CINXE.COM
Search results for: pitching
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pitching</title> <meta name="description" content="Search results for: pitching"> <meta name="keywords" content="pitching"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pitching" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pitching"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 24</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pitching</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Zarafshani">Hadi Zarafshani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Teimori"> Shahin Teimori</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Barati"> Sara Barati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5<sup>°</sup>-20<sup>°</sup>. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-inspired%20pitching%20airfoils" title="bio-inspired pitching airfoils">bio-inspired pitching airfoils</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds%20k-%CF%89%20SST%20model" title=" low Reynolds k-ω SST model"> low Reynolds k-ω SST model</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20and%20drag%20coefficients" title=" lift and drag coefficients"> lift and drag coefficients</a> </p> <a href="https://publications.waset.org/abstracts/87363/aerodynamic-performance-of-a-pitching-bio-inspired-corrugated-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corey%20F.%20Fitzgerald">Corey F. Fitzgerald</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sport%20science" title="sport science">sport science</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20biomechanics" title=" applied biomechanics"> applied biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20and%20conditioning" title=" strength and conditioning"> strength and conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20research" title=" applied research"> applied research</a> </p> <a href="https://publications.waset.org/abstracts/183241/biomechanical-analysis-and-interpretation-of-pitching-sequences-for-enhanced-performance-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Experimental Investigation of Hull Form for Electric Driven Ferry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasilij%20Djackov">Vasilij Djackov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Zapnickas"> Tomas Zapnickas</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenii%20Iamshchikov"> Evgenii Iamshchikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Norkevicius"> Lukas Norkevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Mickeviciene"> Rima Mickeviciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Larisa%20Vasiljeva"> Larisa Vasiljeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20ferry" title="electrical ferry">electrical ferry</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20tests" title=" model tests"> model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20flow%20channel" title=" open flow channel"> open flow channel</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching" title=" pitching"> pitching</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/159298/experimental-investigation-of-hull-form-for-electric-driven-ferry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xie%20Kai">Xie Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20K.%20Abbas"> Laith K. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Dongyang"> Chen Dongyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Fufeng"> Yang Fufeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Xiaoting"> Rui Xiaoting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and <em>k - ω</em> shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle <em>φ = 0, μ </em>which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stall" title="dynamic stall">dynamic stall</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching-plunging" title=" pitching-plunging"> pitching-plunging</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20blade%20rotor" title=" helicopter blade rotor"> helicopter blade rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a> </p> <a href="https://publications.waset.org/abstracts/75693/numerical-investigations-on-dynamic-stall-of-a-pitching-plunging-helicopter-blade-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahbod%20Seyednia">Mahbod Seyednia</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Masdari"> Mehran Masdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, <em>k-ω-SST</em> with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20Reynolds%20number" title=" moderate Reynolds number"> moderate Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching%20oscillation" title=" pitching oscillation"> pitching oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20aerodynamics" title=" unsteady aerodynamics"> unsteady aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/76029/numerical-investigation-of-dynamic-stall-over-a-wind-turbine-pitching-airfoil-by-using-openfoam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Falling Point of Lubricant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arafat%20Husain">Arafat Husain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lubricants are one of the most used resource in today’s world. Lot of the superpowers are dependent on the lubricant resource for their country to function. To see that the lubricants are not adulterated we need to develop some efficient ways and to see which fluid has been added to the lubricant. So to observe the these malpractices in the lubricant we need to develop a method. We take a elastic ball and through it at probability circle in the submerged in the lubricant at a fixed force and see the distance of pitching and the point of fall. Then we the ratio of distance of falling to the distance of pitching and if the measured ratio is greater than one the fluid is less viscous and if the ratio is lesser than the lubricant is viscous. We will check the falling point of pure lubricant at fixed force and every pure lubricant would have a fixed falling point. After that we would adulterate the lubricant and note the falling point and if the falling point is less than the standard value then adulterate is solid and if the adulterate is liquid the falling point will be more than the standard value. Hence the comparison with the standard falling point will give the efficiency of the lubricant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=falling%20point%20of%20lubricant" title="falling point of lubricant">falling point of lubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=falling%20point%20ratios" title=" falling point ratios"> falling point ratios</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20circle" title=" probability circle"> probability circle</a>, <a href="https://publications.waset.org/abstracts/search?q=octane%20number" title=" octane number"> octane number</a> </p> <a href="https://publications.waset.org/abstracts/24149/the-falling-point-of-lubricant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Proposal for a Framework for Teaching Entrepreneurship and Innovation Using the Methods and Current Methodologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20T.%20Okano">Marcelo T. Okano</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaqueline%20C.%20Bueno"> Jaqueline C. Bueno</a>, <a href="https://publications.waset.org/abstracts/search?q=Oduvaldo%20Vendrametto"> Oduvaldo Vendrametto</a>, <a href="https://publications.waset.org/abstracts/search?q=Osmildo%20S.%20Santos"> Osmildo S. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20E.%20Fernandes"> Marcelo E. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Heide%20Landi"> Heide Landi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing countries are increasingly finding that entrepreneurship and innovation are the ways to speed up their developments and initiate or encourage technological development. The educational institutions such as universities, colleges and colleges of technology, has two main roles in this process, to guide and train entrepreneurs and provide technological knowledge and encourage innovation. Thus there was completing the triple helix model of innovation with universities, government and industry. But the teaching of entrepreneurship and innovation can not be only the traditional model, with blackboard, chalk and classroom. The new methods and methodologies such as Canvas, elevator pitching, design thinking, etc. require students to get involved and to experience the simulations of business, expressing their ideas and discussing them. The objective of this research project is to identify the main methods and methodologies used for the teaching of entrepreneurship and innovation, to propose a framework, test it and make a case study. To achieve the objective of this research, firstly was a survey of the literature on the entrepreneurship and innovation, business modeling, business planning, Canvas business model, design thinking and other subjects about the themes. Secondly, we developed the framework for teaching entrepreneurship and innovation based on bibliographic research. Thirdly, we tested the framework in a higher education class IT management for a semester. Finally, we detail the results in the case study in a course of IT management. As important results we improve the level of understanding and business administration students, allowing them to manage own affairs. Methods such as canvas and business plan helped students to plan and shape the ideas and business. Pitching for entrepreneurs and investors in the market brought a reality for students. The prototype allowed the company groups develop their projects. The proposed framework allows entrepreneurship education and innovation can leave the classroom, bring the reality of business roundtables to university relying on investors and real entrepreneurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship" title="entrepreneurship">entrepreneurship</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=Canvas" title=" Canvas"> Canvas</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20model" title=" traditional model"> traditional model</a> </p> <a href="https://publications.waset.org/abstracts/28907/proposal-for-a-framework-for-teaching-entrepreneurship-and-innovation-using-the-methods-and-current-methodologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsien%20Hao%20Teng">Hsien Hao Teng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lambda%20wing" title="lambda wing">lambda wing</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20function" title=" wall function"> wall function</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/142038/comparison-of-numerical-results-of-lambda-wing-under-different-turbulence-models-and-wall-y" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Design for Flight Endurance and Mapping Area Enhancement of a Fixed Wing Unmanned Air Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Krachangthong">P. Krachangthong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Limsumalee"> N. Limsumalee</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sawatdipon"> L. Sawatdipon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sasipongpreecha"> A. Sasipongpreecha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pisailert"> S. Pisailert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Thongta"> J. Thongta</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hongkarnjanakul"> N. Hongkarnjanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thipyopas"> C. Thipyopas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and development of new UAV are detailed in this paper. The mission requirement is setup for enhancement of flight endurance of a fixed wing UAV. The goal is to achieve flight endurance more than 60 minutes. UAV must be able launched by hand and can be equipped with the Sony A6000 camera. The design of sizing and aerodynamic analysis is conducted. The XFLR5 program and wind tunnel test are used for determination and comparison of aerodynamic characteristics. Lift, drag and pitching moment characteristics are evaluated. Then Kreno-V UAV is designed and proved its better efficiency compared to the Heron UAV who is currently used for mapping mission of Geo-Informatics and Space Technology Development Agency (Public Organization), Thailand. The endurance is improved by 19%. Finally, Kreno-V UAV with a wing span of 2meters, the aspect ratio of 7, and V-tail shape is constructed and successfully test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20design" title="UAV design">UAV design</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20UAV" title=" fixed-wing UAV"> fixed-wing UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20endurance" title=" long endurance"> long endurance</a> </p> <a href="https://publications.waset.org/abstracts/39625/design-for-flight-endurance-and-mapping-area-enhancement-of-a-fixed-wing-unmanned-air-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Morphing Avatar of Startup Sales - Destination Virtual Reality </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sruthi%20Kannan">Sruthi Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ongoing covid pandemic has accelerated digital transformation like never before. The physical barriers brought in as a result of the pandemic are being bridged by digital alternatives. While basic collaborative activities like voice, video calling, screen sharing have been replicated in these alternatives, there are several others that require a more intimate setup. Pitching, showcasing, and providing demonstrations are an integral part of selling strategies for startups. Traditionally these have been in-person engagements, enabling a depth of understanding of the startups’ offerings. In the new normal scenario of virtual-only connects, startups are feeling the brunt of the lack of in-person connections with potential customers and investors. This poster demonstrates how a virtual reality platform has been conceptualized and custom-built for startups to engage with their stakeholders and redefine their selling strategies. This virtual reality platform is intended to provide an immersive experience for startup showcases and offers the nearest possible alternative to physical meetings for the startup ecosystem, thereby opening newer frontiers for entrepreneurial collaborations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaboration" title="collaboration">collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=sales" title=" sales"> sales</a>, <a href="https://publications.waset.org/abstracts/search?q=startups" title=" startups"> startups</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/139718/the-morphing-avatar-of-startup-sales-destination-virtual-reality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaushalendra%20K.%20Khadanga">Kaushalendra K. Khadanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Hee%20Hyol"> Lee Hee Hyol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20suspension" title="active suspension">active suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20vibration" title=" bending vibration"> bending vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20vehicle" title=" railway vehicle"> railway vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/94151/active-linear-quadratic-gaussian-secondary-suspension-control-of-flexible-bodied-railway-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Analyzing Medical Workflows Using Market Basket Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Kumar">Mohit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayur%20Betharia"> Mayur Betharia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20basket%20analysis" title=" market basket analysis"> market basket analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20applications" title=" healthcare applications"> healthcare applications</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery%20in%20healthcare%20databases" title=" knowledge discovery in healthcare databases"> knowledge discovery in healthcare databases</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20relationship%20management" title=" customer relationship management"> customer relationship management</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20systems" title=" healthcare systems"> healthcare systems</a> </p> <a href="https://publications.waset.org/abstracts/97745/analyzing-medical-workflows-using-market-basket-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Decoupled Dynamic Control of Unicycle Robot Using Integral Linear Quadratic Regulator and Sliding Mode Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweda%20Mohan">Shweda Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Nandagopal"> J. L. Nandagopal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amritha"> S. Amritha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the dynamic modelling of unicycle robot. Two main concepts used for balancing unicycle robot are: reaction wheel pendulum and inverted pendulum. The pitch axis is modelled as inverted pendulum and roll axis is modelled as reaction wheel pendulum. The unicycle yaw dynamics is not considered which makes the derivation of dynamics relatively simple. For the roll controller, sliding-mode controller has been adopted and optimal methods are used to minimize switching-function chattering. For pitch controller, an LQR controller has been implemented to drive the unicycle robot to follow the desired velocity trajectory. The pitching and rolling balance could be achieved by two DC motors. Unicycle robot is a non-holonomic, non-linear, static unbalance system that has the minimal number of point contact to the ground, therefore, it is a perfect platform for researchers to study motion and balance control. These real-time solutions will be a viable solution for advanced robotic systems and controls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decoupled%20dynamics" title="decoupled dynamics">decoupled dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20quadratic%20regulator%20%28LQR%29%20control" title=" linear quadratic regulator (LQR) control"> linear quadratic regulator (LQR) control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function%20sliding%20mode%20control" title=" Lyapunov function sliding mode control"> Lyapunov function sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=unicycle%20robot" title=" unicycle robot"> unicycle robot</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20and%20trajectory%20control" title=" velocity and trajectory control"> velocity and trajectory control</a> </p> <a href="https://publications.waset.org/abstracts/47161/decoupled-dynamic-control-of-unicycle-robot-using-integral-linear-quadratic-regulator-and-sliding-mode-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Dash">S. M. Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Lua"> K. B. Lua</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Lim"> T. T. Lim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20flapping%20airfoil" title="two-dimensional flapping airfoil">two-dimensional flapping airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20performance" title=" thrust performance"> thrust performance</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20angle%20of%20attack" title=" effective angle of attack"> effective angle of attack</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a> </p> <a href="https://publications.waset.org/abstracts/45043/thrust-enhancement-on-a-two-dimensional-elliptic-airfoil-in-a-forward-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajat%20Mittal">Rajat Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshal%20Raut"> Harshal Raut</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hee%20Seo"> Jung Hee Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propulsion" title="propulsion">propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping%20foils" title=" flapping foils"> flapping foils</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20power" title=" wave power"> wave power</a> </p> <a href="https://publications.waset.org/abstracts/180766/wave-assisted-flapping-foil-propulsion-flow-physics-and-scaling-laws-from-fluid-structure-interaction-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20A.%20J.%20Kuitche">Maxime A. J. Kuitche</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20M.%20Botez"> Ruxandra M. Botez</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Guillemin"> Arthur Guillemin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20modelling" title="aerodynamic modelling">aerodynamic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20Analysis" title=" CFD Analysis"> CFD Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20FLUENT" title=" ANSYS FLUENT"> ANSYS FLUENT</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS-S45" title=" UAS-S45"> UAS-S45</a> </p> <a href="https://publications.waset.org/abstracts/87370/aerodynamic-modelling-of-unmanned-aerial-system-through-computational-fluid-dynamics-application-to-the-uas-s45-balaam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Entrepreneurship in Pakistan: Opportunities and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Jamil">Bushra Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nudrat%20Baqri"> Nudrat Baqri</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hassan%20Saeed"> Muhammad Hassan Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entrepreneurship is creating or setting up a business not only for the purpose of generating profit but also for providing job opportunities. Entrepreneurs are problem solvers and product developers. They use their financial asset for hiring a professional team and combine the innovation, knowledge, and leadership leads to a successful startup or a business. To be a successful entrepreneur, one should be people-oriented and have perseverance. One must have the ability to take risk, believe in his/her potential, and have the courage to move forward in all circumstances. Most importantly, have the ability to take risk and can assess the risk. For STEM students, entrepreneurship is of specific importance and relevance as it helps them not just to be able to solve real life existing complications but to be able to recognize and identify emerging needs and glitches. It is becoming increasingly apparent that in today’s world, there is a need as well as a desire for STEM and entrepreneurship to work together. In Pakistan, entrepreneurship is slowly emerging, yet we are far behind. It is high time that we should introduce modern teaching methods and inculcate entrepreneurial initiative in students. A course on entrepreneurship can be included in the syllabus, and we must invite businessmen and policy makers to motivate young minds for entrepreneurship. This must be pitching competitions, opportunities to win seed funding, and facilities of incubation centers. In Pakistan, there are many good public sector research institutes, yet there is a void gap in the private sector. Only few research institute are meant for research and development. BJ Micro Lab is one of them. It is SECP registered company and is working in academia to promote and facilitate research in STEM. BJ Micro Lab is a women led initiative, and we are trying to promote research as a passion, not as an arduous burden. For this, we are continuously arranging training workshops and sessions. More than 100 students have been trained in ten different workshops arranged at BJ Micro Lab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship" title="entrepreneurship">entrepreneurship</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM" title=" STEM"> STEM</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=oppurtunties" title=" oppurtunties"> oppurtunties</a> </p> <a href="https://publications.waset.org/abstracts/146285/entrepreneurship-in-pakistan-opportunities-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Kiani">Muhammad Umar Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endo-atmospheric" title="endo-atmospheric">endo-atmospheric</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithm" title=" evolutionary algorithm"> evolutionary algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20performance" title=" efficient performance"> efficient performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20process" title=" optimization process"> optimization process</a> </p> <a href="https://publications.waset.org/abstracts/1946/trajectory-optimization-of-re-entry-vehicle-using-evolutionary-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Aeroelastic Analysis of Nonlinear All-Movable Fin with Freeplay in Low-Speed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laith%20K.%20Abbas">Laith K. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoting%20%20Rui"> Xiaoting Rui</a>, <a href="https://publications.waset.org/abstracts/search?q=Pier%20Marzocca"> Pier Marzocca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerospace systems, generally speaking, are inherently nonlinear. These nonlinearities may modify the behavior of the system. However, nonlinearities in an aeroelastic system can be divided into structural and aerodynamic. Structural nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities are spread over the whole structure representing the characteristic of materials and large motions. Concentrated nonlinearities act locally, representing loose of attachments, worn hinges of control surfaces, and the presence of external stores. The concentrated nonlinearities can be approximated by one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for example, a free-play and a cubic one. Compressibility, aerodynamic heating, separated flows and turbulence effects are important aspects that result in nonlinear aerodynamic behavior. An issue related to the low-speed flutter and its catastrophic/benign character represented by Limit Cycle Oscillation (LCO) of all-movable fin, as well to their control is addressed in the present work. To the approach of this issue: (1) Quasi-Steady (QS) Theory and Computational Fluid Dynamics (CFD) of subsonic flow are implemented, (2) Flutter motion equations of a two-dimensional typical section with cubic nonlinear stiffness in the pitching direction and free play gap are established, (3) Uncoupled bending/torsion frequencies of the selected fin are computed using recently developed Transfer Matrix Method of Multibody System Dynamics (MSTMM), and (4) Time simulations are carried out to study the bifurcation behavior of the aeroelastic system. The main objective of this study is to investigate how the LCO and chaotic behavior are influenced by the coupled aeroelastic nonlinearities and intend to implement a control capability enabling one to control both the flutter boundary and its character. By this way, it may expand the operational envelop of the aerospace vehicle without failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=MSTMM" title=" MSTMM"> MSTMM</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=freeplay" title=" freeplay"> freeplay</a>, <a href="https://publications.waset.org/abstracts/search?q=fin" title=" fin"> fin</a> </p> <a href="https://publications.waset.org/abstracts/65172/aeroelastic-analysis-of-nonlinear-all-movable-fin-with-freeplay-in-low-speed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> From Service Delivery Strikes to Anti-Immigrant March: A Paradigm Shift in the Post-Colonial Discourse of Politics of Belonging in the Twenty-First Century South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Israel%20Ekanade">Israel Ekanade</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Molapo"> Richard Molapo</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Dzimiri"> Patrick Dzimiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Ndlovu"> Isaac Ndlovu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to unravel the myth behind animosity towards foreign nationals in South Africa. Systemic violence against foreign African nationals since 2008 to date necessitates critical research with regards to migration issues connected to social upheavals. Extensive research ubiquitously tagged black-on-black violence as xenophobia or Afrophobia. In all, escalation of violence indicates a connotation of belonging. With unemployment rates approaching a crescendo, other vices have also soared in the same regard. As a result, this present generation seems cynical as the South African state has not fulfilled her obligations towards the indigent population; a situation pitching locals against foreigners. Locals have repeatedly blamed African foreign nationals for the economic downturn, using service delivery strikes to express their grievances. These strikes have continued unabatedly over the years but February 2017 marked a turning point in ‘insider-outsider’ relations as the strike was now turned to an anti-immigrant march resulting into widespread violence as the police failed to restore normalcy at some point. Over time, migration has been a harbinger of violence against the foreign black population in South Africa. Our paper encourages the state and civil society to invent new peace-building mechanisms to reduce xenophobic orchestrated violence. Our paper also contends that since the political class has hijacked the situation by using the youths for political propaganda during crises periods, a re-education of the political class and a culture of tolerance is inevitable for peace and harmony between locals and foreigners in post-apartheid South Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-immigrant%20march" title="anti-immigrant march">anti-immigrant march</a>, <a href="https://publications.waset.org/abstracts/search?q=politics%20of%20belonging" title=" politics of belonging"> politics of belonging</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20delivery%20strikes" title=" service delivery strikes"> service delivery strikes</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/71540/from-service-delivery-strikes-to-anti-immigrant-march-a-paradigm-shift-in-the-post-colonial-discourse-of-politics-of-belonging-in-the-twenty-first-century-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Effects of Cooling during Baseball Games on Perceived Exertion and Core Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Liao">Chih-Yang Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Baseball is usually played outdoors in the warmest months of the year. Therefore, baseball players are susceptible to the influence of the hot environment. It has been shown that hitting performance is increased in games played in warm weather, compared to in cold weather, in Major League Baseball. Intermittent cooling during sporting events can prevent the risk of hyperthermia and increase endurance performance. However, the effects of cooling during baseball games played in a hot environment are unclear. This study adopted a cross-over design. Ten Division I collegiate male baseball players in Taiwan volunteered to participate in this study. Each player played two simulated baseball games, with one day in between. Five of the players received intermittent cooling during the first simulated game, while the other five players received intermittent cooling during the second simulated game. The participants were covered in neck and forehand regions for 6 min with towels that were soaked in icy salt water 3 to 4 times during the games. The participants received the cooling treatment in the dugout when they were not on the field for defense or hitting. During the 2 simulated games, the temperature was 31.1-34.1°C and humidity was 58.2-61.8%, with no difference between the two games. Ratings of perceived exertion, thermal sensation, tympanic and forehead skin temperature immediately after each defensive half-inning and after cooling treatments were recorded. Ratings of perceived exertion were measured using the Borg 10-point scale. The thermal sensation was measured with a 6-point scale. The tympanic and skin temperature was measured with infrared thermometers. The data were analyzed with a two-way analysis of variance with repeated measurement. The results showed that intermitted cooling significantly reduced ratings of perceived exertion and thermal sensation. Forehead skin temperature was also significantly decreased after cooling treatments. However, the tympanic temperature was not significantly different between the two trials. In conclusion, intermittent cooling in the neck and forehead regions was effective in alleviating the perceived exertion and heat sensation. However, this cooling intervention did not affect the core temperature. Whether intermittent cooling has any impact on hitting or pitching performance in baseball players warrants further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baseball" title="baseball">baseball</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ratings%20of%20perceived%20exertion" title=" ratings of perceived exertion"> ratings of perceived exertion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensation" title=" thermal sensation"> thermal sensation</a> </p> <a href="https://publications.waset.org/abstracts/132112/the-effects-of-cooling-during-baseball-games-on-perceived-exertion-and-core-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minho%20Lee">Minho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghyun%20Back"> Donghyun Back</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaemoon%20Jung"> Jaemoon Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Woojin%20Park"> Woojin Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baseball" title="baseball">baseball</a>, <a href="https://publications.waset.org/abstracts/search?q=memory-based" title=" memory-based"> memory-based</a>, <a href="https://publications.waset.org/abstracts/search?q=posture%20prediction" title=" posture prediction"> posture prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=reaching%20area" title=" reaching area"> reaching area</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20digital%20human%20models" title=" 3D digital human models"> 3D digital human models</a> </p> <a href="https://publications.waset.org/abstracts/52549/a-3-dimensional-memory-based-model-for-planning-working-postures-reaching-specific-area-with-postural-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Wendeker"> Miroslaw Wendeker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=criteria%20of%20similarity" title=" criteria of similarity"> criteria of similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroplane" title=" gyroplane"> gyroplane</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20tunnel" title=" research tunnel"> research tunnel</a> </p> <a href="https://publications.waset.org/abstracts/50084/the-impact-of-undisturbed-flow-speed-on-the-correlation-of-aerodynamic-coefficients-as-a-function-of-the-angle-of-attack-for-the-gyroplane-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopalasingam%20Daisan">Gopalasingam Daisan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landmine" title="landmine">landmine</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20plot" title=" matching plot"> matching plot</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/133881/conceptual-and-preliminary-design-of-landmine-searching-uas-at-extreme-environmental-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>