CINXE.COM

Search results for: photo bioreactor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: photo bioreactor</title> <meta name="description" content="Search results for: photo bioreactor"> <meta name="keywords" content="photo bioreactor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="photo bioreactor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="photo bioreactor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 519</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: photo bioreactor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Ghahremani">Hosein Ghahremani</a>, <a href="https://publications.waset.org/abstracts/search?q=MohammadReza%20Khoshchehre"> MohammadReza Khoshchehre</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Hakemi"> Pejman Hakemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photo-bioreactor" title="photo-bioreactor">photo-bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20and%20optimization" title=" control and optimization"> control and optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Light%20intensity" title=" Light intensity"> Light intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/13380/simulation-and-controller-tunning-in-a-photo-bioreactor-applying-by-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Impact of Light Intensity, Illumation Strategy and Self-Shading on Sustainable Algal Growth in Photo Bioreactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amritanshu%20Shriwastav">Amritanshu Shriwastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnendu%20Bose">Purnendu Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algal photo bioreactors were operated at incident light intensities of 0.24, 2.52 and 5.96 W L-1 to determine the impact of light on algal growth. Low specific Chlorophyll-a content of algae was a strong indicator of light induced stress on algal cells. It was concluded that long term operation of photo bioreactors in the continuous illumination mode was infeasible under the range of incident light intensities examined and provision of a dark period after each light period was necessary for algal cells to recover from light-induced stress. Long term operation of photo bioreactors in the intermittent illumination mode was however possible at light intensities of 0.24 and 2.52 W L-1. Further, the incident light intensity in the photo bioreactors was found to decline exponentially with increase in algal concentration in the reactor due to algal ‘self-shading’. This may be an important determinant for photo bioreactor performance at higher algal concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algae" title="Algae">Algae</a>, <a href="https://publications.waset.org/abstracts/search?q=algal%20growth" title=" algal growth"> algal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor" title=" photo bioreactor"> photo bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-inhibition" title=" photo-inhibition"> photo-inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%98self-shading%E2%80%99" title=" ‘self-shading’"> ‘self-shading’</a> </p> <a href="https://publications.waset.org/abstracts/1521/impact-of-light-intensity-illumation-strategy-and-self-shading-on-sustainable-algal-growth-in-photo-bioreactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Removal of Nutrients from Sewage Using Algal Photo-Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purnendu%20Bose">Purnendu Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Kainthola"> Jyoti Kainthola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutrients" title="nutrients">nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=photo" title=" photo"> photo</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/1519/removal-of-nutrients-from-sewage-using-algal-photo-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Alexander">Vincent Alexander</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizkita%20Esyanti"> Rizkita Esyanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaves of <em>Stevia rebaudiana</em> contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of <em>Stevia rebaudiana</em> in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is <em>in vitro </em>temporary immersion system (TIS) culture method using recipient for automated immersion (RITA<sup>&reg;</sup>) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA<sup>&reg;</sup> bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA<sup>&reg;</sup> bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA<sup>&reg;</sup> bioreactor system without red LED light induction, i.e. 71.04 &plusmn; 5.36 &mu;g/g and 42.92 &plusmn; 5.40 &mu;g/g respectively. Biomass growth rate reached as high as 0.072 &plusmn; 0.015/day for red LED light induced TIS RITA<sup>&reg;</sup> bioreactor system, whereas TIS RITA<sup>&reg;</sup> bioreactor system without induction was only 0.046 &plusmn; 0.003/day. Productivity of <em>Stevia rebaudiana </em>shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that <em>Stevia rebaudiana </em>shoot in TIS RITA<sup>&reg;</sup> bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LED" title="LED">LED</a>, <a href="https://publications.waset.org/abstracts/search?q=Stevia%20rebaudiana" title=" Stevia rebaudiana"> Stevia rebaudiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Stevioside" title=" Stevioside"> Stevioside</a>, <a href="https://publications.waset.org/abstracts/search?q=TIS%20RITA" title=" TIS RITA"> TIS RITA</a> </p> <a href="https://publications.waset.org/abstracts/54227/stimulation-of-stevioside-accumulation-on-stevia-rebaudiana-bertoni-shoot-culture-induced-with-red-led-light-in-tis-rita-bioreactor-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Yadav">O. P. Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/18641/effect-of-doping-ag-and-n-on-the-photo-catalytic-activity-of-znocuo-nanocomposite-for-degradation-of-methyl-orange-under-uv-and-visible-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Comparison of Growth Medium Efficiency into Stevia (Stevia rebaudiana Bertoni) Shoot Biomass and Stevioside Content in Thin-Layer System, TIS RITA® Bioreactor, and Bubble Column Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurhayati%20Br%20Tarigan">Nurhayati Br Tarigan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizkita%20Rachmi%20Esyanti"> Rizkita Rachmi Esyanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia (Stevia rebaudiana Bertoni) has a great potential to be used as a natural sweetener because it contains steviol glycoside, which is approximately 100 - 300 times sweeter than sucrose, yet low calories. Vegetative and generative propagation of S. rebaudiana is inefficient to produce stevia biomass and stevioside. One of alternative for stevia propagation is in vitro shoot culture. This research was conducted to optimize the best medium for shoot growth and to compare the bioconversion efficiency and stevioside production of S. rebaudiana shoot culture cultivated in thin layer culture (TLC), recipient for automated temporary immersion system (TIS RITA®) bioreactor, and bubble column bioreactor. The result showed that 1 ppm of Kinetin produced a healthy shoot and the highest number of leaves compared to BAP. Shoots were then cultivated in TLC, TIS RITA® bioreactor, and bubble column bioreactor. Growth medium efficiency was determined by yield and productivity. TLC produced the highest growth medium efficiency of S. rebaudiana, the yield was 0.471 ± 0.117 gbiomass.gsubstrate-1, and the productivity was 0.599 ± 0.122 gbiomass.Lmedium-1.day-1. While TIS RITA® bioreactor produced the lowest yield and productivity, 0.182 ± 0.024 gbiomass.gsubstrate-1 and 0.041 ± 0.0002 gbiomass.Lmedium-1.day-1 respectively. The yield of bubble column bioreactor was 0.354 ± 0.204 gbiomass.gsubstrate-1 and the productivity was 0,099 ± 0,009 gbiomass.Lmedium-1.day-1. The stevioside content from the highest to the lowest was obtained from stevia shoot which was cultivated on TLC, TIS RITA® bioreactor, and bubble column bioreactor; the content was 93,44 μg/g, 42,57 μg/g, and 23,03 μg/g respectively. All three systems could be used to produce stevia shoot biomass, but optimization on the number of nutrition and oxygen intake was required in each system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20medium%20efficiency" title=" growth medium efficiency"> growth medium efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Stevia%20rebaudiana" title=" Stevia rebaudiana"> Stevia rebaudiana</a>, <a href="https://publications.waset.org/abstracts/search?q=stevioside" title=" stevioside"> stevioside</a>, <a href="https://publications.waset.org/abstracts/search?q=TIS%20RITA%C2%AE" title=" TIS RITA®"> TIS RITA®</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC" title=" TLC"> TLC</a> </p> <a href="https://publications.waset.org/abstracts/54234/comparison-of-growth-medium-efficiency-into-stevia-stevia-rebaudiana-bertoni-shoot-biomass-and-stevioside-content-in-thin-layer-system-tis-rita-bioreactor-and-bubble-column-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Single Species vs Mixed Microbial Culture Degradation of Pesticide in a Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20R.%20Chavan">Karan R. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Srivats%20Gopalan"> Srivats Gopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumudini%20V.%20Marathe"> Kumudini V. Marathe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current work, the comparison of degradation of malathion by single species, Pseudomonas Stutzeri, and Activated Sludge/Mixed Microbial Culture is studied in a Membrane Bioreactor. Various parameters were considered to study the effect of single species degradation compared to degradation by activated sludge. The experimental results revealed 85-90% reduction in the COD of the Malathion containing synthetic wastewater. Complete reduction of malathion was observed within 24 hours in both the cases. The critical flux was 10 LMH for both the systems. Fouling propensity, Cake and Membrane resistances were calculated thus giving an insight regarding the working of Membrane Bioreactor-based on single species and activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fouling" title="fouling">fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20microbial%20culture" title=" mixed microbial culture"> mixed microbial culture</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20species" title=" single species"> single species</a> </p> <a href="https://publications.waset.org/abstracts/46965/single-species-vs-mixed-microbial-culture-degradation-of-pesticide-in-a-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Thermal Processing of Zn-Bi Layered Double Hydroxide ZnO Doped Bismuth for a Photo-Catalytic Efficiency under Light Visible</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benyamina%20Imane">Benyamina Imane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benalioua%20Bahia"> Benalioua Bahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Meriem"> Mansour Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bentouami%20Abdelhadi"> Bentouami Abdelhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to use a synthetic route of the layered double hydroxide as a method of zinc oxide by doping a transition metal. The material is heat-treated at different temperatures then tested on the photo-fading of an acid dye indigo carmine under visible radiation compared with ZnO. The photo catalytic efficiency of Bi-ZnO in a visible light of 500 W was tested on photo-bleaching of an indigoid dye in comparison with the commercial ZnO. Indeed, a complete discoloration of indigo carmine solution of 16 mg / L was obtained after 40 and 120 minutes of irradiation in the presence of ZnO and ZnO-Bi respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDH" title="LDH">LDH</a>, <a href="https://publications.waset.org/abstracts/search?q=POA" title=" POA"> POA</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-catalysis" title=" photo-catalysis"> photo-catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-ZnO%20doping" title=" Bi-ZnO doping"> Bi-ZnO doping</a> </p> <a href="https://publications.waset.org/abstracts/33450/thermal-processing-of-zn-bi-layered-double-hydroxide-zno-doped-bismuth-for-a-photo-catalytic-efficiency-under-light-visible" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Development of Closed System for Bacterial CO2 Mitigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somesh%20Misha">Somesh Misha</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Raghuvanshi"> Smita Raghuvanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Gupta"> Suresh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing concentration of green house gases (GHG's), such as CO2 is of major concern and start showing its impact nowadays. The recent studies are focused on developing the continuous system using photoautotrophs for CO2 mitigation and simultaneous production of primary and secondary metabolites as a value addition. The advent of carbon concentrating mechanism had blurred the distinction between autotrophs and heterotrophs and now the paradigm has shifted towards the carbon capture and utilization (CCU) rather than carbon capture and sequestration (CCS). In the present work, a bioreactor was developed utilizing the chemolithotrophic bacterial species using CO2 mitigation and simultaneous value addition. The kinetic modeling was done and the biokinetic parameters are obtained for developing the bioreactor. The bioreactor was developed and studied for its operation and performance in terms of volumetric loading rate, mass loading rate, elimination capacity and removal efficiency. The characterization of effluent from the bioreactor was carried out for the products obtained using the analyzing techniques such as FTIR, GC-MS, and NMR. The developed bioreactor promised an economic, efficient and effective solution for CO2 mitigation and simultaneous value addition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20mitigation" title="CO2 mitigation">CO2 mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-reactor" title=" bio-reactor"> bio-reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=chemolithotrophic%20bacterial%20species" title=" chemolithotrophic bacterial species"> chemolithotrophic bacterial species</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a> </p> <a href="https://publications.waset.org/abstracts/18941/development-of-closed-system-for-bacterial-co2-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junior%20B.%20N.%20Adohinzin">Junior B. N. Adohinzin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Xu"> Ling Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor%20%28MBR%29" title="membrane bioreactor (MBR)">membrane bioreactor (MBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor%20%28MBBR%29" title=" moving bed biofilm reactor (MBBR)"> moving bed biofilm reactor (MBBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20removal" title=" nutrients removal"> nutrients removal</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20nitrification%20and%20denitrification" title=" simultaneous nitrification and denitrification"> simultaneous nitrification and denitrification</a> </p> <a href="https://publications.waset.org/abstracts/10455/nutrients-removal-control-via-an-intermittently-aerated-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> Performance of an Anaerobic Osmotic Membrane Bioreactor Hybrid System for Wastewater Treatment and Phosphorus Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Yeh%20Lu">Ming-Yeh Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saikat%20Sinha%20Ray"> Saikat Sinha Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Te%20Hsu"> Hung-Te Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The submerged anaerobic osmotic membrane bioreactor (AnOMBR) integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR used cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5 L bioreactor at 30-35 ℃. Active layer was orientated to feed stream for minimizing membrane fouling and scaling. Additionally, a peristaltic pump was used to circulate magnesium sulphate (MgSO₄) solution applied as draw solution (DS). Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneously control the salt accumulation in the bioreactor. During experiment progress, the average water flux was around 1.6 LMH. The AnOMBR process showed greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial of ammonia was removed. On the other hand, the average methane production of 0.22 L/g sCOD was obtained. Subsequently, the overall performance demonstrates that a novel submerged AnOMBR system is potential for simultaneous wastewater treatment and resource recovery from wastewater. Therefore, the new concept of this system can be used to replace for the conventional AnMBR in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20treatment" title="anaerobic treatment">anaerobic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title=" forward osmosis"> forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20recovery" title=" phosphorus recovery"> phosphorus recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/63831/performance-of-an-anaerobic-osmotic-membrane-bioreactor-hybrid-system-for-wastewater-treatment-and-phosphorus-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Kitanou">Sarra Kitanou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20wastewater%20treatment" title="aerobic wastewater treatment">aerobic wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20activated%20sludge%20process" title=" conventional activated sludge process"> conventional activated sludge process</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse%20for%20irrigation" title=" reuse for irrigation"> reuse for irrigation</a> </p> <a href="https://publications.waset.org/abstracts/167997/membrane-bioreactor-versus-activated-sludge-process-for-aerobic-wastewater-treatment-and-recycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> Assessing the Preparedness of Teachers for Their Role in an Inclusive Classroom: Photo-Voice as a Reflexive Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nan%20Stevens">Nan Stevens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photo-voice is a participatory method through which participants identify and represent their lived experiences and contexts through the use of photo imagery. Photo-voice is a qualitative research method that explores individuals’ lived experiences. This method is known as a creative art form to help researchers listen to the 'voice' of a certain population. A teacher educator at Thompson Rivers University, responsible for preparing new teachers for the demands of the profession in an ever-changing demographic, utilized the Photo-voice method to enable a self-study of emerging teachers’ readiness for the inclusive classroom. Coding analysis was applied to 96 Photo-voice portfolios, which were created over two years with the Inclusive Education course work, in a Bachelor of Education program (Elementary). Coding utilized students’ written associations to their visual images, anecdotes attached to visual metaphors, and personal narratives that illustrated the professional development process in which they were engaged. Thematic findings include: 1) becoming an inclusive educator is a process; 2) one must be open to identifying and exploring their fear and biases, and 3) an attitudinal shift enables relevant skill acquisition and readiness for working with diverse student needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teacher%20education" title="teacher education">teacher education</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20education" title=" inclusive education"> inclusive education</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20development" title=" professional development"> professional development</a>, <a href="https://publications.waset.org/abstracts/search?q=Photo-voice" title=" Photo-voice"> Photo-voice</a> </p> <a href="https://publications.waset.org/abstracts/104880/assessing-the-preparedness-of-teachers-for-their-role-in-an-inclusive-classroom-photo-voice-as-a-reflexive-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duong%20Cong%20Chinh">Duong Cong Chinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Quang%20Huy"> Le Quang Huy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20rate%20anaerobic%20digestion" title="high rate anaerobic digestion">high rate anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic" title=" thermophilic anaerobic"> thermophilic anaerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a> </p> <a href="https://publications.waset.org/abstracts/110378/thermophilic-anaerobic-granular-membrane-distillation-bioreactor-for-wastewater-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> PhotoRoom App</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Nasser">Nouf Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Alotaibi"> Nada Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jazzal%20Kandiel"> Jazzal Kandiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study is about the use of artificial intelligence in PhotoRoom. When an individual selects a photo, PhotoRoom automagically removes or separates the background from other parts of the photo through the use of artificial intelligence. This will allow an individual to select their desired background and edit it as they wish. The methodology used was an observation, where various reviews and parts of the app were observed. The review section's findings showed that many people actually like the app, and some even rated it five stars. The conclusion was that PhotoRoom is one of the best photo editing apps due to its speed and accuracy in removing backgrounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=removing%20background" title="removing background">removing background</a>, <a href="https://publications.waset.org/abstracts/search?q=app" title=" app"> app</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/137271/photoroom-app" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Defect Induced Enhanced Photoresponse in Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prarthana%20Gowda">Prarthana Gowda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tushar%20Sakorikar"> Tushar Sakorikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20K.%20Reddy"> Siva K. Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Darim%20B.%20Ferry"> Darim B. Ferry</a>, <a href="https://publications.waset.org/abstracts/search?q=Abha%20Misra"> Abha Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, a two-dimensional carbon allotrope has demonstrated excellent electrical, mechanical and optical properties. A tunable band gap of grapheme demonstrated broad band absorption of light with a response time of picoseconds, however it suffers a fast recombination of the photo generated carriers. Many reports have explored to overcome this problem; in this presentation, we discuss defect induced enhanced photoresponse in a few layer graphene (FLG) due to exposure of infrared (IR) radiation. The two and four-fold enhancement in the photocurrent is achieved by addition of multiwalled carbon nano tubes (MWCNT) to an FLG surface and also creating the wrinkles in the FLG (WG) respectively. In our study, it is also inferred that the photo current generation is highly dependent on the morphological defects on the graphene. It is observed that the FLG (without defects) generates the photo current instantaneously, and after a prolonged exposure to the IR radiation decays the generation rate. Importantly, the presence of MWCNT on FLG enhances the stability and WG presented both stable as well as enhanced photo response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwalled%20carbon%20nano%20tubes" title=" multiwalled carbon nano tubes"> multiwalled carbon nano tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkled%20graphene" title=" wrinkled graphene"> wrinkled graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20detector" title=" photo detector"> photo detector</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20current" title=" photo current "> photo current </a> </p> <a href="https://publications.waset.org/abstracts/13611/defect-induced-enhanced-photoresponse-in-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Photo-Reflective Mulches For Saving Water in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Mormile">P. Mormile</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rippa"> M. Rippa</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bonanomi"> G. Bonanomi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Scala"> F. Scala</a>, <a href="https://publications.waset.org/abstracts/search?q=Changrong%20Yan"> Changrong Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Petti"> L. Petti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photo-reflective films represent, in the panorama of agricultural films, a valid support for Spring and Summer cultivations, both in open field and under greenhouse. In fact, thanks to the high reflectivity of these films, thermal aggression, that causes serious problems to plants when traditional black mulch films are used, is avoided. Yellow or silver colored photo-reflective films protect plants from damages, assure the mulching effect, give a valid support to Integrated Pest Management and, according to recent trials, greatly contribute in saving water. This further advantage is determined by the high water condensation under the mulch film and this gives rise to reduction of irrigation. Water saving means also energy saving for electric system of water circulation. Trials performed at different geographic and ambient context confirm that the use of photo-reflective mulch films during the hot season allows to save water up to 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photo-selective%20mulches" title="photo-selective mulches">photo-selective mulches</a>, <a href="https://publications.waset.org/abstracts/search?q=saving%20water" title=" saving water"> saving water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20circulation" title=" water circulation"> water circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a> </p> <a href="https://publications.waset.org/abstracts/23464/photo-reflective-mulches-for-saving-water-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benaliouche%20Hana">Benaliouche Hana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessemed%20Djamal"> Abdessemed Djamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Meniai%20Abdessalem"> Meniai Abdessalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Lesage%20Geoffroy"> Lesage Geoffroy</a>, <a href="https://publications.waset.org/abstracts/search?q=Heran%20Marc"> Heran Marc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Activated%20Sludge%20Model%20No.%201%20%28ASM1%29" title="Activated Sludge Model No. 1 (ASM1)">Activated Sludge Model No. 1 (ASM1)</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling%20membrane%20bioreactor" title=" mathematical modeling membrane bioreactor"> mathematical modeling membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20microbial%20products" title=" soluble microbial products"> soluble microbial products</a>, <a href="https://publications.waset.org/abstracts/search?q=UAP" title=" UAP"> UAP</a>, <a href="https://publications.waset.org/abstracts/search?q=BAP" title=" BAP"> BAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Modeling%20SMP" title=" Modeling SMP"> Modeling SMP</a>, <a href="https://publications.waset.org/abstracts/search?q=MBR" title=" MBR"> MBR</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20biomass" title=" heterotrophic biomass"> heterotrophic biomass</a> </p> <a href="https://publications.waset.org/abstracts/139601/modeling-approach-to-better-control-fouling-in-a-submerged-membrane-bioreactor-for-wastewater-treatment-development-of-analytical-expressions-in-steady-state-using-asm1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Removal of Trimethoprim and Sulfamethoxazole in Solid Waste Leachate by Two-Stage Membrane Bioreactor under High Mixed Liquor Suspended Solids Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilubon%20Thongtan">Nilubon Thongtan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilai%20Chiemchaisri"> Wilai Chiemchaisri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chart%20Chiemchaisri"> Chart Chiemchaisri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose of study is to investigate performance of two-stage membrane bioreactor (2S-MBR) to treat trimethoprim and sulfamethoxazole in solid waste leachate. This system consists of 2 tanks, anoxic tank with incline plates and MBR tank. The system was operated at 12 h-HRT each, of which the MBR MLSS concentration was operated at 25,000-35,000 mg/L. The average sCOD concentration of the fed leachate was 6,310±3,595 mg/L. It shows that high organic removals in terms of sCOD and sBOD were achieved as of 97-99% and 99%, respectively. The TKN and NH3-N removals were 76-98% and 91-99%, respectively. Concurrently, trimethoprim and sulfamethoxazole were detected in the leachate with concentrations of 113-0 μg/L and 74-2 μg/L, respectively. High removals of trimethoprim and sulfamethoxazole were also found as of 95-99% and 85-95%, respectively. In sum, this MBR feature and operation gave achievement in treatment of macro-pollutants including trimethoprim and sulfamethoxazole existing in low levels in the solid waste leachate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20leachate" title=" solid waste leachate"> solid waste leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfamethoxazole" title=" sulfamethoxazole"> sulfamethoxazole</a>, <a href="https://publications.waset.org/abstracts/search?q=trimethoprim" title=" trimethoprim"> trimethoprim</a> </p> <a href="https://publications.waset.org/abstracts/91047/removal-of-trimethoprim-and-sulfamethoxazole-in-solid-waste-leachate-by-two-stage-membrane-bioreactor-under-high-mixed-liquor-suspended-solids-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Baltrenas">P. Baltrenas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Paliulis"> D. Paliulis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kolodynskij"> V. Kolodynskij</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Urbanas"> D. Urbanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/101582/experimental-research-of-biogas-production-by-using-sewage-sludge-and-chicken-manure-bioloadings-with-wood-biochar-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Mitigating Food Insecurity and Malnutrition by Promoting Carbon Farming via a Solar-Powered Enzymatic Composting Bioreactor with Arduino-Based Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Molin%20A.">Molin A.</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20Ramos%20J.%20M."> De Ramos J. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cadion%20L.%20G."> Cadion L. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pico%20R.%20L."> Pico R. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malnutrition and food insecurity represent significant global challenges affecting millions of individuals, particularly in low-income and developing regions. The researchers created a solar-powered enzymatic composting bioreactor with an Arduino-based monitoring system for pH, humidity, and temperature. It manages mixed municipal solid wastes incorporating industrial enzymes and whey additives for accelerated composting and minimized carbon footprint. Within 15 days, the bioreactor yielded 54.54% compost compared to 44.85% from traditional methods, increasing yield by nearly 10%. Tests showed that the bioreactor compost had 4.84% NPK, passing metal analysis standards, while the traditional pit compost had 3.86% NPK; both are suitable for agriculture. Statistical analyses, including ANOVA and Tukey's HSD test, revealed significant differences in agricultural yield across different compost types based on leaf length, width, and number of leaves. The study compared the effects of different composts on Brassica rapa subsp. Chinesis (Petchay) and Brassica juncea (Mustasa) plant growth. For Pechay, significant effects of compost type on plant leaf length (F(5,84) = 62.33, η² = 0.79) and leaf width (F(5,84) = 12.35, η² = 0.42) were found. For Mustasa, significant effects of compost type on leaf length (F(4,70) = 20.61, η² = 0.54), leaf width (F(4,70) = 19.24, η² = 0.52), and number of leaves (F(4,70) = 13.17, η² = 0.43) were observed. This study explores the effectiveness of the enzymatic composting bioreactor and its viability in promoting carbon farming as a solution to food insecurity and malnutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title="malnutrition">malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20insecurity" title=" food insecurity"> food insecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20composting%20bioreactor" title=" enzymatic composting bioreactor"> enzymatic composting bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino-based%20monitoring%20system" title=" arduino-based monitoring system"> arduino-based monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20farming" title=" carbon farming"> carbon farming</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20additive" title=" whey additive"> whey additive</a>, <a href="https://publications.waset.org/abstracts/search?q=NPK%20level" title=" NPK level"> NPK level</a> </p> <a href="https://publications.waset.org/abstracts/185261/mitigating-food-insecurity-and-malnutrition-by-promoting-carbon-farming-via-a-solar-powered-enzymatic-composting-bioreactor-with-arduino-based-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Investigation of Growth Yield and Antioxidant Activity of Monascus purpureus Extract Isolated from Stirred Tank Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pourshirazi">M. Pourshirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Esmaelifar"> M. Esmaelifar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aliahmadi"> A. Aliahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yazdian"> F. Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Hatamian%20Zarami"> A. S. Hatamian Zarami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Ashrafi"> S. J. Ashrafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monascus purpureus is an antioxidant-producing fungus whose secondary metabolites can be used in drug industries. The growth yield and antioxidant activity of extract were investigated in 3-L liquid fermentation media in a 5-L stirred tank bioreactor (STD) at 30°C, pH 5.93 and darkness for 4 days with 150 rpm agitation and 40% dissolved oxygen. Results were compared to extract isolated from Erlenmeyer flask with the same condition. The growth yield was 0.21 and 0.17 in STD condition and Erlenmeyer flask, respectively. Furthermore, the IC50 of DPPH scavenging activity was 256.32 µg/ml and 150.43 µg/ml for STD extract and flask extract, respectively. Our data demonstrated that transferring the growth condition into the STD caused an increase in growth yield but not in antioxidant activity. Accordingly, there is no relationship between growth rate and secondary metabolites formation. More studies are needed to determine the mass transfer coefficient and also evaluating the hydrodynamic condition have to be done in the future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monascus%20purpureus" title="Monascus purpureus">Monascus purpureus</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20yield" title=" growth yield"> growth yield</a> </p> <a href="https://publications.waset.org/abstracts/9632/investigation-of-growth-yield-and-antioxidant-activity-of-monascus-purpureus-extract-isolated-from-stirred-tank-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zainuddin%20Arriafdi">Muhammad Zainuddin Arriafdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamudah%20Hakimah%20Abdullah"> Hamudah Hakimah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Helmi%20Sani"> Mohd Helmi Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Azlina%20Ahmad"> Wan Azlina Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhd%20Nazrul%20Hisham%20Zainal%20Alam"> Muhd Nazrul Hisham Zainal Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title="biotechnology">biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=miniature%20bioreactor" title=" miniature bioreactor"> miniature bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20tools" title=" research tools"> research tools</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/120070/the-use-of-a-miniature-bioreactor-as-research-tool-for-biotechnology-process-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Photoleap: An AI-Powered Photo Editing App with Advanced Features and User Satisfaction Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joud%20Basyouni">Joud Basyouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Zagzoog"> Rama Zagzoog</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashael%20Al%20Faleh"> Mashael Al Faleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Alireza"> Jana Alireza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AI is changing many fields and speeding up tasks that used to take a long time. It used to take too long to edit photos. However, many AI-powered apps make photo editing, automatic effects, and animations much easier than other manual editing apps with no AI. The mobile app Photoleap edits photos and creates digital art using AI. Editing photos with text prompts is also becoming a standard these days with the help of apps like Photoleap. Now, users can change backgrounds, add animations, turn text into images, and create scenes with AI. This project report discusses the photo editing app's history and popularity. Photoleap resembles Photoshop, Canva, Photos, and Pixlr. The report includes survey questions to assess Photoleap user satisfaction. The report describes Photoleap's features and functions with screenshots. Photoleap uses AI well. Charts and graphs show Photoleap user ratings and comments from the survey. This project found that most Photoleap users liked how well it worked, was made, and was easy to use. People liked changing photos and adding backgrounds. Users can create stunning photo animations. A few users dislike the app's animations, AI art, and photo effects. The project report discusses the app's pros and cons and offers improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=photoleap" title=" photoleap"> photoleap</a>, <a href="https://publications.waset.org/abstracts/search?q=images" title=" images"> images</a>, <a href="https://publications.waset.org/abstracts/search?q=background" title=" background"> background</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20editing" title=" photo editing"> photo editing</a> </p> <a href="https://publications.waset.org/abstracts/179287/photoleap-an-ai-powered-photo-editing-app-with-advanced-features-and-user-satisfaction-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Effect of Hydraulic Residence Time on Aromatic Petrochemical Wastewater Treatment Using Pilot-Scale Submerged Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yousefi">Fatemeh Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Kian"> Mohsen Kian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrzad%20Pakzadeh"> Mehrzad Pakzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The petrochemical complex releases wastewater, which is rich in organic pollutants and could not be treated easily. Treatment of the wastewater from a petrochemical industry has been investigated using a submerged membrane bioreactor (MBR). For this purpose, a pilot-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of petrochemical wastewater according to Bandar Imam Petrochemical complex (BIPC) Aromatic plant. The testing system ran continuously (24-h) over 6 months. Trials on different membrane fluxes and hydraulic retention time (HRT) were conducted and the performance evaluation of the system was done. During the 167 days operation of the MBR at hydraulic retention time (HRT) of 18, 12, 6, and 3 and at an infinite sludge retention time (SRT), the MBR effluent quality consistently met the requirement for discharge to the environment. A fluxes of 6.51 and 13.02 L m-2 h-1 (LMH) was sustainable and HRT of 6 and 12 h corresponding to these fluxes were applicable. Membrane permeability could be fully recovered after cleaning. In addition, there was no foaming issue in the process. It was concluded that it was feasible to treat the wastewater using submersed MBR technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor%20%28MBR%29" title="membrane bioreactor (MBR)">membrane bioreactor (MBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20wastewater" title=" petrochemical wastewater"> petrochemical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title=" COD removal"> COD removal</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a> </p> <a href="https://publications.waset.org/abstracts/21056/effect-of-hydraulic-residence-time-on-aromatic-petrochemical-wastewater-treatment-using-pilot-scale-submerged-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> A Comparative Study of Photo and Electro-Fenton Reactions Efficiency in Degradation of Cationic Dyes Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouafia%20Chergui">S. Bouafia Chergui</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Oturan"> Nihal Oturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Khalaf"> Hussein Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20A.%20Oturan"> Mehmet A. Oturan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to compare the degradation of a mixture of three cationic dyes by advanced oxidation processes (electro-Fenton, photo-Fenton) in aqueous solution. These processes are based on the in situ production of hydroxyl radical, a highly strong oxidant, which allows the degradation of organic pollutants until their mineralization into CO2 and H2O. Under optimal operating conditions, the evolution of total organic carbon (TOC) and electrical energy efficiency have been investigated for the two processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photo-fenton" title="photo-fenton">photo-fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-fenton" title=" electro-fenton"> electro-fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/32037/a-comparative-study-of-photo-and-electro-fenton-reactions-efficiency-in-degradation-of-cationic-dyes-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Mountain Photo Sphere: An Android Application of Mountain Hiking Street View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanto%20Budisusanto">Yanto Budisusanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Aulia%20Rachmawati"> Aulia Rachmawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land navigation technology that is being developed is Google Street View to provide 360° street views, enabling the user to know the road conditions physically with the photo display. For climbers, especially beginners, detail information of climbing terrain is needed so climbers can prepare supplies and strategies before climbing. Therefore, we built a mountaineer guide application named Mountain Photo Sphere. This application displays a 360̊ panoramic view of mountain hiking trail and important points along the hiking path and its surrounding conditions. By combining panoramic photos 360̊ and tracking paths from coordinate data, a virtual tour will be formed. It is built using Java language and Android Studio. The hiking trail map composed by Google Maps API (Gaining access to google maps), Google GEO API (Gaining access to google maps), and OpenStreetMap API (Getting map files to be accessed offline on the Application). This application can be accessed offline so that climbers can use the application during climbing activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=google%20street%20view" title="google street view">google street view</a>, <a href="https://publications.waset.org/abstracts/search?q=panoramic%20photo%20360%C2%B0" title=" panoramic photo 360°"> panoramic photo 360°</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain%20hiking" title=" mountain hiking"> mountain hiking</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain%20photo%20sphere" title=" mountain photo sphere"> mountain photo sphere</a> </p> <a href="https://publications.waset.org/abstracts/105002/mountain-photo-sphere-an-android-application-of-mountain-hiking-street-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.Narasimhulu">K.Narasimhulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Pydi%20Setty">Y. Pydi Setty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packed%20bed%20bioreactor" title="packed bed bioreactor">packed bed bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20mthodology" title=" response surface mthodology"> response surface mthodology</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20putida" title=" pseudomonas putida"> pseudomonas putida</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/16551/optimization-studies-on-biosorption-of-niii-and-cdii-from-wastewater-using-pseudomonas-putida-in-a-packed-bed-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20R.%20Zuthi">M. F. R. Zuthi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Ngo"> H. H. Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Guo"> W. S. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Chen"> S. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Nguyen"> N. C. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Deng"> L. J. Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20C%20Tran">T. D. C Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20products" title="microbial products">microbial products</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20oxygen%20uptake%20rate" title=" specific oxygen uptake rate"> specific oxygen uptake rate</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/4403/an-assessment-of-the-effects-of-microbial-products-on-the-specific-oxygen-uptake-in-submerged-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photo%20bioreactor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10