CINXE.COM
Search results for: atomistic toolKit
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: atomistic toolKit</title> <meta name="description" content="Search results for: atomistic toolKit"> <meta name="keywords" content="atomistic toolKit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="atomistic toolKit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="atomistic toolKit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 120</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: atomistic toolKit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano-Ribbon Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Jokar">Zeinab Jokar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Moslemi"> Mohammad Reza Moslemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of the band gap of a graphene nanoribbon by changing its width. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGNR" title="AGNR">AGNR</a>, <a href="https://publications.waset.org/abstracts/search?q=antidot" title=" antidot"> antidot</a>, <a href="https://publications.waset.org/abstracts/search?q=atomistic%20toolKit" title=" atomistic toolKit"> atomistic toolKit</a>, <a href="https://publications.waset.org/abstracts/search?q=vacancy" title=" vacancy"> vacancy</a> </p> <a href="https://publications.waset.org/abstracts/20917/effects-of-position-and-shape-of-atomic-defects-on-the-band-gap-of-graphene-nano-ribbon-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1006</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Reproductive Health Education (RHE) Toolkit for Science Teachers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivy%20Jeralyn%20T.%20Andres">Ivy Jeralyn T. Andres</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20B.%20Macugay"> Eva B. Macugay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a descriptive research design utilizing the Research and Development (R&D) methodology, this study focused on the development of Reproductive Health Education (RHE) Toolkit for Science Teachers that provides a guide in teaching reproductive health. Based on the findings, the teacher-respondents identified nine topics that can be included in the development of the RHE toolkit. The topics included are The Male Reproductive System, The Female Reproductive System, The Roles of Hormones in Male and Female Reproductive System, Menstrual Cycle, Fertilization, Pregnancy and Childbirth, Breastfeeding, Human Reproductive and Developmental Concerns and Reproductive Health Management and Diseases. The developed RHE Toolkit is remarked as very highly valid and very highly acceptable learning material. The validators and evaluators acknowledged the developed RHE toolkit as clear, creative, and academically useful supplemental material for educating reproductive health. Moreover, it follows the principles of SMART objectives, factual, timely, and relevant content for both learners and the community as a whole. Science teachers should employ the RHE Toolkit in teaching reproductive health education into their respective classes. It is also suggested that the developed RHE toolkit can be implemented to elementary pupils and the community, particularly in rural areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reproductive%20health%20education" title="reproductive health education">reproductive health education</a>, <a href="https://publications.waset.org/abstracts/search?q=toolkit" title=" toolkit"> toolkit</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20teachers" title=" science teachers"> science teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=supplemental%20material" title=" supplemental material"> supplemental material</a> </p> <a href="https://publications.waset.org/abstracts/174548/reproductive-health-education-rhe-toolkit-for-science-teachers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> From Customer Innovations to Manufactured Products: A Project Outlook</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Holle">M. Holle</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Roth"> M. Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20G%C3%BCrtler"> M. R. Gürtler</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Lindemann"> U. Lindemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives insights into the research project "InnoCyFer" (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based open innovation-platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20individual%20product%20design" title="customer individual product design">customer individual product design</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20networks" title=" innovation networks"> innovation networks</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20innovation" title=" open innovation"> open innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20innovation%20platform" title=" open innovation platform"> open innovation platform</a>, <a href="https://publications.waset.org/abstracts/search?q=toolkit" title=" toolkit"> toolkit</a> </p> <a href="https://publications.waset.org/abstracts/3705/from-customer-innovations-to-manufactured-products-a-project-outlook" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parinyaporn%20Thanaboonpuang">Parinyaporn Thanaboonpuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Siridej%20Sujiva"> Siridej Sujiva</a>, <a href="https://publications.waset.org/abstracts/search?q=Shotiga%20Pasiphul"> Shotiga Pasiphul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toolkit" title="toolkit">toolkit</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20student%E2%80%99%20desirable%20characteristics" title=" nursing student’ desirable characteristics"> nursing student’ desirable characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20qualifications%20framework" title=" Thai qualifications framework"> Thai qualifications framework</a> </p> <a href="https://publications.waset.org/abstracts/21095/developing-a-toolkit-of-undergraduate-nursing-student-desirable-characteristics-tndc-an-application-item-response-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunus%20Onur%20Yildiz">Yunus Onur Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20Kirca"> Mesut Kirca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic%20modelling" title="atomistic modelling">atomistic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamic" title=" molecular dynamic"> molecular dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20metals" title=" nanoporous metals"> nanoporous metals</a>, <a href="https://publications.waset.org/abstracts/search?q=voronoi%20tessellation" title=" voronoi tessellation"> voronoi tessellation</a> </p> <a href="https://publications.waset.org/abstracts/47461/effects-of-nano-coating-on-the-mechanical-behavior-of-nanoporous-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> The Disposable Identities; Enabling Trust-by-Design to Build Sustainable Data-Driven Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorna%20Goulden">Lorna Goulden</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20M.%20Hermsen"> Kai M. Hermsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jari%20Isohanni"> Jari Isohanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Ross"> Mirko Ross</a>, <a href="https://publications.waset.org/abstracts/search?q=Jef%20Vanbockryck"> Jef Vanbockryck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces disposable identities, with reference use cases and explores possible technical approaches. The proposed approach, when fully developed as an open-source toolkit, enables developers of mobile or web apps to employ a self-sovereign identity and data privacy framework, in order to rebuild trust in digital services by providing greater transparency, decentralized control, and GDPR compliance. With a user interface for the management of self-sovereign identity, digital authorizations, and associated data-driven transactions, the advantage of Disposable Identities is that they may also contain verifiable data such as the owner’s photograph, official or even biometric identifiers for more proactive prevention of identity abuse. These Disposable Identities designed for decentralized privacy management can also be time, purpose and context-bound through a secure digital contract; with verification functionalities based on tamper-proof technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentity" title="dentity">dentity</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sovereign" title=" self-sovereign"> self-sovereign</a>, <a href="https://publications.waset.org/abstracts/search?q=disposable%20identity" title=" disposable identity"> disposable identity</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20toolkit" title=" privacy toolkit"> privacy toolkit</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralised%20identity" title=" decentralised identity"> decentralised identity</a>, <a href="https://publications.waset.org/abstracts/search?q=verifiable%20credential" title=" verifiable credential"> verifiable credential</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20driven%20business" title=" data driven business"> data driven business</a>, <a href="https://publications.waset.org/abstracts/search?q=PETs" title=" PETs"> PETs</a>, <a href="https://publications.waset.org/abstracts/search?q=GDPRdentity" title=" GDPRdentity"> GDPRdentity</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sovereign" title=" self-sovereign"> self-sovereign</a>, <a href="https://publications.waset.org/abstracts/search?q=disposable%20identity" title=" disposable identity"> disposable identity</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20toolkit" title=" privacy toolkit"> privacy toolkit</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralised%20identity" title=" decentralised identity"> decentralised identity</a>, <a href="https://publications.waset.org/abstracts/search?q=verifiable%20credential" title=" verifiable credential"> verifiable credential</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20driven%20business" title=" data driven business"> data driven business</a>, <a href="https://publications.waset.org/abstracts/search?q=PETs" title=" PETs"> PETs</a>, <a href="https://publications.waset.org/abstracts/search?q=GDPRI" title=" GDPRI"> GDPRI</a> </p> <a href="https://publications.waset.org/abstracts/136294/the-disposable-identities-enabling-trust-by-design-to-build-sustainable-data-driven-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Safdari">Masoud Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Fish"> Jacob Fish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic" title="atomistic">atomistic</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum" title=" continuum"> continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a> </p> <a href="https://publications.waset.org/abstracts/75008/multiscale-hub-an-open-source-framework-for-practical-atomistic-to-continuum-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Mahdi%20Zamani">Seyed Mohammad Mahdi Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Behdinan"> Kamran Behdinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nextel%20fibers" title="Nextel fibers">Nextel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-crack" title=" pre-crack"> pre-crack</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20tensile%20strength" title=" ultimate tensile strength "> ultimate tensile strength </a> </p> <a href="https://publications.waset.org/abstracts/36957/the-effect-of-pre-cracks-on-structural-strength-of-the-nextel-fibers-a-multiscale-modeling-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shian%20Saroop">Shian Saroop</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhiren%20Allopi"> Dhiren Allopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-efficiency" title="eco-efficiency">eco-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20design" title=" infrastructure design"> infrastructure design</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/55705/the-use-of-sustainability-criteria-on-infrastructure-design-to-encourage-sustainable-engineering-solutions-on-infrastructure-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Patient Care Needs Assessment: An Evidence-Based Process to Inform Quality Care and Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wynne%20De%20Jong">Wynne De Jong</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Miller"> Robert Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ross%20Riggs"> Ross Riggs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beyond the number of nurses providing care for patients, having nurses with the right skills, experience and education is essential to ensure the best possible outcomes for patients. Research studies continue to link nurse staffing and skill mix with nurse-sensitive patient outcomes; numerous studies clearly show that superior patient outcomes are associated with higher levels of regulated staff. Due to the limited number of tools and processes available to assist nurse leaders with staffing models of care, nurse leaders are constantly faced with the ongoing challenge to ensure their staffing models of care best suit their patient population. In 2009, several hospitals in Ontario, Canada participated in a research study to develop and evaluate an RN/RPN utilization toolkit. The purpose of this study was to develop and evaluate a toolkit for Registered Nurses/Registered Practical Nurses Staff mix decision-making based on the College of Nurses of Ontario, Canada practice standards for the utilization of RNs and RPNs. This paper will highlight how an organization has further developed the Patient Care Needs Assessment (PCNA) questionnaire, a major component of the toolkit. Moreover, it will demonstrate how it has utilized the information from PCNA to clearly identify patient and family care needs, thus providing evidence-based results to assist leaders with matching the best staffing skill mix to their patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nurse%20staffing%20models%20of%20care" title="nurse staffing models of care">nurse staffing models of care</a>, <a href="https://publications.waset.org/abstracts/search?q=skill%20mix" title=" skill mix"> skill mix</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20health%20human%20resources" title=" nursing health human resources"> nursing health human resources</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a> </p> <a href="https://publications.waset.org/abstracts/46591/patient-care-needs-assessment-an-evidence-based-process-to-inform-quality-care-and-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20N.%20O%27Sullivan">Michael N. O'Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Con%20Sheahan"> Con Sheahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20product%20development" title="new product development">new product development</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20front-end" title=" fuzzy front-end"> fuzzy front-end</a>, <a href="https://publications.waset.org/abstracts/search?q=usability" title=" usability"> usability</a>, <a href="https://publications.waset.org/abstracts/search?q=Kano%20model" title=" Kano model"> Kano model</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20function%20deployment" title=" quality function deployment"> quality function deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20of%20customer" title=" voice of customer"> voice of customer</a> </p> <a href="https://publications.waset.org/abstracts/101816/streamlining-the-fuzzy-front-end-and-improving-the-usability-of-the-tools-involved" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim-Fares%20Zaidi">Brahim-Fares Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Boudraa"> Malika Boudraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid-Ahmed%20Selouani"> Sid-Ahmed Selouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model%20toolkit%20%28HTK%29" title="hidden Markov model toolkit (HTK)">hidden Markov model toolkit (HTK)</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20models%20of%20Markov%20%28HMM%29" title=" hidden models of Markov (HMM)"> hidden models of Markov (HMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mel-frequency%20cepstral%20coefficients%20%28MFCC%29" title=" Mel-frequency cepstral coefficients (MFCC)"> Mel-frequency cepstral coefficients (MFCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20linear%20prediction%20%28PLP%E2%80%99s%29" title=" perceptual linear prediction (PLP’s)"> perceptual linear prediction (PLP’s)</a> </p> <a href="https://publications.waset.org/abstracts/143303/the-combination-of-the-mel-frequency-cepstral-coefficients-mfcc-perceptual-linear-prediction-plp-jitter-and-shimmer-coefficients-for-the-improvement-of-automatic-recognition-system-for-dysarthric-speech" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Secondary Radiation in Laser-Accelerated Proton Beamline (LAP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Mahdipour">Seyed Ali Mahdipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Shafeei%20Sarvestani"> Maryam Shafeei Sarvestani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation pressure acceleration (RPA) and target normal sheath acceleration (TNSA) are the most important methods of Laser-accelerated proton beams (LAP) planning systems.LAP has inspired novel applications that can benefit from proton bunch properties different from conventionally accelerated proton beams. The secondary neutron and photon produced in the collision of protons with beamline components are of the important concern in proton therapy. Various published Monte Carlo researches evaluated the beamline and shielding considerations for TNSA method, but there is no studies directly address secondary neutron and photon production from RPA method in LAP. The purpose of this study is to calculate the flux distribution of neutron and photon secondary radiations on the first area ofLAP and to determine the optimize thickness and radius of the energyselector in a LAP planning system based on RPA method. Also, we present the Monte Carlo calculations to determine the appropriate beam pipe for shielding a LAP planning system. The GEANT4 Monte Carlo toolkit has been used to simulate a secondary radiation production in LAP. A section of new multifunctional LAP beamlinehas been proposed, based on the pulsed power solenoid scheme as a GEANT4 toolkit. The results show that the energy selector is the most important source of neutron and photon secondary particles in LAP beamline. According to the calculations, the pure Tungsten energy selector not be the proper case, and using of Tungsten+Polyethylene or Tungsten+Graphitecomposite selectors will reduce the production of neutron and photon intensities by approximately ~10% and ~25%, respectively. Also the optimal radiuses of energy selectors were found to be ~4 cm and ~6 cm for a 3 degree and 5 degree proton deviation angles, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron" title="neutron">neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20selector" title=" energy selector"> energy selector</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4%20toolkit" title=" GEANT4 toolkit"> GEANT4 toolkit</a> </p> <a href="https://publications.waset.org/abstracts/158485/secondary-radiation-in-laser-accelerated-proton-beamline-lap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanhao%20Chang">Yuanhao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Senbo%20Xiao"> Senbo Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiliang%20Zhang"> Zhiliang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianying%20He"> Jianying He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20stress%20distribution" title="local stress distribution">local stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=trapped%20oil%20droplet" title=" trapped oil droplet"> trapped oil droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20disjoining%20pressure" title=" structural disjoining pressure"> structural disjoining pressure</a> </p> <a href="https://publications.waset.org/abstracts/129560/atomistic-insight-into-the-system-of-trapped-oil-droplet-nanofluid-system-in-nanochannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20F.%20Sanz-Navarro">Carlos F. Sanz-Navarro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Fereres"> Sonia Fereres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic%20simulations" title="atomistic simulations">atomistic simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat" title=" latent heat"> latent heat</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20mobility" title=" ion mobility"> ion mobility</a> </p> <a href="https://publications.waset.org/abstracts/33033/the-effect-of-internal-electrical-ion-mobility-on-molten-salts-through-atomistic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> TARF: Web Toolkit for Annotating RNA-Related Genomic Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jialin%20Ma">Jialin Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Meng"> Jia Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RNA-related%20genomic%20features" title="RNA-related genomic features">RNA-related genomic features</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20server" title=" web server"> web server</a> </p> <a href="https://publications.waset.org/abstracts/59044/tarf-web-toolkit-for-annotating-rna-related-genomic-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawaz%20S.%20Al-Anzi">Fawaz S. Al-Anzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dia%20AbuZeina"> Dia AbuZeina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title="speech recognition">speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title=" acoustic features"> acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=mel%20frequency" title=" mel frequency"> mel frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=cepstral%20coefficients" title=" cepstral coefficients"> cepstral coefficients</a> </p> <a href="https://publications.waset.org/abstracts/78382/the-capacity-of-mel-frequency-cepstral-coefficients-for-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Nanoporous Metals Reinforced with Fullerenes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deni%CC%87z%20Ezgi%CC%87%20G%C3%BClmez">Deni̇z Ezgi̇ Gülmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20Kirca"> Mesut Kirca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fullerene" title="fullerene">fullerene</a>, <a href="https://publications.waset.org/abstracts/search?q=intersecting%20spheres" title=" intersecting spheres"> intersecting spheres</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamic" title=" molecular dynamic"> molecular dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20metals" title=" nanoporous metals"> nanoporous metals</a> </p> <a href="https://publications.waset.org/abstracts/47462/nanoporous-metals-reinforced-with-fullerenes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jill%20Hanass-Hancock">Jill Hanass-Hancock</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20Carpenter"> Bradley Carpenter</a>, <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Willan"> Samantha Willan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristin%20Dunkle"> Kristin Dunkle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20health" title="public health">public health</a>, <a href="https://publications.waset.org/abstracts/search?q=disability" title=" disability"> disability</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20health%20care" title=" inclusive health care"> inclusive health care</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20health%20coverage" title=" universal health coverage"> universal health coverage</a> </p> <a href="https://publications.waset.org/abstracts/172780/an-action-toolkit-for-health-care-services-driving-disability-inclusion-in-universal-health-coverage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> The Fidget Widget Toolkit: A Positive Intervention Designed and Evaluated to Enhance Wellbeing for People in the Later Stage of Dementia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jane%20E.%20Souyave">Jane E. Souyave</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Bower"> Judith Bower</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is an ongoing collaborative project between the University of Central Lancashire and the Alzheimer’s Society to design and test the idea of using interactive tools for a person living with dementia and their carers. It is hoped that the tools will fulfill the possible needs of engagement and interaction as dementia progresses, therefore enhancing wellbeing and improving quality of life for the person with dementia and their carers. The project was informed by Kitwood’s five psychological needs for producing wellbeing and explored evidence that fidgeting is often seen as a form of agitation and a negative symptom of dementia. Although therapy for agitation may be well established, there is a lack of appropriate items aimed at people in the later stage of dementia, that are not childlike or medical in their aesthetic. Individuals may fidget in a particular way and the tools in the Fidget Widget Toolkit have been designed to encourage repetitive movements of the hand, specifically to address the abilities of people with relatively advanced dementia. As an intervention, these tools provided a new approach that had not been tested in dementia care. Prototypes were created through an iterative design process and tested with a number of people with dementia and their carers, using quantitative and qualitative methods. Dementia Care Mapping was used to evaluate the impact of the intervention in group settings. Cohen Mansfield’s Agitation Inventory was used to record the daily use and interest of the intervention for people in their usual place of residence. The results informed the design of a new set of devices to promote safe, stigma free fidgeting as a positive experience, meaningful activity and enhance wellbeing for people in the later stage of dementia. The outcomes addressed the needs of individuals by reducing agitation and restlessness through helping them to connect, engage and act independently, providing the means of doing something for themselves that they were able to do. The next stage will be to explore the commercial feasibility of the Fidget Widget Toolkit so that it can be introduced as good practice and innovation in dementia care. It could be used by care homes, with carers and their families to support wellbeing and lead the way in providing some positive experiences and person-centred approaches that are lacking in the later stage of dementia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dementia" title="dementia">dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=fidgeting" title=" fidgeting"> fidgeting</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20moments" title=" positive moments"> positive moments</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=wellbeing" title=" wellbeing"> wellbeing</a> </p> <a href="https://publications.waset.org/abstracts/70505/the-fidget-widget-toolkit-a-positive-intervention-designed-and-evaluated-to-enhance-wellbeing-for-people-in-the-later-stage-of-dementia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Multiscale Cohesive Zone Modeling of Composite Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Iacobellis">Vincent Iacobellis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Behdinan"> Kamran Behdinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title="cohesive zone model">cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20interface" title=" fiber-matrix interface"> fiber-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=microscale%20damage" title=" microscale damage"> microscale damage</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a> </p> <a href="https://publications.waset.org/abstracts/36952/multiscale-cohesive-zone-modeling-of-composite-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kulwinder%20Singh%20Mann">Kulwinder Singh Mann</a>, <a href="https://publications.waset.org/abstracts/search?q=Manmohan%20Singh%20Heer"> Manmohan Singh Heer</a>, <a href="https://publications.waset.org/abstracts/search?q=Asha%20Rani"> Asha Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildup%20factor" title="buildup factor">buildup factor</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20bricks" title=" clay bricks"> clay bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20bricks" title=" fire bricks"> fire bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20wastage%20management" title=" nuclear wastage management"> nuclear wastage management</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protective%20double%20layered%20slabs" title=" radiation protective double layered slabs"> radiation protective double layered slabs</a> </p> <a href="https://publications.waset.org/abstracts/43993/investigation-of-cost-effective-double-layered-slab-for-gh-ray-shielding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Designing Urban Spaces Differently: A Case Study of the Hercity Herstreets Public Space Improvement Initiative in Nairobi, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehema%20Kabare">Rehema Kabare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As urban development initiatives continue to emerge and are implemented amid rapid urbanization and climate change effects in the global south, the plight of women is only being noticed. The pandemic exposed the atrocities, violence and unsafety women and girls face daily both in their homes and in public urban spaces. This is a result of poorly implemented and managed urban structures, which women have been left out of during design and implementation for centuries. The UN Habitat’s HerCity toolkit provides a unique opportunity to change course for both governments and civil society actors where women and girls are onboarded onto urban development initiatives, with their designs and ideas being the focal point. This toolkit proves that when women and girls design, they design for everyone. The HerCity HerStreets, Public Space Improvement Initiative, resulted in a design that focused on two aspects: Streets are a shared resource, and Streets are public spaces. These two concepts illustrate that for streets to be experienced effectively as cultural spaces, they need to be user-friendly, safe and inclusive. This report demonstrates how the HerCity HerStreets as a pilot project can be a benchmark for designing urban spaces in African cities. The project focused on five dimensions to improve the air quality of the space, the space allocation to street vending and bodaboda (passenger motorcycle) stops parking and the green coverage. The process displays how digital tools such as Minecraft and Kobo Toolbox can be utilized to improve citizens’ participation in the development of public spaces, with a special focus on including vulnerable groups such as women, girls and youth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title="urban space">urban space</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20and%20the%20city" title=" gender and the city"> gender and the city</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20tools%20and%20urban%20development" title=" digital tools and urban development"> digital tools and urban development</a> </p> <a href="https://publications.waset.org/abstracts/164139/designing-urban-spaces-differently-a-case-study-of-the-hercity-herstreets-public-space-improvement-initiative-in-nairobi-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alinka%20Moln%C3%A1r-T%C3%B3th">Alinka Molnár-Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%ADmea%20T%C3%A1nczos"> Tímea Tánczos</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Barna"> Regina Barna</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Jakab"> Katalin Jakab</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Kliv%C3%A9nyi"> Péter Klivényi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20disorders" title="communication disorders">communication disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20toolkit" title=" diagnostic toolkit"> diagnostic toolkit</a>, <a href="https://publications.waset.org/abstracts/search?q=neurorehabilitation" title=" neurorehabilitation"> neurorehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20knowlegde" title=" semantic knowlegde"> semantic knowlegde</a> </p> <a href="https://publications.waset.org/abstracts/167747/assessing-the-structure-of-non-verbal-semantic-knowledge-the-evaluation-and-first-results-of-the-hungarian-semantic-association-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rekab%20Djabri%20Hamza">Rekab Djabri Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Daoud%20Salah"> Daoud Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDA" title="LDA">LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a> </p> <a href="https://publications.waset.org/abstracts/156394/atomistic-study-of-structural-and-phases-transition-of-tmas-semiconductor-using-the-fplmto-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Pritchard">N. Pritchard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic" title="atomistic">atomistic</a>, <a href="https://publications.waset.org/abstracts/search?q=hermeneutic" title=" hermeneutic"> hermeneutic</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic" title=" holistic"> holistic</a>, <a href="https://publications.waset.org/abstracts/search?q=approach%20architectural%20design%20studio%20education" title=" approach architectural design studio education"> approach architectural design studio education</a> </p> <a href="https://publications.waset.org/abstracts/68677/an-investigation-into-the-use-of-an-atomistic-hermeneutic-holistic-approach-in-education-relating-to-the-architectural-design-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> From Modeling of Data Structures towards Automatic Programs Generating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentin%20P.%20Velikov">Valentin P. Velikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title="computer science">computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20dialog%20interface" title=" user dialog interface"> user dialog interface</a>, <a href="https://publications.waset.org/abstracts/search?q=dialog%20frames" title=" dialog frames"> dialog frames</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20modeling" title=" data modeling"> data modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=subject%20area%20modeling" title=" subject area modeling"> subject area modeling</a> </p> <a href="https://publications.waset.org/abstracts/41471/from-modeling-of-data-structures-towards-automatic-programs-generating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Simulation of Performance of LaBr₃ (Ce) Using GEANT4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarana%20Dave">Zarana Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cerium-doped lanthanum bromide, LaBr₃ (Ce), scintillator shows attracting properties for spectroscopy that makes it a suitable solution for security, medical, geophysics and high energy physics applications. Here, the performance parameters of a cylindrical LaBr₃ (Ce) scintillator was investigated. The first aspect is the determination of the efficiency for γ - ray detection, measured with GEANT4 simulation toolkit from 10keV to 10MeV energy range. The second is the detailed study of background radiation of LaBr₃ (Ce). It has relatively high intrinsic radiation background due to naturally occurring ¹³⁸La and ²²⁷Ac radioisotopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LaBr%E2%82%83%28Ce%29" title="LaBr₃(Ce)">LaBr₃(Ce)</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4" title=" GEANT4"> GEANT4</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20radiation" title=" background radiation"> background radiation</a> </p> <a href="https://publications.waset.org/abstracts/52994/simulation-of-performance-of-labr3-ce-using-geant4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Neural Rendering Applied to Confocal Microscopy Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Li">Daniel Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20rendering" title="neural rendering">neural rendering</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20neural%20representations" title=" implicit neural representations"> implicit neural representations</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscopy" title=" confocal microscopy"> confocal microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image%20processing" title=" medical image processing"> medical image processing</a> </p> <a href="https://publications.waset.org/abstracts/153909/neural-rendering-applied-to-confocal-microscopy-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Material Chemistry Level Deformation and Failure in Cementitious Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20V.%20Mohan">Ram V. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Rivas-Murillo"> John Rivas-Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohamed"> Ahmed Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20D.%20Hodo"> Wayne D. Hodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title="cementitious materials">cementitious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20chemistry%20modeling" title=" material chemistry modeling"> material chemistry modeling</a> </p> <a href="https://publications.waset.org/abstracts/24900/material-chemistry-level-deformation-and-failure-in-cementitious-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atomistic%20toolKit&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atomistic%20toolKit&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atomistic%20toolKit&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atomistic%20toolKit&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>