CINXE.COM
Search results for: concrete strength and testing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: concrete strength and testing</title> <meta name="description" content="Search results for: concrete strength and testing"> <meta name="keywords" content="concrete strength and testing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="concrete strength and testing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="concrete strength and testing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7506</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: concrete strength and testing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7326</span> Investigation the Effect of Partial Replacement of Fine Aggregates with Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yared%20Assefa%20Demessie">Yared Assefa Demessie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study may help to establish the appropriateness of ceramic waste aggregate for concrete production since it is obviously understood that the rising from continuous urbanization and industrialization development leads depletion of natural construction resource and the disposal of waste material. It can be used as base to conduct a study on the alternative readily available materials like ceramic industrial waste aggregates can lead to environmental concrete. The study assessed the fresh and hardened properties of the concrete produced by replacing part of the natural fine aggregate with an aggregate produced from ceramic industrial waste. In the study, experimental investigation was employed which involved two major tasks: material specifications and experimental evaluation of concrete were done in the laboratory. Experimental investigations such that workability, unit weight, compressive strength test, tensile strength test and flexural strength test for C-25 concrete mixes with different percentages of ceramic industrial waste aggregate after a curing period of 7 and 28 days has done and interpreted the result statically using mean, standard deviation and coefficient of variance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20industrial%20waste" title="ceramic industrial waste">ceramic industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20concrete" title=" fresh concrete"> fresh concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=hardened%20concrete" title=" hardened concrete"> hardened concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a> </p> <a href="https://publications.waset.org/abstracts/183198/investigation-the-effect-of-partial-replacement-of-fine-aggregates-with-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7325</span> Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vatsal%20Patel">Vatsal Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Shah"> Niraj Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20waste%20powder" title=" marble waste powder"> marble waste powder</a>, <a href="https://publications.waset.org/abstracts/search?q=sorptivity" title=" sorptivity"> sorptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20corrosion" title=" accelerated corrosion"> accelerated corrosion</a> </p> <a href="https://publications.waset.org/abstracts/33418/experimental-study-of-mechanical-and-durability-properties-of-hpc-made-with-binary-blends-of-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7324</span> Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Oti">J. E. Oti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Kinuthia"> J. M. Kinuthia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Robinson"> R. Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Davies"> P. Davies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, The Compressive strength of concretes made with Ground Granulated Blast furnace Slag (GGBS), pulverised Fuel Ash (PFA), rice Husk Ash (RHA) and Waste Glass Powder (WGP) after they were exposed 7800C (exposure duration of around 60 minutes) and then allowed to cool down gradually in the furnace for about 280 minutes at water binder ratio of 0.50 was investigated. GGBS, PFA, RHA and WGP were used to replace up to 20% Portland cement in the control concrete. Test for the determination of workability, compressive strength and tensile splitting strength of the concretes were carried out and the results were compared with control concrete. The test results showed that the compressive strength decreased by an average of around 30% after the concretes were exposed to the heating and cooling scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pulverised%20fuel%20ash" title=" pulverised fuel ash"> pulverised fuel ash</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass%20powder" title=" waste glass powder"> waste glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability "> workability </a> </p> <a href="https://publications.waset.org/abstracts/26303/heating-and-cooling-scenario-of-blended-concrete-subjected-to-780-degrees-celsius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7323</span> Biosurfactant: A Greener Approach for Enhanced Concrete Rheology and Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Anak%20Rayeg">Olivia Anak Rayeg</a>, <a href="https://publications.waset.org/abstracts/search?q=Clotilda%20Binti%20Petrus"> Clotilda Binti Petrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnel%20Reanturco%20Ascotia"> Arnel Reanturco Ascotia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%20Chung%20Huap"> Ang Chung Huap</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Marajan"> Caroline Marajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Tawie%20Joseph%20Sipi"> Rudy Tawie Joseph Sipi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20rheology" title="concrete rheology">concrete rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20admixture" title=" green admixture"> green admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20biosurfactant" title=" fungal biosurfactant"> fungal biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipids" title=" phospholipids"> phospholipids</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizopus%20oryzae" title=" rhizopus oryzae"> rhizopus oryzae</a> </p> <a href="https://publications.waset.org/abstracts/186458/biosurfactant-a-greener-approach-for-enhanced-concrete-rheology-and-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7322</span> Prediction of Compressive Strength Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Pal%20Singh">Vijay Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Chandra%20Kotiyal"> Yogesh Chandra Kotiyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rebound" title="rebound">rebound</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sonic%20pulse" title=" ultra-sonic pulse"> ultra-sonic pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration" title=" penetration"> penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/2487/prediction-of-compressive-strength-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7321</span> A Case Study of Alkali-Silica Reaction Induced Consistent Damage and Strength Degradation Evaluation in a Textile Mill Building Due to Slow-Reactive Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20R.%20Khokhar">Ahsan R. Khokhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fizza%20Hassan"> Fizza Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-Silica Reaction (ASR) has been recognized as a potential cause of concrete degradation in the world since the 1940s. In Pakistan, mega hydropower structures like dams, weirs constructed from aggregates extracted from a local riverbed exhibited different levels of alkali-silica reactivity over an extended service period. The concrete expansion potential due to such aggregates has been categorized as slow-reactive. Apart from hydropower structures, ASR existence has been identified in the concrete structural elements of a Textile Mill building which used aggregates extracted from the nearby riverbed. The original structure of the Textile Mill was erected in the 80s with the addition of a textile ‘sizing and wrapping’ hall constructed in the 90s. In the years to follow, intensive spalling was observed in the structural members of the subject hall; enough to threat to the overall stability of the building. Limitations such as incomplete building data posed hurdles during the detailed structural investigation. The paper lists observations made while assessing the extent of damage and its effect on the building hall structure. Core testing and Petrographic tests were carried out as per the ASTM standards for strength degradation analysis followed by the identifying its root cause. Results confirmed significant structural strength reduction because of ASR which necessitated the formulation of an immediate re-strengthening solution. The paper also discusses the possible tracks of rehabilitative measures which are being adapted to stabilize the structure and seize further concrete expansion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alkali-Silica%20Reaction%20%28ASR%29" title="Alkali-Silica Reaction (ASR)">Alkali-Silica Reaction (ASR)</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20degradation" title=" concrete strength degradation"> concrete strength degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20evaluation" title=" damage evaluation"> damage evaluation</a> </p> <a href="https://publications.waset.org/abstracts/100392/a-case-study-of-alkali-silica-reaction-induced-consistent-damage-and-strength-degradation-evaluation-in-a-textile-mill-building-due-to-slow-reactive-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7320</span> Nonlinear Analysis of Torsionally Loaded Steel Fibred Self-Compacted Concrete Beams Reinforced by GFRP Bars </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Saad%20Eldin%20Mohamed%20Ragab">Khaled Saad Eldin Mohamed Ragab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Nonlinear finite element analysis on 12 beams specimens was achieved by using ANSYS software. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete beams in the post elastic range or the ultimate strength of a reinforced concrete beams produced from steel fiber reinforced self compacting concrete (SFRSCC) and reinforced by GFRP bars. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed. Then, a parametric study of the effect ratio of volume fraction of steel fibers in ordinary strength concrete, the effect ratio of volume fraction of steel fibers in high strength concrete, and the type of reinforcement of stirrups were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions thyat may be useful for designers have been raised and represented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=torsionally%20loaded" title=" torsionally loaded"> torsionally loaded</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title=" self compacting concrete"> self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber%20reinforced%20self%20compacting%20concrete%20%28SFRSCC%29" title=" steel fiber reinforced self compacting concrete (SFRSCC)"> steel fiber reinforced self compacting concrete (SFRSCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP%20bars%20and%20sheets" title=" GFRP bars and sheets"> GFRP bars and sheets</a> </p> <a href="https://publications.waset.org/abstracts/4945/nonlinear-analysis-of-torsionally-loaded-steel-fibred-self-compacted-concrete-beams-reinforced-by-gfrp-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7319</span> Experimental Studies on the Corrosion Effects of the Concrete Made with Tannery Effluent </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Nirmalkumar">K. Nirmalkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An acute water scarcity is prevailing in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the effluent from the tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength and the special properties such as chloride attack, sulphate attack and chemical attack were studied by casting various concrete specimens in form of cube, cylinders and beams, etc. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory. In this research study the corrosion results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that by the addition of admixtures, the adverse effects due to the usage of the treated and untreated tannery effluent are counteracted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20nitrite" title=" calcium nitrite"> calcium nitrite</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a> </p> <a href="https://publications.waset.org/abstracts/26488/experimental-studies-on-the-corrosion-effects-of-the-concrete-made-with-tannery-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7318</span> Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yelbek%20B.%20Utepov">Yelbek B. Utepov</a>, <a href="https://publications.waset.org/abstracts/search?q=Assel%20S.%20Tulebekova"> Assel S. Tulebekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alizhan%20B.%20Kazkeyev"> Alizhan B. Kazkeyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. Previous studies weakly describe this aspect, giving only logical assumptions. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it was determined that the transition boundaries form elliptical forms. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20map" title="heat map">heat map</a>, <a href="https://publications.waset.org/abstracts/search?q=placement%20strategy" title=" placement strategy"> placement strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20and%20relative%20humidity" title=" temperature and relative humidity"> temperature and relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20embedded%20sensor" title=" wireless embedded sensor"> wireless embedded sensor</a> </p> <a href="https://publications.waset.org/abstracts/129345/development-of-the-maturity-sensor-prototype-and-method-of-its-placement-in-the-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7317</span> Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhara%20Shah">Dhara Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20Shah"> Chandrakant Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20methods" title="curing methods">curing methods</a>, <a href="https://publications.waset.org/abstracts/search?q=self-curing%20compound" title=" self-curing compound"> self-curing compound</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/10176/evaluate-effects-of-different-curing-methods-on-compressive-strength-modulus-of-elasticity-and-durability-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7316</span> Evaluating of Design Codes for Circular High Strength Concrete-Filled Steel Tube Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler">Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20Guzel"> Eylem Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, concrete-filled steel tube columns are highly popular in high-rise buildings. The main aim of this study is to evaluate the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and American Concrete Institute (ACI) design codes. The axial load capacities of fifteen concrete-filled steel tubes stub columns were compared with design codes EU4 and ACI. The results showed that the EC4 overestimate the axial load capacity for all the specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%204" title=" Eurocode 4"> Eurocode 4</a>, <a href="https://publications.waset.org/abstracts/search?q=ACI%20design%20codes" title=" ACI design codes"> ACI design codes</a> </p> <a href="https://publications.waset.org/abstracts/50129/evaluating-of-design-codes-for-circular-high-strength-concrete-filled-steel-tube-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7315</span> A Case Study of Assessment of Fire Affected Concrete Structure by NDT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Gopalkrishnan">Nikhil Gopalkrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Bhaskaran"> Praveen Bhaskaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhargava"> Aditya Bhargava</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyandeep%20Bhumarkar"> Gyandeep Bhumarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper is an attempt to perform various Non-Destructive Tests on concrete structure as NDT is gaining a wide importance in the branch of civil engineering these days. Various tests that are performed under NDT not only enable us to determine the strength of concrete structure, but also provide us in-hand information regarding the durability, in-situ properties of the concrete structure. Keeping these points in our mind, we have focused our views on performing a case study to show the comparison between the NDT test results performed on a particular concrete structure and another structure at the same site which is subjected to a continuous fire of say 48-72 hours. The mix design and concrete grade of both the structures were same before the one was affected by fire. The variations in the compressive strength, concrete quality and in-situ properties of the two structures have been discussed in this paper. NDT tests namely Ultrasonic Pulse Velocity Test, Rebound Hammer Test, Core-Cutter Test was performed at both the sites. The main objective of this research is to analyze the variations in the strength and quality of the concrete structure which is subjected to a high temperature fire and the one which isn’t exposed to it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-cutter%20test" title="core-cutter test">core-cutter test</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20hammer%20test" title=" rebound hammer test"> rebound hammer test</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity%20test" title=" ultrasonic pulse velocity test"> ultrasonic pulse velocity test</a> </p> <a href="https://publications.waset.org/abstracts/42037/a-case-study-of-assessment-of-fire-affected-concrete-structure-by-ndt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7314</span> Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hamid">N. H. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azmi"> A. Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Adiyanto"> M. I. Adiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20viscous%20damping" title=" equivalent viscous damping"> equivalent viscous damping</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loops" title=" hysteresis loops"> hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20strength" title=" lateral strength"> lateral strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/35769/seismic-performance-of-two-storey-rc-frame-designed-ec8-under-in-plane-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7313</span> A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Abdel%20Hamid%20Taha">Nihal Abdel Hamid Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title="RC beams">RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20behavior" title=" cracking behavior"> cracking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20stress" title=" steel stress"> steel stress</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20spacing" title=" crack spacing"> crack spacing</a> </p> <a href="https://publications.waset.org/abstracts/182397/a-study-of-cracking-behavior-in-concrete-beams-reinforced-with-two-different-grades-of-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7312</span> Effect of Tapioca Starch on Fresh Properties Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Samita">C. Samita</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Chalermchai"> W. Chalermchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project is aimed to be a preliminary study of using Tapioca Starch as a viscosity modifying agent (VMA) in concrete work. Tapioca starch effects on the viscosity of concrete, which could be investigated from the workability of corresponding mortar. Cement only mortars with water to cement ratio (w/c) 0.25 to 0.48, superplasticizer dosage of 1% to 2.5%, starch concentration of 0%, 0.25% and 0.5%, was tested for workability. Mortar mixes that have equivalent workability (flow diameter of 250 mm, and funnel flow time of 5 seconds) for each starch concentration were identified and checked for concrete properties. Concrete were tested for initial workability, workability loss, bleeding, setting times, and compressive strength. The results showed that all concrete mixes provide same initial workability, however the mix with higher starch concentration provides slower loss. Bleeding occurs when concrete has w/c more than 0.45. For setting times, mixing with higher starch concentration provide longer setting times (around 4 hours in this experiment). Compressive strength of starch concretes which always have higher w/c, are lower than that of cement only concrete as in this experiment initial workability were controlled to be same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscosity%20modifying%20agent%28VMA%29" title="viscosity modifying agent(VMA)">viscosity modifying agent(VMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=self-leveling%20concrete" title=" self-leveling concrete"> self-leveling concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete%28SCC%29" title=" self-compacting concrete(SCC)"> self-compacting concrete(SCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=low-binder%20SCC" title="low-binder SCC">low-binder SCC</a> </p> <a href="https://publications.waset.org/abstracts/41145/effect-of-tapioca-starch-on-fresh-properties-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7311</span> Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanita%20Rubene">Sanita Rubene</a>, <a href="https://publications.waset.org/abstracts/search?q=Martins%20Vilnitis"> Martins Vilnitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Juris%20Noviks"> Juris Noviks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerated%20concrete" title="aerated concrete">aerated concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20impedance%20spectrometry" title=" electrical impedance spectrometry"> electrical impedance spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20distribution" title=" humidity distribution"> humidity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/13188/impact-of-masonry-joints-on-detection-of-humidity-distribution-in-aerated-concrete-masonry-constructions-by-electric-impedance-spectrometry-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7310</span> Innovative Acoustic Emission Techniques for Concrete Health Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Ali">Rahmat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Beenish%20Khan"> Beenish Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aftabullah"> Aftabullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20A.%20Shah"> Abid A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is an attempt to investigate the wide range of events using acoustic emission (AE) sensors of the concrete cubes subjected to different stress condition loading and unloading of concrete cubes. A total of 27 specimens were prepared and tested including 18 cubic (6”x6”x6”) and nine cylindrical (4”x8”) specimens were molded from three batches of concrete using w/c of 0.40, 0.50, and 0.60. The compressive strength of concrete was determined from concrete cylinder specimens. The deterioration of concrete was evaluated using the occurrence of felicity and Kaiser effects at each stress condition. It was found that acoustic emission hits usually exceeded when damage increases. Additionally, the correlation between AE techniques and the load applied were determined by plotting the normalized values. The influence of w/c on sensitivity of the AE technique in detecting concrete damages was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=felicity%20ratio" title=" felicity ratio"> felicity ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/53667/innovative-acoustic-emission-techniques-for-concrete-health-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7309</span> Use of Recycled Aggregates in Current Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Krizova">K. Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hela"> R. Hela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper a summary of the results of concretes with partial substitution of natural aggregates with recycled concrete is solved. Design formulas of the concretes were characterised with 20, 40 and 60% substitution of natural 8-16 mm fraction aggregates with a selected recycled concrete of analogous coarse fractions. With the product samples an evaluation of coarse fraction aggregates influence on fresh concrete consistency and concrete strength in time was carried out. The results of concretes with aggregates substitution will be compared to reference formula containing only the fractions of natural aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete" title="recycled concrete">recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20aggregates" title=" natural aggregates"> natural aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20concrete" title=" fresh concrete"> fresh concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20concrete" title=" properties of concrete"> properties of concrete</a> </p> <a href="https://publications.waset.org/abstracts/16112/use-of-recycled-aggregates-in-current-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7308</span> Experimental Evaluation of Workability and Compressive Strength of Concrete With Sediments From Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khouadjia%20Mohamed%20Lyes%20Kamel">Khouadjia Mohamed Lyes Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalem%20Sara"> Bensalem Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdou%20Kamel"> Abdou Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkadi%20Ahmed%20Abderraouf"> Belkadi Ahmed Abderraouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kessal%20Oussama"> Kessal Oussama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study was conducted on sediments dredging from the dam of Bni Haroun, the most important and the largest dam in Algeria. The first phase of the work was to substitution of crushed sand with sediments to study the workability and compressive strength of ordinary concretes. The second phase of the work is to study the behavior of concrete with sediment under the effect of the freeze-thaw cycles. The results showed that the mechanical performance of concretes with sediments is better with a substitution rate of 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=dam" title=" dam"> dam</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20cycles" title=" freeze-thaw cycles"> freeze-thaw cycles</a> </p> <a href="https://publications.waset.org/abstracts/160304/experimental-evaluation-of-workability-and-compressive-strength-of-concrete-with-sediments-from-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7307</span> A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20M.%20Pauzi">N. N. M. Pauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Karim"> M. R. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jamil"> M. Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hamid"> R. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20M.%20Zain"> M. F. M. Zain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20ray%20tube" title="cathode ray tube">cathode ray tube</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate" title=" coarse aggregate"> coarse aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/82684/a-study-of-the-replacement-of-natural-coarse-aggregate-by-spherically-shaped-and-crushed-waste-cathode-ray-tube-glass-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7306</span> Possibilities of Utilization Zeolite in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedlmajer">M. Sedlmajer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach"> J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rovnan%C3%ADkova"> P. Rovnaníkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several possibilities of reducing the required amount of cement in concrete production. Natural zeolite is one of the raw materials which can partly substitute Portland cement. The effort to reduce the amount of Portland cement used in concrete production is brings both economical as well as ecological benefits. The paper presents the properties of concrete containing natural zeolite as an active admixture in the concrete which partly substitutes Portland cement. The properties discussed here bring information about the basic mechanical properties and frost resistance of concrete containing zeolite. The properties of concretes with the admixture of zeolite are compared with a reference concrete with no content of zeolite. The properties of the individual concretes are observed for 360 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/30263/possibilities-of-utilization-zeolite-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7305</span> Heat and Radiation Influence on Granite-Galena Concrete for Nuclear Shielding Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Safan">Mohamed A. Safan</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Khalil"> Walid Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Amro%20Fathalla"> Amro Fathalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in concrete technology and implementation of new materials made it possible to produce special types of concrete for different structural applications. In this research, granite and galena were incorporated in different concrete mixes to obtain high performance concrete for shielding against gamma radiations in nuclear facilities. Chemically prepared industrial galena was used to replace different volume fractions of the fine aggregate. The test specimens were exposed to different conditions of heating cycles and irradiation. The exposed specimens and counterpart unexposed specimens were tested to evaluate the density, the compressive strength and the attenuation coefficient. The proposed mixes incorporating galena showed better performance in terms of compressive strength and gamma attenuation capacity, especially after the exposure to different heating cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=galena" title=" galena"> galena</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding" title=" shielding"> shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation" title=" attenuation"> attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/8862/heat-and-radiation-influence-on-granite-galena-concrete-for-nuclear-shielding-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7304</span> High Performance Fibre Reinforced Alkali Activated Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivakumar">A. Sivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Srinivasan"> K. Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerators" title="accelerators">accelerators</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activators" title=" alkali activators"> alkali activators</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air%20oven%20curing" title=" hot air oven curing"> hot air oven curing</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fibres" title=" polypropylene fibres"> polypropylene fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20curing" title=" steam curing"> steam curing</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibres" title=" steel fibres"> steel fibres</a> </p> <a href="https://publications.waset.org/abstracts/17419/high-performance-fibre-reinforced-alkali-activated-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7303</span> Comparative Study of Compressive Strength of Triangular Polyester Fiber with Fly Ash Roller Compacted Concrete Using Ultrasonic Pulse Velocity Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Keshav%20Kolase">Pramod Keshav Kolase</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai"> Atul K. Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV) tests conducted on roller compacted concrete pavement (RCCP) material containing Class F fly ash of as mineral admixture and triangular polyester fiber as a secondary reinforcement. The each mix design series fly ash content is varied from 0% to 45 % and triangular polyester fiber 0% to 0.75% by volume fraction. In each series and for different ages of curing (i.e. 7, 28 and 90 days) forty-eight cube specimens are cast and tested for compressive strength and UPV. The UPV of fly ash was found to be lower for all mixtures at 7 days in comparison with control mix concrete. But at 28, 56 days and 90 days the UPV were significantly improved for all the mixes. Relationships between compressive strength of RCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20elastic%20modulus" title=" dynamic elastic modulus"> dynamic elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title=" roller compacted concrete"> roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a> </p> <a href="https://publications.waset.org/abstracts/58794/comparative-study-of-compressive-strength-of-triangular-polyester-fiber-with-fly-ash-roller-compacted-concrete-using-ultrasonic-pulse-velocity-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7302</span> Effect of Recycled Grey Water on Bacterial Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Deepa">T. Deepa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Inchara"> S. R. Inchara</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Venkatesh"> S. V. Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Tharannum"> Seema Tharannum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus%20subtilis" title="bacillus subtilis">bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20concrete" title=" bacterial concrete"> bacterial concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20grey%20water" title=" recycled grey water"> recycled grey water</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness%20of%20concrete" title=" surface hardness of concrete"> surface hardness of concrete</a> </p> <a href="https://publications.waset.org/abstracts/148388/effect-of-recycled-grey-water-on-bacterial-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7301</span> Concrete Mix Design Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Shanker">Rama Shanker</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar%20Sachan"> Anil Kumar Sachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate%20proportions" title="aggregate proportions">aggregate proportions</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20grade" title=" concrete grade"> concrete grade</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20mix%20design" title=" concrete mix design"> concrete mix design</a> </p> <a href="https://publications.waset.org/abstracts/13191/concrete-mix-design-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7300</span> Masonry Blocks with Recycled Aggregates and Recycled Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Y.%20Matar">Pierre Y. Matar</a>, <a href="https://publications.waset.org/abstracts/search?q=Louay%20S.%20El%20Hassanieh"> Louay S. El Hassanieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Marleine%20F.%20Bayssary"> Marleine F. Bayssary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demolished concrete is a major component of the construction and demolition (C&D) waste. The recycled aggregates obtained by crushing the demolished concrete can be used as a substitute of natural aggregates. Another major C&D waste is the flat glass. This glass can be also recycled and used as an aggregate substitute. The objective of this study is to determine the influence of the use of recycled concrete aggregates and recycled glass on the compressive strength and fire resistance of precast concrete masonry blocks. Tests are carried out on four series of blocks whose compositions include different percentages of recycled aggregates and recycled glass and one series of reference blocks whose composition consists of exclusively natural aggregates. The recycled coarse aggregates and recycled glass have 6.3/12.5 mm fraction and the natural aggregates have 0/6.3 mm fraction; no recycled fine aggregates are included in concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete%20blocks" title=" precast concrete blocks"> precast concrete blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title=" recycled aggregates"> recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/16126/masonry-blocks-with-recycled-aggregates-and-recycled-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7299</span> Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Gunneswara%20Rao">T. D. Gunneswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudimby%20Andal"> Mudimby Andal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementing%20efficiency" title="cementing efficiency">cementing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20calcium%20fly%20ash" title=" low calcium fly ash"> low calcium fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/3427/cementing-efficiency-of-low-calcium-fly-ash-in-fly-ash-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7298</span> A Review of the Axial Capacity of Circular High Strength Concrete-Filled Steel Tube Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen">Mustafa Gülen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel"> Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20code" title=" Chinese code"> Chinese code</a>, <a href="https://publications.waset.org/abstracts/search?q=Australian%20Standard" title=" Australian Standard"> Australian Standard</a> </p> <a href="https://publications.waset.org/abstracts/50131/a-review-of-the-axial-capacity-of-circular-high-strength-concrete-filled-steel-tube-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7297</span> Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erjola%20Reufi">Erjola Reufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozefita%20Marku"> Jozefita Marku</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Bier"> Thomas Bier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fiber" title=" polypropylene fiber"> polypropylene fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=volume" title=" volume"> volume</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20of%20fiber" title=" type of fiber"> type of fiber</a> </p> <a href="https://publications.waset.org/abstracts/43530/ultrasonic-pulse-velocity-investigation-of-polypropylene-and-steel-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=6" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=251">251</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing&page=8" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>