CINXE.COM
Search results for: pore throat
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pore throat</title> <meta name="description" content="Search results for: pore throat"> <meta name="keywords" content="pore throat"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pore throat" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pore throat"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 589</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pore throat</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> A Critical Appraisal of CO₂ Entrance Pressure with Heat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrar%20Al-Mutairi">Abrar Al-Mutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20Al-Bazali"> Talal Al-Bazali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, changes in capillary entry pressure of shale, as it interacts with CO₂, under different temperatures (25 °C to 250 °C) have been investigated. The combined impact of temperature and petrophysical properties (water content, water activity, permeability and porosity) of shale was also addressed. Results showed that the capillary entry pressure of shale when it interacted with CO₂ was highly affected by temperature. In general, increasing the temperature decreased capillary entry pressure of shale. We believe that pore dilation, where pore throat size expands due to the application of heat, may have caused this decrease in capillary entry pressure of shale. However, in some cases we found that at higher temperature some shale samples showed that the temperature activated clay swelling may have caused an apparent decrease in pore throat radii of shale which translates into higher capillary entry pressure of shale. Also, our results showed that there is no distinct relationship between shale’s water content, water activity, permeability, and porosity on the capillary entry pressure of shale samples as it interacted with CO₂ at different temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat" title="heat">heat</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20pressure" title="threshold pressure">threshold pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20sequestration" title=" CO₂ sequestration"> CO₂ sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a> </p> <a href="https://publications.waset.org/abstracts/148151/a-critical-appraisal-of-co2-entrance-pressure-with-heat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jurado">S. Jurado</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pazmino"> E. Pazmino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medial%20axis" title="medial axis">medial axis</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-throat%20distribution" title=" pore-throat distribution"> pore-throat distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a> </p> <a href="https://publications.waset.org/abstracts/110909/development-of-academic-software-for-medial-axis-determination-of-porous-media-from-high-resolution-x-ray-microtomography-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Relevance of the Variation in the Angulation of Palatal Throat Form to the Orientation of the Occlusal Plane- A Cephalometric Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanath%20Kumar%20Shetty">Sanath Kumar Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanya%20Sinha"> Sanya Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kamalakanth%20Shenoy"> K. Kamalakanth Shenoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The posterior reference for the ala tragal line is a cause of confusion, with different authors suggesting different locations as to the superior, middle or inferior part of the tragus. This study was conducted on 200 subjects to evaluate if any correlation exists between the variation of angulation of palatal throat form and the relative parallelism of occlusal plane to ala-tragal line at different tragal levels. A Custom made Occlusal Plane Analyzer was used to check the parallelism between the ala-tragal line and occlusal plane. A lateral cephalogram was shot for each subject to measure the angulation of the palatal throat form. Fisher’s exact test was used to evaluate the correlation between the angulation of the palatal throat form and the relative parallelism of occlusal plane to the ala tragal line. Also, a classification was formulated for the palatal throat form, based on confidence interval. From the results of the study, the inferior part, middle part and superior part of the tragus were seen as the reference points in 49.5%, 32% and 18.5% of the subjects respectively. Class I palatal throat form (41degree-50 degree), Class II palatal throat form (below 41 degree) and Class III palatal throat form (above 50 degree) were seen in 42%, 43% and 15% of the subjects respectively. It was also concluded that there is no significant correlation between the variation in the angulations of the palatal throat form and the relative parallelism of occlusal plane to the ala-tragal line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ala-Tragal%20line" title="Ala-Tragal line">Ala-Tragal line</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusal%20plane" title=" occlusal plane"> occlusal plane</a>, <a href="https://publications.waset.org/abstracts/search?q=palatal%20throat%20form" title=" palatal throat form"> palatal throat form</a>, <a href="https://publications.waset.org/abstracts/search?q=cephalometry" title=" cephalometry "> cephalometry </a> </p> <a href="https://publications.waset.org/abstracts/25452/relevance-of-the-variation-in-the-angulation-of-palatal-throat-form-to-the-orientation-of-the-occlusal-plane-a-cephalometric-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Chandra">Abhishek Kumar Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushal%20Kishor"> Kaushal Kishor</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasim%20Khan"> Wasim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjay%20Singh"> Dhananjay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alam"> M. S. Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contraction-expansion%20flow" title="contraction-expansion flow">contraction-expansion flow</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20microchannel" title=" integrated microchannel"> integrated microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20network" title=" microchannel network"> microchannel network</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase%20flow" title=" single phase flow"> single phase flow</a> </p> <a href="https://publications.waset.org/abstracts/75976/single-phase-fluid-flow-in-series-of-microchannel-connected-via-converging-diverging-section-with-or-without-throat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Yayla">Sedat Yayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Oruc"> Mehmet Oruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakhwan%20Yaseen"> Shakhwan Yaseen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20number" title="cavitation number">cavitation number</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20of%20fluid" title=" mixture of fluid"> mixture of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20of%20throat" title=" velocity of throat"> velocity of throat</a> </p> <a href="https://publications.waset.org/abstracts/74888/numerical-investigation-of-cavitation-on-different-venturi-shapes-by-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20throat" title="pore throat">pore throat</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title=" fine migration"> fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20plugging" title=" solids plugging"> solids plugging</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20loss" title=" porosity loss"> porosity loss</a> </p> <a href="https://publications.waset.org/abstracts/143766/the-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Depositional Environment and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ali%20Allafi"> Hana Ali Allafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Ba-sin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets, but also small, disaggregated kaolinite platelets derived from the dis-aggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the sur-rounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and re-duce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on select-ed minerals observed during the SEM study were obtained using an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=por%20throat" title="por throat">por throat</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20lose" title=" porosity lose"> porosity lose</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20plugging" title=" solids plugging"> solids plugging</a> </p> <a href="https://publications.waset.org/abstracts/174514/depositional-environment-and-diagenetic-alterations-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Effects of Pore-Water Pressure on the Motion of Debris Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Yu%20Lin">Meng-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Ju%20Lee"> Wan-Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title="debris flow">debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20particle%20method" title=" Lagrangian particle method"> Lagrangian particle method</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-pressure%20diffusivity" title=" pore-pressure diffusivity"> pore-pressure diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-water%20pressure" title=" pore-water pressure"> pore-water pressure</a> </p> <a href="https://publications.waset.org/abstracts/98059/effects-of-pore-water-pressure-on-the-motion-of-debris-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Bal">Manisha Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Meikap"> B. C. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=HCl%20scrubbing" title=" HCl scrubbing"> HCl scrubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=self-priming%20venturi%20scrubber" title=" self-priming venturi scrubber"> self-priming venturi scrubber</a> </p> <a href="https://publications.waset.org/abstracts/91400/removal-of-gaseous-pollutant-from-the-flue-gas-in-a-submerged-self-priming-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouri">Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=K."> K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghassem%20Alaskari"> Ghassem Alaskari</a>, <a href="https://publications.waset.org/abstracts/search?q=M."> M.</a>, <a href="https://publications.waset.org/abstracts/search?q=K."> K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amiri%20Hazaveh"> Amiri Hazaveh</a>, <a href="https://publications.waset.org/abstracts/search?q=A."> A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabi%20Bidhendi"> Nabi Bidhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=M."> M. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=stonely%20wave" title=" stonely wave"> stonely wave</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20log" title=" density log"> density log</a>, <a href="https://publications.waset.org/abstracts/search?q=sonic%20impedance" title=" sonic impedance"> sonic impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20zone" title=" high pressure zone"> high pressure zone</a> </p> <a href="https://publications.waset.org/abstracts/14187/investigation-and-analysis-on-pore-pressure-variation-by-sonic-impedance-under-influence-of-compressional-shear-and-stonely-waves-in-high-pressure-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Song">Jiahui Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-intensity" title="high-intensity">high-intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosecond" title=" nanosecond"> nanosecond</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=electroporation" title=" electroporation"> electroporation</a> </p> <a href="https://publications.waset.org/abstracts/136220/simulation-studies-of-high-intensity-nanosecond-pulsed-electric-fields-induced-dynamic-membrane-electroporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Agrawal">Priyanka Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Janou%20Koskamp"> Janou Koskamp</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Raoof"> Amir Raoof</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariette%20Wolthers"> Mariette Wolthers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20pore" title="single pore">single pore</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20transport" title=" reactive transport"> reactive transport</a>, <a href="https://publications.waset.org/abstracts/search?q=calcite%20system" title=" calcite system"> calcite system</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20boundary" title=" moving boundary"> moving boundary</a> </p> <a href="https://publications.waset.org/abstracts/80785/reactive-transport-modeling-in-carbonate-rocks-a-single-pore-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedullah%20J.%20Mandokhail">Saeedullah J. Mandokhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamsher%20Sadiq"> Shamsher Sadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Meer%20H.%20Khan"> Meer H. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20stress" title="effective stress">effective stress</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20pressure%20ratio" title=" excess pore pressure ratio"> excess pore pressure ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure%20model" title=" pore pressure model"> pore pressure model</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response%20analysis" title=" site response analysis"> site response analysis</a> </p> <a href="https://publications.waset.org/abstracts/94259/comparison-of-accumulated-stress-based-pore-pressure-model-and-plasticity-model-in-1d-site-response-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fauzi%20Jarushi">Fauzi Jarushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Cosentino"> Paul Cosentino</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Kalajian"> Edward Kalajian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20Dekhn"> Hadeel Dekhn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPTU" title="CPTU">CPTU</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20water%20pressure" title=" pore water pressure"> pore water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20rebound" title=" pile rebound"> pile rebound</a> </p> <a href="https://publications.waset.org/abstracts/15053/cpt-pore-water-pressure-correlations-with-pda-to-identify-pile-drivability-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Bal">Manisha Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Remya%20Chinnamma%20Jose"> Remya Chinnamma Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=B.C.%20Meikap"> B.C. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20particles" title="dust particles">dust particles</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20control" title=" pollution control"> pollution control</a>, <a href="https://publications.waset.org/abstracts/search?q=self-priming%20venturi%20scrubber" title=" self-priming venturi scrubber"> self-priming venturi scrubber</a> </p> <a href="https://publications.waset.org/abstracts/97531/dust-particle-removal-from-air-in-a-self-priming-submerged-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venuka%20Kuruwita%20Arachchige%20Don">Venuka Kuruwita Arachchige Don</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shaheen"> Mohamed Shaheen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Goodier"> Chris Goodier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoclaved%20aerated%20concrete" title="autoclaved aerated concrete">autoclaved aerated concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20technique" title=" imaging technique"> imaging technique</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20behavior" title=" porosity behavior"> porosity behavior</a> </p> <a href="https://publications.waset.org/abstracts/184592/field-emission-scanning-microscope-image-analysis-for-porosity-characterization-of-autoclaved-aerated-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ali%20Alafi"> Hana Ali Alafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title="fine migration">fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=soled%20bulging." title=" soled bulging."> soled bulging.</a> </p> <a href="https://publications.waset.org/abstracts/156395/the-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Moktader%20A.%20El%20Sayed">Abdel Moktader A. El Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahla%20A.%20El%20Sayed"> Nahla A. El Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resevoir%20sandstone" title="resevoir sandstone">resevoir sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinai" title=" Sinai"> Sinai</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/162994/reservoir-characterization-of-the-pre-cenomanian-sandstone-central-sinai-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li">Xin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxue%20Jiang"> Zhenxue Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Li"> Zhuo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20shale" title="marine shale">marine shale</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Cambrian" title=" lower Cambrian"> lower Cambrian</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Silurian" title=" lower Silurian"> lower Silurian</a>, <a href="https://publications.waset.org/abstracts/search?q=om%20isolation" title=" om isolation"> om isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20properties" title=" pore properties"> pore properties</a>, <a href="https://publications.waset.org/abstracts/search?q=om-hosted%20pore" title=" om-hosted pore"> om-hosted pore</a> </p> <a href="https://publications.waset.org/abstracts/112139/factors-controlling-marine-shale-porosity-a-case-study-between-lower-cambrian-and-lower-silurian-of-upper-yangtze-area-south-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Ben%20Salem">Zeineb Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Frikha"> Wissem Frikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bouassida"> Mounir Bouassida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title="stone column">stone column</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20pressure" title=" excess pore pressure"> excess pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=silt%20content" title=" silt content"> silt content</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbed%20zone" title=" disturbed zone"> disturbed zone</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20permeability" title=" reduced permeability"> reduced permeability</a> </p> <a href="https://publications.waset.org/abstracts/146264/prediction-of-excess-pore-pressure-variation-of-reinforced-silty-sand-by-stone-columns-during-liquefaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Quantum Sieving for Hydrogen Isotope Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunchul%20Oh">Hyunchul Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20adsorption" title="gas adsorption">gas adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20isotope" title=" hydrogen isotope"> hydrogen isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%28MOFs%29" title=" metal organic frameworks(MOFs)"> metal organic frameworks(MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20sieving" title=" quantum sieving"> quantum sieving</a> </p> <a href="https://publications.waset.org/abstracts/41208/quantum-sieving-for-hydrogen-isotope-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Namaei"> Ali Namaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20drain" title="vertical drain">vertical drain</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated" title=" prefabricated"> prefabricated</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a> </p> <a href="https://publications.waset.org/abstracts/109050/effect-of-prefabricated-vertical-drain-system-properties-on-embankment-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kurniawan%20Adha">Kurniawan Adha</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Ismail%20Wan%20Yusoff"> Wan Ismail Wan Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Luluan%20Almanna%20Lubis"> Luluan Almanna Lubis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20stress" title=" effective stress"> effective stress</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=miri%20formation" title=" miri formation"> miri formation</a> </p> <a href="https://publications.waset.org/abstracts/41948/characteristics-of-pore-pressure-and-effective-stress-changes-in-sandstone-reservoir-due-to-hydrocarbon-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Finite Difference Method of the Seismic Analysis of Earth Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaoua%20Bouaicha">Alaoua Bouaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Kahlouche"> Fahim Kahlouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Benouali"> Abdelhamid Benouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earthquake" title="Earthquake">Earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20Analysis" title=" Numerical Analysis"> Numerical Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC2D" title=" FLAC2D"> FLAC2D</a>, <a href="https://publications.waset.org/abstracts/search?q=Displacement" title=" Displacement"> Displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Embankment%20Dam" title=" Embankment Dam"> Embankment Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pore%20Water%20Pressure" title=" Pore Water Pressure"> Pore Water Pressure</a> </p> <a href="https://publications.waset.org/abstracts/43538/finite-difference-method-of-the-seismic-analysis-of-earth-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Regis">M. Regis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Marin"> E. Marin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fusi"> S. Fusi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pressacco"> M. Pressacco</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Fedrizzi"> L. Fedrizzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopaedic%20implants" title=" orthopaedic implants"> orthopaedic implants</a>, <a href="https://publications.waset.org/abstracts/search?q=osteointegration" title=" osteointegration"> osteointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20structures" title=" trabecular structures"> trabecular structures</a> </p> <a href="https://publications.waset.org/abstracts/6392/preparation-and-characterization-of-newly-developed-trabecular-structures-in-titanium-alloy-to-optimize-osteointegration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianglu%20Tang">Xianglu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxue%20Jiang"> Zhenxue Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Li"> Zhuo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title="heterogeneity">heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20unit" title=" homogeneous unit"> homogeneous unit</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a> </p> <a href="https://publications.waset.org/abstracts/24081/multiscale-analysis-of-shale-heterogeneity-in-silurian-longmaxi-formation-from-south-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mithil%20Pandey">Mithil Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragunathan%20Bala%20Subramanian"> Ragunathan Bala Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysts" title="catalysts">catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title=" fluid catalytic cracking"> fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20processes" title=" industrial processes"> industrial processes</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/63403/fluid-catalytic-cracking-zeolite-catalyzed-chemical-industry-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raed%20H.%20Allawi">Raed H. Allawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formation pressure is the most critical parameter in hydrocarbon exploration and exploitation. Specifically, predicting abnormal pressures (high formation pressures) and subnormal pressure zones can provide valuable information to minimize uncertainty for anticipated drilling challenges and risks. This study aims to interpret and delineate the pore and fracture pressure of the Mishrif reservoir in the southern Iraq Oilfield. The data required to implement this study included acoustic compression wave, gamma-ray, bulk density, and drilling events. Furthermore, supporting these models needs the pore pressure measurement from the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20pressure" title=" fracture pressure"> fracture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=overburden%20pressure" title=" overburden pressure"> overburden pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20stress" title=" effective stress"> effective stress</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20events" title=" drilling events"> drilling events</a> </p> <a href="https://publications.waset.org/abstracts/161063/fracture-pressure-predict-based-on-well-logs-of-depleted-reservoir-in-southern-iraqi-oilfield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Study of the Polymer Elastic Behavior in the Displacement Oil Drops at Pore Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Prada">Luis Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Gomez"> Jose Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Arlex%20Chaves"> Arlex Chaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Pedraza"> Julio Pedraza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric liquids have been used in the oil industry, especially at enhanced oil recovery (EOR). From the rheological point of view, polymers have the particularity of being viscoelastic liquids. One of the most common and useful models to describe that behavior is the Upper Convected Maxwell model (UCM). The main characteristic of the polymer used in EOR process is the increase in viscosity which pushes the oil outside of the reservoir. The elasticity could contribute in the drag of the oil that stays in the reservoir. Studying the elastic effect on the oil drop at the pore scale, bring an explanation if the addition of elastic force could mobilize the oil. This research explores if the contraction and expansion of the polymer in the pore scale may increase the elastic behavior of this kind of fluid. For that reason, this work simplified the pore geometry and build two simple geometries with micrometer lengths. Using source terms with the user define a function this work introduces the UCM model in the ANSYS fluent simulator with the purpose of evaluating the elastic effect of the polymer in a contraction and expansion geometry. Also, using the Eulerian multiphase model, this research considers the possibility that extra elastic force will show a deformation effect on the oil; for that reason, this work considers an oil drop on the upper wall of the geometry. Finally, all the simulations exhibit that at the pore scale conditions exist extra vortices at UCM model but is not possible to deform the oil completely and push it outside of the restrictions, also this research find the conditions for the oil displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20fluent" title="ANSYS fluent">ANSYS fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20fluids%20mechanics" title=" interfacial fluids mechanics"> interfacial fluids mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20scale" title=" pore scale"> pore scale</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/102196/study-of-the-polymer-elastic-behavior-in-the-displacement-oil-drops-at-pore-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> Traditional Phytotherapy among Tribes of Madhya Pradesh, India Used in the Treatment of Ear, Nose and Throat Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeet%20Dwivedi">Sumeet Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Shriwas"> Shweta Shriwas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghvendra%20Dubey"> Raghvendra Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Madhya Pradesh, a Central State of India is rich in natural heritage due to tribal impact. Herbal harmony present either cultivated or by naturally being used by the tribes of the state in the treatment of several human and animal disorders. Diseases of ear, nose and throat (ENT) often have serious consequences including hearing impairment, and emotional strain that lower the quality of life of patients. Traditional phytotherapy have now been found to be instrumental in improving chances of discovering plants with antimicrobial activity in new drug development. The present paper enumerates the uses of ten herbs viz., garlic, eucalyptus, marigold, tulsi, euphorbia, lemon grass, haldi, bhringraj, ginger and ajwain. An attempt has also been made to reveal the method of preparation, dose, duration possible MOA of these herbs used for ENT disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ENT" title="ENT">ENT</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20phytotherapy" title=" traditional phytotherapy"> traditional phytotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=herbs" title=" herbs"> herbs</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhya%20Pradesh" title=" Madhya Pradesh"> Madhya Pradesh</a> </p> <a href="https://publications.waset.org/abstracts/60139/traditional-phytotherapy-among-tribes-of-madhya-pradesh-india-used-in-the-treatment-of-ear-nose-and-throat-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pore%20throat&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>