CINXE.COM
Search results for: cellulosic substrate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cellulosic substrate</title> <meta name="description" content="Search results for: cellulosic substrate"> <meta name="keywords" content="cellulosic substrate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cellulosic substrate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cellulosic substrate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1132</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cellulosic substrate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">952</span> Development of Hydrophobic Coatings on Aluminum Alloy 7075</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nauman%20A.%20Siddiqui">Nauman A. Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA%207075" title="AA 7075">AA 7075</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=silanes" title=" silanes"> silanes</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=anodization" title=" anodization"> anodization</a> </p> <a href="https://publications.waset.org/abstracts/68034/development-of-hydrophobic-coatings-on-aluminum-alloy-7075" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">951</span> Effect of Substrate Concentration and Pulp Density on Bioleaching of Metals from as Received Spent Refinery Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan">Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak"> Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Jin%20Kim"> Dong Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoung-Won%20Lee"> Seoung-Won Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with bioleaching of spent refinery catalyst (as received) using At. thiooxidans. The effect of substrate concentration and pulp density was studied. XPS analysis concluded that the metals in spent catalyst were present as both sulfide and oxides. The dissolution behavior of metals during bioleaching was different. During bioleaching, higher dissolution of Ni and lower dissolution of Mo, V and Al was observed. An increase in pulp density from 1% to 10% led to a decrease in leaching yields of all the metals. This was due to the substantial increase in medium pH at higher pulp densities. The maximum negative impact of pulp density was observed on the leaching yield of V. An increase in sulfur concentration from 0.5% to 2.5% didn’t bring positive impact on metal leaching yield. 0.5% sulfur was found to be the optimum above which no significant increase in leaching yields of metals was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.%20thiooxidans" title="At. thiooxidans">At. thiooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20density" title=" pulp density"> pulp density</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20catalyst" title=" spent catalyst"> spent catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title=" bioleaching"> bioleaching</a> </p> <a href="https://publications.waset.org/abstracts/13314/effect-of-substrate-concentration-and-pulp-density-on-bioleaching-of-metals-from-as-received-spent-refinery-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">950</span> Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Singh%20Sandhua">Sandeep Singh Sandhua</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanvir%20Singh%20Ghuman"> Karanvir Singh Ghuman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfacing" title="surfacing">surfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=stellite%2021" title=" stellite 21"> stellite 21</a>, <a href="https://publications.waset.org/abstracts/search?q=dilution" title=" dilution"> dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=SMAW" title=" SMAW"> SMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20wear" title=" frictional wear"> frictional wear</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-hardness" title=" micro-hardness"> micro-hardness</a> </p> <a href="https://publications.waset.org/abstracts/45502/wear-performance-of-stellite-21-cladded-overlay-on-aisi-304l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">949</span> The Creation of Calcium Phosphate Coating on Nitinol Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirill%20M.%20Dubovikov">Kirill M. Dubovikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20S.%20Marchenko"> Ekaterina S. Marchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsharat%20A.%20Baigonakova"> Gulsharat A. Baigonakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NiTi alloys are widely used as implants in medicine due to their unique properties such as superelasticity, shape memory effect and biocompatibility. However, despite these properties, one of the major problems is the release of nickel after prolonged use in the human body under dynamic stress. This occurs due to oxidation and cracking of NiTi implants, which provokes nickel segregation from the matrix to the surface and release into living tissues. As we know, nickel is a toxic element and can cause cancer, allergies, etc. One of the most popular ways to solve this problem is to create a corrosion resistant coating on NiTi. There are many coatings of this type, but not all of them have good biocompatibility, which is very important for medical implants. Coatings based on calcium phosphate phases have excellent biocompatibility because Ca and P are the main constituents of the mineral part of human bone. This fact suggests that a Ca-P coating on NiTi can enhance osteogenesis and accelerate the healing process. Therefore, the aim of this study is to investigate the structure of Ca-P coating on NiTi substrate. Plasma assisted radio frequency (RF) sputtering was used to obtain this film. This method was chosen because it allows the crystallinity and morphology of the Ca-P coating to be controlled by the sputtering parameters. It allows us to obtain three different NiTi samples with Ca-P coating. XRD, AFM, SEM and EDS were used to study the composition, structure and morphology of the coating phase. Scratch tests were carried out to evaluate the adhesion of the coating to the substrate. Wettability tests were used to investigate the hydrophilicity of the different coatings and to suggest which of them had better biocompatibility. XRD showed that the coatings of all samples were hydroxyapatite, but the matrix was represented by TiNi intermetallic compounds such as B2, Ti2Ni and Ni3Ti. The SEM shows that the densest and defect-free coating has only one sample after three hours of sputtering. Wettability tests show that the sample with the densest coating has the lowest contact angle of 40.2° and the largest free surface area of 57.17 mJ/m2, which is mostly disperse. A scratch test was carried out to investigate the adhesion of the coating to the surface and it was shown that all coatings were removed by a cohesive mechanism. However, at a load of 30N, the indenter reached the substrate in two out of three samples, except for the sample with the densest coating. It was concluded that the most promising sputtering mode was the third, which consisted of three hours of deposition. This mode produced a defect-free Ca-P coating with good wettability and adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20coating" title=" calcium phosphate coating"> calcium phosphate coating</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi%20alloy" title=" NiTi alloy"> NiTi alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20sputtering." title=" radio frequency sputtering."> radio frequency sputtering.</a> </p> <a href="https://publications.waset.org/abstracts/172096/the-creation-of-calcium-phosphate-coating-on-nitinol-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">948</span> N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kawan">Anil Kawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon%20Jae%20Yu"> Soon Jae Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Park"> Jong Min Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction%20efficiency" title="extraction efficiency">extraction efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diodes" title=" light emitting diodes"> light emitting diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=n-GaN%20thinning" title=" n-GaN thinning"> n-GaN thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/61185/n-type-gan-thinning-for-enhancing-light-extraction-efficiency-in-gan-based-thin-film-flip-chip-ultraviolet-uv-light-emitting-diodes-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">947</span> Metabolic Profiling of Populus trichocarpa Family 1 UDP-Glycosyltransferases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20M.%20B.%20Saint-Vincent">Patricia M. B. Saint-Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Furches"> Anna Furches</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Galanie"> Stephanie Galanie</a>, <a href="https://publications.waset.org/abstracts/search?q=Erica%20Teixeira%20Prates"> Erica Teixeira Prates</a>, <a href="https://publications.waset.org/abstracts/search?q=Piet%20Jones"> Piet Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Engle"> Nancy Engle</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Kainer"> David Kainer</a>, <a href="https://publications.waset.org/abstracts/search?q=Wellington%20Muchero"> Wellington Muchero</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Jacobson"> Daniel Jacobson</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20J.%20Tschaplinski"> Timothy J. Tschaplinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that catalyze sugar transfer to a variety of plant metabolites. UGT substrates, which include plant secondary metabolites involved in lignification, demonstrate new activities and incorporation when glycosylated. Knowledge of UGT function, substrate specificity, and enzyme products is important for plant engineering efforts, especially related to increasing plant biomass through lignification. UGTs in Populus trichocarpa, a biofuel feedstock, and model woody plant, were selected from a pool of gene candidates using rapid prioritization strategies. A functional genomics workflow, consisting of a metabolite genome-wide association study (mGWAS), expression of synthetic codon-optimized genes, and high-throughput biochemical assays with mass spectrometry-based analysis, was developed for determining the substrates and products of previously-uncharacterized enzymes. A total of 40 UGTs from P. trichocarpa were profiled, and the biochemical assay results were compared to predicted mGWAS connections. Assay results confirmed seven of 11 leaf mGWAS associations and demonstrated varying levels of substrate specificity among candidate UGTs. P. trichocarpa UGT substrate processing confirms the role of these newly-characterized enzymes in lignan, flavonoid, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Populus" title="Populus">Populus</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolite-gene%20associations" title=" metabolite-gene associations"> metabolite-gene associations</a>, <a href="https://publications.waset.org/abstracts/search?q=GWAS" title=" GWAS"> GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20feedstocks" title=" bio feedstocks"> bio feedstocks</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosyltransferase" title=" glycosyltransferase"> glycosyltransferase</a> </p> <a href="https://publications.waset.org/abstracts/155204/metabolic-profiling-of-populus-trichocarpa-family-1-udp-glycosyltransferases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">946</span> Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahril%20Anuar%20Bahari">Shahril Anuar Bahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Azrie%20Mohd%20Kepli"> Mohd Azrie Mohd Kepli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ariff%20Jamaludin"> Mohd Ariff Jamaludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamarulzaman%20Nordin"> Kamarulzaman Nordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Jani%20Saad"> Mohamad Jani Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fiber" title="bamboo fiber">bamboo fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bonded" title=" natural bonded"> natural bonded</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20liquor" title=" black liquor"> black liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20tests" title=" mechanical tests"> mechanical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20observations" title=" microstructure observations"> microstructure observations</a> </p> <a href="https://publications.waset.org/abstracts/73780/strength-performance-and-microstructure-characteristics-of-natural-bonded-fiber-composites-from-malaysian-bamboo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">945</span> Production of Rhamnolipids from Different Resources and Estimating the Kinetic Parameters for Bioreactor Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olfat%20A.%20Mohamed">Olfat A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhamnolipids biosurfactants have distinct properties given them importance in many industrial applications, especially their great new future applications in cosmetic and pharmaceutical industries. These applications have encouraged the search for diverse and renewable resources to control the cost of production. The experimental results were then applied to find a suitable mathematical model for obtaining the design criteria of the batch bioreactor. This research aims to produce Rhamnolipids from different oily wastewater sources such as petroleum crude oil (PO) and vegetable oil (VO) by using Pseudomonas aeruginosa ATCC 9027. Different concentrations of the PO and the VO are added to the media broth separately are in arrangement (0.5 1, 1.5, 2, 2.5 % v/v) and (2, 4, 6, 8 and 10%v/v). The effect of the initial concentration of oil residues and the addition of glycerol and palmitic acid was investigated as an inducer in the production of rhamnolipid and the surface tension of the broth. It was found that 2% of the waste (PO) and 6% of the waste (VO) was the best initial substrate concentration for the production of rhamnolipids (2.71, 5.01 g rhamnolipid/l) as arrangement. Addition of glycerol (10-20% v glycerol/v PO) to the 2% PO fermentation broth led to increase the rhamnolipid production (about 1.8-2 times fold). However, the addition of palmitic acid (5 and 10 g/l) to fermentation broth contained 6% VO rarely enhanced the production rate. The experimental data for 2% initially (PO) was used to estimate the various kinetic parameters. The following results were obtained, maximum rate or velocity of reaction (Vmax) = 0.06417 g/l.hr), yield of cell weight per unit weight of substrate utilized (Yx/s = 0.324 g Cx/g Cs) maximum specific growth rate (μmax = 0.05791 hr⁻¹), yield of rhamnolipid weight per unit weight of substrate utilized (Yp/s)=0.2571gCp/g Cs), maintenance coefficient (Ms =0.002419), Michaelis-Menten constant, (Km=6.1237 gmol/l), endogenous decay coefficient (Kd=0.002375 hr⁻¹). Predictive parameters and advanced mathematical models were applied to evaluate the time of the batch bioreactor. The results were as follows: 123.37, 129 and 139.3 hours in respect of microbial biomass, substrate and product concentration, respectively compared with experimental batch time of 120 hours in all cases. The expected mathematical models are compatible with the laboratory results and can, therefore, be considered as tools for expressing the actual system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20bioreactor%20design" title="batch bioreactor design">batch bioreactor design</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20parameters" title=" kinetic parameters"> kinetic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20crude%20oil" title=" petroleum crude oil"> petroleum crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipids%20biosurfactants" title=" rhamnolipids biosurfactants"> rhamnolipids biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/102662/production-of-rhamnolipids-from-different-resources-and-estimating-the-kinetic-parameters-for-bioreactor-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">944</span> Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubaina%20Soni">Lubaina Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Farrell"> Claire Farrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Szota"> Christopher Szota</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20D.%20Fletcher"> Tim D. Fletcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cover" title=" plant cover"> plant cover</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20drought%20stress" title=" plant drought stress"> plant drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20retention" title=" rainfall retention"> rainfall retention</a> </p> <a href="https://publications.waset.org/abstracts/148263/influence-of-plant-cover-and-redistributing-rainfall-on-green-roof-retention-and-plant-drought-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">943</span> Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Abouei%20Mehrizi">Abbasali Abouei Mehrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advancing" title="advancing">advancing</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20contact%20angle" title=" microscopic contact angle"> microscopic contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20wetting" title=" partial wetting"> partial wetting</a> </p> <a href="https://publications.waset.org/abstracts/69914/dynamic-thin-film-morphology-near-the-contact-line-of-a-condensing-droplet-nanoscale-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">942</span> The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Turkmen">S. N. Turkmen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20peel" title=" pomegranate peel"> pomegranate peel</a> </p> <a href="https://publications.waset.org/abstracts/26792/the-adsorption-of-zinc-metal-in-waste-water-using-zncl2-activated-pomegranate-peel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">941</span> STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Ga%C3%9Fmeyer">Sarah Gaßmeyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadine%20H%C3%BClsemann"> Nadine Hülsemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Stoll"> Raphael Stoll</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Miyamoto"> Kenji Miyamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kourist"> Robert Kourist </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=racemase" title="racemase">racemase</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20protein%20design" title=" rational protein design"> rational protein design</a>, <a href="https://publications.waset.org/abstracts/search?q=STD-NMR" title=" STD-NMR"> STD-NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20guided%20saturation%20mutagenesis" title=" structure guided saturation mutagenesis"> structure guided saturation mutagenesis</a> </p> <a href="https://publications.waset.org/abstracts/36749/std-nmr-based-protein-engineering-of-the-unique-arylpropionate-racemase-amdase-g74c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">940</span> Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20S.%20Ogneva">Tatiana S. Ogneva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intermetallic%20coatings" title="intermetallic coatings">intermetallic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/111417/structure-and-properties-of-intermetallic-nial-based-coatings-produced-by-magnetron-sputtering-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">939</span> Half Mode Substrate Integrated Wave Guide of Band Pass Filter Based to Defected Ground Structure Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damou%20Mehdi">Damou Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouri%20Keltoum"> Nouri Keltoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Feham%20Mohammed"> Feham Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khazini%20Mohammed"> Khazini Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouazza%20Tayb%20Habibi%20Chawki"> Bouazza Tayb Habibi Chawki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Half mode SIW filter is treated by two softwares (HFSS (High Frequency Structure Simulator) and CST (Computer Simulation Technology)). The filter HMSIW has a very simple structure and a very compact size. The simulated results by CST are presented and compared with the results simulated by a high-frequency structure simulator. Good agreement between the simulated CST and simulated results by HFSS is observed. By cascading two of them according to design requirement, a X-band bandpass filter is designed and simulated to meet compact size, low insertion loss, good return loss as well as second harmonic suppression. As an example, we designed the proposed HMSIW filter at X band by HFSS. The filter has a pass-band from 7.3 GHz to 9.8 GHz, and its relative operating fraction bandwidth is 29.5 %. There are one transmission zeros are located at 14.4 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substrate%20integrated%20waveguide" title="substrate integrated waveguide">substrate integrated waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=filter" title=" filter"> filter</a>, <a href="https://publications.waset.org/abstracts/search?q=HMSIW" title=" HMSIW"> HMSIW</a>, <a href="https://publications.waset.org/abstracts/search?q=defected%20ground%20structures%20%28DGS%29" title=" defected ground structures (DGS)"> defected ground structures (DGS)</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20BPF" title=" simulation BPF"> simulation BPF</a> </p> <a href="https://publications.waset.org/abstracts/42122/half-mode-substrate-integrated-wave-guide-of-band-pass-filter-based-to-defected-ground-structure-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">938</span> Multiband Fractal Patch Antenna for Small Spacecraft of Earth Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beibit%20Karibayev">Beibit Karibayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Imanbayeva"> Akmaral Imanbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Namazbayev"> Timur Namazbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the small spacecraft (SSC) industry is experiencing a big boom in popularity. This is primarily due to ease of use, low cost and mobility. In addition, these programs can be implemented not only at the state level but also at the level of companies, universities and other organizations. For remote sensing of the Earth (ERS), small spacecraft with an orientation system is used. It is important to take into account here that a remote sensing device, for example, a camera for photographing the Earth's surface, must be directed at the Earth's surface. But this, at first glance, the limitation can be turned into an advantage using a patch antenna. This work proposed to use a patch antenna based on a unidirectional fractal in the SSC. The CST Microwave Studio software package was used for simulation and research. Copper (ε = 1.0) was chosen as the emitting element and reflector. The height of the substrate was 1.6 mm, the type of substrate material was FR-4 (ε = 4.3). The simulation was performed in the frequency range of 0 – 6 GHz. As a result of the research, a patch antenna based on fractal geometry was developed for ERS nanosatellites. The capabilities of these antennas are modeled and investigated. A method for calculating and modeling fractal geometry for patch antennas has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20remote%20sensing" title=" earth remote sensing"> earth remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20spacecraft" title=" small spacecraft"> small spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/135034/multiband-fractal-patch-antenna-for-small-spacecraft-of-earth-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">937</span> Tin and Tin-Copper Composite Nanorod Anodes for Rechargeable Lithium Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Polat">B. D. Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96.%20Kele%C5%9F"> Ö. Keleş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical vapor deposition under conditions of an obliquely incident flux results in a film formation with an inclined columnar structure. These columns will be oriented toward the vapor source because of the self-shadowing effect, and they are homogenously distributed on the substrate surface because of the limited surface diffusion ability of ad-atoms when there is no additional substrate heating. In this work, the oblique angle electron beam evaporation technique is used to fabricate thin films containing inclined nanorods. The results demonstrate that depending on the thin film composition, the morphology of the nanorods changed as well. The galvanostatic analysis of these thin film anodes reveals that a composite CuSn nanorods having approximately 900mAhg-1 of initial discharge capacity, performs higher electrochemical performance compared to pure Sn nanorods containing anode material. The long cycle life and the advanced electrochemical properties of the nano-structured composite electrode might be attributed to its improved mechanical tolerance and enhanced electrical conductivity depending on the Cu presence in the nanorods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Sn%20thin%20film" title="Cu-Sn thin film">Cu-Sn thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle%20deposition" title=" oblique angle deposition"> oblique angle deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20batteries" title=" lithium ion batteries"> lithium ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=anode" title=" anode"> anode</a> </p> <a href="https://publications.waset.org/abstracts/2210/tin-and-tin-copper-composite-nanorod-anodes-for-rechargeable-lithium-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">936</span> Properties of Composite Materials Made from Surface Treated Particles from Annual Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%A0t%C4%9Bp%C3%A1n%20H%C3%BDsek">Štěpán Hýsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajda%C4%8Dov%C3%A1"> Petra Gajdačová</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Podlena"> Milan Podlena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Annual plants are becoming more and more popular source of lignin and cellulose. In those days a lot of research is carried out in order to evaluate the possibility of utilization of fibres and particles from these plants in composite materials production. These lingo-cellulosic materials seem to be a great alternative to wood, however, due to waxy and silica layers on the surface of these stalks, one additional technological step is needed–erosion of the layers for the purpose of achieving better adhesion between particle and adhesive. In this research, we used several kinds of particle pre-treatment, in order to modify surface properties of these particles. Further, an adhesive was applied to the particles using laboratory blender and board were produced using laboratory press. Both physical and mechanical properties of boards were observed. It was found out that the surface modification of particles had statistically significant effect on properties of produced boards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20plant" title="annual plant">annual plant</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=particleboard" title=" particleboard"> particleboard</a> </p> <a href="https://publications.waset.org/abstracts/82722/properties-of-composite-materials-made-from-surface-treated-particles-from-annual-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">935</span> Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hosseinnezhad">M. Hosseinnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gharanjig"> K. Gharanjig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm<sup>-2</sup>, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm<sup>-2</sup>, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title=" dye-sensitized solar cells"> dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a> </p> <a href="https://publications.waset.org/abstracts/58409/investigation-of-green-dye-sensitized-solar-cells-based-on-natural-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">934</span> Production of Keratinase and Its Insilico Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshita%20Bhardwaj">Akshita Bhardwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keratinase is an enzyme obtained from extracellular sources that is involved in biodegradation of keratin. It is a member of a group of proteases that can break down keratin into amino acids. Keratinases are produced only in the presence of substrate that contain keratin. It attacked the disulfide bond of substrate and involve in keratin degradation. Human hair, feathers, animal hard tissues, horns, claws, and hooves all contain keratin.. It exists in two form alpha keratin (found in soft tissues) and beta keratin (found in hard tissue). By taking part in the degradation of keratin, keratinases derived from microbial sources, often referred to as microbial keratinases, are important in the process of turning wastes containing keratin into products with added value. Chicken feathers contain high level of keratin protein content than other sources and became a suitable protein source. Keratinase production occurs at near alkaline pH and thermophilic temperatures. The bioprocessing of keratinous waste benefits greatly from the use of keratinases. Additionally, it lessens the issue caused by poultry excrement. The use of feather meal, along with keratinase, improves the digestion of proteins and amino acids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mili%20litre%20%28ml%29" title="mili litre (ml)">mili litre (ml)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20litre%20%28Ul%29" title=" micro litre (Ul)"> micro litre (Ul)</a>, <a href="https://publications.waset.org/abstracts/search?q=TCA%20-%20trichloroacetic%20acid" title=" TCA - trichloroacetic acid"> TCA - trichloroacetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=OD%20-%20optical%20density" title=" OD - optical density"> OD - optical density</a> </p> <a href="https://publications.waset.org/abstracts/164491/production-of-keratinase-and-its-insilico-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">933</span> Structural Investigation of the GAF Domain Protein BPSL2418 from Burkholderia pseudomallei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20G.%20Alharbi">Mona G. Alharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new family of methionine-sulfoxide reductase (Msr) was recently discovered and was named free methionine sulfoxide reductase (fRMsr). This family includes enzymes with a reductase activity toward the free R isomer of a methionine sulfoxide substrate. The fRMsrs have a GAF domain topology, a domain, which was previously identified as having in some cases a cyclic nucleotide phosphodiesterase activity. The classification of fRMsrs as GAF domains revealed a new function can be added to the GAF domain family. Interestingly the four members identified in the fRMsr family share the GAF domain structure and the presence of three conserved cysteines in the active site with free R methionine sulfoxide substrate specificity. This thesis presents the crystal structures of reduced, free Met-SO substrate-bound and MES-bound forms of a new fRMsr from Burkholderia pseudomallei (BPSL2418). BPSL2418 was cloned, overexpressed and purified to enable protein crystallization. The crystallization trials for reduced, Met-SO-bound and MES-bound forms of BPSL2418 were prepared and reasonable crystals of each form were produced. The crystal structures of BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced were solved at 1.18, 1.4 and 2.0Å, respectively by molecular replacement. The BPSL2418MES crystal belongs to space group P 21 21 21 while BPSL2418Met-SO and BPSL2418Reduced crystals belong to space group P 1 21 1. All three forms share the GAF domain structure of six antiparallel β-strands and four α-helices with connecting loops. The antiparallel β-strands (β1, β2, β5 and β6) are located in the center of the BPSL2418 structure flanked on one side by a three α-helices (α1, α2 and α4) and on the other side by a (loop1, β3, loop2, α3, β4 loop4) unit where loop4 forms a capping flap and covers the active site. The structural comparison of the three forms of BPSL2418 indicates that the catalytically important cysteine is CYS109, where the resolving cysteine is CYS75, which forms a disulfide bond with CYS109. They also suggest that the third conserved cysteine in the active site, CYS85, which is located in α3, is a non-essential cysteine for the catalytic function but it may play a role in the binding of the substrate. The structural comparison of the three forms reveals that conformational changes appear in the active site particularly involving loop4 and CYS109 during catalysis. The 3D structure of BPSL2418 shows strong structure similarity to fRMsrs enzymes, which further suggests that BPSL2418 acts as a free Met-R-SO reductase and shares the catalytic mechanism of fRMsr family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20pseudomallei" title="Burkholderia pseudomallei">Burkholderia pseudomallei</a>, <a href="https://publications.waset.org/abstracts/search?q=GAF%20domain%20protein" title=" GAF domain protein"> GAF domain protein</a>, <a href="https://publications.waset.org/abstracts/search?q=methionine%20sulfoxide%20reductase" title=" methionine sulfoxide reductase"> methionine sulfoxide reductase</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20crystallization" title=" protein crystallization"> protein crystallization</a> </p> <a href="https://publications.waset.org/abstracts/77202/structural-investigation-of-the-gaf-domain-protein-bpsl2418-from-burkholderia-pseudomallei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">932</span> Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Quiroga-Cubides">G. Quiroga-Cubides</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cruz"> M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Grijalba"> E. Grijalba</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sanabria"> J. Sanabria</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ceballos"> A. Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Garc%C3%ADa"> L. García</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%B3mez"> M. Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title=" biopesticide"> biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid%20medium%20culture" title=" semisolid medium culture"> semisolid medium culture</a> </p> <a href="https://publications.waset.org/abstracts/57293/biomass-production-improvement-of-beauveria-bassiana-at-laboratory-scale-for-a-biopesticide-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">931</span> Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Matassa">Claudia Matassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Hohne"> Matthias Hohne</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Ormerod"> Dominic Ormerod</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamini%20Satyawali"> Yamini Satyawali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amine%20donor" title="amine donor">amine donor</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20amines" title=" chiral amines"> chiral amines</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20product%20removal" title=" in situ product removal"> in situ product removal</a>, <a href="https://publications.waset.org/abstracts/search?q=transamination" title=" transamination"> transamination</a> </p> <a href="https://publications.waset.org/abstracts/110355/chiral-amine-synthesis-and-recovery-by-using-high-molecular-weight-amine-donors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">930</span> Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhuiykov">S. Zhuiykov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karbalaei%20Akbari"> M. Karbalaei Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20semiconductors" title="2D semiconductors">2D semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga%E2%82%82O%E2%82%83" title=" Ga₂O₃"> Ga₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=GaS" title=" GaS"> GaS</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-induced%20functionalization" title=" plasma-induced functionalization"> plasma-induced functionalization</a> </p> <a href="https://publications.waset.org/abstracts/151056/enhanced-properties-of-plasma-induced-two-dimensional-ga2o3gas-heterostructures-on-liquid-alloy-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">929</span> Effect of Chemical Treatment on Mechanical Properties of KENAF Fiber Reinforced Unsaturated Polyester Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Abdullahi">S. S. Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Musa"> H. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Salisu"> A. A. Salisu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ismaila"> A. Ismaila</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Birniwa"> A. H. Birniwa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the treated and untreated kenaf fiber reinforced unsaturated polyester conventional composites were prepared. Hand lay-up technique was used with dump-bell shaped mold. The kenaf bast fiber was retted enzymatically, washed, dried and combed with a nylon brush. A portion of the kenaf fiber was mercerized and treated with benzoylchloride prior to composite fabrication. Untreated kenaf fiber was also used to prepare the composites to serve as control. The cured composites were subjected to various mechanical testes, such as hardness test, impact test and tensile strength test. The results obtained indicated an increase in all the parameters tested with the fiber treatment. This is because the lignin, hemi-celluloses, pectin and other impurities were removed during alkaline treatment (i.e mercerization). This shows that, the durability of the natural cellulosic fibers to different composite applications can be achieved via fiber treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fibre" title=" kenaf fibre"> kenaf fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforce" title=" reinforce"> reinforce</a>, <a href="https://publications.waset.org/abstracts/search?q=retted" title=" retted"> retted</a> </p> <a href="https://publications.waset.org/abstracts/22283/effect-of-chemical-treatment-on-mechanical-properties-of-kenaf-fiber-reinforced-unsaturated-polyester-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">928</span> Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Dannehl">D. Dannehl</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Taylor"> Z. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Suhl"> J. Suhl</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Miranda"> L. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=R."> R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrichs"> Ulrichs</a>, <a href="https://publications.waset.org/abstracts/search?q=C."> C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salazar"> Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Fitz-Rodriguez"> E. Fitz-Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Lopez-Cruz"> I. Lopez-Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rojano-Aguilar"> A. Rojano-Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Navas-Gomez"> G. Navas-Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schmidt"> U. Schmidt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (<em>Solanum lycopersicum </em>‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na<sup>+</sup> and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20aeroponic%20systems" title="closed aeroponic systems">closed aeroponic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20quality" title=" fruit quality"> fruit quality</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20dynamics" title=" nutrient dynamics"> nutrient dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20waste%20reduction" title=" substrate waste reduction"> substrate waste reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming%20systems" title=" urban farming systems"> urban farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20savings" title=" water savings"> water savings</a> </p> <a href="https://publications.waset.org/abstracts/65351/sustainable-cities-viability-of-a-hybrid-aeroponicnutrient-film-technique-system-for-cultivation-of-tomatoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">927</span> Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Waichman">Sharon Waichman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahaf%20Froim"> Shahaf Froim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ido%20Zukerman"> Ido Zukerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Barzilai"> Shmuel Barzilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmual%20Hayun"> Shmual Hayun</a>, <a href="https://publications.waset.org/abstracts/search?q=Avi%20Raveh"> Avi Raveh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide%20coatings" title=" boron carbide coatings"> boron carbide coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%2Fmetal%20bond" title=" ceramic/metal bond"> ceramic/metal bond</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20layer" title=" intermediate layer"> intermediate layer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed-DC%20magnetron%20sputtering" title=" pulsed-DC magnetron sputtering"> pulsed-DC magnetron sputtering</a> </p> <a href="https://publications.waset.org/abstracts/107246/adhesion-enhancement-of-boron-carbide-coatings-on-aluminum-substrates-utilizing-an-intermediate-adhesive-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">926</span> Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Alejandro%20Grisales">Mario Alejandro Grisales</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Daniela%20Chim%C3%A1"> M. Daniela Chimá</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20Bejarano%20Gait%C3%A1n"> Gilberto Bejarano Gaitán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medium%20entropy%20coatings" title="medium entropy coatings">medium entropy coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20coatings" title=" hard coatings"> hard coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/165184/microstructure-mechanical-and-tribological-properties-of-titazrnbnx-medium-entropy-nitride-coatings-influence-of-nitrogen-content-and-bias-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">925</span> Laser Paint Stripping on Large Zones on AA 2024 Based Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selen%20Unaldi">Selen Unaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Richaud"> Emmanuel Richaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Gervais"> Matthieu Gervais</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Berthe"> Laurent Berthe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20coatings" title="aircraft coatings">aircraft coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20stripping" title=" laser stripping"> laser stripping</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20adhesion%20tests" title=" laser adhesion tests"> laser adhesion tests</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/144931/laser-paint-stripping-on-large-zones-on-aa-2024-based-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">924</span> Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Djamila">Abdi Djamila</a>, <a href="https://publications.waset.org/abstracts/search?q=Haffar%20Hichem"> Haffar Hichem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymethylene%20blue" title="polymethylene blue">polymethylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=electropolymerization" title=" electropolymerization"> electropolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=homo-lumo" title=" homo-lumo"> homo-lumo</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrents" title=" photocurrents"> photocurrents</a> </p> <a href="https://publications.waset.org/abstracts/24820/elaboration-of-polymethylene-blue-on-conducting-glassy-substrate-and-study-of-its-optical-electrical-and-photoelectrochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">923</span> A FR Fire-Off with Polysilicic Acid for Pes/Co Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raziye%20Atakan">Raziye Atakan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Celebi"> Ebru Celebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulay%20Ozcan"> Gulay Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Soydan"> Neda Soydan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sezai%20Sarac"> A. Sezai Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a novel polymeric flame retardant chemical with phosphorous-nitrogen synergism was synthesized by polyvinyl alcohol (PVA), hydrophilic polyester resin (PR), phosphoric acid and dicyandiamide (DCDA). Polyester/Cotton (Pes/Co) blend fabrics were treated via pad-dry-cure process with this synthesized chemical. PVA (PR)-P-DCDA has shown that it is an effective flame retardant on the fabrics. In order to improve durable flame retardancy for cotton part of the blend, polysilicic acid and citric acid monohydrate auxiliaries were added in FR finishing bath at different concentrations. Flammability and characteristic properties of the sample were tested according to relevant ISO standard and procedures. To do so, ISO 6940 vertical flammability test, TGA, DTA, LOI and FTIR analysis have been performed. The obtained results showed that this new finishing formulation is a good char-forming agent for the PES/CO blends and polysilicic acid could be used for cellulosic blends with PVA (PR)-P-DCDA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardancy" title="flame retardancy">flame retardancy</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=Pes%2FCo%20blends" title=" Pes/Co blends"> Pes/Co blends</a>, <a href="https://publications.waset.org/abstracts/search?q=polysilicic%20acid" title=" polysilicic acid"> polysilicic acid</a> </p> <a href="https://publications.waset.org/abstracts/43483/a-fr-fire-off-with-polysilicic-acid-for-pesco-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=6" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate&page=8" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>