CINXE.COM
Search results for: floating breakwater
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: floating breakwater</title> <meta name="description" content="Search results for: floating breakwater"> <meta name="keywords" content="floating breakwater"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="floating breakwater" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="floating breakwater"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 250</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: floating breakwater</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Experimental Study on Floating Breakwater Anchored by Piles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yessi%20Nirwana%20Kurniadi">Yessi Nirwana Kurniadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nira%20Yunita%20Permata"> Nira Yunita Permata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20breakwater" title="floating breakwater">floating breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=transimission%20coefficient" title=" transimission coefficient"> transimission coefficient</a> </p> <a href="https://publications.waset.org/abstracts/78163/experimental-study-on-floating-breakwater-anchored-by-piles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jemi%20Jeya">T. J. Jemi Jeya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sriram"> V. Sriram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (0<sup>0</sup>, 15<sup>0</sup>, 30<sup>0</sup>). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caisson%20breakwater" title="Caisson breakwater">Caisson breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20supported%20breakwater" title=" pile supported breakwater"> pile supported breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=quarter%20circle%20breakwater" title=" quarter circle breakwater"> quarter circle breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20breakwater" title=" vertical breakwater"> vertical breakwater</a> </p> <a href="https://publications.waset.org/abstracts/111802/effect-of-runup-over-a-vertical-pile-supported-caisson-breakwater-and-quarter-circle-pile-supported-caisson-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Bijin">Liu Bijin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20breakwater" title="floating breakwater">floating breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dissipation%20performance" title=" wave dissipation performance"> wave dissipation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance%20coefficient" title=" transmittance coefficient"> transmittance coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a> </p> <a href="https://publications.waset.org/abstracts/185260/study-on-the-wave-dissipation-performance-of-double-cylinder-and-double-plate-floating-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Evolution of Floating Photovoltaic System Technology and Future Prospect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Kwan%20Choi">Young-Kwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Sang%20Jeong"> Han-Sang Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20photovoltaic%20system" title="floating photovoltaic system">floating photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20PV%20installation" title=" floating PV installation"> floating PV installation</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20floating%20photovoltaic%20system" title=" ocean floating photovoltaic system"> ocean floating photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20type%20floating%20photovoltaic%20system" title=" tracking type floating photovoltaic system"> tracking type floating photovoltaic system</a> </p> <a href="https://publications.waset.org/abstracts/37392/evolution-of-floating-photovoltaic-system-technology-and-future-prospect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> A Review on the Hydrodynamic Characteristics of Caisson Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jemi%20Jeya">T. J. Jemi Jeya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sriram"> V. Sriram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sundar"> V. Sundar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caisson breakwaters are gravity structures resting on the seabed and piercing the free surface sunk in coastal waters to break the energy in the waves and protect the water area behind them by creating tranquil conditions on its lee side for the purpose of berthing of vessels. A number of formula and methodologies have been proposed for calculating the forces on caissons due to waves, most of which being evolved through intensive laboratory and field measurements. The reflection of waves from such breakwaters often generates clapotis, leading to an amplification of waves in its vicinity. This result in increased pressures and forces, forcing researchers to modify its seaside shape as well as placing dissipaters in the form of screens. Apart from the above aspects, this paper also discusses the other important phenomena, like overtopping that dictates the stability of caisson breakwaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caisson%20breakwater" title="caisson breakwater">caisson breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarlan%20type%20breakwater" title=" Jarlan type breakwater"> Jarlan type breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=screens" title=" screens"> screens</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20breakwater" title=" circular breakwater"> circular breakwater</a> </p> <a href="https://publications.waset.org/abstracts/35150/a-review-on-the-hydrodynamic-characteristics-of-caisson-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alkhalidi">M. Alkhalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelamani"> S. Neelamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Al-Zaqah"> Z. Al-Zaqah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=random%20waves" title="random waves">random waves</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20waves" title=" regular waves"> regular waves</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20water%20depth" title=" relative water depth"> relative water depth</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20wave%20height" title=" relative wave height"> relative wave height</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20breakwater" title=" single breakwater"> single breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20breakwater" title=" twin breakwater"> twin breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20steepness" title=" wave steepness"> wave steepness</a> </p> <a href="https://publications.waset.org/abstracts/63850/hydrodynamic-characteristics-of-single-and-twin-offshore-rubble-mound-breakwaters-under-regular-and-random-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Coastal Hydraulic Modelling to Ascertain Stability of Rubble Mound Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safari%20Mat%20Desa">Safari Mat Desa</a>, <a href="https://publications.waset.org/abstracts/search?q=Othman%20A.%20Karim"> Othman A. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Kamarulhuda%20Samion"> Mohd Kamarulhuda Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Bahri%20Hamzah"> Saiful Bahri Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubble mound breakwater was one of the most popular designs in Malaysia, constructed at the river mouth to dissipate the incoming wave energy from the seaward. Geometrically characteristics in trapezoid, crest width, and bottom width will determine the hypotonus stability, whilst structural height was designed for wave overtopping consideration. Physical hydraulic modelling in two-dimensional facilities was instigated in the flume to test the stability as well as the overtopping rate complied with the method of similarity, namely kinematic, dynamic, and geometric. Scaling effects of wave characteristics were carried out in order to acquire significant interaction of wave height, wave period, and water depth. Results showed two-dimensional physical modelling has proven reliable capability to ascertain breakwater stability significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakwater" title="breakwater">breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20characteristic" title=" geometrical characteristic"> geometrical characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20overtopping" title=" wave overtopping"> wave overtopping</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20hydraulic%20modelling" title=" physical hydraulic modelling"> physical hydraulic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20similarity" title=" method of similarity"> method of similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20characteristic" title=" wave characteristic"> wave characteristic</a> </p> <a href="https://publications.waset.org/abstracts/167225/coastal-hydraulic-modelling-to-ascertain-stability-of-rubble-mound-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Numerical Investigation on Tsunami Suppression by Submerged Breakwater </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tasuku%20Hongo">Tasuku Hongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroya%20Mamori"> Hiroya Mamori</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoya%20Fukushima"> Naoya Fukushima</a>, <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Yamamoto"> Makoto Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A tsunami induced by an earthquake gives a severe disaster in coastal area. As well known, the huge earthquake in Japan 2011 induced a huge tsunami and the tsunami caused serious damage in the Tohoku and Kanto area. Although breakwaters were constructed in the coast to suppress the tsunami, these were collapsed, and it resulted in severe disasters. In order to decrease the tsunami disaster, we propose the submerged breakwaters and investigate its effect on the tsunami behavior by means of numerical simulations. In order to reproduce tsunami and capture its interface, we employed a moving particle method which is one of the Lagragian methods. Different from ordinary breakwaters, the present breakwater is located in the under-sea. An effective installation condition is investigated by the parametric study. The results show that the submerged breakwater can decrease the wave force by the tsunami. Moreover, the combination of two submerged breakwaters can reduce the tsunami safely and effectively. Therefore, the present results give the effective condition of the installation of the under-sea breakwaters and its mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20area" title="coastal area">coastal area</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami%20force%20reduction" title=" tsunami force reduction"> tsunami force reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=MPS%20method" title=" MPS method"> MPS method</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20breakwater" title=" submerged breakwater"> submerged breakwater</a> </p> <a href="https://publications.waset.org/abstracts/88772/numerical-investigation-on-tsunami-suppression-by-submerged-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Song%20Gui">Jin Song Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Li"> Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Jin%20Zhang"> Rui Jin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Jiang%20Cai"> Heng Jiang Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overtopping%20wave" title="overtopping wave">overtopping wave</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20model%20experiment" title=" physical model experiment"> physical model experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20breakwater" title=" vertical breakwater"> vertical breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20forces" title=" wave forces"> wave forces</a> </p> <a href="https://publications.waset.org/abstracts/47386/experimental-investigation-for-the-overtopping-wave-force-of-the-vertical-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Design and Development of Sustained Release Floating Tablet of Stavudine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajj%20Sarode">Surajj Sarode</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vidya%20Sagar"> G. Vidya Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Vadnere"> G. P. Vadnere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to prolong the gastric residence time of Stavudine by developing gastric floating drug delivery system (GFDDS). Moreover, to study influence of different polymers on its release rate using gas-forming agents, like sodium bicarbonate, citric acid. Floating tablets were prepared by wet granulation method using PVP K-30 as a binder and the other polymers include Pullulan Gum, HPMC K100M, six different formulations with the varying concentrations of polymers were prepared and the tablets were evaluated in terms of their pre-compression parameters like bulk density, tapped density, Haunsner ratio, angle of repose, compressibility index, post compression physical characteristics, in vitro release, buoyancy, floating lag time (FLT), total floating time (TFT) and swelling index. All the formulations showed good floating lag time i.e. less than 3 mins. The batch containing combination of Pullulan Gum and HPMC 100M (i.e. F-6) showed total floating lag time more than 12 h., the highest swelling index among all the prepared batches. The drug release was found to follow zero order kinetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suavudine" title="Suavudine">Suavudine</a>, <a href="https://publications.waset.org/abstracts/search?q=floating" title=" floating"> floating</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20floating%20time%20%28TFT%29" title=" total floating time (TFT)"> total floating time (TFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=gastric%20residence" title=" gastric residence"> gastric residence</a> </p> <a href="https://publications.waset.org/abstracts/13372/design-and-development-of-sustained-release-floating-tablet-of-stavudine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Floating Quantifiers in Hijazi Arabic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tagreed%20Alzahrani">Tagreed Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The syntax of quantifiers has received much attention by linguists, philosophers and logicians within different frameworks and in various languages. However, the syntax of Arabic quantifiers has received limited attention in the literature, especially in relation to floating quantifiers. There have been a few discussions of floating quantifiers in Modern Standard Arabic (henceforth, MSA), although the analysis and the properties of their counterparts in other Saudi dialects are rare. Therefore, the aim of the paper is to provide a clear description of floating quantifiers (FQs) in Hijazi dialect (henceforth, HA) by utilising the following approaches: the adverbial approach, and the derivational (stranding) analysis. For a long time, Linguists have tried to explain the floating quantifiers’ phenomenon, as exemplified in the following sentences: 1. All the friends have watched the movie. 2. The friends have all watched the movie. The adverbial approach assumes that the floating quantifier is a type of adverb, because it occupies the adverbial position next to the verb. Thus, the subject in the first example is all the friends and the subject in the second example is the friends with all becoming an adverb, as it is located in an adverbial position. However, in stranding analysis, it is argued that the floating quantifier becomes stranded when its complement has moved to a higher position in the sentence [SPEC, TP]. Therefore, both sentences have the same subject all the friends, although in second example the friends has moved to a higher position and has stranded the quantifier all. The paper will investigate the floating quantifiers in HA using both approaches. The analysis will show that neither view is entirely successful in providing a unified account for FQs in HA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20quantifier" title="floating quantifier">floating quantifier</a>, <a href="https://publications.waset.org/abstracts/search?q=adverbial%20analysis" title=" adverbial analysis"> adverbial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stranding%20approach" title=" stranding approach"> stranding approach</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20quantifier" title=" universal quantifier"> universal quantifier</a> </p> <a href="https://publications.waset.org/abstracts/50459/floating-quantifiers-in-hijazi-arabic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmed">H. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Schlenkhoff"> A. Schlenkhoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20structures" title="coastal structures">coastal structures</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20breakwater" title=" permeable breakwater"> permeable breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=slotted%20wall" title=" slotted wall"> slotted wall</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation%20coefficient" title=" energy dissipation coefficient"> energy dissipation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/12807/numerical-investigation-of-wave-interaction-with-double-vertical-slotted-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Formulation Development and Evaluation of Floating Tablets of Venlafaxine Hydrochloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gajera%20Lalit">Gajera Lalit</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Pranav"> Shah Pranav</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Shailesh"> Shah Shailesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Venlafaxine hydrochloride has a short elimination half-life of 5 ± 2 hr, and absorption window in the upper part of gastrointestinal tract. The conventional tablets need to be administered two to three times a day and possess an oral bioavailability of 45%. The purpose of this study was to formulate gastroretentive effervescent floating tablets of Venlafaxine HCl. Different grades of HPMC namely K15M, K4M, K100M and E15LV were employed as swelling polymers whereas sodium bicarbonate was employed as gas generating agent. The direct compression method was employed for the formulation of tablets. The tablets were evaluated in terms of hardness, friability, weight variation, drug content, water uptake, in-vitro floating behavior and in-vitro drug release study. All the formulations exhibited very short floating lag time of < 1 min and total floating time of 12 hr. Formulation L3 containing 25 mg and 75 mg of HPMC E15 LV and HPMC K15M respectively exhibited complete drug release within 12 hrs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=venlafaxine%20HCl" title="venlafaxine HCl">venlafaxine HCl</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyl%20propyl%20methylcellulose" title=" hydroxyl propyl methylcellulose"> hydroxyl propyl methylcellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20gastro%20retentive%20tablets" title=" floating gastro retentive tablets"> floating gastro retentive tablets</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20drug%20release" title=" in-vitro drug release"> in-vitro drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=non-fickian%20diffusion" title=" non-fickian diffusion"> non-fickian diffusion</a> </p> <a href="https://publications.waset.org/abstracts/16234/formulation-development-and-evaluation-of-floating-tablets-of-venlafaxine-hydrochloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hyung%20Kim">Ju-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Ho%20Mun"> Dae-Ho Mun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gun%20Park"> Hong-Gun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20floor" title="floating floor">floating floor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-weight%20impact" title=" heavy-weight impact"> heavy-weight impact</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/60227/prediction-of-heavy-weight-impact-noise-and-vibration-of-floating-floor-using-modified-impact-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Mohamed">F. M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Abdelaziz"> A. Y. Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a> </p> <a href="https://publications.waset.org/abstracts/67175/protection-of-floating-roof-petroleum-storage-tanks-against-lightning-strokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpa%20Petchsomrit">Arpa Petchsomrit</a>, <a href="https://publications.waset.org/abstracts/search?q=Namfa%20Sermkaew"> Namfa Sermkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruedeekorn%20Wiwattanapatapee"> Ruedeekorn Wiwattanapatapee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20drug%20delivery" title=" floating drug delivery"> floating drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20entrapped%20bead" title=" oil entrapped bead"> oil entrapped bead</a> </p> <a href="https://publications.waset.org/abstracts/3633/effect-of-alginate-and-surfactant-on-physical-properties-of-oil-entrapped-alginate-bead-formulation-of-curcumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Architectural Approaches to a Sustainable Community with Floating Housing Units Adapting to Climate Change and Sea Level Rise in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thu%20Trang">Nguyen Thi Thu Trang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and sea level rise is one of the greatest challenges facing human beings in the 21st century. Because of sea level rise, several low-lying coastal areas around the globe are at risk of being completely submerged, disappearing under water. Particularly in Viet Nam, the rise in sea level is predicted to result in more frequent and even permanently inundated coastal plains. As a result, land reserving fund of coastal cities is going to be narrowed in near future, while construction ground is becoming increasingly limited due to a rapid growth in population. Faced with this reality, the solutions are being discussed not only in tradition view such as accommodation is raised or moved to higher areas, or “living with the water”, but also forwards to “living on the water”. Therefore, the concept of a sustainable floating community with floating houses based on the precious value of long term historical tradition of water dwellings in Viet Nam would be a sustainable solution for adaptation of climate change and sea level rise in the coastal areas. The sustainable floating community is comprised of sustainability in four components: architecture, environment, socio-economic and living quality. This research paper is focused on sustainability in architectural component of floating community. Through detailed architectural analysis of current floating houses and floating communities in Viet Nam, this research not only accumulates precious values of traditional architecture that need to be preserved and developed in the proposed concept, but also illustrates its weaknesses that need to address for optimal design of the future sustainable floating communities. Based on these studies the research would provide guidelines with appropriate architectural solutions for the concept of sustainable floating community with floating housing units that are adapted to climate change and sea level rise in Viet Nam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guidelines" title="guidelines">guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20floating%20community" title=" sustainable floating community"> sustainable floating community</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20houses" title=" floating houses"> floating houses</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/36693/architectural-approaches-to-a-sustainable-community-with-floating-housing-units-adapting-to-climate-change-and-sea-level-rise-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Study of the Performance of Metal Tanks with a Floating Roof</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezki%20Akkouche">Rezki Akkouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanks%20of%20metal" title="tanks of metal">tanks of metal</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof" title=" floating roof"> floating roof</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/167127/study-of-the-performance-of-metal-tanks-with-a-floating-roof" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Use of Bamboo Piles in Ground Improvement Design: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thayalan%20Nall">Thayalan Nall</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Putra"> Andreas Putra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major offshore reclamation work is currently underway in Southeast Asia for a container terminal. The total extent of the reclamation extent is 2600m x 800m and the seabed level is around -5mRL below mean sea level. Subsoil profile below seabed comprises soft marine clays of thickness varying from 8m to 15m. To contain the dredging spoil within the reclamation area, perimeter bunds have been constructed to +2.5mRL. They include breakwaters of trapezoidal geometry, made of boulder size rock along the northern, eastern and western perimeters, with a sand bund along the southern perimeter. Breakwaters were constructed on a composite bamboo pile and raft foundation system. Bamboo clusters 8m long, with 7 individual Bamboos bundled together as one, have been installed within the footprint of the breakwater below seabed in soft marine clay. To facilitate drainage two prefabricated vertical drains (PVD) have been attached to each cluster. Once the cluster piles were installed, a bamboo raft was placed as a load transfer platform. Rafts were made up of 5 layers of bamboo mattress, and in each layer bamboos were spaced at 200mm centres. The rafts wouldn’t sink under their own weight, and hence, they were sunk by loading quarry run rock onto them. Bamboo is a building material available in abundance in Indonesia and obtained at a relatively low cost. They are commonly used as semi-rigid inclusions to improve compressibility and stability of soft soils. Although bamboo is widely used in soft soil engineering design, no local design guides are available and the designs are carried out based on local experience. In June 2015, when the 1st load of sand was pumped by a dredging vessel next to the breakwater, a 150m long section of the breakwater underwent failure and displaced the breakwater between 1.2m to 4.0m. The cause of the failure was investigated to implement remedial measures to reduce the risk of further failures. Analyses using both limit equilibrium approach and finite element modelling revealed two plausible modes of breakwater failure. This paper outlines: 1) Developed Geology and the ground model, 2) The techniques used for the installation of bamboo piles, 3) Details of the analyses including modes and mechanism of failure and 4) Design changes incorporated to reduce the risk of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20piles" title="bamboo piles">bamboo piles</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=reclamation" title=" reclamation"> reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=breakwater%20failure" title=" breakwater failure"> breakwater failure</a> </p> <a href="https://publications.waset.org/abstracts/48373/use-of-bamboo-piles-in-ground-improvement-design-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Iffika%20Ruslan">Nur Iffika Ruslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rosly%20Abbas"> Ahmad Rosly Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Munirah%20Stapah%40Salleh"> Munirah Stapah@Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurfaziera%20Rahim"> Nurfaziera Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Large%20Scale%20Floating%20Solar" title="Large Scale Floating Solar">Large Scale Floating Solar</a>, <a href="https://publications.waset.org/abstracts/search?q=Peninsular%20Malaysia" title=" Peninsular Malaysia"> Peninsular Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=Potential%20Sites" title=" Potential Sites"> Potential Sites</a>, <a href="https://publications.waset.org/abstracts/search?q=Renewable%20Energy" title=" Renewable Energy"> Renewable Energy</a> </p> <a href="https://publications.waset.org/abstracts/129340/identification-of-potential-large-scale-floating-solar-sites-in-peninsular-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> GPU Based Real-Time Floating Object Detection System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yang">Jie Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Min%20Meng"> Jian-Min Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title="object detection">object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU" title=" GPU"> GPU</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title=" motion estimation"> motion estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20processing" title=" parallel processing"> parallel processing</a> </p> <a href="https://publications.waset.org/abstracts/54425/gpu-based-real-time-floating-object-detection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan%20Pathan">Imran Khan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Bhandari"> Anil Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20K.%20Sharma"> Peeyush K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20K.%20Patel"> Rakesh K. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Purohit"> Suresh Purohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The in vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperine" title="piperine">piperine</a>, <a href="https://publications.waset.org/abstracts/search?q=Marichyadi%20Vati" title=" Marichyadi Vati"> Marichyadi Vati</a>, <a href="https://publications.waset.org/abstracts/search?q=gastroretentive%20drug%20delivery" title=" gastroretentive drug delivery"> gastroretentive drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20tablet" title=" floating tablet"> floating tablet</a> </p> <a href="https://publications.waset.org/abstracts/1702/development-and-evaluation-of-gastro-retentive-floating-tablets-of-ayurvedic-vati-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Agrawal">Vinay Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Suyash%20Garg"> Suyash Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Nagar"> Ravindra Nagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Chandwani"> Vinay Chandwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20static%20analysis" title="equivalent static analysis">equivalent static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20column" title=" floating column"> floating column</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20ground%20storey" title=" open ground storey"> open ground storey</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum%20analysis" title=" response spectrum analysis"> response spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall" title=" shear wall"> shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20irregularity" title=" stiffness irregularity"> stiffness irregularity</a> </p> <a href="https://publications.waset.org/abstracts/58451/seismic-retrofitting-of-rc-buildings-with-soft-storey-and-floating-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Approaches to Promote Healthy Recreation Activities for Elderly Tourists at Bang Nam Phueng Floating Market, Prapradeang District, Samutprakarn Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasitorn%20Chetanont">Sasitorn Chetanont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study are to find out the approaches to promote healthy recreation activities for elderly tourists and develop Bang Nam Phueng Floating Market to be a health tourism attraction. The research methodology was to analyze internal and external situations according to MP-MF and the MC-STEPS principles. As for the results of this study the researcher found that the healthy recreational activities for elderly tourists could be divided in 7 groups; travelling Bang Nam Phueng Floating Market activity, homestay relaxation, arts center platform activity, healthy massage activity, paying homage to a Buddha image activity, herbal joss-stick home activity, making local desserts and food activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elderly%20tourists" title="elderly tourists">elderly tourists</a>, <a href="https://publications.waset.org/abstracts/search?q=recreation%20activities" title=" recreation activities"> recreation activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang%20Nam%20Phueng%20Floating%20Market" title=" Bang Nam Phueng Floating Market"> Bang Nam Phueng Floating Market</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20tourism" title=" health tourism"> health tourism</a> </p> <a href="https://publications.waset.org/abstracts/12703/approaches-to-promote-healthy-recreation-activities-for-elderly-tourists-at-bang-nam-phueng-floating-market-prapradeang-district-samutprakarn-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Further Development of Offshore Floating Solar and Its Design Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madjid%20Karimirad">Madjid Karimirad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20solar" title="floating solar">floating solar</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20renewable%20energy" title=" offshore renewable energy"> offshore renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20and%20wave%20loading" title=" wind and wave loading"> wind and wave loading</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20space" title=" design space"> design space</a> </p> <a href="https://publications.waset.org/abstracts/173501/further-development-of-offshore-floating-solar-and-its-design-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Designing Equivalent Model of Floating Gate Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birinderjit%20Singh%20Kalyan">Birinderjit Singh Kalyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderpreet%20Kaur"> Inderpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh%20Sohi"> Balwinder Singh Sohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an equivalent model for floating gate transistor has been proposed. Using the floating gate voltage value, capacitive coupling coefficients has been found at different bias conditions. The amount of charge present on the gate has been then calculated using the transient models of hot electron programming and Fowler-Nordheim Tunnelling. The proposed model can be extended to the transient conditions as well. The SPICE equivalent model is designed and current-voltage characteristics and Transfer characteristics are comparatively analysed. The dc current-voltage characteristics, as well as dc transfer characteristics, have been plotted for an FGMOS with W/L=0.25μm/0.375μm, the inter-poly capacitance of 0.8fF for both programmed and erased states. The Comparative analysis has been made between the present model and capacitive coefficient coupling methods which were already available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGMOS" title="FGMOS">FGMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20gate%20transistor" title=" floating gate transistor"> floating gate transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20coupling%20coefficient" title=" capacitive coupling coefficient"> capacitive coupling coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20model" title=" SPICE model"> SPICE model</a> </p> <a href="https://publications.waset.org/abstracts/30822/designing-equivalent-model-of-floating-gate-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> The Behavior and Satisfaction of Tourists Affecting the Sustainable Tourism at the Amphawa Floating Market in Samut Songkhram Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanpen%20Meenakorn">Chanpen Meenakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study; (1) behavior of the tourists affecting the satisfaction level of tourism at the Amphawa floating market in Samut Songkhram province, (2) to study the satisfaction level of tourism at the Amphawa floating market. The research method will use quantitative research; data was collected by questionnaires distributed to the tourist who visits the Amphawa floating market for 480 samples. Data was analyzed by SPSS software to process descriptive statistic including frequency, percentage, mean, standard deviation and inferential statistic is t-test, F-test, and chi-square. The results showed that the behavior of tourists had known tourist attractions in the province comes from the mouth of relatives and friends suggested that he come here before and the reasons to visit is to want to pay homage to the various temples for the frequency to visit travel an average of 2-4 times and the satisfaction of the tourists in the province found that the satisfaction level of tourists in the province at the significant level of the place, convenient and services have a high level of satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphawa%20floating%20market%20behavior%20of%20the%20tourists" title="amphawa floating market behavior of the tourists">amphawa floating market behavior of the tourists</a>, <a href="https://publications.waset.org/abstracts/search?q=satisfaction%20level" title=" satisfaction level"> satisfaction level</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20tourism" title=" sustainable tourism"> sustainable tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=Samut%20Songkhram%20province" title=" Samut Songkhram province"> Samut Songkhram province</a> </p> <a href="https://publications.waset.org/abstracts/39930/the-behavior-and-satisfaction-of-tourists-affecting-the-sustainable-tourism-at-the-amphawa-floating-market-in-samut-songkhram-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Study on Connecting Method of Box Pontoons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Jun%20You">Young-Jun You</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn-Ju%20Jeong"> Youn-Ju Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Su%20Park"> Min-Su Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Du-Ho%20Lee"> Du-Ho Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connection" title="connection">connection</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20container%20terminal" title=" floating container terminal"> floating container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=pontoon" title=" pontoon"> pontoon</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stressing" title=" pre-stressing"> pre-stressing</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20key" title=" shear key"> shear key</a> </p> <a href="https://publications.waset.org/abstracts/6234/study-on-connecting-method-of-box-pontoons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100 nm Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zina%20Saheb">Zina Saheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezz%20El-Masry"> Ezz El-Masry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As CMOS technology scaling down, Silicon oxide thickness (SiO2) become very thin (few Nano meters). When SiO2 is less than 3nm, gate direct tunneling (DT) leakage current becomes a dormant problem that impacts the transistor performance. Floating gate MOSFET (FGMOSFET) has been used in many low-voltage and low-power applications. Most of the available simulation models of FGMOSFET for analog circuit design does not account for gate DT current and there is no accurate analysis for the gate DT. It is a crucial to use an accurate mode in order to get a realistic simulation result that account for that DT impact on FGMOSFET performance effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20transistor" title="CMOS transistor">CMOS transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-tunneling%20current" title=" direct-tunneling current"> direct-tunneling current</a>, <a href="https://publications.waset.org/abstracts/search?q=floating-gate" title=" floating-gate"> floating-gate</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-leakage%20current" title=" gate-leakage current"> gate-leakage current</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a> </p> <a href="https://publications.waset.org/abstracts/30655/practical-simulation-model-of-floating-gate-mos-transistor-in-sub-100-nm-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20I.%20Malag">Arnold I. Malag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title="solid waste">solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20waste" title=" coastal waste"> coastal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20characterization" title=" waste characterization"> waste characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20collector" title=" waste collector"> waste collector</a> </p> <a href="https://publications.waset.org/abstracts/161892/characterization-of-coastal-solid-waste-basis-for-the-development-of-waste-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=floating%20breakwater&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>