CINXE.COM

Logique classique — Wikipédia

<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="fr" dir="ltr"> <head> <base href="https://fr.m.wikipedia.org/wiki/Logique_classique"> <meta charset="UTF-8"> <title>Logique classique — Wikipédia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"1bfae3cf-42ce-420c-99cd-23904f8c6289","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Logique_classique","wgTitle":"Logique classique","wgCurRevisionId":207962953,"wgRevisionId":207962953, "wgArticleId":544732,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Logique_classique","wgRelevantArticleId":544732,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false, "wgWMEPageLength":7000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ar","autonym":"العربية","dir":"rtl"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{ "lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym": "বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{ "lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir": "ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"}, {"lang":"he","autonym":"עברית","dir":"rtl"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული", "dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek", "dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий", "dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb", "autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd", "autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"} ,{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo", "dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe", "dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof", "dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff", "fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te", "tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q236975","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials" :true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.gadget.Mobile":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups", "mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=fr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=ext.gadget.Mobile&amp;only=styles&amp;skin=minerva"> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Logique classique — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Logique_classique&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Logique_classique"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=corsproxy" data-sourceurl="https://fr.m.wikipedia.org/wiki/Logique_classique"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://fr.m.wikipedia.org/wiki/Logique_classique"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Logique_classique rootpage-Logique_classique stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=navigationui" data-environment="prod" data-proxy-url="https://fr-m-wikipedia-org.translate.goog" data-proxy-full-url="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://fr.m.wikipedia.org/wiki/Logique_classique" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="fr" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.m.wikipedia.org/wiki/Logique_classique&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://fr-m-wikipedia-org.translate.goog/wiki/Wikip%C3%A9dia:Accueil_principal?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Accueil</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://fr-m-wikipedia-org.translate.goog/wiki/Sp%C3%A9cial:Page_au_hasard?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Au hasard</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://fr-m-wikipedia-org.translate.goog/wiki/Sp%C3%A9cial:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">À proximité</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Logique+classique&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Se connecter</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Sp%C3%A9cial:MobileOptions&amp;returnto=Logique+classique&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Configuration</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_fr.wikipedia.org%26uselang%3Dfr%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Faire un don</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://fr-m-wikipedia-org.translate.goog/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">À propos de Wikipédia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://fr-m-wikipedia-org.translate.goog/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Avertissements</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Wikip%C3%A9dia:Accueil_principal?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" alt="Wikipédia" width="119" height="18" style="width: 7.4375em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Spécial:Recherche"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Rechercher</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Navigation utilisateur"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Logique classique</span></h1> <div class="tagline"> première formalisation du langage et du raisonnement mathématique développée à partir de la fin du XIXe siècle en logique mathématique </div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Langue" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Langue</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Logique+classique&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Suivre</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Modifier</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <div class="bandeau-container metadata bandeau-article bandeau-niveau-ebauche"> <div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"> <span class="noviewer" typeof="mw:File"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Fichier:Consistency.png?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Consistency.png/45px-Consistency.png" decoding="async" width="45" height="10" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Consistency.png/68px-Consistency.png 1.5x,https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/3/33/Consistency.png 2x" data-file-width="70" data-file-height="15"></a></span> </div> <div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p><strong class="bandeau-titre">Cet article est une <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Aide:%C3%89bauche?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Aide:Ébauche">ébauche</a> concernant la <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Logique">logique</a>.</strong></p> <p>Vous pouvez partager vos connaissances en l’améliorant (<b><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Aide:Comment_modifier_une_page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Aide:Comment modifier une page">comment&nbsp;?</a></b>) selon les recommandations des <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Projet:Accueil?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Projet:Accueil">projets correspondants</a>.</p> <p>Consultez la liste des <b>tâches à accomplir</b> en <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Discussion:Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Discussion:Logique classique">page de discussion</a>.</p> </div> </div> <p>La <b>logique classique</b> est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du <a href="https://fr-m-wikipedia-org.translate.goog/wiki/XIXe_si%C3%A8cle?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="XIXe siècle"><abbr class="abbr" title="19ᵉ siècle"><span class="romain">XIX</span><sup style="font-size:72%">e</sup></abbr>&nbsp;siècle</a> en <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_math%C3%A9matique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Logique mathématique">logique mathématique</a>. Appelée simplement <i>logique</i> à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_intuitionniste?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Logique intuitionniste">logique intuitionniste</a>, qui a suscité l'adjonction de l'adjectif <i>classique</i> au terme <i>logique</i>. À cette époque, le terme de <i>logique classique</i> fait référence à la <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_aristot%C3%A9licienne?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Logique aristotélicienne">logique aristotélicienne</a><sup id="cite_ref-1" class="reference"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup><sup class="reference cite_virgule">,</sup><sup id="cite_ref-2" class="reference"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup>.</p> <p>La logique classique est caractérisée par des postulats qui la fondent et la différencient de la logique intuitionniste, exprimés dans le formalisme du <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Calcul_des_propositions?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Calcul des propositions">calcul des propositions</a> ou du <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Calcul_des_pr%C3%A9dicats?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Calcul des prédicats">calcul des prédicats</a>&nbsp;:</p> <ul> <li>Le <i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Principe_du_tiers_exclu?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Principe du tiers exclu">tiers exclu</a></i> énonce que pour toute <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Proposition_(math%C3%A9matiques)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect mw-disambig" title="Proposition (mathématiques)">proposition mathématique</a> considérée, elle-même ou sa négation est vraie&nbsp;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\lor \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A\lor \neg A} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59bfe2f8010f7f758cae49d2b8fa7b2c4f812b63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle A\lor \neg A}"></span></li> </ul> <ul> <li>Le <i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Raisonnement_par_l%27absurde?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Raisonnement par l'absurde">raisonnement par l'absurde</a></i>&nbsp;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lnot \neg A\Rightarrow A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \lnot \neg A\Rightarrow A} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8adafbdf0d6d19a202c97501f2786a266bd28006" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.201ex; height:2.176ex;" alt="{\displaystyle \lnot \neg A\Rightarrow A}"></span></li> </ul> <ul> <li>La <i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Contraposition?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Contraposition">contraposition</a></i>&nbsp;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\big (}\neg B\Rightarrow \neg A{\big )}\Rightarrow {\big (}A\Rightarrow B{\big )}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\big (}\neg B\Rightarrow \neg A{\big )}\Rightarrow {\big (}A\Rightarrow B{\big )}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5608ee76b0dfe912dc7d97bfe51eef29da3525ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.217ex; height:3.176ex;" alt="{\displaystyle {\big (}\neg B\Rightarrow \neg A{\big )}\Rightarrow {\big (}A\Rightarrow B{\big )}}"></span></li> </ul> <ul> <li>L'<i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Implication_(logique)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Implication (logique)">implication matérielle</a></i>&nbsp;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\Leftrightarrow (\neg A\lor B)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇔<!-- ⇔ --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\Leftrightarrow (\neg A\lor B)} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bc002c2947a77531cd2be6c39e90da9a12e0886" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.994ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\Leftrightarrow (\neg A\lor B)}"></span></li> </ul> <p>Ces principes sont équivalents par raisonnement intuitionniste, c’est-à-dire que l'on peut montrer que n'importe lequel d'entre eux permet de déduire les autres en utilisant les règles intuitionnistes.</p> <p>On y ajoute généralement l'une des <i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Lois_de_De_Morgan?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Lois de De Morgan">lois de De Morgan</a></i>&nbsp;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg (A\land B)\Rightarrow (\neg A\lor \neg B)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> ∧<!-- ∧ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> B </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \neg (A\land B)\Rightarrow (\neg A\lor \neg B)} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/515b296575804313123d4b2751966f1332a5221d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.063ex; height:2.843ex;" alt="{\displaystyle \neg (A\land B)\Rightarrow (\neg A\lor \neg B)}"></span></p> <p>Ces principes contribuent au fait que les <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Correspondance_de_Curry-Howard?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Correspondance de Curry-Howard">modèles calculatoires de la logique classique</a> sont beaucoup plus complexes que ceux de la logique intuitionniste.</p> <p>Le principe</p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"></span> </center> <p>est valide en logique classique, et n'est pas démontrable en logique intuitionniste<sup id="cite_ref-3" class="reference"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-3"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup>, mais son adjonction à la logique intuitionniste n'engendre pas la logique classique.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="fr" dir="ltr"> <h2 id="mw-toc-heading">Sommaire</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Logique_classique_et_tables_de_v%C3%A9rit%C3%A9"><span class="tocnumber">1</span> <span class="toctext">Logique classique et tables de vérité</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#(A_%E2%87%92_B)_%E2%88%A8_(B_%E2%87%92_A),_la_logique_classique_et_la_logique_intuitionniste"><span class="tocnumber">2</span> <span class="toctext"><i>(A ⇒ B) ∨ (B ⇒ A)</i>, la logique classique et la logique intuitionniste</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#La_loi_de_Peirce"><span class="tocnumber">3</span> <span class="toctext">La loi de Peirce</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Notes_et_r%C3%A9f%C3%A9rences"><span class="tocnumber">4</span> <span class="toctext">Notes et références</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Lien_externe"><span class="tocnumber">5</span> <span class="toctext">Lien externe</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Logique_classique_et_tables_de_vérité"><span id="Logique_classique_et_tables_de_v.C3.A9rit.C3.A9"></span>Logique classique et tables de vérité</h2><span class="mw-editsection"> <a role="button" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Modifier la section : Logique classique et tables de vérité" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>modifier</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"> <div class="bandeau-cell bandeau-icone-css loupe"> Article détaillé&nbsp;: <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Table_de_v%C3%A9rit%C3%A9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Table de vérité">table de vérité</a>. </div> </div> <p>La <a href="https://fr-m-wikipedia-org.translate.goog/wiki/S%C3%A9mantique_formelle_(logique)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sémantique formelle (logique)">sémantique</a> (autrement dit la signification) de la logique classique se fait par des <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Table_de_v%C3%A9rit%C3%A9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Table de vérité">tables de vérité</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="(A_⇒_B)_∨_(B_⇒_A),_la_logique_classique_et_la_logique_intuitionniste"><span id=".28A_.E2.87.92_B.29_.E2.88.A8_.28B_.E2.87.92_A.29.2C_la_logique_classique_et_la_logique_intuitionniste"></span><i>(A ⇒ B) ∨ (B ⇒ A)</i>, la logique classique et la logique intuitionniste</h2><span class="mw-editsection"> <a role="button" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Modifier la section : (A ⇒ B) ∨ (B ⇒ A), la logique classique et la logique intuitionniste" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>modifier</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Fichier:Kripke_countermodel_of_A_-)_B_V_B_-)_A1.png?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Kripke_countermodel_of_A_-%29_B_V_B_-%29_A1.png/220px-Kripke_countermodel_of_A_-%29_B_V_B_-%29_A1.png" decoding="async" width="220" height="247" class="mw-file-element" data-file-width="227" data-file-height="255"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 247px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Kripke_countermodel_of_A_-%29_B_V_B_-%29_A1.png/220px-Kripke_countermodel_of_A_-%29_B_V_B_-%29_A1.png" data-width="220" data-height="247" data-srcset="//upload.wikimedia.org/wikipedia/commons/e/e5/Kripke_countermodel_of_A_-%29_B_V_B_-%29_A1.png 1.5x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Figure 1: Contre-modèle de Kripke de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </figcaption> </figure> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Fichier:Kripke_countermodel_of_A_V_not_A.png?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/1/13/Kripke_countermodel_of_A_V_not_A.png" decoding="async" width="154" height="100" class="mw-file-element" data-file-width="154" data-file-height="100"> </noscript><span class="lazy-image-placeholder" style="width: 154px;height: 100px;" data-src="//upload.wikimedia.org/wikipedia/commons/1/13/Kripke_countermodel_of_A_V_not_A.png" data-width="154" data-height="100" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Figure 2: Contre-modèle de Kripke de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\vee \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A\vee \neg A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle A\vee \neg A}"> </noscript><span class="lazy-image-placeholder" style="width: 7.619ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" data-alt="{\displaystyle A\vee \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </figcaption> </figure> <p>Si on ajoute la proposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> à la logique intuitionniste, on obtient une logique qui n'est plus la logique intuitionniste, car <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> n'est pas une conséquence de la logique intuitionniste, et qui n'est pas encore la logique classique, car le tiers exclu n'est pas une conséquence de cette formule.</p> <p>Les <a href="https://fr-m-wikipedia-org.translate.goog/wiki/S%C3%A9mantique_de_Kripke?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sémantique de Kripke">modèles de Kripke</a> sont essentiels pour comprendre la différence entre logique classique et logique intuitionniste. Le présent paragraphe en est une illustration et explique l'affirmation de l'alinéa ci-dessus.</p> <p>La figure 1 montre un <a href="https://fr-m-wikipedia-org.translate.goog/wiki/S%C3%A9mantique_de_Kripke?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#S%C3%A9mantique_de_la_logique_intuitionniste" title="Sémantique de Kripke">contre modèle de Kripke</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc2abebd45ec020509a0ec548b67c9a2cb7cecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\mathcal {M}}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.791ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc2abebd45ec020509a0ec548b67c9a2cb7cecd" data-alt="{\displaystyle {\mathcal {M}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> de la proposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Ça n'est pas un modèle de Kripke de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> parce que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb0a5e9f3c00c48911eb04472cd5570f98bf5199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.697ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 29.697ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb0a5e9f3c00c48911eb04472cd5570f98bf5199" data-alt="{\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. En effet,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w_{2}\nvDash A\Rightarrow B}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}},w_{2}\nvDash A\Rightarrow B} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d22ef6393a292340e0d5d0dae41238e57e3ecd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.375ex; height:2.509ex;" alt="{\displaystyle {\mathcal {M}},w_{2}\nvDash A\Rightarrow B}"> </noscript><span class="lazy-image-placeholder" style="width: 16.375ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d22ef6393a292340e0d5d0dae41238e57e3ecd7" data-alt="{\displaystyle {\mathcal {M}},w_{2}\nvDash A\Rightarrow B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w_{3}\nvDash B\Rightarrow A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}},w_{3}\nvDash B\Rightarrow A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5c746dc7de03fa96dad75a63fb426029f9b455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.375ex; height:2.509ex;" alt="{\displaystyle {\mathcal {M}},w_{3}\nvDash B\Rightarrow A}"> </noscript><span class="lazy-image-placeholder" style="width: 16.375ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5c746dc7de03fa96dad75a63fb426029f9b455" data-alt="{\displaystyle {\mathcal {M}},w_{3}\nvDash B\Rightarrow A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>donc</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e77466e3158e43cd567d7b5614e707dd6ddfb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.184ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)}"> </noscript><span class="lazy-image-placeholder" style="width: 18.184ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e77466e3158e43cd567d7b5614e707dd6ddfb0" data-alt="{\displaystyle {\mathcal {M}},w_{1}\nvDash (A\Rightarrow B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w_{1}\nvDash (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}},w_{1}\nvDash (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ade5bf3478ad2d418ce72bd7115f98ccba809492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.184ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}},w_{1}\nvDash (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 18.184ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ade5bf3478ad2d418ce72bd7115f98ccba809492" data-alt="{\displaystyle {\mathcal {M}},w_{1}\nvDash (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>d'où l'affirmation ci-dessus. Par conséquent, la proposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> n'est pas valide dans la logique intuitionniste.</p> <p>Tous les modèles de Kripke linéaires, c'est-à-dire tous les modèles dans lesquels chaque monde a un seul autre monde accessible, sont des modèles de Kripke de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. C'est le cas de la figure 2. En revanche ce modèle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}'}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> ′ </mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}}'} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7595952d5fa141cfbbfdc76e51c57bd52f5a5b4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.475ex; height:2.509ex;" alt="{\displaystyle {\mathcal {M}}'}"> </noscript><span class="lazy-image-placeholder" style="width: 3.475ex;height: 2.509ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7595952d5fa141cfbbfdc76e51c57bd52f5a5b4e" data-alt="{\displaystyle {\mathcal {M}}'}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> n'est pas un modèle de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\vee \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A\vee \neg A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle A\vee \neg A}"> </noscript><span class="lazy-image-placeholder" style="width: 7.619ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" data-alt="{\displaystyle A\vee \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, car</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}',w_{1}\nvDash A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> ′ </mo> </msup> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}}',w_{1}\nvDash A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9997387a397bfb7290d8494c04f9cf3d80ebdd26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.681ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}',w_{1}\nvDash A}"> </noscript><span class="lazy-image-placeholder" style="width: 11.681ex;height: 2.843ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9997387a397bfb7290d8494c04f9cf3d80ebdd26" data-alt="{\displaystyle {\mathcal {M}}',w_{1}\nvDash A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}',w_{1}\nvDash \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> M </mi> </mrow> </mrow> <mo> ′ </mo> </msup> <mo> , </mo> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⊭<!-- ⊭ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {M}}',w_{1}\nvDash \neg A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e98f3e0617c10d7dfe3299c7157ef7b610756a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.232ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}',w_{1}\nvDash \neg A}"> </noscript><span class="lazy-image-placeholder" style="width: 13.232ex;height: 2.843ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e98f3e0617c10d7dfe3299c7157ef7b610756a" data-alt="{\displaystyle {\mathcal {M}}',w_{1}\nvDash \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Puisque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\vee \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A\vee \neg A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle A\vee \neg A}"> </noscript><span class="lazy-image-placeholder" style="width: 7.619ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" data-alt="{\displaystyle A\vee \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> n'est pas valide dans tous les modèles de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\vee \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A\vee \neg A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle A\vee \neg A}"> </noscript><span class="lazy-image-placeholder" style="width: 7.619ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" data-alt="{\displaystyle A\vee \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> ne peut pas être une conséquence de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Donc plus généralement la logique classique ne peut pas être engendrée par l'ajout de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ∨<!-- ∨ --> </mo> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.444ex; height:2.843ex;" alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}"> </noscript><span class="lazy-image-placeholder" style="width: 20.444ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d0f56e9683a62e69ac33e5fc28fb3a8129acd" data-alt="{\displaystyle (A\Rightarrow B)\vee (B\Rightarrow A)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> à la logique intuitionniste.</p> <p>Notons en passant que nous avons aussi montré que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\vee \neg A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> ∨<!-- ∨ --> </mo> <mi mathvariant="normal"> ¬<!-- ¬ --> </mi> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A\vee \neg A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.619ex; height:2.176ex;" alt="{\displaystyle A\vee \neg A}"> </noscript><span class="lazy-image-placeholder" style="width: 7.619ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/323f5c2a8924ef707dcc24cee3bce1b148ec1367" data-alt="{\displaystyle A\vee \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> n'est pas valide en logique intuitionniste.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="La_loi_de_Peirce">La <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Loi_de_Peirce?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Loi de Peirce">loi de Peirce</a></h2><span class="mw-editsection"> <a role="button" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Modifier la section : La loi de Peirce" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>modifier</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>La <a href="https://fr-m-wikipedia-org.translate.goog/wiki/Loi_de_Peirce?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Loi de Peirce">loi de Peirce</a> est la proposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((A\Rightarrow B)\Rightarrow A)\Rightarrow A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle ((A\Rightarrow B)\Rightarrow A)\Rightarrow A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec97ef2578663f88d37fff5483d5a65a81904cc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.454ex; height:2.843ex;" alt="{\displaystyle ((A\Rightarrow B)\Rightarrow A)\Rightarrow A}"> </noscript><span class="lazy-image-placeholder" style="width: 21.454ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec97ef2578663f88d37fff5483d5a65a81904cc5" data-alt="{\displaystyle ((A\Rightarrow B)\Rightarrow A)\Rightarrow A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Elle n'est pas valide en logique intuitionniste et son ajout à celle-ci produit la logique classique. Elle a la particularité de ne contenir que des implications à la différence des quatre propositions citées plus haut qui contiennent toutes une négation.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Notes_et_références"><span id="Notes_et_r.C3.A9f.C3.A9rences"></span>Notes et références</h2><span class="mw-editsection"> <a role="button" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Modifier la section : Notes et références" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>modifier</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <div class="references-small decimal" style=""> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink noprint"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-1">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Couturat1901"><span class="ouvrage" id="Louis_Couturat1901">Louis Couturat, <cite class="italique">La logique de Leibniz d'après des documents inédits</cite>, Félix Alcan éditeur, <time>1901</time> <small style="line-height:1em;">(<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://gallica.bnf.fr/ark:/12148/bpt6k110843d/f1">lire en ligne</a>)</small><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=La+logique+de+Leibniz+d%27apr%C3%A8s+des+documents+in%C3%A9dits&amp;rft.pub=F%C3%A9lix+Alcan+%C3%A9diteur&amp;rft.aulast=Couturat&amp;rft.aufirst=Louis&amp;rft.date=1901&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogique+classique"></span></span></span> lire en ligne sur <i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Gallica?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gallica">Gallica</a></i>, notamment l'appendice intitulé <span class="ouvrage">«&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://gallica.bnf.fr/ark:/12148/bpt6k110843d/f456"><cite style="font-style:normal;"><i>Précis de logique classique</i></cite></a>&nbsp;»</span></span></li> <li id="cite_note-2"><span class="mw-cite-backlink noprint"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-2">↑</a> </span><span class="reference-text"> <span class="ouvrage" id="Dufumier1911"><span class="ouvrage" id="H._Dufumier1911">H. Dufumier, «&nbsp;<cite style="font-style:normal">La généralisation mathématique</cite>&nbsp;», <i>Revue de métaphysique et de morale</i>,‎ <time>1911</time> <small style="line-height:1em;">(<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://gallica.bnf.fr/ark:/12148/bpt6k11123b/f70">lire en ligne</a>)</small><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=La+g%C3%A9n%C3%A9ralisation+math%C3%A9matique&amp;rft.jtitle=Revue+de+m%C3%A9taphysique+et+de+morale&amp;rft.aulast=Dufumier&amp;rft.aufirst=H.&amp;rft.date=1911&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3ALogique+classique"></span></span></span> lire en ligne sur <i><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Gallica?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gallica">Gallica</a></i>.</span></li> <li id="cite_note-3"><span class="mw-cite-backlink noprint"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_classique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-3">↑</a> </span><span class="reference-text"> <abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Dirk_van_Dalen&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Dirk van Dalen (page inexistante)">Dirk van Dalen</a>&nbsp;<a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Dirk_van_Dalen" class="extiw" title="de:Dirk van Dalen"><span class="indicateur-langue" title="Article en allemand&nbsp;: «&nbsp;Dirk van Dalen&nbsp;»">(de)</span></a>, <i>Logic and Structure</i>, chap. 5 «&nbsp;<i>Intuitionistic logic</i>&nbsp;», exercice 9. (a), Springer-Verlag, 1991.</span></li> </ol> </div> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Lien_externe">Lien externe</h2><span class="mw-editsection"> <a role="button" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Modifier la section : Lien externe" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>modifier</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <ul> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.isima.fr/~leborgne/IsimathLogique/logique.pdf">Rappel&nbsp;: Bases de&nbsp;: logique, ensembles, limites.</a></li> <li><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_intuitionniste?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Logique intuitionniste">Logique intuitionniste</a></li> <li><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Logique_minimale?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Logique minimale">Logique minimale</a></li> </ul> <div class="navbox-container" style="clear:both;"> </div> <ul id="bandeau-portail" class="bandeau-portail"> <li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer skin-invert-image" typeof="mw:File"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Portail:Math%C3%A9matiques?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Portail des mathématiques"> <noscript> <img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/24px-Racine_carr%C3%A9e_bleue.svg.png" decoding="async" width="24" height="24" class="mw-file-element" data-file-width="128" data-file-height="128"> </noscript><span class="lazy-image-placeholder" style="width: 24px;height: 24px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/24px-Racine_carr%C3%A9e_bleue.svg.png" data-alt="icône décorative" data-width="24" data-height="24" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/36px-Racine_carr%C3%A9e_bleue.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/48px-Racine_carr%C3%A9e_bleue.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span></span> <span class="bandeau-portail-texte"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Portail:Math%C3%A9matiques?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Portail:Mathématiques">Portail des mathématiques</a></span> </span></li> <li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer skin-invert-image" typeof="mw:File"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Portail:Logique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Portail de la logique"> <noscript> <img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/48px-Logic.svg.png" decoding="async" width="48" height="16" class="mw-file-element" data-file-width="85" data-file-height="28"> </noscript><span class="lazy-image-placeholder" style="width: 48px;height: 16px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/48px-Logic.svg.png" data-alt="icône décorative" data-width="48" data-height="16" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/72px-Logic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/96px-Logic.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span></span> <span class="bandeau-portail-texte"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Portail:Logique?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Portail:Logique">Portail de la logique</a></span> </span></li> </ul><!-- NewPP limit report Parsed by mw‐web.eqiad.main‐565d46677b‐qjnxz Cached time: 20241128121335 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.223 seconds Real time usage: 0.388 seconds Preprocessor visited node count: 1284/1000000 Post‐expand include size: 52108/2097152 bytes Template argument size: 12074/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 4347/5000000 bytes Lua time usage: 0.100/10.000 seconds Lua memory usage: 5610963/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 244.542 1 -total 35.49% 86.779 1 Modèle:Références 28.06% 68.623 1 Modèle:Ébauche 22.00% 53.808 1 Modèle:Ouvrage 16.40% 40.101 1 Modèle:Portail 8.17% 19.968 1 Modèle:Suivi_des_biographies 7.98% 19.508 1 Modèle:Palette 5.98% 14.612 1 Modèle:Palette_Logique 5.61% 13.723 1 Modèle:XIXe_siècle 4.78% 11.683 1 Modèle:S --> <!-- Saved in parser cache with key frwiki:pcache:544732:|#|:idhash:canonical and timestamp 20241128121335 and revision id 207962953. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.016 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=mobile" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Ce document provient de «&nbsp;<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/w/index.php?title%3DLogique_classique%26oldid%3D207962953">https://fr.wikipedia.org/w/index.php?title=Logique_classique&amp;oldid=207962953</a>&nbsp;». </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://fr-m-wikipedia-org.translate.goog/w/index.php?title=Logique_classique&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="2A01:CB00:DD0:4D00:2905:F7C5:74B5:2B74" data-user-gender="unknown" data-timestamp="1695056032"> <span>Dernière modification le 18 septembre 2023, à 17:53</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Langues</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://be.wikipedia.org/wiki/%25D0%259A%25D0%25BB%25D0%25B0%25D1%2581%25D1%2596%25D1%2587%25D0%25BD%25D0%25B0%25D1%258F_%25D0%25BB%25D0%25BE%25D0%25B3%25D1%2596%25D0%25BA%25D0%25B0" title="Класічная логіка&nbsp;–&nbsp;biélorusse" lang="be" hreflang="be" data-title="Класічная логіка" data-language-autonym="Беларуская" data-language-local-name="biélorusse" class="interlanguage-link-target"><span>Беларуская</span></a></li> <li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://be-tarask.wikipedia.org/wiki/%25D0%259A%25D0%25BB%25D1%258F%25D1%2581%25D1%258B%25D1%2587%25D0%25BD%25D0%25B0%25D1%258F_%25D0%25BB%25D1%2591%25D0%25B3%25D1%2596%25D0%25BA%25D0%25B0" title="Клясычная лёгіка&nbsp;–&nbsp;Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Клясычная лёгіка" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/L%25C3%25B2gica_cl%25C3%25A0ssica" title="Lògica clàssica&nbsp;–&nbsp;catalan" lang="ca" hreflang="ca" data-title="Lògica clàssica" data-language-autonym="Català" data-language-local-name="catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Klassische_Logik" title="Klassische Logik&nbsp;–&nbsp;allemand" lang="de" hreflang="de" data-title="Klassische Logik" data-language-autonym="Deutsch" data-language-local-name="allemand" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Classical_logic" title="Classical logic&nbsp;–&nbsp;anglais" lang="en" hreflang="en" data-title="Classical logic" data-language-autonym="English" data-language-local-name="anglais" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://eo.wikipedia.org/wiki/Klasika_logiko" title="Klasika logiko&nbsp;–&nbsp;espéranto" lang="eo" hreflang="eo" data-title="Klasika logiko" data-language-autonym="Esperanto" data-language-local-name="espéranto" class="interlanguage-link-target"><span>Esperanto</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/L%25C3%25B3gica_cl%25C3%25A1sica" title="Lógica clásica&nbsp;–&nbsp;espagnol" lang="es" hreflang="es" data-title="Lógica clásica" data-language-autonym="Español" data-language-local-name="espagnol" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://et.wikipedia.org/wiki/Klassikaline_loogika" title="Klassikaline loogika&nbsp;–&nbsp;estonien" lang="et" hreflang="et" data-title="Klassikaline loogika" data-language-autonym="Eesti" data-language-local-name="estonien" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25D9%2585%25D9%2586%25D8%25B7%25D9%2582_%25DA%25A9%25D9%2584%25D8%25A7%25D8%25B3%25DB%258C%25DA%25A9" title="منطق کلاسیک&nbsp;–&nbsp;persan" lang="fa" hreflang="fa" data-title="منطق کلاسیک" data-language-autonym="فارسی" data-language-local-name="persan" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hi.wikipedia.org/wiki/%25E0%25A4%25B6%25E0%25A4%25BE%25E0%25A4%25B8%25E0%25A5%258D%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0%25E0%25A5%2580%25E0%25A4%25AF_%25E0%25A4%25A4%25E0%25A4%25B0%25E0%25A5%258D%25E0%25A4%2595%25E0%25A4%25B6%25E0%25A4%25BE%25E0%25A4%25B8%25E0%25A5%258D%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0" title="शास्त्रीय तर्कशास्त्र&nbsp;–&nbsp;hindi" lang="hi" hreflang="hi" data-title="शास्त्रीय तर्कशास्त्र" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Logica_classica" title="Logica classica&nbsp;–&nbsp;italien" lang="it" hreflang="it" data-title="Logica classica" data-language-autonym="Italiano" data-language-local-name="italien" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E5%258F%25A4%25E5%2585%25B8%25E8%25AB%2596%25E7%2590%2586" title="古典論理&nbsp;–&nbsp;japonais" lang="ja" hreflang="ja" data-title="古典論理" data-language-autonym="日本語" data-language-local-name="japonais" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ko.wikipedia.org/wiki/%25EA%25B3%25A0%25EC%25A0%2584_%25EB%2585%25BC%25EB%25A6%25AC" title="고전 논리&nbsp;–&nbsp;coréen" lang="ko" hreflang="ko" data-title="고전 논리" data-language-autonym="한국어" data-language-local-name="coréen" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mk.wikipedia.org/wiki/%25D0%259A%25D0%25BB%25D0%25B0%25D1%2581%25D0%25B8%25D1%2587%25D0%25BD%25D0%25B0_%25D0%25BB%25D0%25BE%25D0%25B3%25D0%25B8%25D0%25BA%25D0%25B0" title="Класична логика&nbsp;–&nbsp;macédonien" lang="mk" hreflang="mk" data-title="Класична логика" data-language-autonym="Македонски" data-language-local-name="macédonien" class="interlanguage-link-target"><span>Македонски</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nl.wikipedia.org/wiki/Klassieke_logica" title="Klassieke logica&nbsp;–&nbsp;néerlandais" lang="nl" hreflang="nl" data-title="Klassieke logica" data-language-autonym="Nederlands" data-language-local-name="néerlandais" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/L%25C3%25B3gica_cl%25C3%25A1ssica" title="Lógica clássica&nbsp;–&nbsp;portugais" lang="pt" hreflang="pt" data-title="Lógica clássica" data-language-autonym="Português" data-language-local-name="portugais" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259A%25D0%25BB%25D0%25B0%25D1%2581%25D1%2581%25D0%25B8%25D1%2587%25D0%25B5%25D1%2581%25D0%25BA%25D0%25B0%25D1%258F_%25D0%25BB%25D0%25BE%25D0%25B3%25D0%25B8%25D0%25BA%25D0%25B0" title="Классическая логика&nbsp;–&nbsp;russe" lang="ru" hreflang="ru" data-title="Классическая логика" data-language-autonym="Русский" data-language-local-name="russe" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sk.wikipedia.org/wiki/Klasick%25C3%25A1_logika" title="Klasická logika&nbsp;–&nbsp;slovaque" lang="sk" hreflang="sk" data-title="Klasická logika" data-language-autonym="Slovenčina" data-language-local-name="slovaque" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Klassisk_logik" title="Klassisk logik&nbsp;–&nbsp;suédois" lang="sv" hreflang="sv" data-title="Klassisk logik" data-language-autonym="Svenska" data-language-local-name="suédois" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ta.wikipedia.org/wiki/%25E0%25AE%25AE%25E0%25AE%25B0%25E0%25AE%25AA%25E0%25AF%2581_%25E0%25AE%2585%25E0%25AE%25B3%25E0%25AE%25B5%25E0%25AF%2588%25E0%25AE%25AF%25E0%25AE%25BF%25E0%25AE%25AF%25E0%25AE%25B2%25E0%25AF%258D" title="மரபு அளவையியல்&nbsp;–&nbsp;tamoul" lang="ta" hreflang="ta" data-title="மரபு அளவையியல்" data-language-autonym="தமிழ்" data-language-local-name="tamoul" class="interlanguage-link-target"><span>தமிழ்</span></a></li> <li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tl.wikipedia.org/wiki/Klasikong_lohika" title="Klasikong lohika&nbsp;–&nbsp;tagalog" lang="tl" hreflang="tl" data-title="Klasikong lohika" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259A%25D0%25BB%25D0%25B0%25D1%2581%25D0%25B8%25D1%2587%25D0%25BD%25D0%25B0_%25D0%25BB%25D0%25BE%25D0%25B3%25D1%2596%25D0%25BA%25D0%25B0" title="Класична логіка&nbsp;–&nbsp;ukrainien" lang="uk" hreflang="uk" data-title="Класична логіка" data-language-autonym="Українська" data-language-local-name="ukrainien" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E7%25BB%258F%25E5%2585%25B8%25E9%2580%25BB%25E8%25BE%2591" title="经典逻辑&nbsp;–&nbsp;chinois" lang="zh" hreflang="zh" data-title="经典逻辑" data-language-autonym="中文" data-language-local-name="chinois" class="interlanguage-link-target"><span>中文</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh-yue.wikipedia.org/wiki/%25E5%258F%25A4%25E5%2585%25B8%25E9%2582%258F%25E8%25BC%25AF" title="古典邏輯&nbsp;–&nbsp;cantonais" lang="yue" hreflang="yue" data-title="古典邏輯" data-language-autonym="粵語" data-language-local-name="cantonais" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" alt="Wikipédia" width="119" height="18" style="width: 7.4375em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">La dernière modification de cette page a été faite le 18 septembre 2023 à 17:53.</li> <li id="footer-info-copyright">Le contenu est disponible sous licence <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.fr">CC BY-SA 4.0</a> sauf mention contraire.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="https://fr-m-wikipedia-org.translate.goog/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Avertissements</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/fr">Conditions d’utilisation</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/w/index.php?title%3DLogique_classique%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Version de bureau</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-556c5f94cd-827fq","wgBackendResponseTime":180,"wgPageParseReport":{"limitreport":{"cputime":"0.223","walltime":"0.388","ppvisitednodes":{"value":1284,"limit":1000000},"postexpandincludesize":{"value":52108,"limit":2097152},"templateargumentsize":{"value":12074,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4347,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 244.542 1 -total"," 35.49% 86.779 1 Modèle:Références"," 28.06% 68.623 1 Modèle:Ébauche"," 22.00% 53.808 1 Modèle:Ouvrage"," 16.40% 40.101 1 Modèle:Portail"," 8.17% 19.968 1 Modèle:Suivi_des_biographies"," 7.98% 19.508 1 Modèle:Palette"," 5.98% 14.612 1 Modèle:Palette_Logique"," 5.61% 13.723 1 Modèle:XIXe_siècle"," 4.78% 11.683 1 Modèle:S"]},"scribunto":{"limitreport-timeusage":{"value":"0.100","limit":"10.000"},"limitreport-memusage":{"value":5610963,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-565d46677b-qjnxz","timestamp":"20241128121335","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Logique classique","url":"https:\/\/fr.wikipedia.org\/wiki\/Logique_classique","sameAs":"http:\/\/www.wikidata.org\/entity\/Q236975","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q236975","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-12-24T16:57:05Z","dateModified":"2023-09-18T16:53:52Z","headline":"premi\u00e8re formalisation du langage et du raisonnement math\u00e9matique d\u00e9velopp\u00e9e \u00e0 partir de la fin du XIXe si\u00e8cle en logique math\u00e9matique"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('fr', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10