CINXE.COM
Search results for: room
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: room</title> <meta name="description" content="Search results for: room"> <meta name="keywords" content="room"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="room" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="room"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1351</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: room</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1351</span> 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zina%20Ghiloufi">Zina Ghiloufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Khir"> Tahar Khir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20room" title=" cold room"> cold room</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dDates" title=" dDates"> dDates</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89%20%28SST%29" title=" k-ω (SST)"> k-ω (SST)</a> </p> <a href="https://publications.waset.org/abstracts/90986/3d-cfd-modelling-of-the-airflow-and-heat-transfer-in-cold-room-filled-with-dates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1350</span> Response of Full-Scale Room Building Against Blast Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eid%20Badshah">Eid Badshah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Naseer"> Amjad Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20pressure" title="peak pressure">peak pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=composition-B" title=" composition-B"> composition-B</a>, <a href="https://publications.waset.org/abstracts/search?q=TNT" title=" TNT"> TNT</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title=" pressure sensor"> pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20distance" title=" scaled distance"> scaled distance</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a> </p> <a href="https://publications.waset.org/abstracts/157393/response-of-full-scale-room-building-against-blast-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1349</span> Performance of an Absorption Refrigerator Using a Solar Thermal Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Hmida">Abir Hmida</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihel%20Chekir"> Nihel Chekir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m<sup>3</sup> is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20room" title=" cold room"> cold room</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20tube" title=" vacuum tube"> vacuum tube</a> </p> <a href="https://publications.waset.org/abstracts/99221/performance-of-an-absorption-refrigerator-using-a-solar-thermal-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1348</span> Airborne Molecular Contamination in Clean Room Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Rajam%C3%A4ki">T. Rajamäki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clean room environment molecular contamination in very small concentrations can cause significant harm for the components and processes. This is commonly referred as airborne molecular contamination (AMC). There is a shortage of high sensitivity continuous measurement data for existence and behavior of several of these contaminants. Accordingly, in most cases correlation between concentration of harmful molecules and their effect on processes is not known. In addition, the formation and distribution of contaminating molecules are unclear. In this work sensitive optical techniques are applied in clean room facilities for investigation of concentrations, forming mechanisms and effects of contaminating molecules. Special emphasis is on reactive acid and base gases ammonia (NH3) and hydrogen fluoride (HF). They are the key chemicals in several operations taking place in clean room processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMC" title="AMC">AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20room" title=" clean room"> clean room</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20gas" title=" reactive gas"> reactive gas</a> </p> <a href="https://publications.waset.org/abstracts/44284/airborne-molecular-contamination-in-clean-room-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1347</span> Effect of Acoustical Performance Detection and Evaluation in Music Practice Rooms on Teaching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsu-Hui%20Cheng">Hsu-Hui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Chian%20Chen"> Peng-Chian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yuan%20Chang"> Shu-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie-Ying%20Zhang"> Jie-Ying Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activities in the music practice rooms range from playing, listening, rehearsing to music performing. The good room acoustics in a music practice room enables a music teacher to teach more effectively subtle concepts such as intonation, articulation, balance, dynamics and tone production. A poor acoustical environment would deeply affect the development of basic musical skills of music students. Practicing in the music practice room is an essential daily activity for music students; consequently, music practice rooms are very important facilities in a music school or department. The purpose of this survey is to measure and analyze the acoustic condition of piano practice rooms at the department of music in Zhaoqing University and accordingly apply a more effective teaching method to music students. The volume of the music practice room is approximately 25 m³, and it has existing curtains and some wood hole sound-absorbing panels. When all small music practice rooms are in constant use for teaching, it was found that the values of the background noise at 45, 46, 42, 46, 45 dB(A) in the small music practice room ( the doors and windows were close), respectively. The noise levels in the small music practice room to higher than standard levels (35dB(A)). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustical%20performance" title="acoustical performance">acoustical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20practice%20room" title=" music practice room"> music practice room</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20level" title=" noise level"> noise level</a>, <a href="https://publications.waset.org/abstracts/search?q=piano%20room" title=" piano room"> piano room</a> </p> <a href="https://publications.waset.org/abstracts/138088/effect-of-acoustical-performance-detection-and-evaluation-in-music-practice-rooms-on-teaching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1346</span> Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homin%20Kim">Homin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjo%20Byun"> Hyungjo Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Do"> Jinyoung Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Lee"> Yongil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin"> Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbae%20Lee"> Seungbae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20room%20design" title=" engine room design"> engine room design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20hydraulics" title=" mobile hydraulics"> mobile hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/61957/thermal-and-acoustic-design-of-mobile-hydraulic-vehicle-engine-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1345</span> Microbiological Assessment of Fish Sausages Coated with Smoked-Edible Film, and Stored in Room and Refrigerator Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henny%20A.%20Dien">Henny A. Dien</a>, <a href="https://publications.waset.org/abstracts/search?q=Roike%20I.%20Montolalu"> Roike I. Montolalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feny%20Mentang"> Feny Mentang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jupni%20Keno"> Jupni Keno</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynerd%20S.%20Burdam"> Reynerd S. Burdam</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Berhimpon"> Siegfried Berhimpon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish Sausages became popular nowadays, because of high nutritious and low in cholesterol. However, this food is also highly perishable and often contaminated by pathogen bacteria. Edible film was made from myofibril of Black Marlin (Makaira indica) waste, with addition of liquid smoke 0.8%. The aim of this study were to determine the TPC, total coliform and Escherichia coli in fish sausages coated with smoked edible film, and stored in room temperature (26-29oC), and refrigerator (5-10oC). Results shown that TPC in fish sausages coated with smoked edible film were lower than that of without coated, both for storage in room temperature and in refrigerator. Total coliform in coated with smoked edible film and stored in room temperature ranged between 7-120 MPN/g (1-4 days), while stored in refrigerator ranged between 7-93 MPN/g (1-6 days); while fish sausages coated with edible film without liquid smoke were 7-240 MPN/g (1-4 days) in room temperature, and 7-150 MPN/g in refrigerator. Total E. coli of fish sausages coated with smoked edible film and stored in room temperature ranged between 3-4 MPN/g (1-4 days), while stored in refrigerator ranged were 3 MPN/g (1-6 days); while fish sausages coated with edible film without smoked both stored in room temperature and in refrigerator, shown total E. coli 3 MPN/g during 4 days in room temperature, and 6 days in refrigerator. Total E. coli of sausages without coated stored in room temperature ranged between 7-24 MPN/g, and that of stored in refrigerator ranged between 3-4 MPN/g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoke%20liquid" title="smoke liquid">smoke liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=sausages" title=" sausages"> sausages</a> </p> <a href="https://publications.waset.org/abstracts/33011/microbiological-assessment-of-fish-sausages-coated-with-smoked-edible-film-and-stored-in-room-and-refrigerator-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1344</span> The Effect of Applying Surgical Safety Checklist on Surgical Team’s Knowledge and Performance in Operating Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheir%20Weheida">Soheir Weheida</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20E.%20Shehata"> Amal E. Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20E.%20Aboalizm"> Samira E. Aboalizm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to examine the effect of surgical safety checklist on surgical team’s knowledge and performance in operating room. Subjects: A convenience sample 151 (48 head nurse, 45 nurse, 37 surgeon and 21 anesthesiologist) which available in operating room at two different hospitals was included in the study. Setting: The study was carried out at operating room in Menoufia University and Shebin Elkom Teaching Hospitals, Egypt. Tools: I: Surgical safety: Surgical team knowledge assessment structure interview schedule. II: WHO surgical safety observational Checklist. III: Post Surgery Culture Survey scale. Results: There was statistical significant improvement of knowledge mean score and performance about surgical safety especially in post and follow up than pre intervention, before patients entering the operating, before induction of anesthesia, skin incision and post skin closure and before patient leaves operating room, P values (P < 0.001). Improvement of communication post intervention than pre intervention between surgical team’s (4.74 ± 0.540). About two thirds (73.5 %) of studied sample strongly agreed on surgical safety in operating room. Conclusions: Implementation of surgical safety checklist has a positive effect on improving knowledge, performance and communication between surgical teams and these seems to have a positive effect on improve patient safety in the operating room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge" title="knowledge">knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20room" title=" operating room"> operating room</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20safety%20checklist" title=" surgical safety checklist "> surgical safety checklist </a> </p> <a href="https://publications.waset.org/abstracts/25275/the-effect-of-applying-surgical-safety-checklist-on-surgical-teams-knowledge-and-performance-in-operating-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1343</span> Mixed Model Sequencing in Painting Production Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Unchalee%20Inkampa">Unchalee Inkampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuanjai%20Somboonwiwat"> Tuanjai Somboonwiwat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sequencing" title="sequencing">sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20model%20lines" title=" mixed model lines"> mixed model lines</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20process" title=" painting process"> painting process</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20position%20paint" title=" electrode position paint"> electrode position paint</a> </p> <a href="https://publications.waset.org/abstracts/34291/mixed-model-sequencing-in-painting-production-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1342</span> Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jirod%20Chaisan">Jirod Chaisan</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchai%20Maneewan"> Somchai Maneewan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantana%20Punlek"> Chantana Punlek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ninnart%20Rachapradit"> Ninnart Rachapradit</a>, <a href="https://publications.waset.org/abstracts/search?q=Surapong%20Chirarattananon"> Surapong Chirarattananon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattana%20Rakkwamsuk"> Pattana Rakkwamsuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20ventilation" title="air ventilation">air ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title=" thermoelectric"> thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidify" title=" dehumidify"> dehumidify</a> </p> <a href="https://publications.waset.org/abstracts/65566/computational-modeling-of-thermal-comfort-and-co2-distribution-in-common-room-lecture-room-by-using-hybrid-air-ventilation-system-thermoelectric-pv-silica-gel-under-iaq-standard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1341</span> Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashmin%20Aryal">Ashmin Aryal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipat%20Chaiwiwatworakul"> Pipat Chaiwiwatworakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Surapong%20Chirarattananon"> Surapong Chirarattananon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiant%20chilled%20ceiling" title="radiant chilled ceiling">radiant chilled ceiling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20air%20unit" title=" outdoor air unit"> outdoor air unit</a> </p> <a href="https://publications.waset.org/abstracts/134085/experimental-observation-on-air-conditioning-using-radiant-chilled-ceiling-in-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1340</span> Investigation of the Opinions and Recommendations of Participants Related to Operating Room Nursing Certified Course Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zehra%20Gencel%20Efe">Zehra Gencel Efe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Susam%20Ozsay%C4%B1n"> Fatma Susam Ozsayın</a>, <a href="https://publications.waset.org/abstracts/search?q=Sat%C4%B1%20Tas"> Satı Tas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aim: It is not possible to teach all the knowledge related to operating room nursing in the nursing education process. Certified courses are organized by the Ministry of Health to compensate the lack of postgraduate training and the theoretical and practical training needs of working nurses. In this study; It is aimed to investigate the participants’ opinions and recommendations attending the certified course of operating room nursing that organized in İKCU AtaturkTraining and Research Hospital. Method: Two operating room nursing courses were organized in 2016. The 1st Operating Room Nursing Certified Course Program was organized between March 07, 2016 and April 6, 2016and the 2nd Operating Room Nursing Certified Course Program was organized between 07 November 2016 - 06 December 2016 at the İKCU Ataturk Training and Research Hospital. The first program was accepted for 29 participants, the second program was accepted for 30 participants. In the collection of the data, the 'Operating Room Nursing Certified Training Program Evaluation Form', 'Operating Room Nursing Certified Training Program Theoretical Training Evaluation Form' were used. Three point Likert-type scale is used for responses in the 'Operating Room Nursing Certified Training Program Evaluation Form’ (1=verygood, 2=good, 3=poor). Data is collected in five areas related to training program, operation room practice, communication, responsibility, experiences of learning. Four point Likert-type scale is used for responses in the 'Operating Room Nursing Certified Training Program Theoretical Training Evaluation Form' (1=verysatisfied, 2=quitesatisfied, 3=satisfied, 4=dissatisfied). Data is collected in two areas include presentation and content. Data were analyzed with SPSS 16 program. Findings and Conclusion: It was found that 93,22% of participants were female in addition, 62,7% had bachelor degree. It was seen that 33,87% of the work group had 1-5 years of experience in their field. It was found that; 88% of trainees participating in the first group to the operating room nursing-certified course program stated the training program was very good, 12% of them stated the training program was good. Nobody was signed the ‘poor’ choice. 81% of the trainees who participated in the 2nd group to the operating room nursing-certified course program stated the training program was very good, 19% of them stated the training program was good. Nobody was signed the ‘poor’ choice. It was found that there was no meaningful difference between the achievement ratios of the trainees and the learning status of the trainees when compared with the t test in the groups with success level of the operating room nursing certified course program according to the learning status of the participants (p ˃ 0,05). The trainees noted that the course was satisfied with theoretical and practical steps but the support services (lunch, coffee breaks etc.) were in adequate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=certified%20courses" title="certified courses">certified courses</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20certified%20courses" title=" nursing certified courses"> nursing certified courses</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20room%20nursing" title=" operating room nursing"> operating room nursing</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20program" title=" training program"> training program</a> </p> <a href="https://publications.waset.org/abstracts/71643/investigation-of-the-opinions-and-recommendations-of-participants-related-to-operating-room-nursing-certified-course-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1339</span> Determining the Effectiveness of Radiation Shielding and Safe Time for Radiation Worker by Employing Monitoring of Accumulation Dose in the Operator Room of CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Risalatul%20Latifah">Risalatul Latifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bunawas%20Bunawas"> Bunawas Bunawas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lailatul%20Muqmiroh"> Lailatul Muqmiroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anggraini%20D.%20Sensusiati"> Anggraini D. Sensusiati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the increasing frequency of the use of CT-Scan for radiodiagnostics purposes, it is necessary to study radiation protection. This study examined aspects of radiation protection of workers. This study tried using thermoluminescent dosimeter (TLD) for evaluating radiation shielding and estimating safe time for workers during CT Scan examination. Six TLDs were placed on door, wall, and window inside and outside of the CT Scan room for 1 month. By using TLD monitoring, it could be seen how much radiation was exposed in the operator room. The results showed the effective dose at door, window, and wall was respectively 0.04 mSv, 0.05 mSv, and 0.04 mSv. With these values, it could be evaluated the effectiveness of radiation shielding on doors, glass and walls were respectively 90.6%, 95.5%, and 92.2%. By applying the dose constraint and the estimation of the accumulated dose for one month, radiation workers were still safe to perform the irradiation for 180 patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan%20room" title="CT scan room">CT scan room</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20worker" title=" radiation worker"> radiation worker</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20constraint" title=" dose constraint"> dose constraint</a> </p> <a href="https://publications.waset.org/abstracts/63239/determining-the-effectiveness-of-radiation-shielding-and-safe-time-for-radiation-worker-by-employing-monitoring-of-accumulation-dose-in-the-operator-room-of-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1338</span> An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Youssef%20El%20Hafidi">Moulay Youssef El Hafidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20cooling" title="magnetic cooling">magnetic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/164794/an-enhanced-room-temperature-magnetic-refrigerator-based-on-nanofluid-from-theoretical-study-to-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1337</span> Evaluation and Analysis of Light Emitting Diode Distribution in an Indoor Visible Light Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olawale%20J.%20Olaluyi">Olawale J. Olaluyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20S.%20Oluwole"> Ayodele S. Oluwole</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Akinsanmi"> O. Akinsanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20O.%20Adeogo"> Johnson O. Adeogo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication using visible light VLC is considered a cutting-edge technology used for data transmission and illumination since it uses less energy than radio frequency (RF) technology and has a large bandwidth, extended lifespan, and high security. The room's irregular distribution of small base stations, or LED array distribution, is the cause of the obscured area, minimum signal-to-noise ratio (SNR), and received power. In order to maximize the received power distribution and SNR at the center of the room for an indoor VLC system, the researchers offer an innovative model for the placement of eight LED array distributions in this work. We have investigated the arrangement of the LED array distribution with regard to receiving power to fill the open space in the center of the room. The suggested LED array distribution saved 36.2% of the transmitted power, according to the simulation findings. Aside from that, the entire room was equally covered. This leads to an increase in both received power and SNR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication%20%28VLC%29" title="visible light communication (VLC)">visible light communication (VLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitted%20diodes%20%28LED%29" title=" light emitted diodes (LED)"> light emitted diodes (LED)</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20power%20distribution" title=" optical power distribution"> optical power distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=signal-to-noise%20ratio%20%28SNR%29." title=" signal-to-noise ratio (SNR)."> signal-to-noise ratio (SNR).</a> </p> <a href="https://publications.waset.org/abstracts/177852/evaluation-and-analysis-of-light-emitting-diode-distribution-in-an-indoor-visible-light-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1336</span> Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Q.%20Ahmed">A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gao"> S. Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the computational fluid dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in stratified air distribution (STRAD) system is used in this study. The results show that 47.4 % energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20ventilation" title=" displacement ventilation"> displacement ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/29206/thermal-comfort-and-energy-saving-evaluation-of-a-combined-system-in-an-office-room-using-displacement-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1335</span> Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Gandhi">Pratik Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20Chandra"> Kavitha Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Thompson"> Charles Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20room%20impulse%20response" title="acoustic room impulse response">acoustic room impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20dependent%20reflection%20coefficients" title=" frequency dependent reflection coefficients"> frequency dependent reflection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%27s%20function" title=" Green's function"> Green's function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20model" title=" image model"> image model</a> </p> <a href="https://publications.waset.org/abstracts/152987/acoustic-room-impulse-response-computation-with-image-sources-and-frequency-dependent-boundary-reflection-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1334</span> Investigating and Comparing the Performance of Baseboard and Panel Radiators by Calculating the Thermal Comfort Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Erfan%20Doraki">Mohammad Erfan Doraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salehi"> Mohammad Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to evaluate the performance of Baseboard and Panel radiators with thermal comfort coefficient, A room with specific dimensions was modeled with Ansys fluent and DesignBuilder, then calculated the speed and temperature parameters in different parts of the room in two modes of using Panel and Baseboard radiators and it turned out that use of Baseboard radiators has a more uniform temperature and speed distribution, but in a Panel radiator, the room is warmer. Then, by calculating the thermal comfort indices, It was shown that using a Panel radiator is a more favorable environment and using a Baseboard radiator is a more uniform environment in terms of thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radiator" title="Radiator">Radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Baseboard" title=" Baseboard"> Baseboard</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal" title=" optimal"> optimal</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20coefficient" title=" comfort coefficient"> comfort coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat "> heat </a> </p> <a href="https://publications.waset.org/abstracts/134114/investigating-and-comparing-the-performance-of-baseboard-and-panel-radiators-by-calculating-the-thermal-comfort-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1333</span> Hydrogen Storage in Carbonized Coconut Meat (Kernel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viney%20Dixit">Viney Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20R.%20Shahi"> Rohit R. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bhatnagar"> Ashish Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jain"> P. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yadav"> T. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Srivastava"> O. N. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20kernel" title="coconut kernel">coconut kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca" title=" Ca"> Ca</a> </p> <a href="https://publications.waset.org/abstracts/12194/hydrogen-storage-in-carbonized-coconut-meat-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1332</span> Deregulation of Thorium for Room Temperature Superconductivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Zhao">Dong Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-existence%20of%20high%20electrical%20conductivity%20and%20diamagnetism" title="co-existence of high electrical conductivity and diamagnetism">co-existence of high electrical conductivity and diamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20pairing%20and%20electron%20lone%20pair" title=" electron pairing and electron lone pair"> electron pairing and electron lone pair</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductivity" title=" room temperature superconductivity"> room temperature superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20special%20molecular%20configuration%20of%20thorium%20sulfide%20ThS" title=" the special molecular configuration of thorium sulfide ThS"> the special molecular configuration of thorium sulfide ThS</a> </p> <a href="https://publications.waset.org/abstracts/181506/deregulation-of-thorium-for-room-temperature-superconductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1331</span> The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selma%20Bouasria">Selma Bouasria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahi%20Abdelkader"> Mahi Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Abb%C3%A8s%20Azzi"> Abbès Azzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Herouz%20Keltoum"> Herouz Keltoum </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local" title="local">local</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=thermique" title=" thermique"> thermique</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20environment" title=" internal environment "> internal environment </a> </p> <a href="https://publications.waset.org/abstracts/25772/the-impact-and-performances-of-controlled-ventilation-strategy-on-thermal-comfort-and-indoor-atmosphere-in-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kook%20Lee">Jong Kook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangcheol%20Eum"> Sangcheol Eum</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehong%20Kim"> Jaehong Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wollastonite" title="wollastonite">wollastonite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite%20%20composite%20coatings" title=" hydroxyapatite composite coatings"> hydroxyapatite composite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20temperature%20spay%20process" title=" room temperature spay process"> room temperature spay process</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconia" title=" zirconia "> zirconia </a> </p> <a href="https://publications.waset.org/abstracts/25551/fabrication-of-wollastonitehydroxyapatite-coatings-on-zirconia-by-room-temperature-spray-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Dehra">Himanshu Dehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20solar%20wall" title="photovoltaic solar wall">photovoltaic solar wall</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20ventilation" title=" passive ventilation"> passive ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20ventilation" title=" active ventilation"> active ventilation</a> </p> <a href="https://publications.waset.org/abstracts/68746/electrical-and-thermal-characteristics-of-a-photovoltaic-solar-wall-with-passive-and-active-ventilation-through-a-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1328</span> Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raida%20Zouari">Raida Zouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Iness%20Ahriz"> Iness Ahriz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Zayani"> Rafik Zayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dziri"> Ali Dziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20indoor%20localization" title="mobile indoor localization">mobile indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20neural%20network%20%28MLNN%29" title=" multi-layer neural network (MLNN)"> multi-layer neural network (MLNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20impulse%20response%20%28CIR%29" title=" channel impulse response (CIR)"> channel impulse response (CIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Gram-Shmidt%20orthogonalization" title=" Gram-Shmidt orthogonalization"> Gram-Shmidt orthogonalization</a> </p> <a href="https://publications.waset.org/abstracts/40068/room-level-indoor-localization-using-relevant-channel-impulse-response-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1327</span> The Association of Excessive Work Stress with Job Satisfaction and Turnover Intention in Operating Room Nurses: A Cross-Sectional Study in a Metropolitan Teaching Hospital in Southern Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia%20Yu%20Chen">Chia Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Fen%20Wu"> Shu Fen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Fuh%20Lam"> Chen-Fuh Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Tsai"> I-Ling Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Jiuan%20Chen"> Shu Jiuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen%20Ling%20Liu"> Yen Ling Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: It remains undetermined that whether increased work stress may affect the job satisfaction and career loyalty among nursing staffs in the operating room. The long-term goal of this study is to lengthen the professional life of operating room nurses by attenuating the work stress and enhancing their contentment in work. Method: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in the southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Occupational Stress Indicator-2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the operating room nurses. Chi-square test was used to analyze the categorical data and Pearson correlation was used to analyze the association between two numerical datasets (SPSS version 20.0). Results: The response rate was 80% (80/100) and a total of 73 (73%) completed forms were eventually proceeded for analysis. The average scores for work stress and job satisfaction of the operating room nurses were 145.96±32.91 and 47.38±6.07, respectively. The correlation coefficients of work stress versus job satisfaction and organizational identity were (r=-0.338, p=0.003 and r=-0.354, p=0.002), respectively. There were more nurses who took rotating shift quitted works from the operating room than those who took only dayshift (2=5.176, p<0.05). Nurses who reported of having lower job satisfaction were associated with significantly higher turnover intention (t=3.714, p< 0.01). Following multivariate regression analysis, rotating shift and low job satisfaction were identified as the two independent predictors of intention to quit from working in the operating room. Conclusion: Our study clearly demonstrates that increased work stress significantly attenuates job satisfaction and organizational identity. Rotating shift is associated with higher work stress, lower job satisfaction, and higher turnover intention, which is consistent with the previous surveys carried out in the department of medical technology. Therefore, improvement of working quality in the operating rooms is essential to increase the retain intention of the well-trained nursing staffs. Further investigation into types of work shifts and other strategies of attenuating stress in workplace is currently undertaken in order to improve the job satisfaction and to decrease turnover intention in the operating room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20shift" title="rotating shift">rotating shift</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20stress" title=" work stress"> work stress</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20satisfaction" title=" job satisfaction"> job satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=turnover%20intention" title=" turnover intention"> turnover intention</a> </p> <a href="https://publications.waset.org/abstracts/85554/the-association-of-excessive-work-stress-with-job-satisfaction-and-turnover-intention-in-operating-room-nurses-a-cross-sectional-study-in-a-metropolitan-teaching-hospital-in-southern-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1326</span> Best Responses for the Dynamic Model of Hotel Room Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Tran">Xuan Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to present a comprehensive dynamic model for pricing strategies in the hotel competition to find a win-win situation for the competitive set. By utilizing the Cobb-Douglas utility model, the study establishes room rates by analyzing the price elasticity of demand across a competitive set of four hotels, with a focus on occupancy rates. To further enhance the analysis, game theory is applied to identify the best response for each competitive party, which illustrates the optimal pricing strategy for each hotel in the competitive landscape. This approach offers valuable insights into how hotels can strategically adjust their room rates in response to market conditions and competitor actions. The primary contributions of this research include as follows: (1) advantages for both individual hotels and the broader competitive hotel market, (2) benefits for hotel management overseeing multiple brands, and (3) positive impacts on the local community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20response" title=" best response"> best response</a>, <a href="https://publications.waset.org/abstracts/search?q=Cobb-Douglas" title=" Cobb-Douglas"> Cobb-Douglas</a> </p> <a href="https://publications.waset.org/abstracts/190235/best-responses-for-the-dynamic-model-of-hotel-room-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1325</span> Fitness Apparel and Body Cathexis of Women Consumers When and after Using Virtual Fitting Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almas%20Athif%20Fathin%20Wiyantoro">Almas Athif Fathin Wiyantoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Fransiskus%20Xaverius%20Ivan%20Budiman"> Fransiskus Xaverius Ivan Budiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Fithra%20Faisal%20Hastiadi"> Fithra Faisal Hastiadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of clothing and technology as a marketing tool has a great influence on online business owners to know how much the characteristics and psychology of consumers in influencing purchasing decisions made by Indonesian women consumers. One of the most important issues faced by Indonesian women consumers is the suitability of clothing. The suitability of clothing can affect the body cathexis, identity, and confidence. So the thematic analysis of clothing fitness and body cathexis of women consumers when and after using virtual fitting room technology to purchase decision is important to do. This research using group method of pre-post treatment and considers how the recruitment technique of snowball sampling, which uses interpersonal relations and connections between people, both includes and excludes individuals into 39 participants' social networks to access specific populations. The results obtained from the study that the results of body scans and photos of virtual fitting room results can be made an intervention in women consumers in assessing their body cathexis objectively in the process of making purchasing decisions. The study also obtained a regression equation Y = 0.830 + 0.290X1 + 0.292X2, showing a positive relationship between suitability of clothing and body cathexis which influenced purchasing decisions on women consumers and after (personal and psychological factors) using virtual fitting room, meaning that all independent variables influence Positive towards the purchasing decision of the women consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20cathexis" title="body cathexis">body cathexis</a>, <a href="https://publications.waset.org/abstracts/search?q=clothing%20fitness" title=" clothing fitness"> clothing fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=purchasing%20decision%20making%20and%20virtual%20fitting%20room" title=" purchasing decision making and virtual fitting room"> purchasing decision making and virtual fitting room</a> </p> <a href="https://publications.waset.org/abstracts/73511/fitness-apparel-and-body-cathexis-of-women-consumers-when-and-after-using-virtual-fitting-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1324</span> Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Hsueh%20Chen">Li-Hsueh Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20elasticity" title=" scale elasticity"> scale elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20data%20envelopment%20analysis" title=" network data envelopment analysis"> network data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20tourist%20hotel" title=" international tourist hotel"> international tourist hotel</a> </p> <a href="https://publications.waset.org/abstracts/44908/efficiency-and-scale-elasticity-in-network-data-envelopment-analysis-an-application-to-international-tourist-hotels-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1323</span> Numerical Investigation of Indoor Environmental Quality in a Room Heated with Impinging Jet Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Cehlin">Mathias Cehlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Arman%20Ameen"> Arman Ameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulf%20Larsson"> Ulf Larsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Taghi%20Karimipanah"> Taghi Karimipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indoor environmental quality (IEQ) is increasingly recognized as a significant factor influencing the overall level of building occupants’ health, comfort and productivity. An air-conditioning and ventilation system is normally used to create and maintain good thermal comfort and indoor air quality. Providing occupant thermal comfort and well-being with minimized use of energy is the main purpose of heating, ventilating and air conditioning system. Among different types of ventilation systems, the most widely known and used ventilation systems are mixing ventilation (MV) and displacement ventilation (DV). Impinging jet ventilation (IJV) is a promising ventilation strategy developed in the beginning of 2000s. IJV has the advantage of supplying air downwards close to the floor with high momentum and thereby delivering fresh air further out in the room compare to DV. Operating in cooling mode, IJV systems can have higher ventilation effectiveness and heat removal effectiveness compared to MV, and therefore a higher energy efficiency. However, how is the performance of IJV when operating in heating mode? This paper presents the function of IJV in a typical office room for winter conditions (heating mode). In this paper, a validated CFD model, which uses the v2-f model is used for the prediction of air flow pattern, thermal comfort and air change effectiveness. The office room under consideration has the dimensions 4.2×3.6×2.5m, which can be designed like a single-person or two-person office. A number of important factors influencing in the room with IJV are studied. The considered parameters are: heating demand, number of occupants and supplied air conditions. A total of 6 simulation cases are carried out to investigate the effects of the considered parameters. Heat load in the room is contributed by occupants, computer and lighting. The model consists of one external wall including a window. The interaction effects of heat sources, supply air flow and down draught from the window result in a complex flow phenomenon. Preliminary results indicate that IJV can be used for heating of a typical office room. The IEQ seems to be suitable in the occupied region for the studied cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computation%20fluid%20dynamics" title="computation fluid dynamics">computation fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet%20ventilation" title=" impinging jet ventilation"> impinging jet ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality" title=" indoor environmental quality"> indoor environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20strategy" title=" ventilation strategy"> ventilation strategy</a> </p> <a href="https://publications.waset.org/abstracts/96370/numerical-investigation-of-indoor-environmental-quality-in-a-room-heated-with-impinging-jet-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1322</span> Little Girls and Big Stories: A Thematic Analysis of Gender Representations in Selected Asian Room to Read Storybooks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheeno%20Marlo%20Sayuno">Cheeno Marlo Sayuno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Room to Read is an international nonprofit organization aimed at empowering young readers through literature and literacy education. In particular, the organization is focused on girls’ education in schools and bettering their social status through crafting stories and making sure that these stories are accessible to them. In 2019, Room to Read visited the Philippines and partnered with Philippine children’s literature publishers Adarna House, Lampara Books, Anvil Publishing, and OMF-Hiyas with the goal of producing contextualized stories that Filipino children can read. The result is a set of 20 storybooks developed by Filipino writers and illustrators, the author of this paper included. The project led to narratives of experiences in storybook production from conceptualization to publication, towards translations and reimagining in online repository, storytelling, and audiobook formats. During the production process, we were particularly reminded of gender representations, child’s rights, and telling stories that can empower the children in vulnerable communities, who are the beneficiaries of the project. The storybooks, along with many others produced in Asia and the world, are available online through the literacycloud.org website of Room to Read. In this study, the goal is to survey the stories produced in Asia and look at how gender is represented in the storybooks. By analyzing both the texts and the illustrations of the storybooks produced across Asian countries, themes of portrayals of young boys and girls, their characteristics and narratives, and how they are empowered in the stories are identified, with the goal of mapping how Room to Read is able to address the problem of access to literacy among young girls and ensuring them that they can do anything, the way they are portrayed in the stories. The paper hopes to determine how gender is represented in Asian storybooks produced by the international nonprofit organization Room to Read. Thematic textual analysis was used as methodology, where the storybooks are analyzed qualitatively to identify arising themes of gender representation. This study will shed light on the importance of responsible portrayal of gender in storybooks and how it can impact and empower children. The results of the study can also aid writers and illustrators in developing gender-sensitive storybooks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=room%20to%20read" title="room to read">room to read</a>, <a href="https://publications.waset.org/abstracts/search?q=asian%20storybooks" title=" asian storybooks"> asian storybooks</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20girls" title=" young girls"> young girls</a>, <a href="https://publications.waset.org/abstracts/search?q=thematic%20analysis" title=" thematic analysis"> thematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20empowerment" title=" child empowerment"> child empowerment</a>, <a href="https://publications.waset.org/abstracts/search?q=literacy" title=" literacy"> literacy</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a> </p> <a href="https://publications.waset.org/abstracts/157949/little-girls-and-big-stories-a-thematic-analysis-of-gender-representations-in-selected-asian-room-to-read-storybooks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>