significantly activation of caspase-9 where lead intrinsic mitochondrial pathway. Bcl-2/Bax expressions and cell cycle arrest were also investigated. SBHE had exhibited significantly higher cytotoxicity against MDA-MB-231 Cell line compare to other cell lines. A significant increase in chromatin condensation in the cell nucleus was observed by fluorescence analysis. Treatment of MDA-MB-231 cells with SBHE encouraged apoptosis, by down-regulating Bcl-2 and up-regulating Bax, which lead the activation of caspase 9. Moreover, SBHE treatment significantly arrested MDA-MB-231 cells in the G1 phase. Together, the results presented in this study demonstrated that SBHE inhibited the proliferation of MDA-MB-231 cells, leading cell cycle arrest and programmed cell death, which was confirmed to be through the mitochondrial pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satureja%20bachtiarica%20Bunge" title="Satureja bachtiarica Bunge">Satureja bachtiarica Bunge</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-MB-231" title=" MDA-MB-231"> MDA-MB-231</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=annexin-V" title=" annexin-V"> annexin-V</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a> </p> <a href="https://publications.waset.org/abstracts/13586/satureja-bachtiarica-bunge-induce-apoptosis-via-mitochondrial-intrinsic-pathway-and-g1-cell-cycle-arrest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5704</span> Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Ahire">V. R. Ahire</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kumar"> A. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Pandey"> B. N. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mishra"> K. P. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20R.%20Kulkarni"> G. R. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptotic%20radiosensitivity" title="apoptotic radiosensitivity">apoptotic radiosensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ellagic%20acid" title=" ellagic acid"> ellagic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20potential" title=" mitochondrial potential"> mitochondrial potential</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-cycle%20arrest" title=" cell-cycle arrest"> cell-cycle arrest</a> </p> <a href="https://publications.waset.org/abstracts/63345/ellagic-acid-enhanced-apoptotic-radiosensitivity-via-g1-cell-cycle-arrest-and-gh-h2ax-foci-formation-in-hela-cells-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5703</span> Novel Nickel Complex Compound Reactivates the Apoptotic Network, Cell Cycle Arrest and Cytoskeletal Rearrangement in Human Colon and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Samie">Nima Samie</a>, <a href="https://publications.waset.org/abstracts/search?q=Batoul%20Sadat%20Haerian"> Batoul Sadat Haerian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sekaran%20Muniandy"> Sekaran Muniandy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kanthimathi"> M. S. Kanthimathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colon and breast cancers are categorized as the most prevalent types of cancer worldwide. Recently, the broad clinical application of metal complex compounds has led to the discovery of potential therapeutic drugs. The aim of this study was to evaluate the cytotoxic action of a selected nickel complex compound (NCC) against human colon and breast cancer cells. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, MCF-7 and Hs 190.T cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content , measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results showed that our nickel complex compound displayed a potent suppressive effect on HT-29, WiDr, MCF-7 and Hs 190.T after 24 h of treatment with IC50 value of 2.02±0.54, 2.13±0.65, 3.76±015 and 3.14±0.45 µM respectively. This cytotoxic effect on normal cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the nickel complex compound. Activation of this pathway was further evidenced by significant activation of caspase 9 and 3/7.The nickel complex compound (NCC) was also shown activate the extrinsic pathways of apoptosis by activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. The results of this study suggest that the nickel complex compound is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways as well as cell cycle arrest in colon and breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20complex" title="nickel complex">nickel complex</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytoskeletal%20rearrangement" title=" cytoskeletal rearrangement"> cytoskeletal rearrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/38141/novel-nickel-complex-compound-reactivates-the-apoptotic-network-cell-cycle-arrest-and-cytoskeletal-rearrangement-in-human-colon-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5702</span> Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Suresh">K. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arunkumar"> R. Arunkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=HEp-2%20cell%20line" title=" HEp-2 cell line"> HEp-2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=KB%20cell%20line%20mitochondria" title=" KB cell line mitochondria"> KB cell line mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=gramine" title=" gramine"> gramine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosuspension" title=" nanosuspension"> nanosuspension</a> </p> <a href="https://publications.waset.org/abstracts/21324/preparation-of-gramine-nanosuspension-and-protective-effect-of-gramine-on-human-oral-cell-lines-by-induction-of-apoptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5701</span> Anti-Cancerous Activity of Sargassum siliquastrum in Cervical Cancer: Choreographing the Fly's Danse Macabre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Abbasa">Sana Abbasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Bhattiab"> Shahzad Bhattiab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Khan"> Nadir Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sargassum siliquastrum is brown seaweed with traditional claims for some medicinal properties. This research was done to investigate the methanol extract of S. siliquastrum for antiproliferative activity against human cervical cancer cell line, HeLa and its mode of cell death. From methylene blue assay, S. siliquastrum exhibited antiproliferative activity on HeLa cells with IC50 of 3.87 µg/ml without affecting non-malignant cells. Phase contrast microscopy indicated the confluency reduction in HeLa cells and changes on the cell shape. Nuclear staining with Hoechst 33258 displayed the formation of apoptotic bodies and fragmented nuclei. S. siliquastrum also induced early apoptosis event in HeLa cells as confirmed by FITC-Annexin V/propidium iodide staining by flow cytometry analysis. Cell cycle analysis indicated growth arrest of HeLa cells at G1/S phase. Protein study by flow cytometry indicated the increment of p53, slight increase of Bax and unchanged level of Bcl-2. In conclusion, S. siliquastrum demonstrated an antiproliferative activity in HeLa cell by inducing G1/S cell cycle arrest via p53-mediated pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sargassum%20siliquastrum" title="sargassum siliquastrum">sargassum siliquastrum</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title=" cervical cancer"> cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=P53" title=" P53"> P53</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproleferation" title=" antiproleferation"> antiproleferation</a> </p> <a href="https://publications.waset.org/abstracts/21519/anti-cancerous-activity-of-sargassum-siliquastrum-in-cervical-cancer-choreographing-the-flys-danse-macabre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5700</span> Annona muricata Leaves Induced Mitochondrial-Mediated Apoptosis in A549 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheil%20Zorofchian%20Moghadamtousi">Soheil Zorofchian Moghadamtousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habsah%20Abdul%20Kadir"> Habsah Abdul Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Paydar"> Mohammadjavad Paydar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rouhollahi"> Elham Rouhollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian"> Hamed Karimian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to evaluate the molecular mechanisms of Annona muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells. Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards A549 cells. Treatment of A549 cells with AMEAE significantly elevated the reactive oxygen species formation, followed by attenuation of mitochondrial membrane potential via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G1 phase. Our data showed for the first time that AMEAE inhibited the proliferation of A549 cells, leading to cell cycle arrest and programmed cell death through activation of the mitochondrial-mediated signaling pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annona%20muricata" title="Annona muricata">Annona muricata</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/12594/annona-muricata-leaves-induced-mitochondrial-mediated-apoptosis-in-a549-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5699</span> Inhibitory Effect of P2Y1R Agonist 1-Indolinoalkyl 2-Phenolic Derivative on Prostate Cancer Cell Proliferation via the MAPK Signalling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hien%20Thi%20Thu%20Le">Hien Thi Thu Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuno%20Rafael%20Candeias"> Nuno Rafael Candeias</a>, <a href="https://publications.waset.org/abstracts/search?q=Olli%20Yli-Harja"> Olli Yli-Harja</a>, <a href="https://publications.waset.org/abstracts/search?q=Meenakshisundaram%20Kandhavelu"> Meenakshisundaram Kandhavelu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purinergic receptor 1 (P2Y1R) is the potential therapeutic target for inducing prostate cancer (PCa) cell death. Recently, 1-indolinoalkyl 2-phenolic derivative, HIC, was identified as a P2Y1R agonist that increases apoptosis and inhibits cell proliferation of PCa. However, the biological effects of HIC have not been extensively studied at the molecular level. In the present study, we have investigated the anticancer effects of HIC and the molecular mechanisms underlying in PCa cells. Half maximal inhibitory concentration (IC₅₀) of HIC was measured as 15.98 μM and 15.64 μM for DU145 and PC3 cells, respectively. In addition, we found that HIC inhibited cell growth and metastasis of PC3 and DU145 cells colonies, spheroid areas, and migrated cells. RNA seq analysis revealed significant changes of over 3000 genes (p value < 0.05) upon HIC treatment in PC3 and DU145 cells. Genes involved in DNA damage, apoptosis, cell cycle arrest at G1/S phase were modulated by HIC treatment. MAPK and NF-κB protein array revealed the increased expression of ERK1/2, JNK1/2, p53 phosphorylation, and p53 protein. ERK1/2 and JNK1/2 activations are known to increase the stabilization of p53, a tumor suppressor protein, which is required to arrest the cell cycle at G1/S phase and cause cell death of PCa cells. Overall, our results suggest that HIC can serve as a multi-dimensional chemotherapeutic agent possessing strong cytotoxic, anti-cancer, and anti-metastasis against PCa growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title="prostate cancer">prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=P2Y1%20receptor" title=" P2Y1 receptor"> P2Y1 receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a> </p> <a href="https://publications.waset.org/abstracts/132678/inhibitory-effect-of-p2y1r-agonist-1-indolinoalkyl-2-phenolic-derivative-on-prostate-cancer-cell-proliferation-via-the-mapk-signalling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5698</span> A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Jost">P. Jost</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Muckova"> L. Muckova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Matula"> M. Matula</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pejchal"> J. Pejchal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jun"> D. Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stetina"> R. Stetina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20mustard" title=" sulfur mustard"> sulfur mustard</a> </p> <a href="https://publications.waset.org/abstracts/74433/a-comparison-of-sulfur-mustard-cytotoxic-effects-on-the-two-human-lung-origin-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5697</span> Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Gyu%20Leem">Dong-Gyu Leem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Sun%20Shin"> Ji-Sun Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Yoon%20Choi"> Sang Yoon Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Tae%20Lee"> Kyung-Tae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=G1%20arrest" title=" G1 arrest"> G1 arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=panaxydol" title=" panaxydol"> panaxydol</a> </p> <a href="https://publications.waset.org/abstracts/50141/induction-of-g1-arrest-and-apoptosis-in-human-cancer-cells-by-panaxydol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5696</span> Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Narrima">P. Narrima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Looi"> C. Y. Looi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mohd"> M. A. Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ali"> H. M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiproliferative" title="antiproliferative">antiproliferative</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF-7%20human%20breast%20cancer" title=" MCF-7 human breast cancer"> MCF-7 human breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Persea%20declinata" title=" Persea declinata"> Persea declinata</a> </p> <a href="https://publications.waset.org/abstracts/13361/apoptosis-activity-of-persea-declinata-bl-kosterm-bark-methanolic-crude-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5695</span> Disruption of Cancer Cell Proliferation by Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Ze%20Kao">Ming Ze Kao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Static magnetic fields (SMF) are widely used in several medical applications, especially in diagnosis of tumors. However, biological effects of the SMFs on modulating cell physiology through the Lorentz force, which is highly frequency and magnitude dependent, remain to be elucidated. Specific patterns from SMFs of static MF, delivered by means of Halbach array magnets with a gradient increment of 6.857mT/mm from center to border, were found to have profound inhibitory effect on the growth rate of human cell line derived from Nasopharyngeal carcinoma patients. The SMFs, which were shown to be noncontact, selectively impact rapid dividing cells while quiescent cells stay intact. The phenomenon acts in two modes: the arrest of cell proliferation in the G2/M phase and destruction of cell mitosis in cell division. First mode is manifested by impacting the proper formation of mitotic spindle, whereas the second results in disintegration of the cancer cell. Both modes are demonstrated when SMF was applied for 24 hours to cancer cells, the results revealed that metaphase arrest during mitosis due to activation of DNA damage response (DDR), resulting in high expression of ATM-NBS1-CHEK signaling pathways and higher G2/M phase ratio compared with control group. Here, experimental data suggest that the SMFs cause activation of cell cycle checkpoints, which implies the MFs as a potential therapeutic modality as a sensitizer for radiotherapy or chemotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20magnetic%20field" title="static magnetic field">static magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title=" DNA damage response"> DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=Halbach%20array" title=" Halbach array"> Halbach array</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20therapy" title=" magnetic therapy"> magnetic therapy</a> </p> <a href="https://publications.waset.org/abstracts/98067/disruption-of-cancer-cell-proliferation-by-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5694</span> Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purva%20Nemavarkar">Purva Nemavarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Badri%20Narain%20Pandey"> Badri Narain Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Kumar"> Jitendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title="radiation protection">radiation protection</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=fission%20yeast" title=" fission yeast"> fission yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=comet%20assay" title=" comet assay"> comet assay</a>, <a href="https://publications.waset.org/abstracts/search?q=s-phase" title=" s-phase"> s-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20repair" title=" DNA repair"> DNA repair</a>, <a href="https://publications.waset.org/abstracts/search?q=radioprotectors" title=" radioprotectors"> radioprotectors</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeine" title=" caffeine"> caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=SCGE" title=" SCGE"> SCGE</a> </p> <a href="https://publications.waset.org/abstracts/164879/effect-of-radioprotectors-on-dna-repair-enzyme-and-survival-of-gamma-irradiated-cell-division-cycle-mutants-of-saccharomyces-pombe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5693</span> Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahaba%20Marima">Rahaba Marima</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20Penny"> Clement Penny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-cycle" title="cell-cycle">cell-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title=" DNA damage response"> DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=Efavirenz" title=" Efavirenz"> Efavirenz</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer "> lung cancer </a> </p> <a href="https://publications.waset.org/abstracts/106125/profiling-of-the-cell-cycle-related-genes-in-response-to-efavirenz-a-non-nucleoside-reverse-transcriptase-inhibitor-in-human-lung-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5692</span> New Quinazoline Derivative Exhibit Cytotoxic Effect agaisnt MCF-7 Human Breast Cancer Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Zahedifard">Maryam Zahedifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhil%20Lafta%20Faraj"> Fadhil Lafta Faraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Abdul%20Majid"> Nazia Abdul Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Ameen%20Abdulla"> Mahmood Ameen Abdulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new quinazoline Schiff bases have been synthesized through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The compound was investigated for anticancer activity against MCF-7 human breast cancer cell line. It demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41±0.34, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with compound subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome C release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potential candidate for further in vivo and clinical breast cancer studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quinazoline%20Schiff%20base" title="quinazoline Schiff base">quinazoline Schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF-7" title=" MCF-7"> MCF-7</a>, <a href="https://publications.waset.org/abstracts/search?q=caspase" title=" caspase"> caspase</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a> </p> <a href="https://publications.waset.org/abstracts/14365/new-quinazoline-derivative-exhibit-cytotoxic-effect-agaisnt-mcf-7-human-breast-cancer-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5691</span> Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Samie">Nima Samie</a>, <a href="https://publications.waset.org/abstracts/search?q=Sekaran%20Muniandy"> Sekaran Muniandy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahurin%20Mohamed"> Zahurin Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kanthimathi"> M. S. Kanthimathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indolic%20compound" title="indolic compound">indolic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=chemoprevention" title=" chemoprevention"> chemoprevention</a>, <a href="https://publications.waset.org/abstracts/search?q=crypt" title=" crypt"> crypt</a>, <a href="https://publications.waset.org/abstracts/search?q=azoxymethane" title=" azoxymethane"> azoxymethane</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a> </p> <a href="https://publications.waset.org/abstracts/46051/pharmacological-mechanisms-of-an-indolic-compound-in-chemoprevention-of-colonic-acf-formation-in-azoxymethane-induced-colon-cancer-rat-model-and-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5690</span> Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atif%20Zafar%20Khan">Atif Zafar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarnendra%20Singh"> Swarnendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Imrana%20Naseem"> Imrana Naseem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20chelation" title=" copper chelation"> copper chelation</a>, <a href="https://publications.waset.org/abstracts/search?q=coumestrol" title=" coumestrol"> coumestrol</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygens%20species" title=" reactive oxygens species"> reactive oxygens species</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20cycling" title=" redox cycling"> redox cycling</a> </p> <a href="https://publications.waset.org/abstracts/58177/coumestrol-induced-apoptosis-in-breast-cancer-mcf-7-cells-via-redox-cycling-of-copper-and-ros-generation-implications-of-copper-chelation-strategy-in-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5689</span> Cdk1 Gates Cell Cycle-Dependent tRNA Synthesis by Regulating RNA Polymerase III Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maricarmen%20Herrera">Maricarmen Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Chymkowitch"> Pierre Chymkowitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20Robertson"> Joe Robertson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Eriksson"> Jens Eriksson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorrit%20Enserink"> Jorrit Enserink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> tRNA genes are transcribed by RNA polymerase III. During recent years, it has become clear that tDNA transcription fluctuates during the cell cycle. However, the mechanism by which the cell cycle controls the amplitude of tDNA transcription remains unknown. We found that the cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to sharply increase tRNA synthesis during a brief interval in the cell cycle. We show that Cdk1 promotes the interaction of TFIIIB with TFIIIC, that it stimulates the recruitment of TFIIIC to tRNA genes, that it prevents the formation of an overly stable TFIIIB-tDNA complex and that it augments the dynamics of RNA polymerase III. Furthermore, we identify Bdp1 as a novel Cdk1 substrate, and phosphorylation of Bdp1 is required for the cell cycle-dependent increase in tDNA transcription. In addition, we show that phosphorylation of the Cdk1 substrate Nup60 mediates formation of a Nup60-Nup2 complex at tRNA genes, which is also required for cell cycle-dependent tDNA transcription. Together, our findings indicate that Cdk1 activity gates tRNA synthesis by regulating the dynamics of the TFIIIB-TFIIIC-RNAPIII complex, and that it may promote the formation of a nuclear pore microenvironment conducive to efficient tDNA transcription. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cdk1" title="Cdk1">Cdk1</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=RNAPIII%20machinery" title=" RNAPIII machinery"> RNAPIII machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=tRNA" title=" tRNA"> tRNA</a> </p> <a href="https://publications.waset.org/abstracts/77416/cdk1-gates-cell-cycle-dependent-trna-synthesis-by-regulating-rna-polymerase-iii-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5688</span> Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Meratizaman">Mousa Meratizaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Monadizadeh"> Sina Monadizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Amidpour"> Majid Amidpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title="solid oxide fuel cell">solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20simulation" title=" thermodynamic simulation"> thermodynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20effect%20desalination" title=" multi effect desalination"> multi effect desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20hybrid%20cycle" title=" gas turbine hybrid cycle"> gas turbine hybrid cycle</a> </p> <a href="https://publications.waset.org/abstracts/57216/integration-of-multi-effect-desalination-with-solid-oxide-fuel-cellgas-turbine-power-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5687</span> Effects of New Anthraquinone Derivatives on Resistance Ovarian Cancer Cells and The Mechanism Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui-Hsin%20Huang">Hui-Hsin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Tung%20Huang"> Sheng-Tung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Ming%20Lee"> Chi-Ming Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiao-Han%20Yen"> Chiao-Han Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Mao%20Lin"> Chun-Mao Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At initiation stage, there are no symptoms at initiation stage; however, at late stage, patients suffer symptoms as soon as ovarian cancer metastasis. Moreover, ovarian cancer cells are resistant to some anti-ovarian cancer drugs in clinical. Thus, it is very important to find an effective treatment for resistant ovarian cancer. Anthraquinone derivatives are able to induce DNA damage and lead to cell apoptosis, so several derivatives have been used for clinical application. Therefore, to explore more effective anti-ovarian cancer drugs, this study investigates the mechanism of three new anthraquinone compounds bearing different functional groups to camptothecin-resistance ovarian cell line A2780R2000. Cell viability was determined by MTT assay after treating A2780R2000 with the three new anthraquinone compounds. The results indicated that IC50 values are 33.44μM (Compound I), 25.77μM (Compound II) and 24.59μM (Compound III). Next, through cell cycle analysis, the results demonstrated that three new anthraquinone compounds not only induced A2780R2000 cell cycle arrest at early stage but also apoptosis at late stage. Besides, through apoptosis assay, the results indicated new anthraquinone compound induced apoptosis at late stage. Furthermore, the results of western blot show that the three new anthraquinone compounds lead to A2780R2000 apoptosis through intrinsic pathway. Theses results suggested that three new anthraquinone compounds may be potential new drugs for clinical cancer treatment in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthraquinone" title="anthraquinone">anthraquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=camptothecin" title=" camptothecin"> camptothecin</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20cancer" title=" ovarian cancer"> ovarian cancer</a> </p> <a href="https://publications.waset.org/abstracts/44883/effects-of-new-anthraquinone-derivatives-on-resistance-ovarian-cancer-cells-and-the-mechanism-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5686</span> Evaluation of Anticancer and Antioxidant Activity of Purified Lovastatin from Aspergillus terreus (KM017963)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhargavi%20Santebennur%20Dwarakanath">Bhargavi Santebennur Dwarakanath</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Vadakke%20Kamath"> Praveen Vadakke Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=Savitha%20Janakiraman"> Savitha Janakiraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cervical cancer is one of the leading causes of mortality in women and is the second most common malignancy worldwide. Lovastatin, a non polar, anticholesterol drug which also exerts antitumour activity in vitro. In the present study, lovastatin from Aspergillus terreus (KM017963) was purified by adsoprtion chromatography and evaluated for its anticancer and anti-oxidant properties in human cervical cancer cell lines (HeLa). The growth inhibitory and proapoptotic effects of purified lovastatin on HeLa cell lines were investigated by determining its influence on cytotoxicity, Mitochondrial Membrane Potential (MMP), DNA fragmentation and antioxidant property (Hydroxy radical scavenging effect and the levels of total reduced glutathione). Flow cytometry analysis by propidium iodide staining confirmed the induction of apoptotic cell death and revealed cell cycle arrest at G0/G1 phase. Results of the study give leads for anticancer effects of lovastatin and its potential efficacy in the chemotherapy of cervical cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20terreus" title=" Aspergillus terreus"> Aspergillus terreus</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title=" cervical cancer"> cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=lovastatin" title=" lovastatin"> lovastatin</a> </p> <a href="https://publications.waset.org/abstracts/49846/evaluation-of-anticancer-and-antioxidant-activity-of-purified-lovastatin-from-aspergillus-terreus-km017963" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5685</span> Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Yunger">Sharon Yunger</a>, <a href="https://publications.waset.org/abstracts/search?q=Liat%20Altman"> Liat Altman</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuval%20Garini"> Yuval Garini</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaron%20Shav-Tal"> Yaron Shav-Tal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title="cell cycle">cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20cells" title=" living cells"> living cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleus" title=" nucleus"> nucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription" title=" transcription"> transcription</a> </p> <a href="https://publications.waset.org/abstracts/40812/following-the-modulation-of-transcriptional-activity-of-genes-by-chromatin-modifications-during-the-cell-cycle-in-living-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5684</span> Twist2 Is a Key Regulator of Cell Proliferation in Acute Lymphoblastic Leukaemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Rusady%20Goey">Magdalena Rusady Goey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordon%20Strathdee"> Gordon Strathdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Perkins"> Neil Perkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Acute lymphoblastic leukaemia (ALL) is the most frequent type of childhood malignancy, accounting for 25% of all cases. TWIST2, a basic helix-loop-helix transcription factor, has been implicated in ALL development. Prior studies found that TWIST2 undergoes epigenetic silencing in more than 50% cases of ALL through promoter hypermethylation and suggested that re-expression of TWIST2 may inhibit cell growth/survival of leukaemia cell lines. TWIST2 has also been implicated as a regulator of NF-kappaB activity, which is constitutively active in leukaemia. Here, we use a lentiviral transductions system to confirm the importance of TWIST2 in controlling leukaemia cell growth and to investigate whether this is achieved through altered regulation of NF-kappaB activity. Method: Re-expression of TWIST2 in leukaemia cell lines was achieved using lentiviral-based transduction. The lentiviral vector also expresses enhanced green fluorescent protein (eGFP), allowing transduced cells to be tracked using flow cytometry. Analysis of apoptosis and cell proliferation were done using annexinV and VPD450 staining, respectively. Result and Discussion: TWIST2-expressing cells were rapidly depleted from a mixed population in ALL cell lines (NALM6 and Reh), indicating that TWIST2 inhibited cell growth/survival of ALL cells. In contrast, myeloid cell lines (HL60 and K562) were comparatively insensitive to TWIST2 re-expression. Analysis of apoptosis and cell proliferation found no significant induction of apoptosis, but did find a rapid induction of proliferation arrest in TWIST2-expressing Reh and NALM6 cells. Initial experiment with NF-kappaB inhibitor demonstrated that inhibition of NF-kappaB has similar impact on cell proliferation in the ALL cell lines, suggesting that TWITST2 may induce cell proliferation arrest through inhibition of NF-kappaB. Conclusion: The results of this study suggest that epigenetic inactivation of TWIST2 in primary ALL leads to increased proliferation, potentially by altering the regulation of NF-kappaB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leukaemia" title="leukaemia">leukaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20lymphoblastic%20leukaemia" title=" acute lymphoblastic leukaemia"> acute lymphoblastic leukaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-kappaB" title=" NF-kappaB"> NF-kappaB</a>, <a href="https://publications.waset.org/abstracts/search?q=TWIST2" title=" TWIST2"> TWIST2</a>, <a href="https://publications.waset.org/abstracts/search?q=lentivirus" title=" lentivirus"> lentivirus</a> </p> <a href="https://publications.waset.org/abstracts/32720/twist2-is-a-key-regulator-of-cell-proliferation-in-acute-lymphoblastic-leukaemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5683</span> Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shwu-Ling%20%20Peng">Shwu-Ling Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiung-Man%20%20Tsai"> Chiung-Man Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Weng"> Chia-Jui Weng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20plant%20extract" title="agricultural plant extract">agricultural plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-aging" title=" anti-aging"> anti-aging</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20glucose" title=" high glucose"> high glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=Phalaenopsis%20orchid%20flower" title=" Phalaenopsis orchid flower"> Phalaenopsis orchid flower</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20chestnut%20shell" title=" water chestnut shell"> water chestnut shell</a> </p> <a href="https://publications.waset.org/abstracts/92620/anti-aging-effects-of-two-agricultural-plant-extracts-and-their-underlying-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5682</span> Analyzing the Readiness of Resuscitation Team during Cardiac Arrest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Byimana">J. Byimana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Muhire"> I. A. Muhire</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Nzabahimana"> J. E. Nzabahimana</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nyombayire"> A. Nyombayire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: A successful cardiopulmonary resuscitation during a sudden cardiac arrest can be delayed by different components including new hospital setting, lack of adequate training, lack of pre-established resuscitation team and ineffective communication and lead to an unexpected outcome which is death. The main objective of the study was to assess the readiness of resuscitation teams during cardiac arrest and the organizational approaches that would best support their functioning in a new hospital facility, and to detect any factor that may have contributed to responses. This study analyses the readiness of Resuscitation Team (RT) during cardiac arrest. —Material and methods: A prospective Analytic design was carried out at a newly established United Nations level 2 hospital facility, on four RTM (resuscitation team member). A semi structured questionnaire was used to collect data. —Results: This study highlights indicate that the response time during cardiac arrest simulation meet both American heart association (AHA) and European resuscitation council guidelines. The study offers useful evidence about the impact of a new facility on RTM performance and provides an exposure of staff to emergency events within the Work setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20arrest" title="cardiac arrest">cardiac arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20blue" title=" code blue"> code blue</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=resuscitation%20team%20member" title=" resuscitation team member"> resuscitation team member</a> </p> <a href="https://publications.waset.org/abstracts/75912/analyzing-the-readiness-of-resuscitation-team-during-cardiac-arrest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5681</span> Out of Hospital Cardiac Arrest in Kuala Lumpur: A Mixed Method Study on Incidence, Adherence to Protocol, and Issues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Said%20Nurumal">Mohd Said Nurumal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Sheikh%20Abdul%20Karim"> Sarah Sheikh Abdul Karim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information regarding out of hospital cardiac arrest incidence include outcome in Malaysia is limited and fragmented. This study aims to identify incidence and adherence to protocol of out of hospital cardiac arrest and also to explore the issues faced by the pre-hospital personnel in regards managing cardiac arrest victim in Kuala Lumpur, Malaysia. A mixed method approach combining the qualitative and quantitative study design was used. The 285 pre-hospital care data sheet of out of hospital cardiac arrest during the year of 2011 were examined by using checklists for identify the incidence and adherence to protocol. Nine semi-structured interviews and two focus group discussions were performed. For the incidence based on the overall out of hospital cardiac arrest cases that occurred in 2011 (n=285), the survival rates were 16.8%. For adherence to protocol, only 89 (41.8%) of the cases adhered to the given protocol and 124 did not adhere to such protocol. The qualitative information provided insight about the issues related to out of hospital cardiac arrest in every aspect. All the relevant qualitative data were merged into few categories relating issues that could affect the management of out of hospital cardiac arrest performed by pre-hospital care team. One of the essential elements in the out of hospital cardiac arrest handling by pre-hospital care is to ensure increase of survival rates and excellent outcomes by adhering to given protocols based on international standard benchmarks. Measures are needed to strengthen the quick activation of the pre-hospital care service, prompt bystander cardiopulmonary resuscitation, early defibrillation and timely advanced cardiac life support and also to tackle all the issues highlighted in qualitative results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pre-hospital%20care" title="pre-hospital care">pre-hospital care</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20of%20hospital%20cardiac%20arrest" title=" out of hospital cardiac arrest"> out of hospital cardiac arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=incidence" title=" incidence"> incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=protocol" title=" protocol"> protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20method%20research" title=" mixed method research"> mixed method research</a> </p> <a href="https://publications.waset.org/abstracts/12852/out-of-hospital-cardiac-arrest-in-kuala-lumpur-a-mixed-method-study-on-incidence-adherence-to-protocol-and-issues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=190">190</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>