CINXE.COM
Search results for: ceramic coating
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ceramic coating</title> <meta name="description" content="Search results for: ceramic coating"> <meta name="keywords" content="ceramic coating"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ceramic coating" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ceramic coating"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1151</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ceramic coating</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kerti">I. Kerti</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sezen"> G. Sezen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Daglilar"> S. Daglilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title="boron carbide">boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=electroless%20coating" title=" electroless coating"> electroless coating</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20boron%20deposition" title=" nickel boron deposition"> nickel boron deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/41199/electroless-nickel-boron-deposition-onto-the-sic-and-b4c-ceramic-reinforced-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Preparation and Characterizations of Natural Material Based Ceramic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Hyuck%20Song">In-Hyuck Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang-Hoon%20Ha"> Jang-Hoon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomite" title=" diatomite"> diatomite</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/23363/preparation-and-characterizations-of-natural-material-based-ceramic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Pattnayak">Abhijit Pattnayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijith%20N.V"> Abhijith N.V</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar"> Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayant%20Jain"> Jayant Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Chaudhry"> Vijay Chaudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20spray%20process" title="thermal spray process">thermal spray process</a>, <a href="https://publications.waset.org/abstracts/search?q=HVOF" title=" HVOF"> HVOF</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20coating" title=" ceramic coating"> ceramic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/162461/development-of-wear-resistant-ceramic-coating-on-steel-using-high-velocity-oxygen-flame-thermal-spray" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Some Investigations of Primary Slurry Used for Production of Ceramic Shells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh">Balwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current competitive environment, casting industry has several challenges such as production of intricate castings, near net shape castings, decrease lead-time from product design to production, improved casting quality and to control costs. The raw materials used to make ceramic shell play an important role in determining the overall final ceramic shell characteristics. In this work, primary slurries were formulated using various combinations of zircon flour, fused silica and aluminosilicate powders as filler, colloidal silica as binder along with wetting and antifoaming agents (Catalyst). Taguchi’s parameter design strategy has been applied to investigate the effect of primary slurry parameters on the viscosity of the slurry and primary coating of shell. The result reveals that primary coating with low viscosity slurry has produced a rough surface of the shell due to stucco penetration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20shell" title="ceramic shell">ceramic shell</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20slurry" title=" primary slurry"> primary slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20viscosity" title=" slurry viscosity"> slurry viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/20390/some-investigations-of-primary-slurry-used-for-production-of-ceramic-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siming%20Wang">Siming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Ni"> Qing Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wu"> Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruihai%20Xu"> Ruihai Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Ye"> Hong Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20coating" title="conductive coating">conductive coating</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20ceramic%20electric%20heater" title=" honeycomb ceramic electric heater"> honeycomb ceramic electric heater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20specific%20surface%20area" title=" high specific surface area"> high specific surface area</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20volume%20power%20density" title=" high volume power density"> high volume power density</a> </p> <a href="https://publications.waset.org/abstracts/149014/the-fabrication-and-characterization-of-a-honeycomb-ceramic-electric-heater-with-a-conductive-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20adipate%20%28DMA%29" title=" dimethyl adipate (DMA)"> dimethyl adipate (DMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20emissions" title=" exhaust emissions"> exhaust emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/58746/the-effects-of-dimethyl-adipate-dma-on-coated-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Wiese"> Juergen Wiese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title="water purification">water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolytes" title=" polyelectrolytes"> polyelectrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20modification" title=" membrane modification"> membrane modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20coating" title=" layer-by-layer coating"> layer-by-layer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title=" ceramic membranes"> ceramic membranes</a> </p> <a href="https://publications.waset.org/abstracts/138651/layer-by-layer-modified-ceramic-membranes-for-micropollutant-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20WIese"> Juergen WIese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title="water treatment">water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=membranes" title=" membranes"> membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title=" ceramic membranes"> ceramic membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20membranes" title=" hybrid membranes"> hybrid membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20modification" title=" layer-by-layer modification"> layer-by-layer modification</a> </p> <a href="https://publications.waset.org/abstracts/138613/influence-of-layer-by-layer-coating-parameters-on-the-properties-of-hybrid-membrane-for-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20A.%20Nabeela%20Nasreen">S. A. A. Nabeela Nasreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sundarrajan"> S. Sundarrajan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Syed%20Nizar"> S. A. Syed Nizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal" title=" solvothermal"> solvothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF" title=" ZIF"> ZIF</a> </p> <a href="https://publications.waset.org/abstracts/97314/layer-by-layer-coating-of-zinc-oxidemetal-organic-framework-nanocomposite-on-ceramic-support-for-solventsolvent-separation-using-pervaporation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Karthickeyan">V. Karthickeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20material" title="ceramic material">ceramic material</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel%20and%20diesel%20engine" title=" biofuel and diesel engine"> biofuel and diesel engine</a> </p> <a href="https://publications.waset.org/abstracts/102859/investigating-the-effect-of-ceramic-thermal-barrier-coating-on-diesel-engine-with-lemon-oil-biofuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kajama"> Mohammed Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Anyanwu"> Emmanuel Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/29152/multi-layer-silica-alumina-membrane-performance-for-flue-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> Evaluation of the Efficacy of Titanium Alloy Dental Implants Coated by Bio-ceramic Apatite Wollastonite (Aw) and Hydroxyapatite (Ha) by Pulsed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betsy%20S.%20Thomas">Betsy S. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjeet%20Marpara"> Manjeet Marpara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Bhat"> K. M. Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: After the initial enthusiasm and interest in hydroxyapatite products subsided due to dissolution of the coating and failure at the coating interface, this was a unique attempt to create a next generation of dental implant. Materials and Methods: The adhesion property of AW and HA coatings at various temperature by pulsed laser deposition was assessed on titanium plates. Moreover, AW/HA coated implants implanted in the femur of the rabbits was evaluated at various intervals. Results: Decohesion load was more for AW in scratch test and more bone formation around AW coated implants on histological evaluation. Discussion: AW coating by pulsed laser deposition was more adherent to the titanium surface and led to faster bone formation than HA. Conclusion: This experiment opined that AW coated by pulsed laser deposition seems to be a promising method in achieving bioactive coatings on titanium implants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title="surface coating">surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=osseo%20integration" title=" osseo integration"> osseo integration</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/2446/evaluation-of-the-efficacy-of-titanium-alloy-dental-implants-coated-by-bio-ceramic-apatite-wollastonite-aw-and-hydroxyapatite-ha-by-pulsed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Gul"> Hakan Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Ozturk"> Ugur Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boriding" title="boriding">boriding</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20emission" title=" exhaust emission"> exhaust emission</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a> </p> <a href="https://publications.waset.org/abstracts/31878/characterization-and-effect-of-using-pumpkin-seeds-oil-methyl-ester-psme-as-fuel-in-a-lhr-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudia%20L.%20Bianchi">Claudia L. Bianchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppina%20Cerrato"> Giuseppina Cerrato</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Galli"> Federico Galli</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Minozzi"> Federica Minozzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentino%20Capucci"> Valentino Capucci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag-doped%20microsized%20TiO%E2%82%82" title="Ag-doped microsized TiO₂">Ag-doped microsized TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-active%20ceramic" title=" eco-active ceramic"> eco-active ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20coating" title=" digital coating"> digital coating</a> </p> <a href="https://publications.waset.org/abstracts/87154/photocatalytic-eco-active-ceramic-slabs-to-abate-air-pollution-under-led-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Nano Ceramics Materials in Clean Rooms: Properties and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=HebatAllah%20Tarek">HebatAllah Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20El-Sayad"> Zeyad El-Sayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20F.%20Bakr"> Ali F. Bakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-ceramic%20coating" title="nano-ceramic coating">nano-ceramic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20rooms" title=" clean rooms"> clean rooms</a>, <a href="https://publications.waset.org/abstracts/search?q=porcelain" title=" porcelain"> porcelain</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a> </p> <a href="https://publications.waset.org/abstracts/152096/nano-ceramics-materials-in-clean-rooms-properties-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> Fabrication of Titanium Diboride-Based High Emissive Paint Coating Using Economical Dip Coating Method for High Temperature Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atasi%20Dan">Atasi Dan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamanio%20Chattopadhyay"> Kamanio Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Basu"> Bikramjit Basu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cost-effective titanium diboride (TiB2) paint coating has been developed on stainless steel substrate using commercially available polyvinylpyrrolidone as a binder by convenient dip-coating technique. The emittance of the coating has been explored by tailoring various process parameters to obtain highest thermal radiation. The optimized coating has achieved a high thermal emittance of 0.85. In addition, the coating exhibited an excellent thermal stability while heat-treated at 500 °C in air. Along with the emittance, the structural and physical properties of the As-deposited and heat-treated coatings have been investigated systematically. The high temperature annealing has not affected the emittance, chemical composition and morphology of the coating significantly. Hence, the fabricated paint coating is expected to open up new possibilities for using it as a low-cost, thermally stable emitter in high temperature applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20diboride" title="titanium diboride">titanium diboride</a>, <a href="https://publications.waset.org/abstracts/search?q=emittance" title=" emittance"> emittance</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating" title=" paint coating"> paint coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/61044/fabrication-of-titanium-diboride-based-high-emissive-paint-coating-using-economical-dip-coating-method-for-high-temperature-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Cold Spray Fabrication of Coating for Highly Corrosive Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Singh">Harminder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold spray is a novel and emerging technology for the fabrication of coating. In this study, coating is successfully developed by this process on superalloy surface. The selected coating composition is already proved as corrosion resistant. The microstructure of the newly developed coating is examined by various characterization techniques, for testing its suitability for high temperature corrosive conditions of waste incinerator. The energy producing waste incinerators are still running at low efficiency, mainly due to their chlorine based highly corrosive conditions. The characterization results show that the developed cold sprayed coating structure is suitable for its further testing in highly aggressive conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20spray" title=" cold spray"> cold spray</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/43306/cold-spray-fabrication-of-coating-for-highly-corrosive-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Technological Properties and Characterization of Ceramic Slurries Based on Yttrium Iii Oxide for Shell Moulds Preparation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Jakubowska">D. Jakubowska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malek"> M. Malek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Wisniewski"> P. Wisniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mizera"> J. Mizera</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Kurzydlowski"> K. J. Kurzydlowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to analyze the technological properties of ceramic slurries based on Ytttria (Y2O3) for fabrication “prime coat” in ceramic shell moulds for investment casting process. The Yttria with two different granulation of (200# and 325#) in ratio-65%-35% by weight were used for preparation the ceramic slurries. Solid phase was 77 wt.%. The experiment was carried out for 96h. Main technological properties like: viscosity, pH, plate weight test, and density were measured every 24h. Additionally, dynamic viscosity was performed after 96h of test. For further material characterization SEM observations, Zeta potential, XRD measurements were done. Those research showed that Yttria ceramic slurries had very promising properties and there are perspective for future fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20slurries" title="ceramic slurries">ceramic slurries</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanizal%20properties" title=" mechanizal properties"> mechanizal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a> </p> <a href="https://publications.waset.org/abstracts/25532/technological-properties-and-characterization-of-ceramic-slurries-based-on-yttrium-iii-oxide-for-shell-moulds-preparation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Velavan">A.Velavan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Saravanan"> C. G. Saravanan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vikneswaran"> M. Vikneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20James%20Gunasekaran"> E. James Gunasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 µm using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coated%20piston" title="coated piston">coated piston</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-arc%20oxidation" title=" micro-arc oxidation"> micro-arc oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier" title=" thermal barrier"> thermal barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=visioscope" title=" visioscope"> visioscope</a> </p> <a href="https://publications.waset.org/abstracts/103542/the-effect-of-micro-arc-oxidation-coated-piston-crown-on-engine-characteristics-in-a-spark-ignited-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vinayagam">P. Vinayagam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Madhanagopal"> A. Madhanagopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste" title="ceramic waste">ceramic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate%20replacement" title=" coarse aggregate replacement"> coarse aggregate replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=glazed%20stoneware%20pipe%20waste" title=" glazed stoneware pipe waste"> glazed stoneware pipe waste</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a> </p> <a href="https://publications.waset.org/abstracts/6951/experimental-investigation-on-high-performance-concrete-with-silica-fume-and-ceramic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehieddine%20Bouatrous">Mehieddine Bouatrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous" title="porous">porous</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive" title=" bioactive"> bioactive</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=S.B.F" title=" S.B.F"> S.B.F</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclowollastonite" title=" cyclowollastonite"> cyclowollastonite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a> </p> <a href="https://publications.waset.org/abstracts/168006/synthesis-of-highly-porous-cyclowollastonite-bioactive-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1130</span> Red Clay Properties and Application for Ceramic Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruedee%20Niyomrath">Ruedee Niyomrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at surveying the local red clay raw material sources in Samut Songkram province, Thailand to test the physical and chemical properties of the local red clay, including to find the approach to develop the local red clay properties for ceramic production. The findings of this research would be brought to apply in the ceramic production industry of the country all at the upstream level which was the community in the raw material source, at the mid water level which was the ceramic producer and at the downstream level which was the distributor and the consumer as well as the community producer who would apply them to their identity and need of the community business. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20properties%20of%20red%20clay" title="chemical properties of red clay">chemical properties of red clay</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties%20of%20red%20clay" title=" physical properties of red clay"> physical properties of red clay</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20production" title=" ceramic production"> ceramic production</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20clay%20product" title=" red clay product"> red clay product</a> </p> <a href="https://publications.waset.org/abstracts/10206/red-clay-properties-and-application-for-ceramic-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1129</span> Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Wiese"> Juergen Wiese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title="water treatment">water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20membranes" title=" hybrid membranes"> hybrid membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20coating" title=" layer-by-layer coating"> layer-by-layer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolytes" title=" polyelectrolytes"> polyelectrolytes</a> </p> <a href="https://publications.waset.org/abstracts/138646/removal-of-pharmaceuticals-from-aquarius-solutions-using-hybrid-ceramic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1128</span> Technology of Thermal Spray Coating Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petr%C5%AF">Jana Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Zl%C3%A1mal"> Tomáš Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cep"> Robert Čep</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C4%8Cepov%C3%A1"> Lenka Čepová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/2535/technology-of-thermal-spray-coating-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1127</span> Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonjida%20Mustafia">Sonjida Mustafia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic" title=" glass-ceramic"> glass-ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=glossiness" title=" glossiness"> glossiness</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20shrinkage" title=" linear shrinkage"> linear shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-structure" title=" micro-structure"> micro-structure</a> </p> <a href="https://publications.waset.org/abstracts/161261/utilization-of-solid-waste-materials-to-produce-glass-ceramic-tiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee">Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song"> Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonseok%20Kim"> Yonseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200°C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Barrier%20Coating%20%28TBC%29" title=" Thermal Barrier Coating (TBC)"> Thermal Barrier Coating (TBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis%20%28FEA%29" title=" Finite Element Analysis (FEA)"> Finite Element Analysis (FEA)</a> </p> <a href="https://publications.waset.org/abstracts/15385/evaluation-of-thermal-barrier-coating-applied-to-the-gas-turbine-blade-according-to-the-thermal-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-Cut Papaya (Carica papaya)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basharat%20Yousuf">Basharat Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhaya%20K.%20Srivastava"> Abhaya K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh-cut" title=" fresh-cut"> fresh-cut</a>, <a href="https://publications.waset.org/abstracts/search?q=gum" title=" gum"> gum</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya" title=" papaya"> papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=psylllium" title=" psylllium"> psylllium</a> </p> <a href="https://publications.waset.org/abstracts/26199/psyllium-plantago-gum-as-an-effective-edible-coating-to-improve-quality-and-shelf-life-of-fresh-cut-papaya-carica-papaya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Wang">Xiaohui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liwei%20Sun"> Liwei Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilin%20Zhang"> Guilin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title="printed circuit board">printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20assessment" title=" life assessment"> life assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20resistance" title=" insulation resistance"> insulation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20material" title=" coating material"> coating material</a> </p> <a href="https://publications.waset.org/abstracts/29607/the-performance-of-typical-kinds-of-coating-of-printed-circuit-board-under-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Jiang">Chen Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Jordan"> Eric Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurice%20Gell"> Maurice Gell</a>, <a href="https://publications.waset.org/abstracts/search?q=Balakrishnan%20Nair"> Balakrishnan Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breeding%20blanket" title="breeding blanket">breeding blanket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20protection" title=" corrosion protection"> corrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20spray" title=" plasma spray"> plasma spray</a> </p> <a href="https://publications.waset.org/abstracts/65800/functional-plasma-spray-ceramic-coatings-for-corrosion-protection-of-rafm-steels-in-fusion-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Meniscus Guided Film Coating for Large-Area Perovskite Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizachew%20Belay%20Adugna">Gizachew Belay Adugna</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Tai%20Tao"> Yu-Tai Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite solar cells (PSCs) have been gaining impressive progress with excellent power conversion efficiency (PCE) of 25.5% in small-area devices. However, the conventional film coating approach is not applicable to large-area module fabrication. Meniscus-guided coating, including blade coating, slot-die coating, and bar coating, is solution processing and promising for large-area and cost-effective film coating to industrial-scale PSCs. Here, we develop simple and scalable solution shearing (SS) and bar coating (BC) methods to coat all layers on large-area (10x10 cm²) substrate in FTO/c-TiO₂/mp-TiO₂/ CH₃NH₃PbI₃/Spiro-OMeTAD/Ag device structure, except the Ag electrode. All solution-sheared PSC exhibited a champion power conversion efficiency of 15.89% in the conational DMF/DMSO solvent. Whereas a very high PCE of 20.30% compared to the controlled spin-coated device (SC, 17.60%) was achieved from the large area sheared perovskite film in a green ACN/MA solvent. Similarly, a remarkable PCE of 18.50% was achieved for a device fabricated from a large-area perovskite film in a simpler and more compatible Bar-coating system. This strategy demonstrates the huge potential for module fabrication and future PSC commercialization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perovskite%20solar%20cells" title="Perovskite solar cells">Perovskite solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=larger%20area%20film%20coating" title=" larger area film coating"> larger area film coating</a>, <a href="https://publications.waset.org/abstracts/search?q=meniscus-guided%20film%20coating" title=" meniscus-guided film coating"> meniscus-guided film coating</a>, <a href="https://publications.waset.org/abstracts/search?q=solution-shearing" title=" solution-shearing"> solution-shearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bar-coating" title=" bar-coating"> bar-coating</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20conversion%20efficiency" title=" power conversion efficiency"> power conversion efficiency</a> </p> <a href="https://publications.waset.org/abstracts/168010/meniscus-guided-film-coating-for-large-area-perovskite-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20coating&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>