CINXE.COM

Search results for: Armenian Zea Maize Semidentata

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Armenian Zea Maize Semidentata</title> <meta name="description" content="Search results for: Armenian Zea Maize Semidentata"> <meta name="keywords" content="Armenian Zea Maize Semidentata"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Armenian Zea Maize Semidentata" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Armenian Zea Maize Semidentata"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 293</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Armenian Zea Maize Semidentata</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanbao%20Chen">Wanbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianqian%20Yao"> Qianqian Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenming%20Zhou"> Zhenming Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cereal%20grains" title="cereal grains">cereal grains</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20production" title=" gas production"> gas production</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20rumen%20fermentation" title=" in vitro rumen fermentation"> in vitro rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=steam-flaking%20processing" title=" steam-flaking processing"> steam-flaking processing</a> </p> <a href="https://publications.waset.org/abstracts/72557/in-vitro-method-to-evaluate-the-effect-of-steam-flaking-on-the-quality-of-common-cereal-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Automatic Furrow Detection for Precision Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manpreet%20Kaur">Manpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheol-Hong%20Min"> Cheol-Hong Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furrow%20detection" title="furrow detection">furrow detection</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=HSV" title=" HSV"> HSV</a>, <a href="https://publications.waset.org/abstracts/search?q=Hough%20transform" title=" Hough transform "> Hough transform </a> </p> <a href="https://publications.waset.org/abstracts/85343/automatic-furrow-detection-for-precision-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> The Climate Change and Soil Degradation in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Dumbrovsky">Miroslav Dumbrovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with impacts of climate change with the main emphasis on land degradation, agriculture and forestry management in the landscape. Land degradation, due to adverse effect of farmers activities, as a result of inappropriate conventional technologies, was a major issue in the Czech Republic during the 20th century and will remain for solving in the 21st century. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Land degradation through soil degradation is causing losses on crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water-holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Water erosion occurs on fields with row crops (maize, sunflower), especially during the rainfall period from April to October. Recently there is a serious problem of greatly expanded production of biofuels and bioenergy from field crops. The result is accelerated soil degradation. The damages (on and off- site) are greater than the benefits. An effective soil conservation requires an appropriate complex system of measures in the landscape. They are also important to continue to develop new sophisticated methods and technologies for decreasing land degradation. The system of soil conservation solving land degradation depend on the ability and the willingness of land users to apply them. When we talk about land degradation, it is not just a technical issue but also an economic and political issue. From a technical point of view, we have already made many positive steps, but for successful solving the problem of land degradation is necessary to develop suitable economic and political tools to increase the willingness and ability of land users to adopt conservation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title="land degradation">land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conservation" title=" soil conservation"> soil conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/57706/the-climate-change-and-soil-degradation-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Improving the Growth Performance of Beetal Goat Kids Weaned at Various Stages with Various Levels of Dietary Protein in Starter Ration under High Input Feeding System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Kashif">Ishaq Kashif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younas"> Muhammad Younas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Riaz"> Muhammad Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubarak%20Ali"> Mubarak Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor feeding management during pre-weaning period is one of the factors resulting in compromised growth of Beetal kids fattened for meat purpose. The main reason for this anomaly may be less milk offered to kids and non-serious efforts for its management. This study was planned to find the most appropriate protein level suiting the age of the weaning while shifting animals to high input feeding system. Total of 42 Beetal male kids having 30 (±10), 60 (±10) and 90 (±10) days of age were selected with 16 in each age group. They were designated as G30, G60 and G90, respectively. The weights of animals were; 8±2 kg (G30), 12±2 kg (G60) and 16±2 kg (G90), respectively. All animals were weaned by introducing the total mix feed gradually and withdrawing the milk during the adjustment period of two weeks. The pelleted starter ration (total mix feed) with three various dietary protein levels designated as R1 (16% CP), R2 (20% CP) and R3 (26% CP) were introduced. The control group was reared on the fodder (Maize). The starter rations were iso-caloric and were offered for six-week duration. All animals were exposed to treatment using two-factor factorial (3×3) plus control treatment arrangement under completely randomized design. The data were collected on average daily feed intake (ADFI), average daily gain (ADG), gain to intake ratio, Klieber ratio (KR), body measurements and blood metabolites of kids. The data was analyzed using aov function of R-software. The statistical analysis showed that starter feed protein levels and age of weaning had significant interaction for ADG (P < 0.001), KR (P < 0.001), ADFI (P < 0.05) and blood urea nitrogen (P < 0.05) while serum creatinine and feed conversion had non-significant interaction. The trend analysis revealed that ADG had significant quadratic interaction (P < 0.05) within protein levels and age of weaning. It was found that animals weaned at 30 or 60 days, on R2 diet had better ADG (46.8 gm/day and 87.06 gm/day, respectively) weaned at 60 days of age. The animals weaned at 90 days had best ADG (127 gm/day) with R1. It is concluded that animal weaned at 30 or 40 days required 20% CP for better growth performance while animal at 90 days showed better performance with 16% CP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20daily%20gain" title="average daily gain">average daily gain</a>, <a href="https://publications.waset.org/abstracts/search?q=starter%20protein%20levels" title=" starter protein levels"> starter protein levels</a>, <a href="https://publications.waset.org/abstracts/search?q=weaning%20age" title=" weaning age"> weaning age</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20to%20intake%20ratio" title=" gain to intake ratio"> gain to intake ratio</a> </p> <a href="https://publications.waset.org/abstracts/81560/improving-the-growth-performance-of-beetal-goat-kids-weaned-at-various-stages-with-various-levels-of-dietary-protein-in-starter-ration-under-high-input-feeding-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Using Biofunctool® Index to Assess Soil Quality after Eight Years of Conservation Agriculture in New Caledonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remy%20Kulagowski">Remy Kulagowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Sturm"> Tobias Sturm</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Leopold"> Audrey Leopold</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelie%20Metay"> Aurelie Metay</a>, <a href="https://publications.waset.org/abstracts/search?q=Josephine%20Peigne"> Josephine Peigne</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Thoumazeau"> Alexis Thoumazeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Brauman"> Alain Brauman</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Fogliani"> Bruno Fogliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Tivet"> Florent Tivet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major challenge for agriculture is to enhance productivity while limiting the impact on the environment. Conservation agriculture (CA) is one strategy whereby both sustainability and productivity can be achieved by preserving and improving the soil quality. Soils provide and regulate a large number of ecosystem services (ES) such as agricultural productivity and climate change adaptation and mitigation. The aim of this study is to assess the impacts of contrasted CA crop management on soil functions for maize (Zea mays L.) cultivation in an eight years field experiment (2010-2018). The study included two CA practices: direct seeding in dead mulch (DM) and living mulch (LM), and conventional plough-based tillage (CT) practices on a fluvisol in New Caledonia (French Archipelago in the South Pacific). In 2018, soil quality of the cropping systems were evaluated with the Biofunctool® set of indicators, that consists in twelve integrative, in-field, and low-tech indicators assessing the biological, physical and chemical properties of soils. Main soil functions were evaluated including (i) carbon transformation, (ii) structure maintenance, and (iii) nutrient cycling in the ten first soil centimeters. The results showed significant higher score for soil structure maintenance (e.g., aggregate stability, water infiltration) and carbon transformation function (e.g., soil respiration, labile carbon) under CA in DM and LM when compared with CT. Score of carbon transformation index was higher in DM compared with LM. However, no significant effect of cropping systems was observed on nutrient cycling (i.e., nitrogen and phosphorus). In conclusion, the aggregated synthetic scores of soil multi-functions evaluated with Biofunctool® demonstrate that CA cropping systems lead to a better soil functioning. Further analysis of the results with agronomic performance of the soil-crop systems would allow to better understand the links between soil functioning and production ES of CA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20agriculture" title="conservation agriculture">conservation agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20systems" title=" cropping systems"> cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20functions" title=" soil functions"> soil functions</a> </p> <a href="https://publications.waset.org/abstracts/106119/using-biofunctool-index-to-assess-soil-quality-after-eight-years-of-conservation-agriculture-in-new-caledonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniela%20E.%20Marin">Daniela E. Marin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornelia%20Braicu"> Cornelia Braicu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20C.%20Pistol"> Gina C. Pistol</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Cojocneanu-Petric"> Roxana Cojocneanu-Petric</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioana%20Berindan%20Neagoe"> Ioana Berindan Neagoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20A.%20Gras"> Mihail A. Gras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionelia%20Taranu"> Ionelia Taranu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aristolochic%20acid" title="aristolochic acid">aristolochic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=swine" title=" swine"> swine</a> </p> <a href="https://publications.waset.org/abstracts/67527/use-of-pig-as-an-animal-model-for-assessing-the-differential-microrna-profiling-in-kidney-after-aristolochic-acid-intoxication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Seasonal Lambing in Crossbred of Katahdin Ewes in Tropical Regions of Chiapas, Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Mart%C3%ADnez-Alfaro">Juan C. Martínez-Alfaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Aracely%20Z%C3%BA%C3%B1iga"> Aracely Zúñiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Ru%C3%ADz-Zarate"> Fernando Ruíz-Zarate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the Katahdin sheep breeds have been one of the breeds with greater acceptance by sheep farmers in southwestern Mexico. The Hair Sheep breeds from tropical latitudes (16° to 21° North Latitude) show low estrus activity from January to May. By contrast, these breeds of sheep exhibit high estrus activity from August to December. However, the reproductive management of Hair Sheep crossbred is very limited, independently of the socioeconomic levels of sheep farmers. Thus, in crossbred of Hair Sheep, occurrence of lambing is greater in autumn (84%) than spring (16%). In this sense, the aim of this study was to determine the lambing in Crossbred of Katahdin sheep during different seasons of the year. The Hypothesis was that in crossbred of Katahdin sheep, the lambing period has a behavior seasonal in the Southwestern Mexico. The study design consisted in evaluating the lambing proportion in one herds of Katahdin ewes crossbred during one year (October 1st, 2015 to October 1st, 2016). The study was realized in a farm located in the municipality of Jiquipilas, in the State of Chiapas, Mexico (16° North Latitude). A total of 40 female sheep homogeneous in terms of physical condition, age and physiological state were selected; and they were fed in grazing continuous, mainly with Africa star grass (Cynodon lemfuensis) and they are provided with water and mineral salts ad libitum; during the dry season, the ewes were supplemented with a diet of maize and sorghum, and the reproductive management was continuous mating. The lambing proportion was analyzed by chi-squared test, using SAS statistical software. The proportion of Katahdin ewes crossbred that lambed during the study period was high (100%; 40/40), the prolificacy was 1.42 (lamb/lambing). The proportion of lambing was higher (P<0.05) in autumn (67.5%; 27/40), than winter, spring and summer (32.5%; 13/40; 0%; 0/40; 0%; 0/40; respectively). The proportion of lambing was greater (P<0.05) in November (50%; 20/40), compared to October, December and January (2.5%; 1/40; 27.5%; 11/40; 20%; 8/40, respectively). The results are consistent with the fact that in the Hair Sheep Breeds, the lambing appears behave seasonally. The most important finding is that the lambing period in the crossbred of Katahdin Sheep is similar to the crossbred of Hair Sheep in tropical regions of Mexico. Therefore, the period of greater sexual activity occurs in the spring season. In conclusion, the period of lambing in crossbred of Katahdin ewes appears behave seasonally. Further researches to assess the ovarian activity in different breeds of Hair Ewes are under assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katahdin%20ewes" title="Katahdin ewes">Katahdin ewes</a>, <a href="https://publications.waset.org/abstracts/search?q=lambing" title=" lambing"> lambing</a>, <a href="https://publications.waset.org/abstracts/search?q=prolificacy" title=" prolificacy"> prolificacy</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonality" title=" seasonality"> seasonality</a> </p> <a href="https://publications.waset.org/abstracts/60700/seasonal-lambing-in-crossbred-of-katahdin-ewes-in-tropical-regions-of-chiapas-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Dynamic Changes of Shifting Cultivation: Past, Present and Future Perspective of an Agroforestry System from Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thavananthan%20Sivananthawerl">Thavananthan Sivananthawerl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shifting cultivation (Chena, Slash & Burn) is a cultivation method of raising, primarily, food crops (mainly annual) where an area of land is cleared off for its vegetation and cultivated for a period, and the abandoned (fallow) for its fertility to be naturally restored. Although this is the oldest (more than 5000 years) farming system, it is still practiced by indigenous communities of several countries such as Sri Lanka, India, Indonesia, Malaysia, Myanmar, West & Central Africa, and Amazon rainforest area. In Sri Lanka, shifting cultivation is mainly practiced during the North-East monsoon (called as Maha season, from Sept. to Dec.) with no irrigation. The traditional system allows farmers to cultivate for a short period of cultivation and a long period fallow period. This was facilitated mainly by the availability of land with less population. In addition, in the old system, cultivation practices were mostly related to religious and spiritual practices (Astrology, dynamic farming, etc.). At present, the majority of the shifting cultivators (SC’s) are cultivating in government lands, and most of them are adopting new technology (seeds, agrochemicals, machineries). Due to the local demand, almost 70% of the SC’s growing maize is mono-crop, and the rest with mixed-crop, such as groundnut, cowpea, millet, and vegetables. To ensure continuous cultivation and reduce moisture stress, they established ‘dug wells’ and used pumps to lift water from nearby sources. Due to this, the fallow period has been reduced drastically to 1- 2 years. To have the future prosperous of system, farmers should be educated so that they can understand the harmful effects of shifting cultivation and require new policies and a framework for converting the land use pattern towards high economic returns (new crop varieties, maintaining soil fertility, reducing soil erosion) while protecting the natural forests. The practice of agroforestry should be encouraged in which both the crops and the tall trees are cared for by farmers simultaneously. To facilitate the continuous cultivation, the system needs to develop water harvesting, water-conserving technologies, and scientific water management for the limited rainy season. Even though several options are available, all the solutions vary from region to region. Therefore, it is only the government and cultivators together who can find solutions to the problems of the specific areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shifting%20cultivation" title="shifting cultivation">shifting cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title=" agroforestry"> agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=fallow" title=" fallow"> fallow</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20returns" title=" economic returns"> economic returns</a>, <a href="https://publications.waset.org/abstracts/search?q=government" title=" government"> government</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/155673/dynamic-changes-of-shifting-cultivation-past-present-and-future-perspective-of-an-agroforestry-system-from-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonwaba%20Atyosi">Yonwaba Atyosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Cho"> Moses Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20Ramoelo"> Abel Ramoelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhle%20Majozi"> Nobuhle Majozi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Masemola"> Cecilia Masemola</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoliswa%20Mkhize"> Yoliswa Mkhize</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20content%20retrieval" title="soil moisture content retrieval">soil moisture content retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20removal" title=" continuum removal"> continuum removal</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/168913/linking-soil-spectral-behavior-and-moisture-content-for-soil-moisture-content-retrieval-at-field-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Metagenomic Assessment of the Effects of Genetically Modified Crops on Microbial Ecology and Physicochemical Properties of Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Falana%20Yetunde%20Olaitan">Falana Yetunde Olaitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijah%20%20U.%20J.%20J"> Ijah U. J. J</a>, <a href="https://publications.waset.org/abstracts/search?q=Solebo%20Shakirat%20O."> Solebo Shakirat O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetically modified crops are already phenomenally successful and are grown worldwide in more than eighteen countries on more than 67 million hectares. Nigeria, in October 2018, approved Bacillus thuringiensis (Bt) cotton and maize; therefore, the need to carry out environmental risk assessment studies. A total of 15 4L octagonal ceramic pots were filled with 4kg of soil and placed on the bench in 2 rows of 10 pots each and the 3rd row of 5 pots, 1st-row pots were used to plant GM cotton seeds, while the 2nd-row pots were used for non-GM cotton seeds and the 3rd row of 5 pots served as control, all in the screen house. Soil samples for metagenomic DNA extraction were collected at random and at the monthly interval after planting at a distance of 2mm from the plant’s root and at a depth of 10cm using a sterile spatula. Soil samples for physicochemical analysis were collected before planting and after harvesting the GM and non-GM crops as well as from the control soil. The DNA was extracted, quantified and sequenced; Sample 1A (DNA from GM cotton Soil at 1st interval) gave the lowest sequence read with 0.853M while sample 2B (DNA from GM cotton Soil at 2nd interval) gave the highest with 5.785M, others gave between 1.8M and 4.7M. The samples treatment were grouped into four, Group 1 (GM cotton soil from 1 to 3 intervals) had between 800,000 and 5,700,000 strains of microbes (SOM), Group 2 (non GM cotton soil from 1 to 3 intervals) had between 1,400,600 and 4,200,000 SOM, Group 3 (control soil) had between 900,000 and 3,600,000 SOM and Group 4 (initial soil) had between 3,700,000 and 4,000,000 SOM. The microbes observed were predominantly bacteria (including archaea), fungi, dark matter alongside protists and phages. The predominant bacterial groups were the Terrabacteria (Bacillus funiculus, Bacillus sp.), the Proteobacteria (Microvirga massiliensis, sphingomonas sp.) and the Archaea (Nitrososphaera sp.), while the fungi were Aspergillus fischeri and Fusarium falciforme. The comparative analysis between groups was done using JACCARD PERMANOVA beta diversity analysis at P-value not more than 0.76 and there was no significant pair found. The pH for initial, GM cotton, non-GM cotton and control soil were 6.28, 6.26, 7.25, 8.26 and the percentage moisture was 0.63, 0.78, 0.89 and 0.82, respectively, while the percentage Nitrogen was observed to be 17.79, 1.14, 1.10 and 0.56 respectively. Other parameters include, varying concentrations of Potassium (0.46, 1,284.47, 1,785.48, 1,252.83 mg/kg) and Phosphorus (18.76, 17.76, 16.87, 15.23 mg/kg) were recorded for the four treatments respectively. The soil consisted mainly of silt (32.09 to 34.66%) and clay (58.89 to 60.23%), reflecting the soil texture as silty – clay. The results were then tested with ANOVA at less than 0.05 P-value and no pair was found to be significant as well. The results suggest that the GM crops have no significant effect on microbial ecology and physicochemical properties of the soil and, in turn, no direct or indirect effects on human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetically%20modified%20crop" title="genetically modified crop">genetically modified crop</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20ecology" title=" microbial ecology"> microbial ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/144917/metagenomic-assessment-of-the-effects-of-genetically-modified-crops-on-microbial-ecology-and-physicochemical-properties-of-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hellen%20L.%20De%20Castro%20e%20Silva">Hellen L. De Castro e Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20A.%20Robles%20Aguilar"> Ana A. Robles Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Erik%20Meers"> Erik Meers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20treatment" title=" hydrothermal treatment"> hydrothermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based%20fertilisers" title=" bio-based fertilisers"> bio-based fertilisers</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/157604/changes-in-heavy-metals-bioavailability-in-manure-derived-digestates-and-subsequent-hydrochars-to-be-used-as-soil-amendments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangtuo%20Chen">Xiangtuo Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul-Henry%20Courn%C3%A9de"> Paul-Henry Cournéde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20yield%20prediction" title="crop yield prediction">crop yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20model" title=" crop model"> crop model</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=paramater%20estimation" title=" paramater estimation"> paramater estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/72860/model-driven-and-data-driven-approaches-for-crop-yield-prediction-analysis-and-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Prospects of Agroforestry Products in the Emergency Situation: A Case Study of Earthquake of 2015 in Central Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raju%20Chhetri">Raju Chhetri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agroforestry is one of the main sources of livelihood among the people of Nepal. In particular, this is the only one mode of livelihood among the Chepangs. The monster earthquake (7.3 MW) that hit the country on the 25th of April in 2015 and many of its aftershocks had devastating effects. As a result, not only the big structures collapsed, it incurred great losses on fabrication, collection centers, schools, markets and other necessary service centers. Although there were a large number of aftershocks after the monster earthquake, the most devastating aftershock took place on 12th May, 2015, which measured 6.3 richter scale. Consequently, it caused more destruction of houses, further calamity to the lives of people, and public life got further perdition. This study was mainly carried out to find out the food security and market situation of Agroforestry product of the Chepang community in Raksirang VDC (one of the severely affected VDCs of Makwanpur district) due to the earthquake. A total of 40 households (12 percent) were randomly selected as a sample in ward number 7 only. Questionnaires and focus groups were used to gather primary data. Additional, two Focus Group Discussions (FGD) were convened in the study area to get some descriptive information on this study. Estimated 370 hectares of land, which was full of Agroforestry plantation, ruptured by the earthquake. It caused severe damages to the households, and a serious loss of food-stock, up to 60-80 percent (maize, millet, and rice). Instead of regular cereal intake, banana (Muas Paradisca) consumption was found ‘high scale’ in the emergency period. The market price of rice (37-44 NRS/Kg) increased by 18.9 percent. Some difference in the income range before and after the earthquake was observed. Before earthquake, sale of Agroforestry, and livestock products were continuing, but after the earthquake, Agroforestry product sale is the only one means of livelihood among Chepangs. Nearly 50-60 percent Agroforestry production of banana (Mass Paradisca), citrus (Citrus Lemon), pineapple (Ananus comosus) and broom grass (Thysanolaena maxima) declined, excepting for cash income from the residual. Heavy demands of Agroforestry product mentioned above lay high farm gate prices (50-100 percent) helps surveyed the community to continue livelihood from its sale. Out of the survey samples, 30 households (75 percent) respondents migrated to safe location due to land rupture, ongoing aftershocks, and landslides. Overall food security situation in this community is acute and challenging for the days to come. Immediate and long term both response from a relief agency concerning food, shelter and safe stocking of Agroforestry product is required to keep secured livelihood in Chepang community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture" title=" rupture"> rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title=" agroforestry"> agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood" title=" livelihood"> livelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous" title=" indigenous"> indigenous</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a> </p> <a href="https://publications.waset.org/abstracts/40326/prospects-of-agroforestry-products-in-the-emergency-situation-a-case-study-of-earthquake-of-2015-in-central-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Advancing Food System Resilience by Pseudocereals Utilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yevheniia%20Varyvoda">Yevheniia Varyvoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Taren"> Douglas Taren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudocereals" title=" pseudocereals"> pseudocereals</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20system" title=" food system"> food system</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/144413/advancing-food-system-resilience-by-pseudocereals-utilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Comparative Chromatographic Profiling of Wild and Cultivated Macrocybe Gigantea (Massee) Pegler &amp; Lodge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagan%20Brar">Gagan Brar</a>, <a href="https://publications.waset.org/abstracts/search?q=Munruchi%20Kaur"> Munruchi Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macrocybe gigantea was collected from the wild, growing as pure white, fleshy, robust fruit bodies in caespitose clusters. Initially, the few ladies collecting these fruiting bodies for cooking revealed their edibility status, which was later confirmed through classical and molecular taxonomy. The culture of this potential wild edible taxa was raised with an aim of domesticating it. Various solid and liquid media were evaluated for their vegetative growth, in which Malt Extract Agar was found to be the best solid medium and Glucose Peptone medium as the best liquid medium. The effect of different temperatures as well as pH was also evaluated for the vegetative growth of M. gigantea, and it was found that it shows maximum vegetative growth at 30° and pH 5. For spawn preparation, various grains viz. Wheat grains, Jowar grains, Bajra grains and Maize grains were evaluated, and it was found that wheat grains boiled for 30 minutes gave the maximum mycelial growth. Mother spawn was thus prepared on wheat grains boiled for 30 minutes. For raising the fruiting bodies, different locally available agro-wastes were tried, and it was found that paddy straw gives the best growth. Both wilds as well as cultivated M. gigantea were compared through HPLC to evaluate the different nutritional and nutraceutical values. For the evaluation of different sugars in wild and cultivated M. gigantea, 15 sugars were taken for analysis. Among these Melezitose, Trehalose, Glucose, Xylose and Mannitol were found in the wild collection of M. gigantea; in the cultivated sample, Melezitose, Trehalose, Xylose and Dulcitol were detected. Among the 20 different amino acids, 18 amino acids were found, except Asparagine and Glutamine in both wild as well as cultivated samples. Among the 37 tested fatty acids, only 6 fatty acids, namely Palmitic acid, Stearic acid, Cis-9 Oleic acid, Linoleic acid, Gamma-Linolenic acid and Tricosanoic acid, were found in both wild and cultivated samples, although the concentration of these fatty acids was more in the cultivated sample. From the various vitamins tested, Vitamin C, D and E were present in both wild and cultivated samples. Both wild as well as cultivated samples were evaluated for the presence of phenols; for this purpose, eleven phenols were taken as standards in HPLC analysis, and it was found that Gallic acid, Resorcinol, Ferulic acid and Pyrogallol were present in the wild mushroom sample whereas in the cultivated sample Ferulic acid, Caffeic Acid, Vanillic acid and Vanillin are present. The flavonoid analysis revealed the presence of Rutin, Naringin and Quercetin in wild M. gigantea, while 5 Naringin, Catechol, Myrecetin, Gossypin and Quercetin were found in cultivated one. From the comparative chromatographic profiling of both wild as well as cultivated M. gigantea, it is concluded that no nutrient loss was found during its cultivation. An increase in percentage of secondary metabolites (i.e., phenols and flavonoids) was found in cultivated one as compared to wild M. gigantea. Thus, from future perspective cultivated species of M. gigantea can be recommended for the commercial purpose as a good food supplement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culture" title="culture">culture</a>, <a href="https://publications.waset.org/abstracts/search?q=edible" title=" edible"> edible</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20bodies" title=" fruit bodies"> fruit bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=wild" title=" wild"> wild</a> </p> <a href="https://publications.waset.org/abstracts/172861/comparative-chromatographic-profiling-of-wild-and-cultivated-macrocybe-gigantea-massee-pegler-lodge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Abdel-Hakim">E. A. Abdel-Hakim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=juvenile%20hormone" title="juvenile hormone">juvenile hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20metabolism" title=" respiratory metabolism"> respiratory metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesamia%20cretica" title=" Sesamia cretica"> Sesamia cretica</a>, <a href="https://publications.waset.org/abstracts/search?q=wandering%20phase" title=" wandering phase"> wandering phase</a> </p> <a href="https://publications.waset.org/abstracts/46917/effect-of-juvenile-hormone-on-respiratory-metabolism-during-non-diapausing-sesamia-cretica-wandering-larvae-lepidoptera-noctuidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Density and Relationships Between the Assassin Bugs Sycanus Falleni Stal and Sycanus Croceovittatus Dohrn (Hemiptera: Reduviidae) and Their Prey (Noctuidae: Lepidoptera) on Corn Biomass in the Hoa Binh Province in Northwest Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Truong%20Xuan%20Lam">Truong Xuan Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Th%E1%BB%8B%20Phuong%20Lien"> Nguyen Thị Phuong Lien</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Cuong"> Nguyen Quang Cuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Th%E1%BB%8B%20Ngat"> Tran Thị Ngat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Corn biomass is a feed for livestock including dairy cows. The Spodoptera frugiperda, Agrotis ypsilon, Heliothis armigera, Mythimna loreyi (Lepidoptera: Noctuidae) are key pests and very dangerous to Corn biomass crops. These pest species are very difficult to control in the field because of genetic resistance to insecticides. Furthermore, corn biomass is feed for livestock so the use of pesticides is always limited to the lowest level. In Vietnam, the assassin bug species Sycanus falleni and Sycanus croceouittatus (Hemiptera: Reduviidae) are the common predators on trees agricultural ecosystems. The reduviid S. falleni and S. croceouittatus have the potential for biological control of pest insects in cotton, corn and vegetable plants as this species attacks many lepidopteran larvae. Moreover, the nymphal instars and adults of S. falleni and S. croceouittatus can be easily reared in the laboratory by the rice meal moth Corcyra cephalonica (Stainton). To conserve the species S. falleni and S. croceouittatus in Corn biomass field in Northwest Vietnam. The results of this study report on the roles and relationships between S. falleni Stal and S. croceovittatus and their prey (key pests and dangerous to Corn) on Corn biomass to provide the basis for using and conserving the species S. falleni and S. croceouittatus as biological control agents on Corn biomass growing areas in Vietnam. Methods: The survey site is at the field of Corn biomass growing in Hoa Binh Province, Northwest Vietnam. The survey of the density of the assassin bugs species and their prey were conducted in 4 Corn biomass fields (each field = 10,000 m2), each point has an area of 1 m2. The survey was conducted every 10 days (3 times/month). The unit of measurement is individual/m2. The relationship between the density of assassin bug species and their prey is expressed through the correlation coefficient R Results: On Corn biomass in Northwest Vietnam, the S. falleni and S. croceouittatus species are such potential candidates for biocontrol of the fall armyworm S. frugiperda, black cutworm A. ypsilon, cotton bollworm H. armigera Hübner, maize caterpillar M. loreyi. Six species of assassin bugs belonging to the family Reduviidae were recorded on Corn biomass, of which S. falleni and S. croceovittatus were common. The relationship between the density of the group of assassin bugs and species S. fallen and S. croceovittatus had a close relationship with each other. The relationship between the density of the group of assassin bugs and the density of their prey in the Winter crops and Summer-Fall crops was a close relationship with each other. The relationship between the density of the S. falleni and S. croceovittatus species and the density of their prey on the Corn biomass were a close relationship in the Summer-Fall crops and the Winter crops. The S. falleni and S. croceouittatus species are such potential biocontrol of the pests on Corn. Possible to conserve and use them for biological control of the dangerous pests S. frugiperda, A. ypsilon, H. armigera , M. loreyi on Corn in Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn%20biomass" title="corn biomass">corn biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=prey" title=" prey"> prey</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a> </p> <a href="https://publications.waset.org/abstracts/189848/density-and-relationships-between-the-assassin-bugs-sycanus-falleni-stal-and-sycanus-croceovittatus-dohrn-hemiptera-reduviidae-and-their-prey-noctuidae-lepidoptera-on-corn-biomass-in-the-hoa-binh-province-in-northwest-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Intended Use of Genetically Modified Organisms, Advantages and Disadvantages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakize%20Ozlem%20Kurt%20Polat">Pakize Ozlem Kurt Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GMO (genetically modified organism) is the result of a laboratory process where genes from the DNA of one species are extracted and artificially forced into the genes of an unrelated plant or animal. This technology includes; nucleic acid hybridization, recombinant DNA, RNA, PCR, cell culture and gene cloning techniques. The studies are divided into three groups of properties transferred to the transgenic plant. Up to 59% herbicide resistance characteristic of the transfer, 28% resistance to insects and the virus seems to be related to quality characteristics of 13%. Transgenic crops are not included in the commercial production of each product; mostly commercial plant is soybean, maize, canola, and cotton. Day by day increasing GMO interest can be listed as follows; Use in the health area (Organ transplantation, gene therapy, vaccines and drug), Use in the industrial area (vitamins, monoclonal antibodies, vaccines, anti-cancer compounds, anti -oxidants, plastics, fibers, polyethers, human blood proteins, and are used to produce carotenoids, emulsifiers, sweeteners, enzymes , food preservatives structure is used as a flavor enhancer or color changer),Use in agriculture (Herbicide resistance, Resistance to insects, Viruses, bacteria, fungi resistance to disease, Extend shelf life, Improving quality, Drought , salinity, resistance to extreme conditions such as frost, Improve the nutritional value and quality), we explain all this methods step by step in this research. GMO has advantages and disadvantages, which we explain all of them clearly in full text, because of this topic, worldwide researchers have divided into two. Some researchers thought that the GMO has lots of disadvantages and not to be in use, some of the researchers has opposite thought. If we look the countries law about GMO, we should know Biosafety law for each country and union. For this Biosecurity reasons, the problems caused by the transgenic plants, including Turkey, to minimize 130 countries on 24 May 2000, ‘the United Nations Biosafety Protocol’ signed nudes. This protocol has been prepared in addition to Cartagena Biosafety Protocol entered into force on September 11, 2003. This protocol GMOs in general use by addressing the risks to human health, biodiversity and sustainable transboundary movement of all GMOs that may affect the prevention, transit covers were dealt and used. Under this protocol we have to know the, ‘US Regulations GMO’, ‘European Union Regulations GMO’, ‘Turkey Regulations GMO’. These three different protocols have different applications and rules. World population increasing day by day and agricultural fields getting smaller for this reason feeding human and animal we should improve agricultural product yield and quality. Scientists trying to solve this problem and one solution way is molecular biotechnology which is including the methods of GMO too. Before decide to support or against the GMO, should know the GMO protocols and it effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title="biotechnology">biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=GMO%20%28genetically%20modified%20organism%29" title=" GMO (genetically modified organism)"> GMO (genetically modified organism)</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20marker" title=" molecular marker"> molecular marker</a> </p> <a href="https://publications.waset.org/abstracts/36064/intended-use-of-genetically-modified-organisms-advantages-and-disadvantages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Pandey">Ajay Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lepidiota" title="Lepidiota">Lepidiota</a>, <a href="https://publications.waset.org/abstracts/search?q=profiling" title=" profiling"> profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttarakhand" title=" Uttarakhand"> Uttarakhand</a>, <a href="https://publications.waset.org/abstracts/search?q=whitegrub" title=" whitegrub"> whitegrub</a> </p> <a href="https://publications.waset.org/abstracts/77013/species-profiling-of-scarab-beetles-with-the-help-of-light-trap-in-western-himalayan-region-of-uttarakhand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Welfare and Sustainability in Beef Cattle Production on Tropical Pasture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20Pastori%20D%27Aurea">Andre Pastori D&#039;Aurea</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauriston%20Bertelli%20Feranades"> Lauriston Bertelli Feranades</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Eduardo%20Ferreira"> Luis Eduardo Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20Dias%20Pinto"> Leandro Dias Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiana%20Ayumi%20Shiozaki"> Fabiana Ayumi Shiozaki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to improve the production of beef cattle on tropical pasture without harming this environment. On tropical pastures, cattle's live weight gain is lower than feedlot, and forage production is seasonable, changing from season to season. Thus, concerned with sustainable livestock production, the Premix Company has developed strategies to improve the production of beef cattle on tropical pasture to ensure sustainability of welfare and production. There are two important principles in this productivity system: 1) increase individual gains with use of better supplementation and 2) increase the productivity units with better forage quality like corn silage or other forms of forage conservations, actually used only in winter, and adding natural additives in the diet. This production system was applied from June 2017 to May 2018 in the Research Center of Premix Company, Patrocínio Paulista, São Paulo State, Brazil. The area used had 9 hectares of pasture of Brachiaria brizantha. 36 steers Nellore were evaluated for one year. The initial weight was 253 kg. The parameters used were daily average gain and gain per area. This indicated the corrections to be made and helped design future fertilization. In this case, we fertilized the pasture with 30 kg of nitrogen per animal divided into two parts. The diet was pasture and protein-energy supplements (0.4% of live weight). The supplement used was added with natural additive Fator P® – Premix Company). Fator P® is an additive composed by amino acids (lysine, methionine and tyrosine, 16400, 2980 and 3000 mg.kg-1 respectively), minerals, probiotics (Saccharomyces cerevisiae, 7 x 10E8 CFU.kg-1) and essential fatty acids (linoleic and oleic acids, 108.9 and 99g.kg-1 respectively). Due to seasonal changes, in the winter we supplemented the diet by increasing the offer of forage, supplementing with maize silage. It was offered 1% of live weight in silage corn and 0.4% of the live weight in protein-energetic supplements with additive Fator P ®. At the end of the period, the productivity was calculated by summing the individual gains for the area used. The average daily gain of the animals were 693 grams per day and was produced 1.005 kg /hectare/year. This production is about 8 times higher than the average of Brazilian meat national production. To succeed in this project, it is necessary to increase the gains per area, so it is necessary to increase the capacity per area. Pasture management is very important to the project's success because the dietary decisions were taken from the quantity and quality of the forage. We, therefore, recommend the use of animals in the growth phase because the response to supplementation is greater in that phase and we can allocate more animals per area. This system's carbon footprint reduces emissions by 61.2 percent compared to the Brazilian average. This beef cattle production system can be efficient and environmentally friendly to the natural. Another point is that bovines will benefit from their natural environment without competing or having an impact on human food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle%20production" title="cattle production">cattle production</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/105899/welfare-and-sustainability-in-beef-cattle-production-on-tropical-pasture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahui%20Jiang">Fahui Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinwei%20Xue"> Xinwei Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Liyan%20Zhang"> Liyan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Zuo"> Yanyan Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zheng"> Wei Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Limei%20Bian"> Limei Bian</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Hu"> Lingling Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunlei%20Hao"> Chunlei Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianghong%20Du"> Jianghong Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Ci"> Yanhua Ci</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruibao%20Cheng"> Ruibao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ciren%20Dawa"> Ciren Dawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithun%20Biswas"> Mithun Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbub%20Ul%20Islam"> Mahbub Ul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fansheng%20Meng"> Fansheng Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Peng"> Xinhua Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=no%20tillage" title="no tillage">no tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20tillage" title=" conventional tillage"> conventional tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water" title=" soil water"> soil water</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title=" soil temperature"> soil temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20physics" title=" soil physics"> soil physics</a> </p> <a href="https://publications.waset.org/abstracts/191254/soil-wind-erosion-nutrients-and-crop-yield-response-to-conservation-tillage-in-north-china-a-field-study-in-a-semi-arid-and-wind-erosion-region-after-9-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Chemical, Biochemical and Sensory Evaluation of a Quadrimix Complementary Food Developed from Sorghum, Groundnut, Crayfish and Pawpaw Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogechi%20Nzeagwu">Ogechi Nzeagwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Assumpta%20Osuagwu"> Assumpta Osuagwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlse%20Nkwoala"> Charlse Nkwoala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malnutrition in infants due to poverty, poor feeding practices, and high cost of commercial complementary foods among others is a concern in developing countries. The study evaluated the proximate, vitamin and mineral compositions, antinutrients and functional properties, biochemical, haematological and sensory evaluation of complementary food made from sorghum, groundnut, crayfish and paw-paw flour blends using standard procedures. The blends were formulated on protein requirement of infants (18 g/day) using Nutrisurvey linear programming software in ratio of sorghum(S), groundnut(G), crayfish(C) and pawpaw(P) flours as 50:25:10:15(SGCP1), 60:20:10:10 (SGCP2), 60:15:15:10 (SGCP3) and 60:10:20:10 (SGCP4). Plain-pap (fermented maize flour)(TCF) and cerelac (commercial complementary food) served as basal and control diets. Thirty weanling male albino rats aged 28-35 days weighing 33-60 g were purchased and used for the study. The rats after acclimatization were fed with gruel produced with the experimental diets and the control with water ad libitum daily for 35days. Effect of the blends on lipid profile, blood glucose, haematological (RBC, HB, PCV, MCV), liver and kidney function and weight gain of the rats were assessed. Acceptability of the gruel was conducted at the end of rat feeding on forty mothers of infants’ ≥ 6 months who gave their informed consent to participate using a 9 point hedonic scale. Data was analyzed for means and standard deviation, analysis of variance and means were separated using Duncan multiple range test and significance judged at 0.05, all using SPSS version 22.0. The results indicated that crude protein, fibre, ash and carbohydrate of the formulated diets were either comparable or higher than values in cerelac. The formulated diets (SGCP1- SGCP4) were significantly (P>0.05) higher in vitamin A and thiamin compared to cerelac. The iron content of the formulated diets SGCP1- SGCP4 (4.23-6.36 mg/100) were within the recommended iron intake of infants (0.55 mg/day). Phytate (1.56-2.55 mg/100g) and oxalate (0.23-0.35 mg/100g) contents of the formulated diets were within the permissible limits of 0-5%. In functional properties, bulk density, swelling index, % dispersibility and water absorption capacity significantly (P<0.05) increased and compared favourably with cerelac. The essential amino acids of the formulated blends were within the amino acid profile of the FAO/WHO/UNU reference protein for children 0.5 -2 years of age. Urea concentration of rats fed with SGCP1-SGCP4 (19.48 mmol/L),(23.76 mmol/L),(24.07 mmol/L),(23.65 mmol/L) respectively was significantly higher than that of rat fed cerelac (16.98 mmol/L); however, plain pap had the least value (9.15 mmol/L). Rats fed with SGCP1-SGCP4 (116 mg/dl), (119 mg/dl), (115 mg/dl), (117 mg/dl) respectively had significantly higher glucose levels those fed with cerelac (108 mg/dl). Liver function parameters (AST, ALP and ALT), lipid profile (triglyceride, HDL, LDL, VLDL) and hematological parameters of rats fed with formulated diets were within normal range. Rats fed SGCP1 gained more weight (90.45 g) than other rats fed with SGCP2-SGCP4 (71.65 g, 79.76 g, 75.68 g), TCF (20.13 g) and cerelac (59.06 g). In all the sensory attributes, the control was preferred with respect to the formulated diets. The formulated diets were generally adequate and may likely have potentials to meet nutrient requirements of infants as complementary food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical" title="biochemical">biochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20evaluation" title=" chemical evaluation"> chemical evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20food" title=" complementary food"> complementary food</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrimix" title=" quadrimix"> quadrimix</a> </p> <a href="https://publications.waset.org/abstracts/120531/chemical-biochemical-and-sensory-evaluation-of-a-quadrimix-complementary-food-developed-from-sorghum-groundnut-crayfish-and-pawpaw-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20A.%20Arzate">Juan A. Arzate</a>, <a href="https://publications.waset.org/abstracts/search?q=Funda%20C.%20Ertem"> Funda C. Ertem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nicolas%20Cruz-Bournazou"> M. Nicolas Cruz-Bournazou</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Neubauer"> Peter Neubauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Junne"> Stefan Junne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> — One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMOCO%20model" title="AMOCO model">AMOCO model</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/45366/combination-of-modelling-and-environmental-life-cycle-assessment-approach-for-demand-driven-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Armenian%20Zea%20Maize%20Semidentata&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item disabled"><span class="page-link">&rsaquo;</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10