CINXE.COM
Search results for: ball and plate system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ball and plate system</title> <meta name="description" content="Search results for: ball and plate system"> <meta name="keywords" content="ball and plate system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ball and plate system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ball and plate system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18518</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ball and plate system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18518</span> Trajectory Tracking Controller Based on Normalized Right Coprime Factorization Technique for the Ball and Plate System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martins%20Olatunbosun%20Babatunde">Martins Olatunbosun Babatunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Bashir%20Muazu"> Muhammed Bashir Muazu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Adewale%20Adedokun"> Emmanuel Adewale Adedokun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a double-loop trajectory-tracking controller for the ball and plate system (BPS) using the Normalized Right Coprime Factorization (NRCF) scheme.The Linear Algebraic (LA) method is used to design the inner loop required to stabilize the ball, while H-infinity NRCF method, that involved the lead-lag compensator design approach, is used to develop the outer loop that controls the plate. Simulation results show that the plate was stabilized at 0.2989 seconds and the ball was able to settle after 0.9646 seconds, with a trajectory tracking error of 0.0036. This shows that the controller has good adaptability and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system" title="ball and plate system">ball and plate system</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20right%20coprime%20factorization" title=" normalized right coprime factorization"> normalized right coprime factorization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20algebraic%20method" title=" linear algebraic method"> linear algebraic method</a>, <a href="https://publications.waset.org/abstracts/search?q=compensator" title=" compensator"> compensator</a>, <a href="https://publications.waset.org/abstracts/search?q=controller" title=" controller"> controller</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking." title=" tracking."> tracking.</a> </p> <a href="https://publications.waset.org/abstracts/146882/trajectory-tracking-controller-based-on-normalized-right-coprime-factorization-technique-for-the-ball-and-plate-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18517</span> Application of Modal Analysis for Commissioning of a Ball Screw System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Tran">T. D. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Schlegel"> H. Schlegel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Neugebauer"> R. Neugebauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ball screws are an important component in machine tools. In mechatronic systems and machine tools, a ball screw has to work usually at a high speed. Otherwise the axial compliance of the ball screw, in combination with the inertia of the slide, the motor, the coupling and the screw, will cause an oscillation resonance, which limits the systems bandwidth and consequently influences performance of the motion controller. In this paper, the modal analysis method by measuring and analysing the vibrating parameters of the ball screw system to determine the dynamic characteristic of existing structures is used. On the one hand, the results of this study were obtained by the theoretical analysis and the modal testing of a ball screw system test station with the help of an impact hammer, respectively using excitation by motor. The experimental study showed oscillating forms of the ball screw for each frequency and obtained eigenfrequencies of the ball screw system. On the other hand, in this research a simulation with the help of the numerical modal analysis in order to analyse the oscillation and to find the eigenfrequencies of the ball screw system is used. Furthermore, the model order reduction by modal reduction and also according to Guyan is carried out. On the basis of these results a secure and also rapid commissioning of the control loops with regard to operating in their optimal function is targeted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title="modal analysis">modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20screw" title=" ball screw"> ball screw</a>, <a href="https://publications.waset.org/abstracts/search?q=controller%20system" title=" controller system"> controller system</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20tools" title=" machine tools"> machine tools</a> </p> <a href="https://publications.waset.org/abstracts/22744/application-of-modal-analysis-for-commissioning-of-a-ball-screw-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18516</span> Highly Accurate Tennis Ball Throwing Machine with Intelligent Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferenc%20Kov%C3%A1cs">Ferenc Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Hossz%C3%BA"> Gábor Hosszú</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents an advanced control system for tennis ball throwing machines to improve their accuracy according to the ball impact points. A further advantage of the system is the much easier calibration process involving the intelligent solution of the automatic adjustment of the stroking parameters according to the ball elasticity, the self-calibration, the use of the safety margin at very flat strokes and the possibility to placing the machine to any position of the half court. The system applies mathematical methods to determine the exact ball trajectories and special approximating processes to access all points on the aimed half court. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20system" title="control system">control system</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20programming" title=" robot programming"> robot programming</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20control" title=" robot control"> robot control</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20equipment" title=" sports equipment"> sports equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=throwing%20machine" title=" throwing machine"> throwing machine</a> </p> <a href="https://publications.waset.org/abstracts/36393/highly-accurate-tennis-ball-throwing-machine-with-intelligent-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18515</span> A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hau-Wei%20Lee">Hau-Wei Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Liu"> Yu-Chi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Liu"> Chien-Hung Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20lens" title="ball lens">ball lens</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrant%20detector" title=" quadrant detector"> quadrant detector</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20error" title=" axial error"> axial error</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20error" title=" radial error"> radial error</a> </p> <a href="https://publications.waset.org/abstracts/26125/a-mathematical-model-for-3-dof-rotary-accuracy-measurement-method-based-on-a-ball-lens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18514</span> Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Gholipoor"> Maryam Gholipoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metronidazole" title="metronidazole">metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=ball-milling" title=" ball-milling"> ball-milling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20diffraction" title=" XRD diffraction"> XRD diffraction</a> </p> <a href="https://publications.waset.org/abstracts/16630/preparation-and-characterization-of-nano-metronidazole-by-planetary-ball-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18513</span> Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Kajiwara">Shinji Kajiwara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title="hydraulics">hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20flow" title=" pipe flow"> pipe flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title=" flow visualization"> flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=check%20ball" title=" check ball"> check ball</a>, <a href="https://publications.waset.org/abstracts/search?q=L-shaped%20pipe" title=" L-shaped pipe "> L-shaped pipe </a> </p> <a href="https://publications.waset.org/abstracts/24526/numerical-simulation-and-experimental-validation-of-the-hydraulic-l-shaped-check-ball-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18512</span> Theoretical and Experimental Investigation of the Interaction Behavior of a Bouncing Ball upon a Flexible Surface Impacted in Two Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiwat%20Chumai">Wiwat Chumai</a>, <a href="https://publications.waset.org/abstracts/search?q=Perawit%20Boonsomchua"> Perawit Boonsomchua</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjana%20Ongkasin"> Kanjana Ongkasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ball bouncing problem is a well-known problem in physics involving a ball dropped from a height to the ground. In this paper, the work investigates the theoretical and experimental setup that describes the dynamics of a rigid body on a chaotic elastic surface under air-damp conditions. Examination of four different types of balls is made, including marble, metal ball, tennis ball, and ping-pong ball. In this experiment, the effect of impact velocities is not considered; the ball is dropped from a fixed height. The method in this work employs the Rayleigh Dissipation Function to specify the effects of dissipative forces in Lagrangian mechanics. Our discoveries reveal that the dynamics of the ball exhibit horizontal motion while damping oscillation occurs, forming the destabilization in vertical pinch-off motion. Moreover, rotational motion is studied. According to the investigation of four different balls, the outcomes illustrate that greater mass results in more frequent dynamics, and the experimental results at some points align with the theoretical model. This knowledge contributes to our understanding of the complex fluid system and could serve as a foundation for further developments in water droplet simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet" title="droplet">droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20oscillation" title=" damping oscillation"> damping oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20damping%20oscillation" title=" nonlinear damping oscillation"> nonlinear damping oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=bouncing%20ball%20problem" title=" bouncing ball problem"> bouncing ball problem</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20surface" title=" elastic surface"> elastic surface</a> </p> <a href="https://publications.waset.org/abstracts/186488/theoretical-and-experimental-investigation-of-the-interaction-behavior-of-a-bouncing-ball-upon-a-flexible-surface-impacted-in-two-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18511</span> Comparison of User Experience in VR When Hand Gestures Are Used vs. Using Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanu%20Muhammed%20C.">Sanu Muhammed C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Vadakkan"> Nihal Vadakkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Athrij"> Sahil Athrij</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasi%20Gopalan"> Sasi Gopalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards AR/VR applications, the user experience on these devices should be considered, and we are trying to improve user experience in VR. This paper proposes a survey-based solution to improve user experience in VR. By creating a VR environment where users can move a ball from one position to another using a remote controller and another VR environment where users can move a ball from one place to another using hand gestures/ By allowing a set of audience to use these two environments, we can get their feedback. There are two steps in this comparison, 1) Using Hand Gestures To Move Ball In VR Environment: Here, we create a VR environment where two baskets are there, and one ball will be there in a basket. Here users can transfer the ball to another basket using hand gestures. They will be able to move the ball using hand gestures. 2) Using Remote Control To Move Ball In VR Environment: Here, we create a VR environment where two baskets are there, and one ball will be there in a basket. Here users can transfer the ball to another basket using a remote control. They will be able to move the ball using a remote controller. The above two environments are given to users to experience, and their responses will be recorded to compare the user experience in the above two environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title="virtual reality">virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20experience" title=" user experience"> user experience</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20gestures" title=" hand gestures"> hand gestures</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control" title=" remote control"> remote control</a> </p> <a href="https://publications.waset.org/abstracts/159470/comparison-of-user-experience-in-vr-when-hand-gestures-are-used-vs-using-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18510</span> Robust Design of a Ball Joint Considering Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bong-Su%20Sin">Bong-Su Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Kyu%20Kim"> Jong-Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Se-Il%20Song"> Se-Il Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon-Hee%20Lee"> Kwon-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20joint" title="ball joint">ball joint</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20strength" title=" pull-out strength"> pull-out strength</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a> </p> <a href="https://publications.waset.org/abstracts/12084/robust-design-of-a-ball-joint-considering-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18509</span> Video Based Automatic License Plate Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ganoun">Ali Ganoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Algablawi"> Wesam Algablawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasim%20BenAnaif"> Wasim BenAnaif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=license%20plate%20recognition" title="license plate recognition">license plate recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition" title=" recognition"> recognition</a> </p> <a href="https://publications.waset.org/abstracts/9958/video-based-automatic-license-plate-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18508</span> Dynamic Foot Pressure Measurement System Using Optical Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanapon%20Keatsamarn">Tanapon Keatsamarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuchart%20Pintavirooj"> Chuchart Pintavirooj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foot" title="foot">foot</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20pressure" title=" foot pressure"> foot pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20sensors" title=" optical sensors"> optical sensors</a> </p> <a href="https://publications.waset.org/abstracts/89148/dynamic-foot-pressure-measurement-system-using-optical-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18507</span> Developing an Intelligent Table Tennis Ball Machine with Human Play Simulation for Technical Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Chi%20An">Chen-Chi An</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Yi%20He"> Jun-Yi He</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Han%20Hsieh"> Cheng-Han Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Ching%20Ting"> Chen-Ching Ting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has successfully developed an intelligent table tennis ball machine with human play simulate all situations of human play to take the service. It is well known; an excellent ball machine can help the table tennis coach to provide more efficient teaching, also give players the good technical training and entertainment. An excellent ball machine should be able to service all balls based on human play simulation due to the conventional competitions are today all taken place for people. In this work, two counter-rotating wheels are used to service the balls, where changing the absolute rotating speeds of the two wheels and the differences of rotating speeds between the two wheels can adjust the struck forces and the rotating speeds of the ball. The relationships between the absolute rotating speed of the two wheels and the struck forces of the ball as well as the differences rotating speeds between the two wheels and the rotating speeds of the ball are experimentally determined for technical development. The outlet speed, the ejected distance, and the rotating speed of the ball were measured by changing the absolute rotating speeds of the two wheels in terms of a series of differences in rotating speed between the two wheels for calibration of the ball machine; where the outlet speed and the ejected distance of the ball were further converted to the struck forces of the ball. In process, the balls serviced by the intelligent ball machine were based on the received calibration curves with help of the computer. Experiments technically used photosensitive devices to detect the outlet and rotating speed of the ball. Finally, this research developed some teaching programs for technical training using three ball machines and received more efficient training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20tennis" title="table tennis">table tennis</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20machine" title=" ball machine"> ball machine</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20play%20simulation" title=" human play simulation"> human play simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating%20wheels" title=" counter-rotating wheels"> counter-rotating wheels</a> </p> <a href="https://publications.waset.org/abstracts/49530/developing-an-intelligent-table-tennis-ball-machine-with-human-play-simulation-for-technical-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18506</span> Electromyographic Analysis of Trunk Muscle Activity of Healthy Individuals While Catching a Ball on Three Different Seating Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20H.%20%20ALQahtani">Hanan H. ALQahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Jones"> Karen Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catching a ball during sitting is a functional exercise commonly used in rehabilitation to enhance trunk muscle activity. To progress this exercise, physiotherapists incorporate a Swiss ball or change seat height. However, no study has assessed the effect of different seating surfaces on trunk muscle activity while catching a ball. Objective: To investigate the effect of catching a ball during sitting on a Swiss ball, a low seat and a high seat on trunk muscle activity. Method: A repeated-measures, counterbalanced design was used. A total of 26 healthy participants (15 female and 11 male) performed three repetitions of catching a ball on each seating surface. Using surface electromyography (sEMG), the activity of the bilateral transversus abdominis/internal oblique (TrA/IO), rectus abdominis (RA), erector spinae (ES) and lumbar multifidus (MF) was recorded. Trunk muscle activity was normalized using maximum voluntary isometric contraction and analyzed. Statistical significance was set at p ≤ .05. Results: No significant differences were observed in the activity of RA, TrA/IO, ES or MF between a low seat and a Swiss ball. However, the activity of the right and left ES on a low seat was significantly greater than on a high seat (p = .017 and p = .017, respectively). Conversely, the activity of the right and left RA on a high seat was significantly greater than on a low seat (p = .007 and p = .004, respectively). Conclusion: This study suggests that replacing a low seat with a Swiss ball while catching a ball is insufficient to increase trunk muscle activity, whereas changing the seat height could induce different trunk muscle activities. However, research conducted on patients is needed before translating these results into clinical settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catching" title="catching">catching</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=seating" title=" seating"> seating</a>, <a href="https://publications.waset.org/abstracts/search?q=trunk" title=" trunk"> trunk</a> </p> <a href="https://publications.waset.org/abstracts/140046/electromyographic-analysis-of-trunk-muscle-activity-of-healthy-individuals-while-catching-a-ball-on-three-different-seating-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18505</span> Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Seckin%20Cardakli">Ismail Seckin Cardakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Engin%20Kocadagistan"> Mustafa Engin Kocadagistan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Arslan"> Ersin Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20ball%20milling" title="high energy ball milling">high energy ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20induced%20self-sustaining%20reaction" title=" mechanically induced self-sustaining reaction"> mechanically induced self-sustaining reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=melamine" title=" melamine"> melamine</a> </p> <a href="https://publications.waset.org/abstracts/106406/mechanochemical-behaviour-of-aluminium-boron-oxide-melamine-ternary-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18504</span> Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jixiao%20Tao">Jixiao Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqiao%20He"> Xiaoqiao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bistable" title="Bistable">Bistable</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20nonlinearity" title=" geometrical nonlinearity"> geometrical nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20plate%20elements" title=" quadrilateral plate elements"> quadrilateral plate elements</a> </p> <a href="https://publications.waset.org/abstracts/124454/finite-element-analysis-of-thermally-induced-bistable-plate-using-four-plate-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18503</span> Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Mohammadzadeh">Behzad Mohammadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Huyk%20Chun%20Noh"> Huyk Chun Noh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impulsive%20loaded%20plates" title="impulsive loaded plates">impulsive loaded plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title=" ABAQUS"> ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/28535/numerical-analysis-of-dynamic-responses-of-the-plate-subjected-to-impulsive-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18502</span> Conceptual Design of Suction Cup Lifting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Aijaz">Mohammed Aijaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=designing" title="designing">designing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=suction" title=" suction"> suction</a> </p> <a href="https://publications.waset.org/abstracts/163551/conceptual-design-of-suction-cup-lifting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18501</span> Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Khalghollah">Mahmood Khalghollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tavallaeinejad"> Mohammad Tavallaeinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Eghtesad"> Mohammad Eghtesad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20lagrangian" title="controlled lagrangian">controlled lagrangian</a>, <a href="https://publications.waset.org/abstracts/search?q=underactuated%20system" title=" underactuated system"> underactuated system</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20rotating%20plate" title=" flexible rotating plate"> flexible rotating plate</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance" title=" disturbance"> disturbance</a> </p> <a href="https://publications.waset.org/abstracts/26345/modeling-dynamics-and-control-of-transversal-vibration-of-an-underactuated-flexible-plate-using-controlled-lagrangian-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18500</span> Aerodynamic Sound from a Sawtooth Plate with Different Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Ruhliah%20Lizarose%20Samion">Siti Ruhliah Lizarose Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sukri%20Mat%20Ali"> Mohamed Sukri Mat Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of sawtooth plate thickness on the aerodynamic noise generated in flow at a Reynolds number of 150 is numerically investigated. Two types of plate thickness (hthick=0.2D and hthin=0.02D) are proposed. Flow simulations are carried out using Direct Numerical Simulation, whereas the calculation of aerodynamic noise radiated from the flow is solved using Curle’s equation. It is found that the flow behavior of thin sawtooth plate, consisting counter-rotating-vortices, is more complex than that of the thick plate. This then explains well the generated sound in both plates cases. Sound generated from thin plat is approximately 0.5 dB lower than the thick plate. Findings from current study provide better understanding of the flow and noise behavior in edge serrations via understanding the case of a sawtooth plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20sound" title="aerodynamic sound">aerodynamic sound</a>, <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title=" bluff body"> bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=sawtooth%20plate" title=" sawtooth plate"> sawtooth plate</a>, <a href="https://publications.waset.org/abstracts/search?q=Curle%20analogy" title=" Curle analogy"> Curle analogy</a> </p> <a href="https://publications.waset.org/abstracts/62349/aerodynamic-sound-from-a-sawtooth-plate-with-different-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18499</span> Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratham%20Madnur">Pratham Madnur</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathamkumar%20Shetty"> Prathamkumar Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Varur"> Sneha Varur</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouri%20Parashetti"> Gouri Parashetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OpenCV" title="OpenCV">OpenCV</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv8" title=" YOLOv8"> YOLOv8</a>, <a href="https://publications.waset.org/abstracts/search?q=cricket" title=" cricket"> cricket</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20dataset" title=" custom dataset"> custom dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=sports" title=" sports"> sports</a> </p> <a href="https://publications.waset.org/abstracts/182020/advancing-in-cricket-analytics-novel-approaches-for-pitch-and-ball-detection-employing-opencv-and-yolov8" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18498</span> Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Chebil%20Sonia">Belkacem Chebil Sonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalem%20Wacef"> Bensalem Wacef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20end%20milling" title="ball end milling">ball end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20parameters" title=" cutting parameters"> cutting parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-workpiece%20inclination" title=" tool-workpiece inclination"> tool-workpiece inclination</a> </p> <a href="https://publications.waset.org/abstracts/46279/experimental-and-numerical-analysis-of-the-effects-of-ball-end-milling-process-upon-residual-stresses-and-cutting-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18497</span> Generating Arabic Fonts Using Rational Cubic Ball Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakharuddin%20Ibrahim">Fakharuddin Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20Md.%20Ali"> Jamaludin Md. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ramli"> Ahmad Ramli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G<sup>1</sup> continuity. The conditions considered are known as the G<sup>1</sup> Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20interpolation" title="data interpolation">data interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20ball%20curve" title=" rational ball curve"> rational ball curve</a>, <a href="https://publications.waset.org/abstracts/search?q=hermite%20condition" title=" hermite condition"> hermite condition</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a> </p> <a href="https://publications.waset.org/abstracts/44202/generating-arabic-fonts-using-rational-cubic-ball-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18496</span> Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shivaram">M. J. Shivaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Bhushan%20Arya"> Shashi Bhushan Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Nayak"> Jagannath Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Bhooshan%20Panigrahi"> Bharat Bhooshan Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method. In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH<sub>4</sub>HCO<sub>3</sub>). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strengths" title=" compressive strengths"> compressive strengths</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20titanium%20alloy" title=" porous titanium alloy"> porous titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/71227/influence-of-ball-milling-time-on-mechanical-properties-of-porous-ti-20nb-5ag-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18495</span> Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taweechai%20Nuntawisuttiwong">Taweechai Nuntawisuttiwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Dejdumrong"> Natasha Dejdumrong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20interpolation" title="Lagrange interpolation">Lagrange interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complexity" title=" linear complexity"> linear complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=monomial%20matrix" title=" monomial matrix"> monomial matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20interpolation" title=" Newton interpolation"> Newton interpolation</a> </p> <a href="https://publications.waset.org/abstracts/110424/fast-and-efficient-algorithms-for-evaluating-uniform-and-nonuniform-lagrange-and-newton-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18494</span> Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu">Mei-Jie Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong"> Yang Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=symplectic%20geometry%20method" title="symplectic geometry method">symplectic geometry method</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20rectangular%20plate" title=" thick rectangular plate"> thick rectangular plate</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20separation%20method" title=" variable separation method"> variable separation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton%20system" title=" Hamilton system "> Hamilton system </a> </p> <a href="https://publications.waset.org/abstracts/6000/solution-for-thick-plate-resting-on-winkler-foundation-by-symplectic-geometry-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18493</span> Evaluating Cognition and Movement Coordination of Adolescents with Intellectual Disabilities through Ball Games</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wann-Yun%20Shieh">Wann-Yun Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yi%20Kathy%20Cheng"> Hsin-Yi Kathy Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Ying%20Ju"> Yan-Ying Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chun%20Yu"> Yu-Chun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Cheng%20Shieh"> Ya-Cheng Shieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adolescents who have intellectual disabilities often demonstrate maladaptive behaviors in their daily activities due to either physical abnormalities or neurological disorders. These adolescents commonly struggle with their cognition and movement coordination when it comes to executing tasks such as throwing or catching objects smoothly, quickly, and gracefully, in contrast to their typically developing peers. Simply measuring movement time and distance doesn't provide a comprehensive view of their performance challenges. In this study, a ball-playing approach was proposed to assess the cognition and movement coordination of adolescents with intellectual disabilities using a smart ball equipped with an embedded inertial sensor. Four distinct ball games were specifically designed for this smart ball: two focusing on lower limb activities (dribbling along a straight line and navigating a zigzag path) and two centered around upper limb tasks (picking up and throwing and catching the ball). The cognition and movement coordination of 25 adolescents with intellectual disabilities (average age 18.36 ± 2.46 years) with that of 25 typically developing adolescents (average age 18.36 ± 0.49 years) were compared in these four tests. The results clearly revealed significant differences in the cognition and movement coordination between the adolescents with intellectual disabilities and the typically developing adolescents. These differences encompassed aspects such as movement speed, hand-eye coordination, and control over objects across all the tests conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognition" title="cognition">cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20disabilities" title=" intellectual disabilities"> intellectual disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=movement%20coordination" title=" movement coordination"> movement coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20ball" title=" smart ball"> smart ball</a> </p> <a href="https://publications.waset.org/abstracts/173993/evaluating-cognition-and-movement-coordination-of-adolescents-with-intellectual-disabilities-through-ball-games" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18492</span> Dynamic Stability of Axially Moving Viscoelastic Plates under Nonuniform in-Plane Edge Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Young">T. H. Young</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Huang"> S. J. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Chiu"> Y. S. Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the parametric stability of an axially moving web subjected to nonuniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the nonuniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axially%20moving%20viscoelastic%20plate" title="axially moving viscoelastic plate">axially moving viscoelastic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20periodic%20excitation" title=" in-plane periodic excitation"> in-plane periodic excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniformly%20distributed%20edge%20tension" title=" nonuniformly distributed edge tension"> nonuniformly distributed edge tension</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stability" title=" dynamic stability"> dynamic stability</a> </p> <a href="https://publications.waset.org/abstracts/26548/dynamic-stability-of-axially-moving-viscoelastic-plates-under-nonuniform-in-plane-edge-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18491</span> Dry Sliding Wear Behaviour of Ti3SiC2 and the Effect of TiC on Its</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendaoudi%20Seif-Eddine">Bendaoudi Seif-Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounazef%20Mokhtar"> Bounazef Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wear behaviour of Ti3SiC2 coating in contact sliding under dry condition have been investigated on different pressures (0.1-0.8 MPa) at various speeds from 5 to 60 m/s. The ball-on-disc sliding-wear test was performed in ambient air with a relative humidity of 20%. An equation has been proposed to predict wear rates and describe sliding wear caused by Corundum ball on the studied material. The results show how the wear rate, measured by mass loss, varies in the range of (0.6 – 3.8 x E-6 mm3/Nm) with normal sliding distance under various test conditions; it increases with increasing load and rapidly with speed. The influence of TiC impurities on the wear behaviours was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball-on-disc" title="ball-on-disc">ball-on-disc</a>, <a href="https://publications.waset.org/abstracts/search?q=dry-sliding" title=" dry-sliding"> dry-sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti3SiC2" title=" Ti3SiC2"> Ti3SiC2</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/44824/dry-sliding-wear-behaviour-of-ti3sic2-and-the-effect-of-tic-on-its" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18490</span> Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jehnming%20Lin">Jehnming Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20cleavage" title="laser cleavage">laser cleavage</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20visualization" title=" crack visualization"> crack visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a> </p> <a href="https://publications.waset.org/abstracts/31854/fracture-control-of-the-soda-lime-glass-in-laser-thermal-cleavage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18489</span> Bifurcations of a System of Rotor-Ball Bearings with Waviness and Squeeze Film Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Modares%20Ahmadi">Sina Modares Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Ghazavi"> Mohamad Reza Ghazavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Sheikhzad"> Mandana Sheikhzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Squeeze film damper systems (SFD) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. These types of systems are frequently used in aircraft gas turbine engines. There are some structural parameters which are of great importance in designing these kinds of systems, such as oil film thickness, C, and outer race mass, mo. Moreover, there is a crucial parameter associated with manufacturing process, under the title of waviness. Geometric imperfections are often called waviness if its wavelength is much longer than Hertzian contact width which is a considerable source of vibration in ball bearings. In this paper, a system of a flexible rotor and two ball bearings with floating ring squeeze film dampers and consideration of waviness has been modeled and solved by a numerical integration method, namely Runge-Kutta method to investigate the dynamic response of the system. The results show that by increasing the number of wave lobes, which is due to inappropriate manufacturing, non- periodic and chaotic behavior increases. This result reveals the importance of manufacturing accuracy. Moreover, as long as C< 1.5×10-4 m, by increasing the oil film thickness, unwanted vibrations and non-periodic behavior of the system have been reduced, On the other hand, when C>1.5×10-4 m, increasing the outer oil film thickness results in the increasing chaotic and non-periodic responses. This result shows that although the presence of oil film results in reduction the non-periodic and chaotic behaviors, but the oil film has an optimal thickness. In addition, with increasing mo, the disc displacement amplitude increases. This result reveals the importance of utilizing light materials in manufacturing the squeeze film dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squeeze-film%20damper" title="squeeze-film damper">squeeze-film damper</a>, <a href="https://publications.waset.org/abstracts/search?q=waviness" title=" waviness"> waviness</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20bearing" title=" ball bearing"> ball bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a> </p> <a href="https://publications.waset.org/abstracts/17218/bifurcations-of-a-system-of-rotor-ball-bearings-with-waviness-and-squeeze-film-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=617">617</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=618">618</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ball%20and%20plate%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>