CINXE.COM

Search results for: Lucile Soudani

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Lucile Soudani</title> <meta name="description" content="Search results for: Lucile Soudani"> <meta name="keywords" content="Lucile Soudani"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Lucile Soudani" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Lucile Soudani"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Lucile Soudani</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> SAMRA: Dataset in Al-Soudani Arabic Maghrebi Script for Recognition of Arabic Ancient Words Handwritten</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Ahmed%20Maouloud">Sidi Ahmed Maouloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheikh%20Ba"> Cheikh Ba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Much of West Africa’s cultural heritage is written in the Al-Soudani Arabic script, which was widely used in West Africa before the time of European colonization. This Al-Soudani Arabic script is an African version of the Maghrebi script, in particular, the Al-Mebssout script. However, the local African qualities were incorporated into the Al-Soudani script in a way that gave it a unique African diversity and character. Despite the existence of several Arabic datasets in Oriental script, allowing for the analysis, layout, and recognition of texts written in these calligraphies, many Arabic scripts and written traditions remain understudied. In this paper, we present a dataset of words from Al-Soudani calligraphy scripts. This dataset consists of 100 images selected from three different manuscripts written in Al-Soudani Arabic script by different copyists. The primary source for this database was the libraries of Boston University and Cambridge University. This dataset highlights the unique characteristics of the Al-Soudani Arabic script as well as the new challenges it presents in terms of automatic word recognition of Arabic manuscripts. An HTR system based on a hybrid ANN (CRNN-CTC) is also proposed to test this dataset. SAMRA is a dataset of annotated Arabic manuscript words in the Al-Soudani script that can help researchers automatically recognize and analyze manuscript words written in this script. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dataset" title="dataset">dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=CRNN-CTC" title=" CRNN-CTC"> CRNN-CTC</a>, <a href="https://publications.waset.org/abstracts/search?q=handwritten%20words%20recognition" title=" handwritten words recognition"> handwritten words recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Soudani%20Arabic%20script" title=" Al-Soudani Arabic script"> Al-Soudani Arabic script</a>, <a href="https://publications.waset.org/abstracts/search?q=HTR" title=" HTR"> HTR</a>, <a href="https://publications.waset.org/abstracts/search?q=manuscripts" title=" manuscripts"> manuscripts</a> </p> <a href="https://publications.waset.org/abstracts/155632/samra-dataset-in-al-soudani-arabic-maghrebi-script-for-recognition-of-arabic-ancient-words-handwritten" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucile%20Soudani">Lucile Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Illy"> Hervé Illy</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9mi%20Bouchi%C3%A9"> Rémi Bouchié</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20materials" title="bio-based materials">bio-based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mould%20growth" title=" mould growth"> mould growth</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20prediction" title=" numerical prediction"> numerical prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20approach" title=" reliability approach"> reliability approach</a> </p> <a href="https://publications.waset.org/abstracts/186541/relevance-of-reliability-approaches-to-predict-mould-growth-in-biobased-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%A9a%20Caban">Léa Caban</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucile%20Soudani"> Lucile Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Berger"> Julien Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=Armelle%20Nouviaire"> Armelle Nouviaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Bastidas-Arteaga"> Emilio Bastidas-Arteaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitance%20method" title="capacitance method">capacitance method</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistance%20method" title=" electrical resistance method"> electrical resistance method</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20materials" title=" insulation materials"> insulation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20transfer" title=" moisture transfer"> moisture transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/172108/comparison-of-non-destructive-devices-to-quantify-the-moisture-content-of-bio-based-insulation-materials-on-construction-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Study of Stability of a Slope by the Soil Nailed Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Soudani">Abdelhak Soudani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the limit equilibrium method in geotechnical field is very important for large projects. This work contributes to the understanding and analysis of the building unstable slopes by the technique of soil nailed with the used of software called GEO-SLOPE calculation based on limit equilibrium method. To achieve our objective, we began a review of the literature on landslides, and techniques of slope stability. Then, we presented a real case slope likely to slip through the realization of the EastWest Highway (M5 stretch between Khemis Miliana and Hoceinia). We also process the application of reinforcement technique nailed soil. The analysis is followed by a parametric study, which shows the impact of parameters given or chosen on various outcomes. Another method of reinforcement (use of micro-piles) has been suggested for improving the stability of the slope <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title="slope stability">slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=slip" title=" slip"> slip</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nail" title=" soil nail"> soil nail</a>, <a href="https://publications.waset.org/abstracts/search?q=GEO-SLOPE" title=" GEO-SLOPE"> GEO-SLOPE</a> </p> <a href="https://publications.waset.org/abstracts/24455/study-of-stability-of-a-slope-by-the-soil-nailed-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Al-Soudani">Maha Al-Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Klysz"> Gilles Klysz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Balayssac"> Jean-Paul Balayssac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPR" title="GPR">GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinforced%20concrete%20structures" title=" Reinforced concrete structures"> Reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebar%20location." title=" Rebar location."> Rebar location.</a> </p> <a href="https://publications.waset.org/abstracts/34365/numerical-simulation-and-laboratory-tests-for-rebar-detection-in-reinforced-concrete-structures-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aouiche%20Abdelaziz">Aouiche Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Soudani%20Mouhamed%20Salah"> Soudani Mouhamed Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Aouiche%20El%20Moundhe"> Aouiche El Moundhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20systems" title="non-linear systems">non-linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set%20Models" title=" fuzzy set Models"> fuzzy set Models</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20law" title=" control law"> control law</a> </p> <a href="https://publications.waset.org/abstracts/142525/efficient-neural-and-fuzzy-models-for-the-identification-of-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelazziz%20Aouiche">Abdelazziz Aouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Moundher%20Aouiche"> El Moundher Aouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamed%20Salah%20Soudani"> Mouhamed Salah Soudani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20panel" title=" photovoltaic panel"> photovoltaic panel</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a> </p> <a href="https://publications.waset.org/abstracts/157304/photovoltaic-maximum-power-point-tracking-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Pastoral Power, Early Modern Insurrections, and Contemporary Carelessness: What Foucault Can Teach Us about the “Crisis of Care”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucile%20Richard">Lucile Richard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contemporary thinkers studying biopolitics and its lethal logic find little interest in Foucault's "vague sketch of the pastorate.” Despite pastoral power being depicted as the matrix of governmentality in the genealogy of biopower, most post-Foucauldian theorists disregard its study. Sovereign power takes precedence in the examination of the governmental connection between care, violence, and death. Questioning this recurring motif, this article advocates for a feminist exploration of pastoral power. It argues that giving attention to the genealogy of the pastorate is essential to account for the carelessness that runs today's politics. Examining Foucault's understanding of this "power to care" uncovers the link between care work and politics, a facet of governmentality often overlooked in sovereignty-centered perspectives. His description of “pastoral insurrections”, in so far as it highlights that caring, far from being excluded from politics, is the object of competing problematizations, also calls for a more nuanced and complex comprehension of the politicization of care and care work than the ones developed by feminist theorists. As such, it provides an opportunity to delve into under-theorized dimensions of the "care crisis" in feminist accounts. On one hand, it reveals how populations are disciplined and controlled, not only through caregiving obligations, but also through being assigned or excluded from receiving care. On the other, it stresses that the organization of the public sphere is just as important as the organization of the private sphere, which is the main focus for most feminists, in preventing marginalized perspectives on caring from gaining political momentum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foucault" title="Foucault">Foucault</a>, <a href="https://publications.waset.org/abstracts/search?q=feminist%20theory" title=" feminist theory"> feminist theory</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=pastoral%20power" title=" pastoral power"> pastoral power</a>, <a href="https://publications.waset.org/abstracts/search?q=crisis%20of%20care" title=" crisis of care"> crisis of care</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolitics" title=" biopolitics"> biopolitics</a> </p> <a href="https://publications.waset.org/abstracts/176335/pastoral-power-early-modern-insurrections-and-contemporary-carelessness-what-foucault-can-teach-us-about-the-crisis-of-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Evaluation of the Skid Resistance of Asphalt Concrete Made of Local Low-Performance Aggregates Based on New Accelerated Polishing Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saci%20Abdelhakim%20Ferkous">Saci Abdelhakim Ferkous</a>, <a href="https://publications.waset.org/abstracts/search?q=Khedoudja%20Soudani"> Khedoudja Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Smail%20Haddadi"> Smail Haddadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a laboratory experimental study that explores the skid resistance of asphalt concrete mixtures made of local low-performance aggregates by partially replacing sand with olive mill waste (OMW). OMW was mixed with aggregates using a dry process by replacing sand with contents of 5%, 7%, 10% and 15%. The mechanical performances of the mixtures were evaluated using the Marshall and Duriez tests. A modified accelerated polishing machine was used as polishing equipment, and a British pendulum tester (BPT) was used to test the skid resistance of the samples. Finally, texture parameter analysis was performed using scanning electron microscopy (SEM) and Mountains Map software to assess the effect of OMW on the friction coefficient evolution. Using a distinct road wheel for a modified version of an accelerated polishing machine, which is normally used to determine the polished stone value of aggregates, the results showed that the addition of OMW up to 10% conferred a better skid resistance in comparison to normal asphalt concrete. The presence of olive mill waste in the mixture until 15% guarantees a gain of 22%-29% in skid resistance after polishing compared with the reference mix. Indeed, from texture parameter analysis, it was observed that there was differential wear of the lightweight aggregates (OMW) compared to the other aggregates during the polishing process, which created a new surface microtexture that had new peaks and led to a good level of friction compared to the mixtures without OMW. In general, it was found that OMW is a promising modifier for asphalt mixtures with both engineering and economic merits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skid%20resistance" title="skid resistance">skid resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20waste" title=" olive mill waste"> olive mill waste</a>, <a href="https://publications.waset.org/abstracts/search?q=polishing%20resistance" title=" polishing resistance"> polishing resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20polishing%20machine" title=" accelerated polishing machine"> accelerated polishing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20materials" title=" local materials"> local materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development." title=" sustainable development."> sustainable development.</a> </p> <a href="https://publications.waset.org/abstracts/184593/evaluation-of-the-skid-resistance-of-asphalt-concrete-made-of-local-low-performance-aggregates-based-on-new-accelerated-polishing-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weiliang%20Gong">Weiliang Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Lissa%20Gomes"> Lissa Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucile%20Raymond"> Lucile Raymond</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Xu"> Hui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Werner%20Lutze"> Werner Lutze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20L.%20Pegg">Ian L. Pegg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali-activated%20materials" title="alkali-activated materials">alkali-activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20and%20ternary%0D%0Ageopolymers" title=" binary and ternary geopolymers"> binary and ternary geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=blends%20of%20fly%20ash" title=" blends of fly ash"> blends of fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin%20and%20blast%20furnace%20slag" title=" metakaolin and blast furnace slag"> metakaolin and blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20heats" title=" synergetic heats "> synergetic heats </a> </p> <a href="https://publications.waset.org/abstracts/115972/alkali-activation-of-fly-ash-metakaolin-and-slag-blends-fresh-and-hardened-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> A Patient-Centered Approach to Clinical Trial Development: Real-World Evidence from a Canadian Medical Cannabis Clinic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucile%20Rapin">Lucile Rapin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20El%20Hage"> Cynthia El Hage</a>, <a href="https://publications.waset.org/abstracts/search?q=Rihab%20Gamaoun"> Rihab Gamaoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria-Fernanda%20Arboleda"> Maria-Fernanda Arboleda</a>, <a href="https://publications.waset.org/abstracts/search?q=Erin%20Prosk"> Erin Prosk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Sante Cannabis (SC), a Canadian group of clinics dedicated to medical cannabis, based in Montreal and in the province of Quebec, has served more than 8000 patients seeking cannabis-based treatment over the past five years. As randomized clinical trials with natural medical cannabis are scarce, real-world evidence offers the opportunity to fill research gaps between scientific evidence and clinical practice. Data on the use of medical cannabis products from SC patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to report information on the profiles of both patients and prescribed medical cannabis products at SC clinics, and to assess the safety of medical cannabis among Canadian patients. Methods: This is an observational retrospective study of 1342 adult patients who were authorized with medical cannabis products between October 2017 and September 2019. Information regarding demographic characteristics, therapeutic indications for medical cannabis use, patterns in dosing and dosage form of medical cannabis and adverse effects over one-year follow-up (initial and 4 follow-up (FUP) visits) were collected. Results: 59% of SC patients were female, with a mean age of 56.7 (SD= 15.6, range= (19-97)). Cannabis products were authorized mainly for patients with a diagnosis of chronic pain (68.8% of patients), cancer (6.7%), neurological disorders (5.6%), and mood disorders (5.4 %). At initial visit, a large majority (70%) of patients were authorized exclusively medical cannabis products, 27% were authorized a combination of pharmaceutical cannabinoids and medical cannabis and 3% were prescribed only pharmaceutical cannabinoids. This pattern was recurrent over the one-year follow-up. Overall, oil was the preferred formulation (average over visits 72.5%) followed by a combination of oil and dry (average 19%), other routes of administration accounted for less than 4%. Patients were predominantly prescribed products with a balanced THC:CBD ratio (59%-75% across visits). 28% of patients reported at least one adverse effect (AE) at the 3-month follow-up visit and 12% at the six-month FUP visit. 84.8% of total AEs were mild and transient. No serious AE was reported. Overall, the most common side effects reported were dizziness (11.95% of total AEs), drowsiness (11.4%), dry mouth (5.5%), nausea (4.8%), headaches (4.6%), cough (4.4%), anxiety (4.1%) and euphoria (3.5%). Other adverse effects accounted for less than 3% of total AE. Conclusion: Our results confirm that the primary area of clinical use for medical cannabis is in pain management. Patients in this cohort are largely utilizing plant-based cannabis oil products with a balanced ratio of THC:CBD. Reported adverse effects were mild and included dizziness and drowsiness. This real-world data confirms the tolerable safety profile of medical cannabis and suggests medical indications not yet validated in controlled clinical trials. Such data offers an important opportunity for the investigation of the long-term effects of cannabinoid exposure in real-life conditions. Real-world evidence can be used to direct clinical trial research efforts on specific indications and dosing patterns for product development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20cannabis" title="medical cannabis">medical cannabis</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=real-world%20data" title=" real-world data"> real-world data</a>, <a href="https://publications.waset.org/abstracts/search?q=Canada" title=" Canada"> Canada</a> </p> <a href="https://publications.waset.org/abstracts/130681/a-patient-centered-approach-to-clinical-trial-development-real-world-evidence-from-a-canadian-medical-cannabis-clinic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10