CINXE.COM

Implicit function - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Implicit function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e9ca95e4-7996-4a25-9844-83c2e2f26494","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Implicit_function","wgTitle":"Implicit function","wgCurRevisionId":1253400131,"wgRevisionId":1253400131,"wgArticleId":250896,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Pages using sidebar with the child parameter","Differential calculus","Theorems in analysis","Multivariable calculus","Differential topology","Algebraic geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Implicit_function","wgRelevantArticleId":250896,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1196523","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Implicit function - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Implicit_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Implicit_function&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Implicit_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Implicit_function rootpage-Implicit_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Implicit+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Implicit+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Implicit+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Implicit+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Inverse_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Inverse functions</span> </div> </a> <ul id="toc-Inverse_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Algebraic functions</span> </div> </a> <ul id="toc-Algebraic_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Caveats" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Caveats"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Caveats</span> </div> </a> <ul id="toc-Caveats-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implicit_differentiation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Implicit_differentiation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Implicit differentiation</span> </div> </a> <button aria-controls="toc-Implicit_differentiation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Implicit differentiation subsection</span> </button> <ul id="toc-Implicit_differentiation-sublist" class="vector-toc-list"> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> <li id="toc-Example_1" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>Example 1</span> </div> </a> <ul id="toc-Example_1-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.2</span> <span>Example 2</span> </div> </a> <ul id="toc-Example_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_3" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.3</span> <span>Example 3</span> </div> </a> <ul id="toc-Example_3-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-General_formula_for_derivative_of_implicit_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_formula_for_derivative_of_implicit_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>General formula for derivative of implicit function</span> </div> </a> <ul id="toc-General_formula_for_derivative_of_implicit_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Implicit_function_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Implicit_function_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Implicit function theorem</span> </div> </a> <ul id="toc-Implicit_function_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_algebraic_geometry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_algebraic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>In algebraic geometry</span> </div> </a> <ul id="toc-In_algebraic_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_differential_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In differential equations</span> </div> </a> <ul id="toc-In_differential_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_in_economics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications_in_economics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications in economics</span> </div> </a> <button aria-controls="toc-Applications_in_economics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications in economics subsection</span> </button> <ul id="toc-Applications_in_economics-sublist" class="vector-toc-list"> <li id="toc-Marginal_rate_of_substitution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Marginal_rate_of_substitution"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Marginal rate of substitution</span> </div> </a> <ul id="toc-Marginal_rate_of_substitution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Marginal_rate_of_technical_substitution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Marginal_rate_of_technical_substitution"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Marginal rate of technical substitution</span> </div> </a> <ul id="toc-Marginal_rate_of_technical_substitution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Optimization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Optimization"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Optimization</span> </div> </a> <ul id="toc-Optimization-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Implicit function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 27 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-27" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">27 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9_%D8%B6%D9%85%D9%86%D9%8A%D8%A9" title="دالة ضمنية – Arabic" lang="ar" hreflang="ar" data-title="دالة ضمنية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Implicitna_jedna%C4%8Dina" title="Implicitna jednačina – Bosnian" lang="bs" hreflang="bs" data-title="Implicitna jednačina" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3_impl%C3%ADcita" title="Funció implícita – Catalan" lang="ca" hreflang="ca" data-title="Funció implícita" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D1%83%C3%A7%D0%BA%C4%95%D1%80%D0%B5%D1%82%C4%95%D0%BD_%D0%BC%D0%B0%D1%80_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8" title="Куçкĕретĕн мар функци – Chuvash" lang="cv" hreflang="cv" data-title="Куçкĕретĕн мар функци" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%86%CF%81%CF%81%CE%B7%CF%84%CE%B7_%CF%83%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7" title="Άρρητη συνάρτηση – Greek" lang="el" hreflang="el" data-title="Άρρητη συνάρτηση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_impl%C3%ADcita" title="Función implícita – Spanish" lang="es" hreflang="es" data-title="Función implícita" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Funtzio_inplizitu" title="Funtzio inplizitu – Basque" lang="eu" hreflang="eu" data-title="Funtzio inplizitu" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D8%B6%D9%85%D9%86%DB%8C" title="تابع ضمنی – Persian" lang="fa" hreflang="fa" data-title="تابع ضمنی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fonction_implicite" title="Fonction implicite – French" lang="fr" hreflang="fr" data-title="Fonction implicite" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%8C%ED%95%A8%EC%88%98%EC%99%80_%EC%96%91%ED%95%A8%EC%88%98" title="음함수와 양함수 – Korean" lang="ko" hreflang="ko" data-title="음함수와 양함수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%B8%E0%A5%8D%E0%A4%AA%E0%A4%B7%E0%A5%8D%E0%A4%9F_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="अस्पष्ट समीकरण – Hindi" lang="hi" hreflang="hi" data-title="अस्पष्ट समीकरण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_implisit" title="Fungsi implisit – Indonesian" lang="id" hreflang="id" data-title="Fungsi implisit" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/F%C3%B3lgi%C3%B0_fall" title="Fólgið fall – Icelandic" lang="is" hreflang="is" data-title="Fólgið fall" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_implicita" title="Funzione implicita – Italian" lang="it" hreflang="it" data-title="Funzione implicita" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94_%D7%A1%D7%AA%D7%95%D7%9E%D7%94" title="פונקציה סתומה – Hebrew" lang="he" hreflang="he" data-title="פונקציה סתומה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%90%D0%B9%D2%9B%D1%8B%D0%BD%D0%B4%D0%B0%D0%BB%D0%BC%D0%B0%D2%93%D0%B0%D0%BD_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Айқындалмаған функция – Kazakh" lang="kk" hreflang="kk" data-title="Айқындалмаған функция" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D0%B9%D0%BA%D1%8B%D0%BD_%D1%8D%D0%BC%D0%B5%D1%81_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Айкын эмес функция – Kyrgyz" lang="ky" hreflang="ky" data-title="Айкын эмес функция" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Netie%C5%A1a_funkcija" title="Netieša funkcija – Latvian" lang="lv" hreflang="lv" data-title="Netieša funkcija" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Impliciete_functie" title="Impliciete functie – Dutch" lang="nl" hreflang="nl" data-title="Impliciete functie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%99%B0%E9%96%A2%E6%95%B0" title="陰関数 – Japanese" lang="ja" hreflang="ja" data-title="陰関数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja_uwik%C5%82ana" title="Funkcja uwikłana – Polish" lang="pl" hreflang="pl" data-title="Funkcja uwikłana" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt badge-Q70893996 mw-list-item" title=""><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_impl%C3%ADcita" title="Função implícita – Portuguese" lang="pt" hreflang="pt" data-title="Função implícita" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%8F%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Неявная функция – Russian" lang="ru" hreflang="ru" data-title="Неявная функция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%D9%86%DA%A9%D8%B4%D9%86%DB%8C_%D8%AE%DB%86%D8%A8%DB%95%D8%AE%DB%86" title="فانکشنی خۆبەخۆ – Central Kurdish" lang="ckb" hreflang="ckb" data-title="فانکشنی خۆبەخۆ" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Implicit_funktion" title="Implicit funktion – Swedish" lang="sv" hreflang="sv" data-title="Implicit funktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9D%D0%B5%D1%8F%D0%B2%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F" title="Неявна функція – Ukrainian" lang="uk" hreflang="uk" data-title="Неявна функція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9A%90%E5%87%BD%E6%95%B0" title="隐函数 – Chinese" lang="zh" hreflang="zh" data-title="隐函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1196523#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Implicit_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Implicit_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Implicit_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Implicit_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Implicit_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Implicit_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;oldid=1253400131" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Implicit_function&amp;id=1253400131&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FImplicit_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FImplicit_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Implicit_function&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Implicit_function&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1196523" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical relation consisting of a multi-variable function equal to zero</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-bottom:0.25em;"><a href="/wiki/Calculus" title="Calculus">Calculus</a></th></tr><tr><td class="sidebar-image"><big><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17d063dc86a53a2efb1fe86f4a5d47d498652766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.228ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f&#039;(t)\,dt=f(b)-f(a)}"></span></big></td></tr><tr><td class="sidebar-above" style="padding:0.15em 0.25em 0.3em;font-weight:normal;"> <ul><li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limits</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuity</a></li></ul> </div><div class="hlist"> <ul><li><a href="/wiki/Rolle%27s_theorem" title="Rolle&#39;s theorem">Rolle's theorem</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a></li></ul> </div></td></tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base);display:block;margin-top:0.65em;"><span style="font-size:120%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a>&#160;(<a href="/wiki/Generalizations_of_the_derivative" title="Generalizations of the derivative">generalizations</a>)</li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a> <ul><li><a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">infinitesimal</a></li> <li><a href="/wiki/Differential_of_a_function" title="Differential of a function">of a function</a></li> <li><a href="/wiki/Differential_of_a_function#Differentials_in_several_variables" title="Differential of a function">total</a></li></ul></li></ul></td> </tr><tr><th class="sidebar-heading"> Concepts</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Differentiation notation</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a class="mw-selflink selflink">Implicit differentiation</a></li> <li><a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">Logarithmic differentiation</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor&#39;s theorem">Taylor's theorem</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules and identities</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L&#39;Hôpital&#39;s rule">L'Hôpital's rule</a></li> <li><a href="/wiki/Inverse_function_rule" title="Inverse function rule">Inverse</a></li> <li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz</a></li> <li><a href="/wiki/Fa%C3%A0_di_Bruno%27s_formula" title="Faà di Bruno&#39;s formula">Faà di Bruno's formula</a></li> <li><a href="/wiki/Reynolds_transport_theorem" title="Reynolds transport theorem">Reynolds</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Integral" title="Integral">Integral</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Leibniz integral rule</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a>&#160;(<a href="/wiki/Improper_integral" title="Improper integral">improper</a>)</li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Contour_integration" title="Contour integration">Contour integration</a></li> <li><a href="/wiki/Integral_of_inverse_functions" title="Integral of inverse functions">Integral of inverse functions</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Integration by</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Integration_by_parts" title="Integration by parts">Parts</a></li> <li><a href="/wiki/Disc_integration" title="Disc integration">Discs</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Cylindrical shells</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a>&#160;(<a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a>, <a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">tangent half-angle</a>, <a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a>)</li> <li><a href="/wiki/Integration_using_Euler%27s_formula" title="Integration using Euler&#39;s formula">Euler's formula</a></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions</a> (<a href="/wiki/Heaviside_cover-up_method" title="Heaviside cover-up method">Heaviside's method</a>)</li> <li><a href="/wiki/Order_of_integration_(calculus)" title="Order of integration (calculus)">Changing order</a></li> <li><a href="/wiki/Integration_by_reduction_formulae" title="Integration by reduction formulae">Reduction formulae</a></li> <li><a href="/wiki/Leibniz_integral_rule#Evaluating_definite_integrals" title="Leibniz integral rule">Differentiating under the integral sign</a></li> <li><a href="/wiki/Risch_algorithm" title="Risch algorithm">Risch algorithm</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a>&#160;(<a href="/wiki/Arithmetico%E2%80%93geometric_sequence" class="mw-redirect" title="Arithmetico–geometric sequence">arithmetico-geometric</a>)</li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Convergence_tests" title="Convergence tests">Convergence tests</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Summand limit (term test)</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><br /><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet&#39;s test">Dirichlet</a></li> <li><a href="/wiki/Abel%27s_test" title="Abel&#39;s test">Abel</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Vector_calculus_identities" title="Vector calculus identities">Identities</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Theorems</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient_theorem" title="Gradient theorem">Gradient</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green&#39;s theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">generalized Stokes</a></li> <li><a href="/wiki/Helmholtz_decomposition" title="Helmholtz decomposition">Helmholtz decomposition</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Formalisms</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Advanced</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Calculus_on_Euclidean_space" title="Calculus on Euclidean space">Calculus on Euclidean space</a></li> <li><a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a></li> <li><a href="/wiki/Limit_of_distributions" title="Limit of distributions">Limit of distributions</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Specialized</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Fractional_calculus" title="Fractional calculus">Fractional</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin</a></li> <li><a href="/wiki/Stochastic_calculus" title="Stochastic calculus">Stochastic</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Variations</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Miscellanea</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">History</a></li> <li><a href="/wiki/Glossary_of_calculus" title="Glossary of calculus">Glossary</a></li> <li><a href="/wiki/List_of_calculus_topics" title="List of calculus topics">List of topics</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Mathematical analysis</a></li> <li><a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">Nonstandard analysis</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus" title="Template:Calculus"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus" title="Template talk:Calculus"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus" title="Special:EditPage/Template:Calculus"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <b>implicit equation</b> is a <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relation</a> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(x_{1},\dots ,x_{n})=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(x_{1},\dots ,x_{n})=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65fe185e4df1af148fe40681cc65538e310efa4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.591ex; height:2.843ex;" alt="{\displaystyle R(x_{1},\dots ,x_{n})=0,}"></span> where <span class="texhtml mvar" style="font-style:italic;">R</span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of several variables (often a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>). For example, the implicit equation of the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}-1=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}-1=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b118fda6a2c7179d1e0589937147bfbb25625fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.35ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}-1=0.}"></span> </p><p>An <b>implicit function</b> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> that is defined by an implicit equation, that relates one of the variables, considered as the <a href="/wiki/Value_(mathematics)" title="Value (mathematics)">value</a> of the function, with the others considered as the <a href="/wiki/Argument_of_a_function" title="Argument of a function">arguments</a>.<sup id="cite_ref-Chiang_1-0" class="reference"><a href="#cite_note-Chiang-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 204–206">&#58;&#8202;204–206&#8202;</span></sup> For example, the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}-1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}-1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ee594b8851d760d0e2d44aba714907aca657b8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.703ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}-1=0}"></span> of the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> defines <span class="texhtml mvar" style="font-style:italic;">y</span> as an implicit function of <span class="texhtml mvar" style="font-style:italic;">x</span> if <span class="texhtml">−1 ≤ <i>x</i> ≤ 1</span>, and <span class="texhtml mvar" style="font-style:italic;">y</span> is restricted to nonnegative values. </p><p>The <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a> provides conditions under which some kinds of implicit equations define implicit functions, namely those that are obtained by equating to zero <a href="/wiki/Multivariable_function" class="mw-redirect" title="Multivariable function">multivariable functions</a> that are <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">continuously differentiable</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=1" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Inverse_functions">Inverse functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=2" title="Edit section: Inverse functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A common type of implicit function is an <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a>. Not all functions have a unique inverse function. If <span class="texhtml mvar" style="font-style:italic;">g</span> is a function of <span class="texhtml mvar" style="font-style:italic;">x</span> that has a unique inverse, then the inverse function of <span class="texhtml mvar" style="font-style:italic;">g</span>, called <span class="texhtml"><i>g</i><sup>−1</sup></span>, is the unique function giving a <a href="/wiki/Solution_(mathematics)" class="mw-redirect" title="Solution (mathematics)">solution</a> of the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26c08f8fd3471dad5e2c45c2f753ffd7c9aba4ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.509ex; height:2.843ex;" alt="{\displaystyle y=g(x)}"></span></dd></dl> <p>for <span class="texhtml mvar" style="font-style:italic;">x</span> in terms of <span class="texhtml mvar" style="font-style:italic;">y</span>. This solution can then be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=g^{-1}(y)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=g^{-1}(y)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31764a78c944f1c29301c78149f1c10d889dc0bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.878ex; height:3.176ex;" alt="{\displaystyle x=g^{-1}(y)\,.}"></span></dd></dl> <p>Defining <span class="texhtml"><i>g</i><sup>−1</sup></span> as the inverse of <span class="texhtml mvar" style="font-style:italic;">g</span> is an implicit definition. For some functions <span class="texhtml mvar" style="font-style:italic;">g</span>, <span class="texhtml"><i>g</i><sup>−1</sup>(<i>y</i>)</span> can be written out explicitly as a <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed-form expression</a> — for instance, if <span class="texhtml"><i>g</i>(<i>x</i>) = 2<i>x</i> − 1</span>, then <span class="texhtml"><i>g</i><sup>−1</sup>(<i>y</i>) = <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>(<i>y</i> + 1)</span>. However, this is often not possible, or only by introducing a new notation (as in the <a href="/wiki/Product_log" class="mw-redirect" title="Product log">product log</a> example below). </p><p>Intuitively, an inverse function is obtained from <span class="texhtml mvar" style="font-style:italic;">g</span> by interchanging the roles of the dependent and independent variables. </p><p><b>Example:</b> The <a href="/wiki/Product_log" class="mw-redirect" title="Product log">product log</a> is an implicit function giving the solution for <span class="texhtml mvar" style="font-style:italic;">x</span> of the equation <span class="texhtml"><i>y</i> − <i>xe</i><sup><i>x</i></sup> = 0</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Algebraic_functions">Algebraic functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=3" title="Edit section: Algebraic functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Algebraic_function" title="Algebraic function">Algebraic function</a></div> <p>An <b>algebraic function</b> is a function that satisfies a polynomial equation whose coefficients are themselves polynomials. For example, an algebraic function in one variable <span class="texhtml mvar" style="font-style:italic;">x</span> gives a solution for <span class="texhtml mvar" style="font-style:italic;">y</span> of an equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}(x)y^{n}+a_{n-1}(x)y^{n-1}+\cdots +a_{0}(x)=0\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}(x)y^{n}+a_{n-1}(x)y^{n-1}+\cdots +a_{0}(x)=0\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4023ce7098805c4f2514b9233d6122e4db4431d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.096ex; height:3.176ex;" alt="{\displaystyle a_{n}(x)y^{n}+a_{n-1}(x)y^{n-1}+\cdots +a_{0}(x)=0\,,}"></span></dd></dl> <p>where the coefficients <span class="texhtml"><i>a<sub>i</sub></i>(<i>x</i>)</span> are polynomial functions of <span class="texhtml mvar" style="font-style:italic;">x</span>. This algebraic function can be written as the right side of the solution equation <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span>. Written like this, <span class="texhtml mvar" style="font-style:italic;">f</span> is a <a href="/wiki/Multi-valued_function" class="mw-redirect" title="Multi-valued function">multi-valued</a> implicit function. </p><p>Algebraic functions play an important role in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> and <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>. A simple example of an algebraic function is given by the left side of the unit circle equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}-1=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}-1=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/813d43da03f1fad7399d308c579f44404954158e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.737ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}-1=0\,.}"></span></dd></dl> <p>Solving for <span class="texhtml mvar" style="font-style:italic;">y</span> gives an explicit solution: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\pm {\sqrt {1-x^{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\pm {\sqrt {1-x^{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46efec109780a439c2572bc8d3a57b8872a6dc7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.807ex; height:3.509ex;" alt="{\displaystyle y=\pm {\sqrt {1-x^{2}}}\,.}"></span></dd></dl> <p>But even without specifying this explicit solution, it is possible to refer to the implicit solution of the unit circle equation as <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span>, where <span class="texhtml mvar" style="font-style:italic;">f</span> is the multi-valued implicit function. </p><p>While explicit solutions can be found for equations that are <a href="/wiki/Quadratic_equations" class="mw-redirect" title="Quadratic equations">quadratic</a>, <a href="/wiki/Cubic_equation" title="Cubic equation">cubic</a>, and <a href="/wiki/Quartic_equation" title="Quartic equation">quartic</a> in <span class="texhtml mvar" style="font-style:italic;">y</span>, the same is not in general true for <a href="/wiki/Quintic_equation" class="mw-redirect" title="Quintic equation">quintic</a> and higher degree equations, such as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{5}+2y^{4}-7y^{3}+3y^{2}-6y-x=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{5}+2y^{4}-7y^{3}+3y^{2}-6y-x=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2179be275419315a0658bb00b47f21f2fc1ff67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.491ex; height:3.009ex;" alt="{\displaystyle y^{5}+2y^{4}-7y^{3}+3y^{2}-6y-x=0\,.}"></span></dd></dl> <p>Nevertheless, one can still refer to the implicit solution <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span> involving the multi-valued implicit function <span class="texhtml mvar" style="font-style:italic;">f</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Caveats">Caveats</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=4" title="Edit section: Caveats"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Not every equation <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span> implies a graph of a single-valued function, the circle equation being one prominent example. Another example is an implicit function given by <span class="texhtml"><i>x</i> − <i>C</i>(<i>y</i>) = 0</span> where <span class="texhtml mvar" style="font-style:italic;">C</span> is a <a href="/wiki/Cubic_polynomial" class="mw-redirect" title="Cubic polynomial">cubic polynomial</a> having a "hump" in its graph. Thus, for an implicit function to be a <i>true</i> (single-valued) function it might be necessary to use just part of the graph. An implicit function can sometimes be successfully defined as a true function only after "zooming in" on some part of the <span class="texhtml mvar" style="font-style:italic;">x</span>-axis and "cutting away" some unwanted function branches. Then an equation expressing <span class="texhtml mvar" style="font-style:italic;">y</span> as an implicit function of the other variables can be written. </p><p>The defining equation <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span> can also have other pathologies. For example, the equation <span class="texhtml"><i>x</i> = 0</span> does not imply a function <span class="texhtml"><i>f</i>(<i>x</i>)</span> giving solutions for <span class="texhtml mvar" style="font-style:italic;">y</span> at all; it is a vertical line. In order to avoid a problem like this, various constraints are frequently imposed on the allowable sorts of equations or on the <a href="/wiki/Function_domain" class="mw-redirect" title="Function domain">domain</a>. The <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a> provides a uniform way of handling these sorts of pathologies. </p> <div class="mw-heading mw-heading2"><h2 id="Implicit_differentiation">Implicit differentiation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=5" title="Edit section: Implicit differentiation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Calculus" title="Calculus">calculus</a>, a method called <b>implicit differentiation</b> makes use of the <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a> to differentiate implicitly defined functions. </p><p>To differentiate an implicit function <span class="texhtml"><i>y</i>(<i>x</i>)</span>, defined by an equation <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span>, it is not generally possible to solve it explicitly for <span class="texhtml mvar" style="font-style:italic;">y</span> and then differentiate. Instead, one can <a href="/wiki/Total_differentiation" class="mw-redirect" title="Total differentiation">totally differentiate</a> <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span> with respect to <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> and then solve the resulting linear equation for <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span> to explicitly get the derivative in terms of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. Even when it is possible to explicitly solve the original equation, the formula resulting from total differentiation is, in general, much simpler and easier to use. </p> <div class="mw-heading mw-heading3"><h3 id="Examples_2">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=6" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Example_1">Example 1</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=7" title="Edit section: Example 1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y+x+5=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mn>5</mn> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y+x+5=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7062779ee7b9b549b4b00ce995cd0675a35b668c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.623ex; height:2.509ex;" alt="{\displaystyle y+x+5=0\,.}"></span></dd></dl> <p>This equation is easy to solve for <span class="texhtml mvar" style="font-style:italic;">y</span>, giving </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=-x-5\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=-x-5\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1880575102e8ad405c08390b966a105d979293ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.429ex; height:2.509ex;" alt="{\displaystyle y=-x-5\,,}"></span></dd></dl> <p>where the right side is the explicit form of the function <span class="texhtml"><i>y</i>(<i>x</i>)</span>. Differentiation then gives <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span> = −1</span>. </p><p>Alternatively, one can totally differentiate the original equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {dy}{dx}}+{\frac {dx}{dx}}+{\frac {d}{dx}}(5)&amp;=0\,;\\[6px]{\frac {dy}{dx}}+1+0&amp;=0\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>0</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {dy}{dx}}+{\frac {dx}{dx}}+{\frac {d}{dx}}(5)&amp;=0\,;\\[6px]{\frac {dy}{dx}}+1+0&amp;=0\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbc6ffe0eb05941c2a2c5c5a76fcfcfe3f07311c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:24.844ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {dy}{dx}}+{\frac {dx}{dx}}+{\frac {d}{dx}}(5)&amp;=0\,;\\[6px]{\frac {dy}{dx}}+1+0&amp;=0\,.\end{aligned}}}"></span></dd></dl> <p>Solving for <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span> gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}=-1\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}=-1\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cb3c3c9c1eb986a878d362c5b4d5701e4e989c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.485ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}=-1\,,}"></span></dd></dl> <p>the same answer as obtained previously. </p> <div class="mw-heading mw-heading4"><h4 id="Example_2">Example 2</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=8" title="Edit section: Example 2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An example of an implicit function for which implicit differentiation is easier than using explicit differentiation is the function <span class="texhtml"><i>y</i>(<i>x</i>)</span> defined by the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{4}+2y^{2}=8\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>8</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{4}+2y^{2}=8\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/861fbac28deaf6ba918a3fd071e8700a2615f122" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.896ex; height:3.009ex;" alt="{\displaystyle x^{4}+2y^{2}=8\,.}"></span></dd></dl> <p>To differentiate this explicitly with respect to <span class="texhtml mvar" style="font-style:italic;">x</span>, one has first to get </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(x)=\pm {\sqrt {\frac {8-x^{4}}{2}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>8</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(x)=\pm {\sqrt {\frac {8-x^{4}}{2}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74496332edf81c841f62dff103980e6c632005e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.782ex; height:6.176ex;" alt="{\displaystyle y(x)=\pm {\sqrt {\frac {8-x^{4}}{2}}}\,,}"></span></dd></dl> <p>and then differentiate this function. This creates two derivatives: one for <span class="texhtml"><i>y</i> ≥ 0</span> and another for <span class="texhtml"><i>y</i> &lt; 0</span>. </p><p>It is substantially easier to implicitly differentiate the original equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4x^{3}+4y{\frac {dy}{dx}}=0\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4x^{3}+4y{\frac {dy}{dx}}=0\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11a490dde23675feae2235312d3dc52535f708f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.381ex; height:5.509ex;" alt="{\displaystyle 4x^{3}+4y{\frac {dy}{dx}}=0\,,}"></span></dd></dl> <p>giving </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}={\frac {-4x^{3}}{4y}}=-{\frac {x^{3}}{y}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>y</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}={\frac {-4x^{3}}{4y}}=-{\frac {x^{3}}{y}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44a422434c67cbb2d3596ff5f23ca3437d047d86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.831ex; height:6.176ex;" alt="{\displaystyle {\frac {dy}{dx}}={\frac {-4x^{3}}{4y}}=-{\frac {x^{3}}{y}}\,.}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Example_3">Example 3</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=9" title="Edit section: Example 3"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Often, it is difficult or impossible to solve explicitly for <span class="texhtml mvar" style="font-style:italic;">y</span>, and implicit differentiation is the only feasible method of differentiation. An example is the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{5}-y=x\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{5}-y=x\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdba7448951c537b7ca419f5595d044de57ce50e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.673ex; height:3.009ex;" alt="{\displaystyle y^{5}-y=x\,.}"></span></dd></dl> <p>It is impossible to <a href="/wiki/Algebraic_expression" title="Algebraic expression">algebraically express</a> <span class="texhtml mvar" style="font-style:italic;">y</span> explicitly as a function of <span class="texhtml mvar" style="font-style:italic;">x</span>, and therefore one cannot find <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span> by explicit differentiation. Using the implicit method, <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span> can be obtained by differentiating the equation to obtain </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5y^{4}{\frac {dy}{dx}}-{\frac {dy}{dx}}={\frac {dx}{dx}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5y^{4}{\frac {dy}{dx}}-{\frac {dy}{dx}}={\frac {dx}{dx}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63a0223bd43376eb26f95ad961b176a65730b12f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.495ex; height:5.509ex;" alt="{\displaystyle 5y^{4}{\frac {dy}{dx}}-{\frac {dy}{dx}}={\frac {dx}{dx}}\,,}"></span></dd></dl> <p>where <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dx</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span> = 1</span>. Factoring out <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span> shows that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(5y^{4}-1\right){\frac {dy}{dx}}=1\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(5y^{4}-1\right){\frac {dy}{dx}}=1\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/886e1b3d27103278260407c144f170127340c82d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.573ex; height:5.509ex;" alt="{\displaystyle \left(5y^{4}-1\right){\frac {dy}{dx}}=1\,,}"></span></dd></dl> <p>which yields the result </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}={\frac {1}{5y^{4}-1}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>5</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}={\frac {1}{5y^{4}-1}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74885de37e10de1e9e37f7bdcf2c8dd5225e89b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.73ex; height:6.009ex;" alt="{\displaystyle {\frac {dy}{dx}}={\frac {1}{5y^{4}-1}}\,,}"></span></dd></dl> <p>which is defined for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\neq \pm {\frac {1}{\sqrt[{4}]{5}}}\quad {\text{and}}\quad y\neq \pm {\frac {i}{\sqrt[{4}]{5}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mroot> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>y</mi> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mroot> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\neq \pm {\frac {1}{\sqrt[{4}]{5}}}\quad {\text{and}}\quad y\neq \pm {\frac {i}{\sqrt[{4}]{5}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02378d424997f05eb51116d1dd6119f4324b729b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:29.42ex; height:6.176ex;" alt="{\displaystyle y\neq \pm {\frac {1}{\sqrt[{4}]{5}}}\quad {\text{and}}\quad y\neq \pm {\frac {i}{\sqrt[{4}]{5}}}\,.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="General_formula_for_derivative_of_implicit_function">General formula for derivative of implicit function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=10" title="Edit section: General formula for derivative of implicit function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span>, the derivative of the implicit function <span class="texhtml"><i>y</i>(<i>x</i>)</span> is given by<sup id="cite_ref-Stewart1998_2-0" class="reference"><a href="#cite_note-Stewart1998-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: §11.5">&#58;&#8202;§11.5&#8202;</span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}=-{\frac {\,{\frac {\partial R}{\partial x}}\,}{\frac {\partial R}{\partial y}}}=-{\frac {R_{x}}{R_{y}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mrow> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}=-{\frac {\,{\frac {\partial R}{\partial x}}\,}{\frac {\partial R}{\partial y}}}=-{\frac {R_{x}}{R_{y}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4465cbaeb2d99cc4bbb5be25d93b5d6f376ff92e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.627ex; height:8.843ex;" alt="{\displaystyle {\frac {dy}{dx}}=-{\frac {\,{\frac {\partial R}{\partial x}}\,}{\frac {\partial R}{\partial y}}}=-{\frac {R_{x}}{R_{y}}}\,,}"></span></dd></dl> <p>where <span class="texhtml"><i>R<sub>x</sub></i></span> and <span class="texhtml"><i>R<sub>y</sub></i></span> indicate the <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivatives</a> of <span class="texhtml mvar" style="font-style:italic;">R</span> with respect to <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. </p><p>The above formula comes from using the <a href="/wiki/Chain_rule#Multivariable_case" title="Chain rule">generalized chain rule</a> to obtain the <a href="/wiki/Total_derivative" title="Total derivative">total derivative</a> — with respect to <span class="texhtml mvar" style="font-style:italic;">x</span> — of both sides of <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial R}{\partial x}}{\frac {dx}{dx}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial R}{\partial x}}{\frac {dx}{dx}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13181ea39c36b09317409f9b6076edeb26f32f44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.735ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial R}{\partial x}}{\frac {dx}{dx}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}"></span></dd></dl> <p>hence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial R}{\partial x}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial R}{\partial x}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4af14acc33595334a6b5e9bb3fe3eac9dc88f03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.353ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial R}{\partial x}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}"></span></dd></dl> <p>which, when solved for <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span>, gives the expression above. </p> <div class="mw-heading mw-heading2"><h2 id="Implicit_function_theorem">Implicit function theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=11" title="Edit section: Implicit function theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Implicit_circle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Implicit_circle.svg/200px-Implicit_circle.svg.png" decoding="async" width="200" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Implicit_circle.svg/300px-Implicit_circle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Implicit_circle.svg/400px-Implicit_circle.svg.png 2x" data-file-width="482" data-file-height="506" /></a><figcaption>The unit circle can be defined implicitly as the set of points <span class="texhtml">(<i>x</i>, <i>y</i>)</span> satisfying <span class="texhtml"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> = 1</span>. Around point <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">y</span> can be expressed as an implicit function <span class="texhtml"><i>y</i>(<i>x</i>)</span>. (Unlike in many cases, here this function can be made explicit as <span class="texhtml"><i>g</i><sub>1</sub>(<i>x</i>) = <span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">1 − <i>x</i><sup>2</sup></span></span></span>.) No such function exists around point <span class="texhtml mvar" style="font-style:italic;">B</span>, where the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> is vertical.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">Implicit function theorem</a></div> <p>Let <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>)</span> be a <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable function</a> of two variables, and <span class="texhtml">(<i>a</i>, <i>b</i>)</span> be a pair of <a href="/wiki/Real_number" title="Real number">real numbers</a> such that <span class="texhtml"><i>R</i>(<i>a</i>, <i>b</i>) = 0</span>. If <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">∂<i>R</i></span><span class="sr-only">/</span><span class="den">∂<i>y</i></span></span>&#8288;</span> ≠ 0</span>, then <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span> defines an implicit function that is differentiable in some small enough <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighbourhood</a> of <span class="texhtml">(<i>a</i>, <i>b</i>)</span>; in other words, there is a differentiable function <span class="texhtml mvar" style="font-style:italic;">f</span> that is defined and differentiable in some neighbourhood of <span class="texhtml mvar" style="font-style:italic;">a</span>, such that <span class="texhtml"><i>R</i>(<i>x</i>, <i>f</i>(<i>x</i>)) = 0</span> for <span class="texhtml mvar" style="font-style:italic;">x</span> in this neighbourhood. </p><p>The condition <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">∂<i>R</i></span><span class="sr-only">/</span><span class="den">∂<i>y</i></span></span>&#8288;</span> ≠ 0</span> means that <span class="texhtml">(<i>a</i>, <i>b</i>)</span> is a <a href="/wiki/Singular_point_of_a_curve" title="Singular point of a curve">regular point</a> of the <a href="/wiki/Implicit_curve" title="Implicit curve">implicit curve</a> of implicit equation <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span> where the <a href="/wiki/Tangent" title="Tangent">tangent</a> is not vertical. </p><p>In a less technical language, implicit functions exist and can be differentiated, if the curve has a non-vertical tangent.<sup id="cite_ref-Stewart1998_2-1" class="reference"><a href="#cite_note-Stewart1998-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: §11.5">&#58;&#8202;§11.5&#8202;</span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_algebraic_geometry">In algebraic geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=12" title="Edit section: In algebraic geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relation</a> of the form <span class="texhtml"><i>R</i>(<i>x</i><sub>1</sub>, …, <i>x</i><sub><i>n</i></sub>) = 0</span>, where <span class="texhtml mvar" style="font-style:italic;">R</span> is a multivariable polynomial. The set of the values of the variables that satisfy this relation is called an <a href="/wiki/Implicit_curve" title="Implicit curve">implicit curve</a> if <span class="texhtml"><i>n</i> = 2</span> and an <b>implicit surface</b> if <span class="texhtml"><i>n</i> = 3</span>. The implicit equations are the basis of <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>, whose basic subjects of study are the simultaneous solutions of several implicit equations whose left-hand sides are polynomials. These sets of simultaneous solutions are called <a href="/wiki/Affine_algebraic_set" class="mw-redirect" title="Affine algebraic set">affine algebraic sets</a>. </p> <div class="mw-heading mw-heading2"><h2 id="In_differential_equations">In differential equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=13" title="Edit section: In differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The solutions of differential equations generally appear expressed by an implicit function.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications_in_economics">Applications in economics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=14" title="Edit section: Applications in economics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Marginal_rate_of_substitution">Marginal rate of substitution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=15" title="Edit section: Marginal rate of substitution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Economics" title="Economics">economics</a>, when the level set <span class="texhtml"><i>R</i>(<i>x</i>, <i>y</i>) = 0</span> is an <a href="/wiki/Indifference_curve" title="Indifference curve">indifference curve</a> for the quantities <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> consumed of two goods, the absolute value of the implicit derivative <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dy</i></span><span class="sr-only">/</span><span class="den"><i>dx</i></span></span>&#8288;</span></span> is interpreted as the <a href="/wiki/Marginal_rate_of_substitution" title="Marginal rate of substitution">marginal rate of substitution</a> of the two goods: how much more of <span class="texhtml mvar" style="font-style:italic;">y</span> one must receive in order to be indifferent to a loss of one unit of&#160;<span class="texhtml mvar" style="font-style:italic;">x</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Marginal_rate_of_technical_substitution">Marginal rate of technical substitution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=16" title="Edit section: Marginal rate of technical substitution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Similarly, sometimes the level set <span class="texhtml"><i>R</i>(<i>L</i>, <i>K</i>)</span> is an <a href="/wiki/Isoquant" title="Isoquant">isoquant</a> showing various combinations of utilized quantities <span class="texhtml mvar" style="font-style:italic;">L</span> of labor and <span class="texhtml mvar" style="font-style:italic;">K</span> of <a href="/wiki/Physical_capital" title="Physical capital">physical capital</a> each of which would result in the production of the same given quantity of output of some good. In this case the absolute value of the implicit derivative <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>dK</i></span><span class="sr-only">/</span><span class="den"><i>dL</i></span></span>&#8288;</span></span> is interpreted as the <a href="/wiki/Marginal_rate_of_technical_substitution" title="Marginal rate of technical substitution">marginal rate of technical substitution</a> between the two factors of production: how much more capital the firm must use to produce the same amount of output with one less unit of labor. </p> <div class="mw-heading mw-heading3"><h3 id="Optimization">Optimization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=17" title="Edit section: Optimization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mathematical_economics#Mathematical_optimization" title="Mathematical economics">Mathematical economics §&#160;Mathematical optimization</a></div> <p>Often in <a href="/wiki/Economic_theory" class="mw-redirect" title="Economic theory">economic theory</a>, some function such as a <a href="/wiki/Utility_function" class="mw-redirect" title="Utility function">utility function</a> or a <a href="/wiki/Profit_(economics)" title="Profit (economics)">profit</a> function is to be maximized with respect to a choice vector <span class="texhtml mvar" style="font-style:italic;">x</span> even though the objective function has not been restricted to any specific functional form. The <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a> guarantees that the <a href="/wiki/First-order_condition" class="mw-redirect" title="First-order condition">first-order conditions</a> of the optimization define an implicit function for each element of the optimal vector <span class="texhtml"><i>x</i>*</span> of the choice vector <span class="texhtml mvar" style="font-style:italic;">x</span>. When profit is being maximized, typically the resulting implicit functions are the <a href="/wiki/Labor_demand" title="Labor demand">labor demand</a> function and the <a href="/wiki/Supply_function" class="mw-redirect" title="Supply function">supply functions</a> of various goods. When utility is being maximized, typically the resulting implicit functions are the <a href="/wiki/Labor_supply" class="mw-redirect" title="Labor supply">labor supply</a> function and the <a href="/wiki/Demand_function" class="mw-redirect" title="Demand function">demand functions</a> for various goods. </p><p>Moreover, the influence of the problem's <a href="/wiki/Parameter#Mathematical_functions" title="Parameter">parameters</a> on <span class="texhtml"><i>x</i>*</span> — the partial derivatives of the implicit function — can be expressed as <a href="/wiki/Total_derivative" title="Total derivative">total derivatives</a> of the system of first-order conditions found using <a href="/wiki/Differential_of_a_function#Differentials_in_several_variables" title="Differential of a function">total differentiation</a>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=18" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Implicit_curve" title="Implicit curve">Implicit curve</a></li> <li><a href="/wiki/Functional_equation" title="Functional equation">Functional equation</a></li> <li><a href="/wiki/Level_set" title="Level set">Level set</a> <ul><li><a href="/wiki/Contour_line" title="Contour line">Contour line</a></li> <li><a href="/wiki/Isosurface" title="Isosurface">Isosurface</a></li></ul></li> <li><a href="/wiki/Marginal_rate_of_substitution" title="Marginal rate of substitution">Marginal rate of substitution</a></li> <li><a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">Implicit function theorem</a></li> <li><a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">Logarithmic differentiation</a></li> <li><a href="/wiki/Polygonizer" title="Polygonizer">Polygonizer</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li> <li><a href="/wiki/Folium_of_Descartes" title="Folium of Descartes">Folium of Descartes</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=19" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Chiang-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chiang_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFChiang1984" class="citation book cs1"><a href="/wiki/Alpha_Chiang" title="Alpha Chiang">Chiang, Alpha C.</a> (1984). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalmetho0000chia_b4p1"><i>Fundamental Methods of Mathematical Economics</i></a></span> (Third&#160;ed.). New York: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-010813-7" title="Special:BookSources/0-07-010813-7"><bdi>0-07-010813-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamental+Methods+of+Mathematical+Economics&amp;rft.place=New+York&amp;rft.edition=Third&amp;rft.pub=McGraw-Hill&amp;rft.date=1984&amp;rft.isbn=0-07-010813-7&amp;rft.aulast=Chiang&amp;rft.aufirst=Alpha+C.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffundamentalmetho0000chia_b4p1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></span> </li> <li id="cite_note-Stewart1998-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stewart1998_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stewart1998_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart1998" class="citation book cs1">Stewart, James (1998). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/calculusconcepts00stew"><i>Calculus Concepts And Contexts</i></a></span>. Brooks/Cole Publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-534-34330-9" title="Special:BookSources/0-534-34330-9"><bdi>0-534-34330-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+Concepts+And+Contexts&amp;rft.pub=Brooks%2FCole+Publishing+Company&amp;rft.date=1998&amp;rft.isbn=0-534-34330-9&amp;rft.aulast=Stewart&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusconcepts00stew&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaplan2003" class="citation book cs1">Kaplan, Wilfred (2003). <i>Advanced Calculus</i>. Boston: Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-79937-5" title="Special:BookSources/0-201-79937-5"><bdi>0-201-79937-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Calculus&amp;rft.place=Boston&amp;rft.pub=Addison-Wesley&amp;rft.date=2003&amp;rft.isbn=0-201-79937-5&amp;rft.aulast=Kaplan&amp;rft.aufirst=Wilfred&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=20" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBinmore1983" class="citation book cs1"><a href="/wiki/Kenneth_Binmore" title="Kenneth Binmore">Binmore, K. G.</a> (1983). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=K8RfQgAACAAJ&amp;pg=PA198">"Implicit Functions"</a>. <i>Calculus</i>. New York: Cambridge University Press. pp.&#160;198–211. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-28952-1" title="Special:BookSources/0-521-28952-1"><bdi>0-521-28952-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Implicit+Functions&amp;rft.btitle=Calculus&amp;rft.place=New+York&amp;rft.pages=198-211&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1983&amp;rft.isbn=0-521-28952-1&amp;rft.aulast=Binmore&amp;rft.aufirst=K.+G.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DK8RfQgAACAAJ%26pg%3DPA198&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1976" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1976). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/principlesofmath00rudi"><i>Principles of Mathematical Analysis</i></a></span>. Boston: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/principlesofmath00rudi/page/223">223–228</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-054235-X" title="Special:BookSources/0-07-054235-X"><bdi>0-07-054235-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Mathematical+Analysis&amp;rft.place=Boston&amp;rft.pages=223-228&amp;rft.pub=McGraw-Hill&amp;rft.date=1976&amp;rft.isbn=0-07-054235-X&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprinciplesofmath00rudi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonBlume1994" class="citation book cs1">Simon, Carl P.; <a href="/wiki/Lawrence_E._Blume" title="Lawrence E. Blume">Blume, Lawrence</a> (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=l2nWMwEACAAJ&amp;pg=PA334">"Implicit Functions and Their Derivatives"</a>. <i>Mathematics for Economists</i>. New York: W. W. Norton. pp.&#160;334–371. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-393-95733-0" title="Special:BookSources/0-393-95733-0"><bdi>0-393-95733-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Implicit+Functions+and+Their+Derivatives&amp;rft.btitle=Mathematics+for+Economists&amp;rft.place=New+York&amp;rft.pages=334-371&amp;rft.pub=W.+W.+Norton&amp;rft.date=1994&amp;rft.isbn=0-393-95733-0&amp;rft.aulast=Simon&amp;rft.aufirst=Carl+P.&amp;rft.au=Blume%2C+Lawrence&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dl2nWMwEACAAJ%26pg%3DPA334&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Implicit_function&amp;action=edit&amp;section=21" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Archived at <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211212/qb40J4N1fa4">Ghostarchive</a> and the <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170507005435/https://www.youtube.com/watch?v=qb40J4N1fa4">Wayback Machine</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=qb40J4N1fa4&amp;list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr">"Implicit Differentiation, What's Going on Here?"</a>. <i>3Blue1Brown</i>. Essence of Calculus. May 3, 2017 &#8211; via <a href="/wiki/YouTube" title="YouTube">YouTube</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=3Blue1Brown&amp;rft.atitle=Implicit+Differentiation%2C+What%27s+Going+on+Here%3F&amp;rft.date=2017-05-03&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dqb40J4N1fa4%26list%3DPLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AImplicit+function" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Function" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functions_navbox" title="Template:Functions navbox"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Functions_navbox&amp;action=edit&amp;redlink=1" class="new" title="Template talk:Functions navbox (page does not exist)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functions_navbox" title="Special:EditPage/Template:Functions navbox"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Function" style="font-size:114%;margin:0 4em"><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_the_function_concept" title="History of the function concept">History</a></li> <li><a href="/wiki/List_of_mathematical_functions" title="List of mathematical functions">List of specific functions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types by domain and codomain</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boolean-valued_function" title="Boolean-valued function"><span class="texhtml">X → 𝔹</span></a></li> <li><a href="/wiki/Ordered_pair" title="Ordered pair"><span class="texhtml">𝔹 → X</span></a></li> <li><a href="/wiki/Boolean_function" title="Boolean function"><span class="texhtml">𝔹ⁿ → X</span></a></li> <li><a href="/wiki/Integer-valued_function" title="Integer-valued function"><span class="texhtml">X → ℤ</span></a></li> <li><a href="/wiki/Sequence" title="Sequence"><span class="texhtml">ℤ → X</span></a></li> <li><a href="/wiki/Real-valued_function" title="Real-valued function"><span class="texhtml">X → ℝ</span></a></li> <li><a href="/wiki/Function_of_a_real_variable" title="Function of a real variable"><span class="texhtml">ℝ → X</span></a></li> <li><a href="/wiki/Function_of_several_real_variables" title="Function of several real variables"><span class="texhtml">ℝⁿ → X</span></a></li> <li><a href="/wiki/Complex-valued_function" class="mw-redirect" title="Complex-valued function"><span class="texhtml">X → ℂ</span></a></li> <li><a href="/wiki/Function_of_a_complex_variable" class="mw-redirect" title="Function of a complex variable"><span class="texhtml">ℂ → X</span></a></li> <li><a href="/wiki/Function_of_several_complex_variables" title="Function of several complex variables"><span class="texhtml">ℂⁿ → X</span></a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classes/properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constant_function" title="Constant function">Constant</a></li> <li><a href="/wiki/Identity_function" title="Identity function">Identity</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear</a></li> <li><a href="/wiki/Polynomial" title="Polynomial">Polynomial</a></li> <li><a href="/wiki/Rational_function" title="Rational function">Rational</a></li> <li><a href="/wiki/Algebraic_function" title="Algebraic function">Algebraic</a></li> <li><a href="/wiki/Analytic_function" title="Analytic function">Analytic</a></li> <li><a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">Smooth</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable</a></li> <li><a href="/wiki/Injective_function" title="Injective function">Injective</a></li> <li><a href="/wiki/Surjective_function" title="Surjective function">Surjective</a></li> <li><a href="/wiki/Bijection" title="Bijection">Bijective</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">Restriction</a></li> <li><a href="/wiki/Function_composition" title="Function composition">Composition</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">λ</a></li> <li><a href="/wiki/Inverse_function" title="Inverse function">Inverse</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> (<a href="/wiki/Binary_relation" title="Binary relation">Binary relation</a>)</li> <li><a href="/wiki/Set-valued_function" title="Set-valued function">Set-valued</a></li> <li><a href="/wiki/Multivalued_function" title="Multivalued function">Multivalued</a></li> <li><a href="/wiki/Partial_function" title="Partial function">Partial</a></li> <li><a class="mw-selflink selflink">Implicit</a></li> <li><a href="/wiki/Function_space" title="Function space">Space</a></li> <li><a href="/wiki/Higher-order_function" title="Higher-order function">Higher-order</a></li> <li><a href="/wiki/Morphism" title="Morphism">Morphism</a></li> <li><a href="/wiki/Functor" title="Functor">Functor</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functions" title="Category:Functions">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1196523#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="implicitní funkce"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph606734&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007553157705171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7ztkk Cached time: 20241122143257 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.701 seconds Real time usage: 0.929 seconds Preprocessor visited node count: 6151/1000000 Post‐expand include size: 83420/2097152 bytes Template argument size: 10122/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 127707/5000000 bytes Lua time usage: 0.344/10.000 seconds Lua memory usage: 6083679/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 693.876 1 -total 20.83% 144.514 6 Template:Cite_book 20.45% 141.881 1 Template:Reflist 20.06% 139.220 1 Template:Calculus 14.26% 98.965 70 Template:Math 12.74% 88.397 1 Template:Short_description 9.93% 68.885 1 Template:Functions_navbox 9.53% 66.124 1 Template:Navbox 7.80% 54.092 2 Template:Pagetype 6.24% 43.284 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:idhash:250896-0!canonical and timestamp 20241122143257 and revision id 1253400131. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Implicit_function&amp;oldid=1253400131">https://en.wikipedia.org/w/index.php?title=Implicit_function&amp;oldid=1253400131</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Differential_calculus" title="Category:Differential calculus">Differential calculus</a></li><li><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Theorems in analysis</a></li><li><a href="/wiki/Category:Multivariable_calculus" title="Category:Multivariable calculus">Multivariable calculus</a></li><li><a href="/wiki/Category:Differential_topology" title="Category:Differential topology">Differential topology</a></li><li><a href="/wiki/Category:Algebraic_geometry" title="Category:Algebraic geometry">Algebraic geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_sidebar_with_the_child_parameter" title="Category:Pages using sidebar with the child parameter">Pages using sidebar with the child parameter</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 October 2024, at 19:51<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Implicit_function&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-n58kz","wgBackendResponseTime":160,"wgPageParseReport":{"limitreport":{"cputime":"0.701","walltime":"0.929","ppvisitednodes":{"value":6151,"limit":1000000},"postexpandincludesize":{"value":83420,"limit":2097152},"templateargumentsize":{"value":10122,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":127707,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 693.876 1 -total"," 20.83% 144.514 6 Template:Cite_book"," 20.45% 141.881 1 Template:Reflist"," 20.06% 139.220 1 Template:Calculus"," 14.26% 98.965 70 Template:Math"," 12.74% 88.397 1 Template:Short_description"," 9.93% 68.885 1 Template:Functions_navbox"," 9.53% 66.124 1 Template:Navbox"," 7.80% 54.092 2 Template:Pagetype"," 6.24% 43.284 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.344","limit":"10.000"},"limitreport-memusage":{"value":6083679,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7ztkk","timestamp":"20241122143257","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Implicit function","url":"https:\/\/en.wikipedia.org\/wiki\/Implicit_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1196523","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1196523","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-06-22T01:10:22Z","dateModified":"2024-10-25T19:51:57Z","headline":"function defined by a relation of the form \ud835\udc45(\ud835\udc65,\ud835\udc66)=0, where \ud835\udc45 is a function of several variables and there is a unique \ud835\udc66 that satisfies the relation for every \ud835\udc65"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10