CINXE.COM

(PDF) An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions | Gary Wang - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="6CEpZiZDNwMZK10gy2/g6AgaX81TcuQSoUeY0EHOB1eygScttnhkRIVJ7oGNXhvEsz7oY1YLzSPZw2Le+/+Jzw==" /> <meta name="citation_title" content="An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions" /> <meta name="citation_publication_date" content="2005/01/01" /> <meta name="citation_journal_title" content="Journal of Mechanical Design" /> <meta name="citation_author" content="Gary Wang" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions" /> <meta name="twitter:title" content="An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions" /> <meta name="twitter:description" content="Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions" /> <meta property="og:title" content="An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this" /> <meta property="article:author" content="https://sfu.academia.edu/GaryWang" /> <meta name="description" content="Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this" /> <title>(PDF) An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions | Gary Wang - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732389578000); window.Aedu.timeDifference = new Date().getTime() - 1732389578000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation models, this approach progressively provides a designer with a rich and evenly distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing and design application, PSP demonstrates considerable promises in efficiency, accuracy, and robustness. Properties of PSP and differences between PSP and other approximation-based methods are also discussed. It is believed that PSP has a great potential to be a practical tool for multiobjective optimization problems.","author":[{"@context":"https://schema.org","@type":"Person","name":"Gary Wang"}],"contributor":[],"dateCreated":"2021-12-29","dateModified":"2021-12-29","datePublished":"2005-01-01","headline":"An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions","inLanguage":"en","keywords":[],"locationCreated":null,"publication":"Journal of Mechanical Design","publisher":{"@context":"https://schema.org","@type":"Organization","name":"ASME International"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"sfu"}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-352e32ba4e89304dc0b4fa5b3952eef2198174c54cdb79066bc62e91c68a1a91.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f9a344b76a23667f37a735d1b2bd7fb3d671924abd04fa1d275778f4c5229b1e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="bd6bvK8iaOUAlABEOoDLNlVqqUm3vs2XMXLoVG8n/1I3fpX3Pxk7opz2s+V8sTAa7k4e57LH5KZJ9hJa1RZxyg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="WSdRuZxjZnCqLQSZlJ6gqAZHFwkX3Xa49h/cjRPTz/wDh1/yDFg1NzZPtzjSr1uEvWOgpxKkX4mOmyaDqeJBZA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-bf3d831cde46cd0e142f29f81a3fc4ce5ab45a404c10c12a480e83de68aff851.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 11579; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F66455908%2FAn_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F66455908%2FAn_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":77640126,"identifier":"Attachment_77640126","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":66455908,"created_at":"2021-12-29T16:27:12.354-08:00","from_world_paper_id":189715906,"updated_at":"2021-12-29T17:08:28.281-08:00","_data":{"abstract":"Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation models, this approach progressively provides a designer with a rich and evenly distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing and design application, PSP demonstrates considerable promises in efficiency, accuracy, and robustness. Properties of PSP and differences between PSP and other approximation-based methods are also discussed. It is believed that PSP has a great potential to be a practical tool for multiobjective optimization problems.","publisher":"ASME International","publication_date":"2005,,","publication_name":"Journal of Mechanical Design"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [11579]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:77640126,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/77640126/mini_magick20211229-17867-1qx6xk.png?1640826407" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="11579" href="https://sfu.academia.edu/GaryWang"><img alt="Profile image of Gary Wang" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Gary Wang</a></div><p class="ds-work-card--detail ds2-5-body-sm">2005, Journal of Mechanical Design</p><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation models, this approach progressively provides a designer with a rich and evenly distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing and design application, PSP demonstrates considerable promises in efficiency, accuracy, and robustness. Properties of PSP and differences between PSP and other approximation-based methods are also discussed. It is believed that PSP has a great potential to be a practical tool for multiobjective optimization problems.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:77640126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:77640126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="77640126" data-landing_url="https://www.academia.edu/66455908/An_Efficient_Pareto_Set_Identification_Approach_for_Multiobjective_Optimization_on_Black_Box_Functions" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="73949557" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement">Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37978259" href="https://independent.academia.edu/ThomasSantner">Thomas Santner</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2014</p><p class="ds-related-work--abstract ds2-5-body-sm">Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output (vector) on the Pareto Front; the inputs that produce outputs on the Pareto Front form the Pareto Set. This paper proposes a method for identifying the Pareto Front and the Pareto Set when the objective functions are expensive to compute. The method replaces the objective function evaluations by a rapidly computable approximator based on an interpolating Gaussian process (GP) model. It sequentially selects new input sites guided by an improvement function; the next input to evaluate each output is that vector which maximizes the conditional expected value of this improvement function given the current data. The method introduced in this paper provides two advances within this framework. First, it proposes an improvement function based on the mo...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Optimization and Engineering manuscript No. (will be inserted by the editor) Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement&quot;,&quot;attachmentId&quot;:82281281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/73949557/Optimization_and_Engineering_manuscript_No_will_be_inserted_by_the_editor_Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="80923453" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80923453/Pareto_set_analysis_local_measures_of_objective_coupling_in_multiobjective_design_optimization">Pareto set analysis: local measures of objective coupling in multiobjective design optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51625324" href="https://umich.academia.edu/PanosPapalambros">Panos Papalambros</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Structural and Multidisciplinary Optimization, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Pareto set analysis: local measures of objective coupling in multiobjective design optimization&quot;,&quot;attachmentId&quot;:87143370,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/80923453/Pareto_set_analysis_local_measures_of_objective_coupling_in_multiobjective_design_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/80923453/Pareto_set_analysis_local_measures_of_objective_coupling_in_multiobjective_design_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="87064295" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87064295/A_method_for_generating_a_well_distributed_Pareto_set_in_nonlinear_multiobjective_optimization">A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8765724" href="https://manchester.academia.edu/SergeiUtyuzhnikov">Sergei Utyuzhnikov</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Computational and Applied Mathematics, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization&quot;,&quot;attachmentId&quot;:91380795,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87064295/A_method_for_generating_a_well_distributed_Pareto_set_in_nonlinear_multiobjective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/87064295/A_method_for_generating_a_well_distributed_Pareto_set_in_nonlinear_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="45549232" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/45549232/Multiobjective_optimization_using_an_adaptive_weighting_scheme">Multiobjective optimization using an adaptive weighting scheme</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="166136236" href="https://independent.academia.edu/ShubhangiDeshpande3">Shubhangi Deshpande</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Optimization Methods and Software, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multiobjective optimization using an adaptive weighting scheme&quot;,&quot;attachmentId&quot;:66027385,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/45549232/Multiobjective_optimization_using_an_adaptive_weighting_scheme&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/45549232/Multiobjective_optimization_using_an_adaptive_weighting_scheme"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="523777" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/523777/A_pareto_compliant_surrogate_approach_for_multiobjective_optimization">A pareto-compliant surrogate approach for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="397428" href="https://uni-freiburg.academia.edu/IlyaLoshchilov">Ilya Loshchilov</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 12th …, 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper discusses the idea of using a single Pareto-compliant surrogate model for multiobjective optimization. While most surrogate approaches to multi-objective optimization build a surrogate model for each objective, the recently proposed mono surrogate approach [3] aims at building a global surrogate model defined on the decision space and tightly characterizing the current Pareto set and the dominated region, in order to speed up the evolution progress toward the true Pareto set. This surrogate model is specified by combining a One-class Support Vector Machine (SVMs) to characterize the dominated points, and a Regression SVM to clamp the Pareto front on a single value. The aims of this paper are to identify issues of the proposed approach demanding further study and to raise the question of how to efficiently incorporate quality indicators, such as the hypervolume into the surrogate model.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A pareto-compliant surrogate approach for multiobjective optimization&quot;,&quot;attachmentId&quot;:3459735,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/523777/A_pareto_compliant_surrogate_approach_for_multiobjective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/523777/A_pareto_compliant_surrogate_approach_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="87064213" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87064213/Numerical_method_for_generating_the_entire_Pareto_frontier_in_multiobjective_optimization">Numerical method for generating the entire Pareto frontier in multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8765724" href="https://manchester.academia.edu/SergeiUtyuzhnikov">Sergei Utyuzhnikov</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Numerical method for generating the entire Pareto frontier in multiobjective optimization&quot;,&quot;attachmentId&quot;:91380736,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87064213/Numerical_method_for_generating_the_entire_Pareto_frontier_in_multiobjective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/87064213/Numerical_method_for_generating_the_entire_Pareto_frontier_in_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="54805846" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54805846/Finding_Innovative_Design_Principles_for_Multiobjective_Optimization_Problems">Finding Innovative Design Principles for Multiobjective Optimization Problems</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3619100" href="https://independent.academia.edu/ashutoshtiwari1">ashutosh tiwari</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Finding Innovative Design Principles for Multiobjective Optimization Problems&quot;,&quot;attachmentId&quot;:70991346,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/54805846/Finding_Innovative_Design_Principles_for_Multiobjective_Optimization_Problems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/54805846/Finding_Innovative_Design_Principles_for_Multiobjective_Optimization_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="77582359" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77582359/Approximating_Multiobjective_Optimization_Problems_with_Complex_Pareto_Fronts">Approximating Multiobjective Optimization Problems with Complex Pareto Fronts</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="46060617" href="https://independent.academia.edu/IqbalRai">Iqbal Rai</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2015</p><p class="ds-related-work--abstract ds2-5-body-sm">The main goal of multiobjective optimization is to achieve a set of well-converged and evenly-distributed Pareto optimal points. While evolutionary algorithms have been reported to converge well, their distribution performance might not be as uniform as we expected, especially when the problems to be optimized involve complex Pareto fronts. In this paper, with the aid of a set of uniformly-distributed reference points, multiobjective optimization problems (MOPs) can be handled by minimizing least reference distances (LRD), which measure the proximity of solutions to their nearest reference points. This way, the uniformity of approximated solutions is implicitly controlled by the reference point set, and convergence is in the charge of LRD. The proposed LRD algorithm (LRDA) is tested and compared with several popular algorithms on a number of old and newly-developed MOPs that have complex Pareto fronts, showing that this method is very promising to obtain evenlydistributed Pareto opt...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Approximating Multiobjective Optimization Problems with Complex Pareto Fronts&quot;,&quot;attachmentId&quot;:84861397,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/77582359/Approximating_Multiobjective_Optimization_Problems_with_Complex_Pareto_Fronts&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/77582359/Approximating_Multiobjective_Optimization_Problems_with_Complex_Pareto_Fronts"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="73949410" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73949410/Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement">Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37978259" href="https://independent.academia.edu/ThomasSantner">Thomas Santner</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2011</p><p class="ds-related-work--abstract ds2-5-body-sm">Many engineering design optimization problems contain multiple objective functions all of which it is desired to minimize, say. One approach to solving this problem is to identify those inputs to the objective functions that produce an output (vector) on the Pareto Front; the inputs that produce outputs on the Pareto Front form the Pareto Set. This paper proposes a method for identifying the Pareto Front and the Pareto Set when the objective functions are expensive to compute. The method replaces the objective function evaluations by a rapidly computable approximator based on an interpolating Gaussian process (GP) model. It sequentially selects new input sites guided by an improvement function; the next input to evaluate each output is that vector which maximizes the conditional expected value of this improvement function given the current data. The method introduced in this paper provides two advances within this framework. First, it proposes an improvement function based on the mo...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement&quot;,&quot;attachmentId&quot;:82281253,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/73949410/Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/73949410/Multiobjective_Optimization_of_Expensive_Black_Box_Functions_via_Expected_Maximin_Improvement"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="31487023" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/31487023/A_method_for_selecting_Pareto_optimal_solutions_in_multiobjective_optimization">A method for selecting Pareto optimal solutions in multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="60240190" href="https://uus.academia.edu/BassemJarboui">Bassem Jarboui</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A method for selecting Pareto optimal solutions in multiobjective optimization&quot;,&quot;attachmentId&quot;:51837266,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/31487023/A_method_for_selecting_Pareto_optimal_solutions_in_multiobjective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/31487023/A_method_for_selecting_Pareto_optimal_solutions_in_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:77640126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:77640126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_77640126" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="27399840" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27399840/Towards_Efficient_Multiobjective_Optimization_Multiobjective_statistical_criterions">Towards Efficient Multiobjective Optimization: Multiobjective statistical criterions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51488929" href="https://independent.academia.edu/TDhaene">Tom Dhaene</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012 IEEE Congress on Evolutionary Computation, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Towards Efficient Multiobjective Optimization: Multiobjective statistical criterions&quot;,&quot;attachmentId&quot;:47654581,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/27399840/Towards_Efficient_Multiobjective_Optimization_Multiobjective_statistical_criterions&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/27399840/Towards_Efficient_Multiobjective_Optimization_Multiobjective_statistical_criterions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="16937675" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/16937675/Pareto_set_approximation_by_the_method_of_adjustable_weights_and_successive_lexicographic_goal_programming">Pareto set approximation by the method of adjustable weights and successive lexicographic goal programming</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="718320" href="https://monash.academia.edu/IngridaSteponavi%C4%8D%C4%97">Ingrida Steponavičė</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36436892" href="https://vu-lt.academia.edu/AntanasZilinskas">Antanas Zilinskas</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Optimization Letters, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Pareto set approximation by the method of adjustable weights and successive lexicographic goal programming&quot;,&quot;attachmentId&quot;:39266627,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/16937675/Pareto_set_approximation_by_the_method_of_adjustable_weights_and_successive_lexicographic_goal_programming&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/16937675/Pareto_set_approximation_by_the_method_of_adjustable_weights_and_successive_lexicographic_goal_programming"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="2864146" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2864146/The_Pareto_envelope_based_selection_algorithm_for_multiobjective_optimization">The Pareto envelope-based selection algorithm for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="292046" href="https://manchester.academia.edu/JoshuaKnowles">Joshua Knowles</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The Pareto envelope-based selection algorithm for multiobjective optimization&quot;,&quot;attachmentId&quot;:30841994,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/2864146/The_Pareto_envelope_based_selection_algorithm_for_multiobjective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2864146/The_Pareto_envelope_based_selection_algorithm_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="82274581" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82274581/An_evolutionary_algorithm_for_multiobjective_optimization_the_strength_Pareto_approach_Working_Paper">An evolutionary algorithm for multiobjective optimization: the strength Pareto approach Working Paper</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="219058816" href="https://independent.academia.edu/ademusmeal">adem usmeal</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;An evolutionary algorithm for multiobjective optimization: the strength Pareto approach Working Paper&quot;,&quot;attachmentId&quot;:88034820,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/82274581/An_evolutionary_algorithm_for_multiobjective_optimization_the_strength_Pareto_approach_Working_Paper&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/82274581/An_evolutionary_algorithm_for_multiobjective_optimization_the_strength_Pareto_approach_Working_Paper"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="7520604" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/7520604/Response_surface_approximation_of_Pareto_optimal_front_in_multi_objective_optimization">Response surface approximation of Pareto optimal front in multi-objective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13469505" href="https://independent.academia.edu/GoelTushar">Tushar Goel</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computer Methods in Applied Mechanics and Engineering, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Response surface approximation of Pareto optimal front in multi-objective optimization&quot;,&quot;attachmentId&quot;:48438199,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/7520604/Response_surface_approximation_of_Pareto_optimal_front_in_multi_objective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/7520604/Response_surface_approximation_of_Pareto_optimal_front_in_multi_objective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="48969027" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48969027/Efficient_multiobjective_optimization_scheme_for_large_scale_structures">Efficient multiobjective optimization scheme for large scale structures</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="172491693" href="https://afit.academia.edu/RAMANAGRANDHI">RAMANA GRANDHI</a></div><p class="ds-related-work--metadata ds2-5-body-xs">4th Symposium on Multidisciplinary Analysis and Optimization, 1992</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Efficient multiobjective optimization scheme for large scale structures&quot;,&quot;attachmentId&quot;:67361581,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/48969027/Efficient_multiobjective_optimization_scheme_for_large_scale_structures&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/48969027/Efficient_multiobjective_optimization_scheme_for_large_scale_structures"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="13894487" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13894487/Multiobjective_engineering_design_optimization_problems_a_sensitivity_analysis_approach">Multiobjective engineering design optimization problems: a sensitivity analysis approach</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32966368" href="https://ec-nantes.academia.edu/FouadBennis">Fouad Bennis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Pesquisa Operacional, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multiobjective engineering design optimization problems: a sensitivity analysis approach&quot;,&quot;attachmentId&quot;:44828342,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/13894487/Multiobjective_engineering_design_optimization_problems_a_sensitivity_analysis_approach&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/13894487/Multiobjective_engineering_design_optimization_problems_a_sensitivity_analysis_approach"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="34170103" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/34170103/Multiobjective_Optimization_of_Mixed_Variable_Design_Problems">Multiobjective Optimization of Mixed Variable Design Problems</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67033571" href="https://liu-se.academia.edu/PetterKrus">Petter Krus</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lecture Notes in Computer Science, 2001</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multiobjective Optimization of Mixed Variable Design Problems&quot;,&quot;attachmentId&quot;:54091313,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/34170103/Multiobjective_Optimization_of_Mixed_Variable_Design_Problems&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/34170103/Multiobjective_Optimization_of_Mixed_Variable_Design_Problems"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="86220581" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86220581/High_Fidelity_Surrogate_Based_Multi_Objective_Optimization_Algorithm">High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="56235852" href="https://independent.academia.edu/AdelY2">Adel Younis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Algorithms</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;High-Fidelity Surrogate Based Multi-Objective Optimization Algorithm&quot;,&quot;attachmentId&quot;:90724077,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/86220581/High_Fidelity_Surrogate_Based_Multi_Objective_Optimization_Algorithm&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86220581/High_Fidelity_Surrogate_Based_Multi_Objective_Optimization_Algorithm"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="8831727" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8831727/Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front">Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="19212252" href="https://sanata-dharma.academia.edu/AnisRachmawati">Anis Rachmawati</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Evolutionary Computation, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front&quot;,&quot;attachmentId&quot;:47987685,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/8831727/Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/8831727/Multiobjective_Evolutionary_Algorithm_With_Controllable_Focus_on_the_Knees_of_the_Pareto_Front"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="47961046" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/47961046/A_particle_swarm_optimization_based_method_for_multiobjective_design_optimizations">A particle swarm optimization-based method for multiobjective design optimizations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="126159289" href="https://independent.academia.edu/EdwardLo4">Edward Lo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Magnetics, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A particle swarm optimization-based method for multiobjective design optimizations&quot;,&quot;attachmentId&quot;:66821379,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/47961046/A_particle_swarm_optimization_based_method_for_multiobjective_design_optimizations&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/47961046/A_particle_swarm_optimization_based_method_for_multiobjective_design_optimizations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="62314488" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62314488/A_niched_Pareto_genetic_algorithm_for_multiobjective_optimization">A niched Pareto genetic algorithm for multiobjective optimization</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31483642" href="https://independent.academia.edu/JeffreyHorn1">Jeffrey Horn</a></div><p class="ds-related-work--metadata ds2-5-body-xs">… Computation, 1994. IEEE …, 1994</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A niched Pareto genetic algorithm for multiobjective optimization&quot;,&quot;attachmentId&quot;:75122769,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/62314488/A_niched_Pareto_genetic_algorithm_for_multiobjective_optimization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/62314488/A_niched_Pareto_genetic_algorithm_for_multiobjective_optimization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="7697356" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/7697356/The_Pareto_Envelope_Based_Selection_Algorithm_for_Multi_objective_Optimisation">The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14030858" href="https://hw.academia.edu/DavidCorne">David Corne</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation&quot;,&quot;attachmentId&quot;:48368420,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/7697356/The_Pareto_Envelope_Based_Selection_Algorithm_for_Multi_objective_Optimisation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/7697356/The_Pareto_Envelope_Based_Selection_Algorithm_for_Multi_objective_Optimisation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="5524586" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5524586/Performance_assessment_of_multiobjective_optimizers_an_analysis_and_review">Performance assessment of multiobjective optimizers: an analysis and review</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7813883" href="https://independent.academia.edu/carlosfonseca8">carlos fonseca</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Evolutionary Computation, 2003</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Performance assessment of multiobjective optimizers: an analysis and review&quot;,&quot;attachmentId&quot;:32626519,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/5524586/Performance_assessment_of_multiobjective_optimizers_an_analysis_and_review&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5524586/Performance_assessment_of_multiobjective_optimizers_an_analysis_and_review"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="988" href="https://www.academia.edu/Documents/in/Design">Design</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="6177" href="https://www.academia.edu/Documents/in/Modeling">Modeling</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="7947" href="https://www.academia.edu/Documents/in/Engineering_Design">Engineering Design</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="13445" href="https://www.academia.edu/Documents/in/Multiobjective_Optimization">Multiobjective Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="43981" href="https://www.academia.edu/Documents/in/Optimization">Optimization</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="59487" href="https://www.academia.edu/Documents/in/Computation">Computation</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="181850" href="https://www.academia.edu/Documents/in/Approximation">Approximation</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="257367" href="https://www.academia.edu/Documents/in/Mechanical_design">Mechanical design</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="279495" href="https://www.academia.edu/Documents/in/Robustness">Robustness</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="325323" href="https://www.academia.edu/Documents/in/Functions">Functions</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2900747" href="https://www.academia.edu/Documents/in/PARETO-OPTIMIZATION">PARETO-OPTIMIZATION</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10