CINXE.COM
Search results for: anode
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: anode</title> <meta name="description" content="Search results for: anode"> <meta name="keywords" content="anode"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="anode" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="anode"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 207</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: anode</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Analysis of Soft and Hard X-Ray Intensities Using Different Shapes of Anodes in a 4kJ Mather Type Plasma Focus Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Mahtab">Mahsa Mahtab</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Habibi"> Morteza Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of different anode tip geometries on the intensity of soft and hard x-ray emitted from a 4 kJ plasma focus device is investigated. For this purpose, 5 different anode tips are used. The shapes of the uppermost region of these anodes have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat and cone-hollow. Analyzed data have shown that cone-flat, spherical-convex and cone-hollow anodes significantly increase X-ray intensity respectively in comparison with cylindrical-flat anode; while the cylindrical-hollow tip decreases. Anode radius reduction at its end in conic or spherical anodes enhance SXR by increasing plasma density through collecting a greater mass of gas and more gradual transition phase to form a more stable dense plasma pinch. Also, HXR is enhanced by increasing the energy of electrons colliding with the anode surface through raise of induced electrical field. Finally, the cone-flat anode is introduced to use in cases in which the plasma focus device is used as an X-ray source due to its highest yield of X-ray emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus" title="plasma focus">plasma focus</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20tip" title=" anode tip"> anode tip</a>, <a href="https://publications.waset.org/abstracts/search?q=HXR" title=" HXR"> HXR</a>, <a href="https://publications.waset.org/abstracts/search?q=SXR" title=" SXR"> SXR</a>, <a href="https://publications.waset.org/abstracts/search?q=pinched%20plasma" title=" pinched plasma"> pinched plasma</a> </p> <a href="https://publications.waset.org/abstracts/30370/analysis-of-soft-and-hard-x-ray-intensities-using-different-shapes-of-anodes-in-a-4kj-mather-type-plasma-focus-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohadeseh%20Seyednezhad">Mohadeseh Seyednezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Rajabi"> Armin Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andanastui%20Muchtar"> Andanastui Muchtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Rao%20Somalu"> Mahendra Rao Somalu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sintering" title="sintering">sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramics" title=" ceramics"> ceramics</a> </p> <a href="https://publications.waset.org/abstracts/21637/morphology-and-electrical-conductivity-of-a-non-symmetrical-nio-sdcsdc-anode-through-a-microwave-assisted-route" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Ali">Mohamed M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Nofal"> Adel Nofal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Kandil"> Amr Kandil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Agour"> Mahmoud Agour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20phosphorus%20gray%20iron%20%28HPGI%29" title="high phosphorus gray iron (HPGI)">high phosphorus gray iron (HPGI)</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20reduction%20cells" title=" aluminium reduction cells"> aluminium reduction cells</a>, <a href="https://publications.waset.org/abstracts/search?q=anodic%20voltage%20drop" title=" anodic voltage drop"> anodic voltage drop</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20electrical%20properties" title=" mechanical and electrical properties"> mechanical and electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/11906/characterization-of-high-phosphorus-gray-iron-for-the-stub-anode-connection-in-the-aluminium-reduction-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Synchrotron X-Ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dehipawala">Sunil Dehipawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayathrie%20Amarasuriya"> Gayathrie Amarasuriya</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Gadura"> N. Gadura</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tremberger%20Jr"> G. Tremberger Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=D.Lieberman"> D.Lieberman</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Gafney"> Harry Gafney</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Holden"> Todd Holden</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cheung"> T. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title="EXAFS">EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Shewanella%20oneidensis" title=" Shewanella oneidensis"> Shewanella oneidensis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/30103/synchrotron-x-ray-based-investigation-of-fe-environment-in-porous-anode-of-shewanella-oneidensis-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Experimental Study on Using the Aluminum Sacrificial Anode as a Cathodic Protection for Marine Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Radwan">A. Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbatran"> A. Elbatran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mehanna"> A. Mehanna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shehadeh"> M. Shehadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion is natural chemical phenomenon that is applied in many engineering structures. Hence, it is one of the important topics to study in the engineering research. Ship and offshore structures are most exposed to corrosion due to the presence of corrosive medium of air and the seawater. Consequently, investigation of the corrosion behavior and properties over ship and offshore hulls is one of the important topics to study in the marine engineering research. Using sacrificial anode is the most popular solution for protecting marine structures from corrosion. Hence, this research investigates the extent of corrosion between the composite ship model and relative velocity of water, along with the sacrificial aluminum anode consumption and its degree of protection in seawater. In this study, the consumption rate of sacrificial aluminum anode with respect to relative velocity at different Reynold’s numbers was studied experimentally, and it was found that, the degree of cathodic protection represented by the cathode potential at a given distance from the aluminum anode was decreased slightly with increment of the relative velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynold%27s%20numbers" title=" Reynold's numbers"> Reynold's numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20anode" title=" sacrificial anode"> sacrificial anode</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/62994/experimental-study-on-using-the-aluminum-sacrificial-anode-as-a-cathodic-protection-for-marine-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Cryogenic Separation of CO2 from Molten Carbonate Fuel Cell Anode Outlet—Experimental Guidelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%C2%A0Milewski">Jarosław Milewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%C2%A0Bernat"> Rafał Bernat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of using cryogenic separation unit for recovering fuel from anode off gas of molten carbonate fuel cells (MCFCs) in order to upgrade the efficiently of the unit. In the proposed solution, the CSU is used for condensing water and carbon dioxide from anode off gas, and re-cycling the rest of the stream to the anode, saving certain amount of fuel (at least 30%). The resulting system efficiency is increased considerably. CSU, virtually consumes power, thus this solution has energy penalty as well, on the other hand, MCFC generates large amount of heat at elevated temperature, thus part of the CSU can be based on absorption chiller. In all cases, a high amount of fuel is obtained after condensation of water and carbon dioxide and re-cycled to the anode inlet. Based on mathematical modeling done previously, the concept and guidelines for forthcoming experimental investigations are presented in this paper. During planned experiments, an existing single cell laboratory stand will be equipped with re-cycle device (a fan, a peristaltic pump, etc.). Parallel, a mixture of anode off gas will be cooled down for determining the proper temperature for the separation of water and carbon dioxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20separation" title="cryogenic separation">cryogenic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20carbonate%20fuel%20cells" title=" molten carbonate fuel cells"> molten carbonate fuel cells</a> </p> <a href="https://publications.waset.org/abstracts/41874/cryogenic-separation-of-co2-from-molten-carbonate-fuel-cell-anode-outlet-experimental-guidelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Synthesis and Characterization of Doped Li₄Ti₅O₁₂/TiO2 as Potential Anode Materials for Li-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Merazga">S. Merazga</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Boudeffar"> F. Boudeffar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouaoua"> A. Bouaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cheriet"> A. Cheriet</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berouaken"> M. Berouaken</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mebarki"> M. Mebarki</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ayouz"> K. Ayouz</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Gabouze"> N. Gabouze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several anode materials as transition metal oxides (Fe3O4, SnO2 a, SnO2, LiCoO2, and Li₄Ti₅O₁₂) has been used. Although titanium oxide has attracted great attention as a; superior electrode for Li-ion batteries due tohis excellent characteristic such as: high capacity, low cost and non-toxicity. In this work, the Synthesis and Characterization of Si Doped Li₄Ti₅O₁₂ with hydrothermal Method was electrochemically evaluated. The SEM images shows that the morphology of LTO powders sizes in the range 70nm.The electrochemical properties of synthesizer nanopowders are investigated for use as an anode active material for lithium-ion batteries by galvanostatic techniques in Li-half cells, obtaining reversible discharge capacity of 173.8 mAh/g at 0.1C even upon 100 cycles.Though the doped powders exhibit an upgrade in The electrical conductivity , This is suitable for use as a high-power cathode material for lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTO" title="LTO">LTO</a>, <a href="https://publications.waset.org/abstracts/search?q=li-ion" title=" li-ion"> li-ion</a>, <a href="https://publications.waset.org/abstracts/search?q=battteries" title=" battteries"> battteries</a>, <a href="https://publications.waset.org/abstracts/search?q=anode" title=" anode"> anode</a> </p> <a href="https://publications.waset.org/abstracts/170559/synthesis-and-characterization-of-doped-li4ti5o12tio2-as-potential-anode-materials-for-li-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Statistical Study and Simulation of 140 Kv X– Ray Tube by Monte Carlo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Homayouni">Mehdi Homayouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Adinehvand"> Karim Adinehvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Azadbakht"> Bakhtiar Azadbakht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of X-ray tube that here is 0.05 cm. In this simulation, the anode is from tungsten with 18.9 g/cm3 density and angle of the anode is 18°. We simulated X-ray tube for 140 kv. For increasing of speed data acquisition, we use F5 tally. With determination the exact position of F5 tally in the program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev, and average energy is about 0.05 Mev. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-spectrum" title="X-spectrum">X-spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=tube" title=" tube"> tube</a> </p> <a href="https://publications.waset.org/abstracts/32738/statistical-study-and-simulation-of-140-kv-x-ray-tube-by-monte-carlo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">722</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Pre-Lithiation of SiO₂ Nanoparticles-Based Anode for Lithium Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Hoornam">Soraya Hoornam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Sanaee"> Zeinab Sanaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium-ion batteries are widely used for providing energy for mobile electronic devices. Graphite is a traditional anode material that was used in almost all commercialized lithium-ion batteries. It gives a specific capacity of 372 mAh/g for lithium storage. But there are multiple better choices for storing lithium that propose significantly higher specific capacities. As an example, silicon-based materials can be mentioned. In this regard, SiO₂ material can offer a huge specific capacity of 1965 mAh/g. Due to this high lithium storage ability, large volume change occurs in this electrode material during insertion and extraction of lithium, which may lead to cracking and destruction of the electrode. The use of nanomaterials instead of bulk material can significantly solve this problem. In addition, if we insert lithium in the active material of the battery before its cycling, which is called pre-lithiation, a further enhancement in the performance is expected. Here, we have fabricated an anode electrode of the battery using SiO₂ nanomaterial mixed with Graphite and assembled a lithium-ion battery half-cell with this electrode. Next, a pre-lithiation was performed on the SiO₂ nanoparticle-containing electrode, and the resulting anode material was investigated. This electrode has great potential for high-performance lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiO%E2%82%82%20nanoparticles" title="SiO₂ nanoparticles">SiO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-lithiation" title=" pre-lithiation"> pre-lithiation</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20material" title=" anode material"> anode material</a> </p> <a href="https://publications.waset.org/abstracts/158363/pre-lithiation-of-sio2-nanoparticles-based-anode-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Simulation of 140 Kv X– Ray Tube by MCNP4C Code </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sahebnasagh">Amin Sahebnasagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Adinehvand"> Karim Adinehvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Azadbakht"> Bakhtiar Azadbakht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of x-ray tube that here is 0.05 cm. In this simulation, anode is from tungsten with 18.9 g/cm3 density and angle of anode is 180. we simulated x-ray tube for 140 kv. For increasing of speed data acquisition we use F5 tally. With determination the exact position of F5 tally in program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev and average energy is about 0.05 Mev. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=x-spectrum" title="x-spectrum">x-spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNP4C%20code" title=" MCNP4C code"> MCNP4C code</a> </p> <a href="https://publications.waset.org/abstracts/23579/simulation-of-140-kv-x-ray-tube-by-mcnp4c-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazzak%20Akroot">Abdulrazzak Akroot</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfu%20Namli"> Lutfu Namli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title="solid oxide fuel cell">solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=anode-supported%20model" title=" anode-supported model"> anode-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte-supported%20model" title=" electrolyte-supported model"> electrolyte-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a> </p> <a href="https://publications.waset.org/abstracts/104800/energy-and-exergy-analysis-of-anode-supported-and-electrolyte-supported-solid-oxide-fuel-cells-gas-turbine-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpha%20Matthew">Alpha Matthew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20carbon%20husk" title="coconut carbon husk">coconut carbon husk</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20electrode" title=" anode electrode"> anode electrode</a> </p> <a href="https://publications.waset.org/abstracts/192345/electrochemical-study-of-al-doped-k2co3-activated-coconut-husk-carbon-based-composite-anode-material-for-battery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Development of Sb/MWCNT Free Standing Anode for Li-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Elizabeth">Indu Elizabeth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimony/Multi Walled Carbon nano tube nanocomposite (Sb/MWCNT) is synthesized using ethylene glycol mediated reduction process. Binder free, self-supporting and flexible Sb/MWCNT nanocomposite paper has been prepared by employing the vacuum filtration technique. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS), and thermal gravimetric analysis (TGA) to evaluate the structure of anode and tested for its performance in a Lithium rechargeable cell. Electrochemical measurements demonstrate that the Sb/MWCNT composite paper anode delivers a specific discharge capacity of ~400 mAh g-1 up to a current density of 100 mA g-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimony" title="antimony">antimony</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwalled%20carbon%20nanotube" title=" multiwalled carbon nanotube"> multiwalled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20capacity" title=" specific capacity"> specific capacity</a> </p> <a href="https://publications.waset.org/abstracts/36151/development-of-sbmwcnt-free-standing-anode-for-li-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrol%20%C3%96nal">Gürol Önal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Din%C3%A7er"> Kevser Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Electrolyte%20Membrane%20%28PEM%29" title=" Polymer Electrolyte Membrane (PEM)"> Polymer Electrolyte Membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/8063/experimental-investigation-of-performance-anode-side-of-pem-fuel-cell-with-spin-method-coated-with-yszsdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Khali">Mohamed Ahmed Khali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnatite%20anode" title="magnatite anode">magnatite anode</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20well" title=" deep well"> deep well</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20bed" title=" ground bed"> ground bed</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20rectifies" title=" transformer rectifies"> transformer rectifies</a>, <a href="https://publications.waset.org/abstracts/search?q=impreced%20current" title=" impreced current"> impreced current</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20box" title=" junction box"> junction box</a> </p> <a href="https://publications.waset.org/abstracts/165966/deep-well-grounded-magnetite-anode-chains-retrieval-and-installation-for-raslanuf-complex-impressed-current-cathodic-protection-system-rectification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongkui%20Cui">Yongkui Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengping%20Wang"> Fengping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailei%20Zhao"> Hailei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zubair%20Iqbal"> Muhammad Zubair Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziya%20Wang"> Ziya Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Li"> Yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengpeng%20LV"> Pengpeng LV</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions.The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20property" title="electrochemical property">electrochemical property</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title=" hydrothermal synthesis"> hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=stannous%20oxide" title=" stannous oxide"> stannous oxide</a> </p> <a href="https://publications.waset.org/abstracts/24607/synthesis-of-sno-novel-cabbage-nanostructure-and-its-electrochemical-property-as-an-anode-material-for-lithium-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhihong%20Luo">Zhihong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangbin%20Zhu"> Guangbin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lulu%20Guo"> Lulu Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhujun%20Lyu"> Zhujun Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Luo"> Kun Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20oxygen%20battery" title="lithium oxygen battery">lithium oxygen battery</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-activation" title=" pre-activation"> pre-activation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclability" title=" cyclability"> cyclability</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a> </p> <a href="https://publications.waset.org/abstracts/103398/improving-cyclability-and-capacity-of-lithium-oxygen-batteries-via-low-rate-pre-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Bacteria Removal from Wastewater by Electrocoagulation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjema%20Nouara">Boudjema Nouara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mameri%20%20Nabil"> Mameri Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria have played an important role in water contamination as a consequence of organic pollution. In this study, an electrocoagulation process was adopted to remove fecal contamination and pathogenic bacteria from waste water. The effect of anode/cathodes materials as well as operating conditions for bacteria removal from water, such as current intensity and initial pH and temperature. The results indicated that the complete removal was achevied when using aluminium anode as anode at current intensity of 3A, initial pH of 7-8 and electrolysis time of 30 minutes. This process showed a bactericidal effect of 95 to 99% for the total and fecal coliforms and 99% to 100% for Eschercichia coli and fecal Streptococci. A decrease of 72% was recorded for sulphite-reducing Clostridia. Thus, this process has the potential to be one the options for treatment where high amount of bacteria in wastewater river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=el%20Harrach%20river" title=" el Harrach river"> el Harrach river</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/28065/bacteria-removal-from-wastewater-by-electrocoagulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi%20Bin%20Abdol%20Rahim">Abdul Hadi Bin Abdol Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Alhassan%20Salami%20Tijani"> Alhassan Salami Tijani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion" title="diffusion">diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=gases%20crosover" title=" gases crosover"> gases crosover</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=Fick%E2%80%99s%20law" title=" Fick’s law"> Fick’s law</a> </p> <a href="https://publications.waset.org/abstracts/40292/modeling-and-analysis-the-effects-of-temperature-and-pressure-on-the-gas-crossover-in-polymer-electrolyte-membrane-electrolyzer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupan%20Das%20Chakraborty">Rupan Das Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Surendra%20K.%20Martha"> Surendra K. Martha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dextrose%20derived%20hard%20carbon" title="dextrose derived hard carbon">dextrose derived hard carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=anode" title=" anode"> anode</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium-ion%20battery" title=" sodium-ion battery"> sodium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a> </p> <a href="https://publications.waset.org/abstracts/167132/hard-carbon-derived-from-dextrose-as-high-performance-anode-material-for-sodium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Cu3SbS3 as Anode Material for Sodium Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atef%20Y.%20Shenouda">Atef Y. Shenouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Xu"> Fei Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu₃SbS₃ (CAS) was synthesized by direct solid-state reaction from elementary Cu, Sb, & S and hydrothermal reaction using thioacetamide (TAM). Crystal structure and morphology for the prepared phases of Cu₃SbS₃ were studied via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The band gap energies are 2 and 2.2 eV for the prepared samples. The two samples are as anode for Na ion storage. They show high initial capacity to 490 mAh/g. Na cell prepared from TAM sample shows 280 mAh/g after 25 cycles vs. 60 mAh/g for elemental sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu3SbS3" title="Cu3SbS3">Cu3SbS3</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20batteries" title=" sodium batteries"> sodium batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=thioacetamide" title=" thioacetamide"> thioacetamide</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20sources" title=" sulphur sources"> sulphur sources</a> </p> <a href="https://publications.waset.org/abstracts/179464/cu3sbs3-as-anode-material-for-sodium-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Deep Well-Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Khalil">Mohamed Ahmed Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of deep well anode ground beds (GBs) have been retrieved due to unoperated anode chains. New identical magnetite anode chains (MAC) have been installed at Raslanuf complex impressed current Cathodic protection (ICCP) system, distributed at different plants (Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB-associated severely corroded wellhead casings were well maintained and/or replaced by new fabricated and modified ones. The main cause of the wellhead casing's severe internal corrosion was discussed and the conducted remedy action to overcome future corrosion problems is presented. All GB-connected anode junction boxes (AJBs) and shunts were closely inspected, maintained and necessary replacement and/or modifications were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB-associated Transformer-Rectifiers Units (TRU) were subjected to thorough inspection and necessary maintenance was performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated, alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded and all obtained test results are presented. DC current outputs have been adjusted and DC current outputs of each MAC have been recorded for each GB AJB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetite%20anodes" title="magnetite anodes">magnetite anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20well" title=" deep well"> deep well</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20beds" title=" ground beds"> ground beds</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20rectifier" title=" transformer rectifier"> transformer rectifier</a>, <a href="https://publications.waset.org/abstracts/search?q=impressed%20current" title=" impressed current"> impressed current</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20boxes" title=" junction boxes"> junction boxes</a> </p> <a href="https://publications.waset.org/abstracts/165646/deep-well-grounded-magnetite-anode-chains-retrieval-and-installation-for-raslanuf-complex-impressed-current-cathodic-protection-system-rectification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Electrocoagulation of Ni(OH)2/NiOOH for the Removal of Boron Using Nickel Foam as Sacrificial Anode </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Shih">Yu-Jen Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Hunag"> Yao-Hui Hunag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocoagulation (EC) using metallic nickel foam as anode and cathode for the removal of boron from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was not affected by current density. In respect of energy consumption, 1.25 mA/cm2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency too much. Cyclic voltammetry indicated that the oxide film, Ni(OH)2 and NiOOH, at specific overpotentials would result in less weight loss of anode than that predicted by the Faraday’s law. The optimal conditions under which 99.2% of boron was removed and less than 1 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 1.25 mA/cm2 in 120 min as treating wastewaters containing 10 ppm-B. XRD and SEM characterization suggested that the granular crystallites of hydroxide precipitates was composed of theophrastite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borohydrides" title="borohydrides">borohydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20generation" title=" hydrogen generation"> hydrogen generation</a>, <a href="https://publications.waset.org/abstracts/search?q=NiOOH" title=" NiOOH"> NiOOH</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20removal" title=" boron removal"> boron removal</a> </p> <a href="https://publications.waset.org/abstracts/45835/electrocoagulation-of-nioh2niooh-for-the-removal-of-boron-using-nickel-foam-as-sacrificial-anode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liyew%20Yizengaw%20Yitayih">Liyew Yizengaw Yitayih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title="lithium-ion battery">lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=LiSnO%20anode" title=" LiSnO anode"> LiSnO anode</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20doping" title=" potassium doping"> potassium doping</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20diffusivity" title=" lithium-ion diffusivity"> lithium-ion diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20conductivity" title=" electronic conductivity"> electronic conductivity</a> </p> <a href="https://publications.waset.org/abstracts/173540/investigating-the-influence-of-potassium-ion-doping-on-lithium-ion-battery-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20C.%20Vaso">Christian C. Vaso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rinlee%20Butch%20M.%20Cervera"> Rinlee Butch M. Cervera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO<sub>3</sub> (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>/Zr<sub>0.92</sub>Y<sub>0.08</sub>O<sub>2</sub> (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10<sup>-1</sup> S/cm at 600 <sup>o</sup>C with 0.22 eV activation energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/60719/preparation-and-conductivity-measurements-of-lsmysz-composite-solid-oxide-electrolysis-cell-anode-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Development of (Cu2o-Zno) Binary Oxide Anode for Electrochemical Degradation of Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Hajji">M. El Hajji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hallaoui"> A. Hallaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benlhachemi"> A. Benlhachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Jbara"> O. Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tara"> A. Tara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakiz"> B. Bakiz</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hilali"> M. Hilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was the development of zinc-copper binary oxide "Cu2O-ZnO" thin films by the electrochemical method "cathodic electrodeposition" and their uses for the degradation of a basic dye "Congo Red" by direct anodic oxidation. The anode materials synthesized were characterized by X-ray diffraction "XRD" and by scanning electron microscopy "SEM" coupled to EDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2O-ZnO%20thin%20films" title="Cu2O-ZnO thin films">Cu2O-ZnO thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition" title=" cathodic electrodeposition"> cathodic electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodegradation" title=" electrodegradation"> electrodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo%20Red" title=" Congo Red"> Congo Red</a>, <a href="https://publications.waset.org/abstracts/search?q=BDD" title=" BDD"> BDD</a> </p> <a href="https://publications.waset.org/abstracts/17657/development-of-cu2o-zno-binary-oxide-anode-for-electrochemical-degradation-of-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehak%20Munjal">Mehak Munjal</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kishore%20Sharma"> Raj Kishore Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh"> Gurmeet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20ferrite" title=" cobalt ferrite"> cobalt ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/104755/cofe2o4-as-anode-for-enhanced-energy-recovery-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> A Comparative Study between Ionic Wind and Conventional Fan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Lee">J. R. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Lau"> E. V. Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20fan" title="conventional fan">conventional fan</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20wind" title=" ionic wind"> ionic wind</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20profile" title=" wind profile "> wind profile </a> </p> <a href="https://publications.waset.org/abstracts/21860/a-comparative-study-between-ionic-wind-and-conventional-fan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20M.%20S.%20Sanad">Moustafa M. S. Sanad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20modification" title="structure modification">structure modification</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20substitution" title=" cationic substitution"> cationic substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stoichiometric%20synthesis" title=" non-stoichiometric synthesis"> non-stoichiometric synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/186386/controlling-the-oxygen-vacancies-in-the-structure-of-anode-materials-for-improved-electrochemical-performance-in-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Removal of Chloro-Compounds from Pulp and Paper Industry Wastewater Using Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhaya%20Sharma">Chhaya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dushyant%20Kumar"> Dushyant Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the treatment of wastewater generated by paper industry by using aluminium as anode material. The quantitative and qualitative analyses of chloropenolics have been carried out by using primary clarifier effluent with the help of gas chromatography mass spectrometry. Sixteen chlorophenolics compounds have been identified and estimated. Results indicated that among 16 identified compounds, 7 are 100% removed and overall 66% reduction in chorophenolics compounds have been detected. Moreover, during the treatment, the biodegradability index of wastewater significantly increases, along with 70 % reduction in chemical oxygen demand and 99 % in color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20anode" title="aluminium anode">aluminium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title=" chlorophenolics"> chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load" title=" pollution load"> pollution load</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/71014/removal-of-chloro-compounds-from-pulp-and-paper-industry-wastewater-using-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=anode&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>