CINXE.COM

Search results for: sparse matrix

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sparse matrix</title> <meta name="description" content="Search results for: sparse matrix"> <meta name="keywords" content="sparse matrix"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sparse matrix" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sparse matrix"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2370</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sparse matrix</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2370</span> Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuyu%20Dai">Qiuyu Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Haochong%20Zhang"> Haochong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangrong%20Liu"> Xiangrong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagonal sparse matrix-vector multiplication is a well-studied topic in the fields of scientific computing and big data processing. However, when diagonal sparse matrices are stored in DIA format, there can be a significant number of padded zero elements and scattered points, which can lead to a degradation in the performance of the current DIA kernel. This can also lead to excessive consumption of computational and memory resources. In order to address these issues, the authors propose the DIA-Adaptive scheme and its kernel, which leverages the parallel instruction sets on MLU. The researchers analyze the effect of allocating a varying number of threads, clusters, and hardware architectures on the performance of SpMV using different formats. The experimental results indicate that the proposed DIA-Adaptive scheme performs well and offers excellent parallelism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20method" title="adaptive method">adaptive method</a>, <a href="https://publications.waset.org/abstracts/search?q=DIA" title=" DIA"> DIA</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20sparse%20matrices" title=" diagonal sparse matrices"> diagonal sparse matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=MLU" title=" MLU"> MLU</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20matrix-vector%20multiplication" title=" sparse matrix-vector multiplication"> sparse matrix-vector multiplication</a> </p> <a href="https://publications.waset.org/abstracts/161003/performance-analysis-and-optimization-for-diagonal-sparse-matrix-vector-multiplication-on-machine-learning-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2369</span> A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Eftekharifar">Siavash Eftekharifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tohid%20Yousefi%20Rezaii"> Tohid Yousefi Rezaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shamsi"> Mahdi Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20compression" title=" ECG compression"> ECG compression</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20kernel" title=" Gaussian kernel"> Gaussian kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/31469/a-new-framework-for-ecg-signal-modeling-and-compression-based-on-compressed-sensing-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2368</span> Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanqiang%20Kong">Fanqiang Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chending%20Bian"> Chending Bian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20unmixing" title="hyperspectral unmixing">hyperspectral unmixing</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20sparse%20representation" title=" simultaneous sparse representation"> simultaneous sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20regression" title=" sparse regression"> sparse regression</a>, <a href="https://publications.waset.org/abstracts/search?q=non-local%20means" title=" non-local means"> non-local means</a> </p> <a href="https://publications.waset.org/abstracts/71689/non-local-simultaneous-sparse-unmixing-for-hyperspectral-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2367</span> Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanqiang%20Kong">Fanqiang Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chending%20Bian"> Chending Bian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined <em>l<sub>2,p</sub>-</em>norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20unmixing" title="hyperspectral unmixing">hyperspectral unmixing</a>, <a href="https://publications.waset.org/abstracts/search?q=joint-sparse" title=" joint-sparse"> joint-sparse</a>, <a href="https://publications.waset.org/abstracts/search?q=low-rank%20representation" title=" low-rank representation"> low-rank representation</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance%20estimation" title=" abundance estimation"> abundance estimation</a> </p> <a href="https://publications.waset.org/abstracts/71439/sparse-unmixing-of-hyperspectral-data-by-exploiting-joint-sparsity-and-rank-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2366</span> An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang">Y. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is <em>O</em>(<em>CN</em><sub>max</sub><em>n</em><sup>2</sup>) where <em>C</em> is the iterations, <em>N</em><sub>max</sub> is the maximum number of frequency quadrilaterals containing each edge and <em>n</em> is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5<em>n</em> edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrilateral" title="frequency quadrilateral">frequency quadrilateral</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20algorithm" title=" iterative algorithm"> iterative algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20graph" title=" sparse graph"> sparse graph</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a> </p> <a href="https://publications.waset.org/abstracts/82737/an-improved-method-to-compute-sparse-graphs-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2365</span> Performance Comparison of Wideband Covariance Matrix Sparse Representation (W-CMSR) with Other Wideband DOA Estimation Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Santosh">Sandeep Santosh</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Sahu"> O. P. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, performance comparison of wideband covariance matrix sparse representation (W-CMSR) method with other existing wideband Direction of Arrival (DOA) estimation methods has been made.W-CMSR relies less on a priori information of the incident signal number than the ordinary subspace based methods.Consider the perturbation free covariance matrix of the wideband array output. The diagonal covariance elements are contaminated by unknown noise variance. The covariance matrix of array output is conjugate symmetric i.e its upper right triangular elements can be represented by lower left triangular ones.As the main diagonal elements are contaminated by unknown noise variance,slide over them and align the lower left triangular elements column by column to obtain a measurement vector.Simulation results for W-CMSR are compared with simulation results of other wideband DOA estimation methods like Coherent signal subspace method (CSSM), Capon, l1-SVD, and JLZA-DOA. W-CMSR separate two signals very clearly and CSSM, Capon, L1-SVD and JLZA-DOA fail to separate two signals clearly and an amount of pseudo peaks exist in the spectrum of L1-SVD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=W-CMSR" title="W-CMSR">W-CMSR</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband%20direction%20of%20arrival%20%28DOA%29" title=" wideband direction of arrival (DOA)"> wideband direction of arrival (DOA)</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20matrix" title=" covariance matrix"> covariance matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20and%20computer%20engineering" title=" electrical and computer engineering"> electrical and computer engineering</a> </p> <a href="https://publications.waset.org/abstracts/22209/performance-comparison-of-wideband-covariance-matrix-sparse-representation-w-cmsr-with-other-wideband-doa-estimation-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2364</span> Sparse Principal Component Analysis: A Least Squares Approximation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Merola">Giovanni Merola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPCA" title="SPCA">SPCA</a>, <a href="https://publications.waset.org/abstracts/search?q=uncorrelated%20components" title=" uncorrelated components"> uncorrelated components</a>, <a href="https://publications.waset.org/abstracts/search?q=branch-and-bound" title=" branch-and-bound"> branch-and-bound</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20elimination" title=" backward elimination"> backward elimination</a> </p> <a href="https://publications.waset.org/abstracts/14630/sparse-principal-component-analysis-a-least-squares-approximation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2363</span> Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Mukherjee">Debajyoti Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arathy%20B.%20S."> Arathy B. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Sahu"> Arpita Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranga%20P.%20Pogula"> Saranga P. Pogula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISA%20%28instruction%20set%20architecture%29" title="ISA (instruction set architecture)">ISA (instruction set architecture)</a>, <a href="https://publications.waset.org/abstracts/search?q=NN%20%28neural%20network%29" title=" NN (neural network)"> NN (neural network)</a>, <a href="https://publications.waset.org/abstracts/search?q=TLM%20%28transaction-level%20modeling%29" title=" TLM (transaction-level modeling)"> TLM (transaction-level modeling)</a>, <a href="https://publications.waset.org/abstracts/search?q=GEMM%20%28general%20matrix%20multiplication%29" title=" GEMM (general matrix multiplication)"> GEMM (general matrix multiplication)</a> </p> <a href="https://publications.waset.org/abstracts/168875/functional-instruction-set-simulator-iss-of-a-neural-network-nn-ip-with-native-bf-16-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2362</span> Sparsity Order Selection and Denoising in Compressed Sensing Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shamsi">Mahdi Shamsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tohid%20Yousefi%20Rezaii"> Tohid Yousefi Rezaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Eftekharifar"> Siavash Eftekharifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20denoising" title=" data denoising"> data denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20order%20selection" title=" model order selection"> model order selection</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/31470/sparsity-order-selection-and-denoising-in-compressed-sensing-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2361</span> Automatic Target Recognition in SAR Images Based on Sparse Representation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Karagoz">Ahmet Karagoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Karagoz"> Irfan Karagoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20target%20recognition" title="automatic target recognition">automatic target recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR%20images" title=" SAR images"> SAR images</a> </p> <a href="https://publications.waset.org/abstracts/71185/automatic-target-recognition-in-sar-images-based-on-sparse-representation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2360</span> A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Turan">Cemil Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shukri%20Salman"> Mohammad Shukri Salman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filtering" title="adaptive filtering">adaptive filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20system%20identification" title=" sparse system identification"> sparse system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=TD-LMS%20algorithm" title=" TD-LMS algorithm"> TD-LMS algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=VSSLMS%20algorithm" title=" VSSLMS algorithm"> VSSLMS algorithm</a> </p> <a href="https://publications.waset.org/abstracts/72335/a-transform-domain-function-controlled-vsslms-algorithm-for-sparse-system-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2359</span> Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia%20Jui%20Hsieh">Chia Jui Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh%20Cheng%20Chen"> Jyh Cheng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih%20Wei%20Kuo"> Chih Wei Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruei%20Teng%20Wang"> Ruei Teng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Woei%20Chyn%20Chu"> Woei Chyn Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing%20%28CS%29" title="compressed sensing (CS)">compressed sensing (CS)</a>, <a href="https://publications.waset.org/abstracts/search?q=low-dose%20CT%20reconstruction" title=" low-dose CT reconstruction"> low-dose CT reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20variation%20%28TV%29" title=" total variation (TV)"> total variation (TV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-directional%20gradient%20operator" title=" multi-directional gradient operator"> multi-directional gradient operator</a> </p> <a href="https://publications.waset.org/abstracts/77716/development-of-a-few-view-computed-tomographic-reconstruction-algorithm-using-multi-directional-total-variation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2358</span> Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Mukherjee">Debajyoti Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arathy%20B.%20S."> Arathy B. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Sahu"> Arpita Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranga%20P.%20Pogula"> Saranga P. Pogula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISA" title="ISA">ISA</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Brain%20Float-16" title=" Brain Float-16"> Brain Float-16</a>, <a href="https://publications.waset.org/abstracts/search?q=DUT" title=" DUT"> DUT</a> </p> <a href="https://publications.waset.org/abstracts/159455/functional-instruction-set-simulator-of-a-neural-network-ip-with-native-brain-float-16-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2357</span> Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Jianhong">Xiang Jianhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Cong"> Wang Cong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Linyu"> Wang Linyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=telemedicine" title="telemedicine">telemedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20ECG" title=" fetal ECG"> fetal ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20sparse%20reconstruction" title=" joint sparse reconstruction"> joint sparse reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20sparse%20signal" title=" block sparse signal"> block sparse signal</a> </p> <a href="https://publications.waset.org/abstracts/154614/compressed-sensing-of-fetal-electrocardiogram-signals-based-on-joint-block-multi-orthogonal-least-squares-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2356</span> KSVD-SVM Approach for Spontaneous Facial Expression Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawood%20Al%20Chanti">Dawood Al Chanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Caplier"> Alice Caplier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dictionary%20learning" title="dictionary learning">dictionary learning</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20projection" title=" random projection"> random projection</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20and%20spontaneous%20facial%20expression" title=" pose and spontaneous facial expression"> pose and spontaneous facial expression</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/51683/ksvd-svm-approach-for-spontaneous-facial-expression-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2355</span> Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Pour%20Yazdanpanah">Ali Pour Yazdanpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Foroozandeh%20Shahraki"> Farideh Foroozandeh Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Regentova"> Emma Regentova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 &minus; L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=non-convex" title=" non-convex"> non-convex</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse-view%20reconstruction" title=" sparse-view reconstruction"> sparse-view reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=L1-L2%20minimization" title=" L1-L2 minimization"> L1-L2 minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20of%20convex%20functions" title=" difference of convex functions"> difference of convex functions</a> </p> <a href="https://publications.waset.org/abstracts/70473/sparse-view-ct-reconstruction-based-on-nonconvex-l1-l2-regularizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2354</span> The Second Smallest Eigenvalue of Complete Tripartite Hypergraph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfi%20Y.%20Zakiyyah">Alfi Y. Zakiyyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanni%20Garminia"> Hanni Garminia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salman"> M. Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Irawati"> A. N. Irawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connectivity" title="connectivity">connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergraph" title=" hypergraph"> hypergraph</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20matrix" title=" Laplacian matrix"> Laplacian matrix</a> </p> <a href="https://publications.waset.org/abstracts/34000/the-second-smallest-eigenvalue-of-complete-tripartite-hypergraph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2353</span> A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Wu">Jing Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Lv"> Wei Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Yibing%20Li"> Yibing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanfan%20You"> Yuanfan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DBSCAN" title="DBSCAN">DBSCAN</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20signal" title=" speech signal"> speech signal</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20UBSS%20model" title=" the UBSS model"> the UBSS model</a> </p> <a href="https://publications.waset.org/abstracts/101455/a-mixing-matrix-estimation-algorithm-for-speech-signals-under-the-under-determined-blind-source-separation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2352</span> System Identification in Presence of Outliers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Yu">Chao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing-Guo%20Wang"> Qing-Guo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Zhang"> Dan Zhang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outlier%20detection" title="outlier detection">outlier detection</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20decomposition" title=" matrix decomposition"> matrix decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=low-rank%20matrix" title=" low-rank matrix"> low-rank matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=sparsity" title=" sparsity"> sparsity</a>, <a href="https://publications.waset.org/abstracts/search?q=semidefinite%20programming" title=" semidefinite programming"> semidefinite programming</a>, <a href="https://publications.waset.org/abstracts/search?q=interior-point%20methods" title=" interior-point methods"> interior-point methods</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a> </p> <a href="https://publications.waset.org/abstracts/13363/system-identification-in-presence-of-outliers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2351</span> Conditions on Expressing a Matrix as a Sum of α-Involutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ric%20Joseph%20R.%20Murillo">Ric Joseph R. Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Edna%20N.%20Gueco"> Edna N. Gueco</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20I.%20Merino"> Dennis I. Merino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let F be C or R, where C and R are the set of complex numbers and real numbers, respectively, and n be a natural number. An n-by-n matrix A over the field F is called an α-involutory matrix or an α-involution if there exists an α in the field such that the square of the matrix is equal to αI, where I is the n-by-n identity matrix. If α is a complex number or a nonnegative real number, then an n-by-n matrix A over the field F can be written as a sum of n-by-n α-involutory matrices over the field F if and only if the trace of that matrix is an integral multiple of the square root of α. Meanwhile, if α is a negative real number, then a 2n-by-2n matrix A over R can be written as a sum of 2n-by-2n α-involutory matrices over R if and only the trace of the matrix is zero. Some other properties of α-involutory matrices are also determined <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-involutory%20Matrices" title="α-involutory Matrices">α-involutory Matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20of%20%CE%B1-involutory%20Matrices" title=" sum of α-involutory Matrices"> sum of α-involutory Matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Trace" title=" Trace"> Trace</a>, <a href="https://publications.waset.org/abstracts/search?q=Matrix%20Theory" title=" Matrix Theory"> Matrix Theory</a> </p> <a href="https://publications.waset.org/abstracts/95131/conditions-on-expressing-a-matrix-as-a-sum-of-a-involutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2350</span> Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang">Linyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingjun%20Zhu"> Mingjun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang"> Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Jiang"> Hanyu Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mmWave" title="mmWave">mmWave</a>, <a href="https://publications.waset.org/abstracts/search?q=massive%20MIMO" title=" massive MIMO"> massive MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20precoding" title=" hybrid precoding"> hybrid precoding</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decompositing" title=" singular value decompositing"> singular value decompositing</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20channel" title=" equivalent channel"> equivalent channel</a> </p> <a href="https://publications.waset.org/abstracts/156149/digital-joint-equivalent-channel-hybrid-precoding-for-millimeterwave-massive-multiple-input-multiple-output-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2349</span> Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Danilov">Michael Danilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Iskakov"> Sergei Iskakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Mazurenko"> Vladimir Mazurenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sparse%20matrix" title="sparse matrix">sparse matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20format" title=" compressed format"> compressed format</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubbard%20model" title=" Hubbard model"> Hubbard model</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20model" title=" Anderson model"> Anderson model</a> </p> <a href="https://publications.waset.org/abstracts/48308/signs-only-compressed-row-storage-format-for-exact-diagonalization-study-of-quantum-fermionic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2348</span> Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadji">M. Hadji</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Chiker"> N. Chiker</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hadji"> Y. Hadji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Haddad"> A. Haddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MAX%20phase" title="MAX phase">MAX phase</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/40223/manufacturing-and-characterization-of-ni-matrix-composite-reinforced-with-ti3sic2-and-ti2alc-and-al-matrix-with-ti2sic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2347</span> Inverse Matrix in the Theory of Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Masarova">Renata Masarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Bohuslava%20Juhasova"> Bohuslava Juhasova</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Juhas"> Martin Juhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Sutova"> Zuzana Sutova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20system" title="dynamic system">dynamic system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix" title=" transfer matrix"> transfer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20matrix" title=" inverse matrix"> inverse matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling "> modeling </a> </p> <a href="https://publications.waset.org/abstracts/22680/inverse-matrix-in-the-theory-of-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2346</span> A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qianhua%20He">Qianhua He</a>, <a href="https://publications.waset.org/abstracts/search?q=Weili%20Zhou"> Weili Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiwu%20Chen"> Aiwu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20denoising" title="speech denoising">speech denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-singular%20value%20decomposition" title=" k-singular value decomposition"> k-singular value decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20matching%20pursuit" title=" orthogonal matching pursuit"> orthogonal matching pursuit</a> </p> <a href="https://publications.waset.org/abstracts/66670/a-sparse-representation-speech-denoising-method-based-on-adapted-stopping-residue-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2345</span> Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hebert%20Montegranario">Hebert Montegranario</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Londo%C3%B1o"> Mauricio Londoño </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title="Helmholtz equation">Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20methods" title=" meshless methods"> meshless methods</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20imaging" title=" seismic imaging"> seismic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=wavefield%20inversion" title=" wavefield inversion"> wavefield inversion</a> </p> <a href="https://publications.waset.org/abstracts/33679/local-radial-basis-functions-for-helmholtz-equation-in-seismic-inversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2344</span> On the Application of Heuristics of the Traveling Salesman Problem for the Task of Restoring the DNA Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Melnikov">Boris Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Chaikovskii"> Dmitrii Chaikovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Melnikova"> Elena Melnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traveling salesman problem (TSP) is a well-known optimization problem that seeks to find the shortest possible route that visits a set of points and returns to the starting point. In this paper, we apply some heuristics of the TSP for the task of restoring the DNA matrix. This restoration problem is often considered in biocybernetics. For it, we must recover the matrix of distances between DNA sequences if not all the elements of the matrix under consideration are known at the input. We consider the possibility of using this method in the testing of distance calculation algorithms between a pair of DNAs to restore the partially filled matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title="optimization problems">optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20matrix" title=" DNA matrix"> DNA matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20filled%20matrix" title=" partially filled matrix"> partially filled matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms" title=" heuristic algorithms"> heuristic algorithms</a> </p> <a href="https://publications.waset.org/abstracts/172868/on-the-application-of-heuristics-of-the-traveling-salesman-problem-for-the-task-of-restoring-the-dna-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2343</span> Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Israa%20Sh.%20Tawfic">Israa Sh. Tawfic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Koc%20Kayhan"> Sema Koc Kayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=lest%20support%20orthogonal%20matching%20pursuit" title=" lest support orthogonal matching pursuit"> lest support orthogonal matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20knowing%20support" title=" partial knowing support"> partial knowing support</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20isometry%20property" title=" restricted isometry property"> restricted isometry property</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20reconstruction" title=" signal reconstruction"> signal reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/16008/partially-knowing-of-least-support-orthogonal-matching-pursuit-pkls-omp-for-recovering-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2342</span> Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Modarresi">Kourosh Modarresi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multimedia%20attribution" title="multimedia attribution">multimedia attribution</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20principal%20component" title=" sparse principal component"> sparse principal component</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decomposition" title=" singular value decomposition"> singular value decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20significance" title=" feature significance"> feature significance</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20systems" title=" linear systems"> linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20shrinkage" title=" variable shrinkage"> variable shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/19533/analysis-of-the-significance-of-multimedia-channels-using-sparse-pca-and-regularized-svd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2341</span> On Block Vandermonde Matrix Constructed from Matrix Polynomial Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hariche"> Kamel Hariche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In control engineering, systems described by matrix fractions are studied through properties of block roots, also called solvents. These solvents are usually dealt with in a block Vandermonde matrix form. Inverses and determinants of Vandermonde matrices and block Vandermonde matrices are used in solving problems of numerical analysis in many domains but require costly computations. Even though Vandermonde matrices are well known and method to compute inverse and determinants are many and, generally, based on interpolation techniques, methods to compute the inverse and determinant of a block Vandermonde matrix have not been well studied. In this paper, some properties of these matrices and iterative algorithms to compute the determinant and the inverse of a block Vandermonde matrix are given. These methods are deducted from the partitioned matrix inversion and determinant computing methods. Due to their great size, parallelization may be a solution to reduce the computations cost, so a parallelization of these algorithms is proposed and validated by a comparison using algorithmic complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20vandermonde%20matrix" title="block vandermonde matrix">block vandermonde matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=solvents" title=" solvents"> solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20polynomial" title=" matrix polynomial"> matrix polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20inverse" title=" matrix inverse"> matrix inverse</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20determinant" title=" matrix determinant"> matrix determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a> </p> <a href="https://publications.waset.org/abstracts/89115/on-block-vandermonde-matrix-constructed-from-matrix-polynomial-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=79">79</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sparse%20matrix&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10