CINXE.COM
About: Canonical ensemble
<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Canonical ensemble</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Canonical_ensemble.rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Canonical_ensemble.n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Canonical_ensemble.ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Canonical_ensemble.jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Canonical_ensemble.json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Canonical_ensemble.atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Canonical_ensemble.ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Canonical_ensemble" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Canonical_ensemble"/> <link rev="describedby" href="http://dbpedia.org/resource/Canonical_ensemble"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Canonical ensemble" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Canonical_ensemble" /> <meta property="og:image" content="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_all_states.png?width=300" /> <meta property="og:description" content="In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. An alternative but equivalent formulation for the same concept writes the probability as" /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Canonical_ensemble"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FCanonical_ensemble.ttl&view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Canonical_ensemble.jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FCanonical_ensemble%3E&format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Canonical_ensemble">Canonical ensemble</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://dbpedia.org/class/yago/SocialGroup107950920">SocialGroup107950920</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. An alternative but equivalent formulation for the same concept writes the probability as</p> </div> <div class="col-xs-3 col-sm-2"> <a href="#" class="thumbnail"> <img src="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_all_states.png?width=300" alt="thumbnail" class="img-fluid" /> </a> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="el" >Στη στατιστική μηχανική, η κανονική κατανομή (αγγλικά: canonical ensemble) είναι μια ιδεατή περίπτωση στατιστικής κατανομής που περιγράφει τις θερμοδυναμικές ιδιότητες ενός συστήματος που βρίσκεται σε θερμική ισορροπία και αλληλεπιδρά με λουτρό θερμότητας (ή θερμικό ρεζερβουάρ). Η διαφορά της μικροκανονικής από την κανονική κατανομή βρίσκεται στο γεγονός ότι η δεύτερη επιτρέπει την ανταλλαγή ενέργειας με το περιβάλλον, με αποτέλεσμα η ενέργεια του συστήματος (σε θερμική ισορροπία) να μην είναι απόλυτα καθορισμένη (να υπόκειται, δηλαδή, σε στατιστικές διακυμάνσεις). Πολλές φορές η κανονική κατανομή αναφέρεται και ως κατανομή NVT, καθώς ο αριθμός των σωματιδίων (Ν), ο όγκος (V) και η θερμοκρασία (Τ) τέτοιων συστημάτων είναι δεδομένες ποσότητες.</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="de" >Das kanonische Ensemble (auch kanonische Gesamtheit oder NVT-Ensemble) ist in der statistischen Physik definiert als die Menge aller gleichartigen Systeme mit gleicher Teilchenzahl in einem gleich großen Volumen , die mit einem Reservoir Energie austauschen können und mit diesem zusammen ein Gesamtsystem im Zustand des thermischen Gleichgewichts mit einer Temperatur bilden. Das betrachtete System kann aus einem oder mehreren Teilchen bestehen oder auch ein thermodynamisches Vielteilchensystem sein. Durch Wechselwirkungen mit dem Wärmebad kann sich die Energie des Systems im Rahmen von statistischen Fluktuationen verändern. Das Reservoir ist ein Wärmebad, d. h. es hat eine vorgegebene Temperatur und ist so viel größer als das betrachtete System, dass es durch die Wechselwirkungen mit diesem nicht nennenswert beeinflusst wird. Jedes der im Ensemble zusammengefassten gleichartigen Systeme besetzt je einen der vielen Mikrozustände, in denen die Teilchen im Volumen mit dem Wärmebad zusammen ein Gesamtsystem im Gleichgewichtszustand bei der gegebenen Temperatur realisieren. Zusammen genommen bilden diese Mikrozustände den kanonischen Zustand, zu dem sie je nach der Häufigkeit beitragen, mit der sie im thermischen Gleichgewicht auftreten. Diese Häufigkeit ist durch den Boltzmann-Faktor gegeben. Klassisch wird der kanonische Zustand durch die Verteilung der Mikrozustände im Phasenraum des Systems beschrieben, also durch eine Dichtefunktion, die von allen unabhängigen Variablen aller Teile oder Teilchen des betrachteten Systems abhängt. Die quantenmechanische Beschreibung erfolgt mit dem Dichteoperator . Besteht das System aus vielen Teilchen, dann ist es wegen des thermischen Kontakts zum Wärmebad ein thermodynamisches System im thermischen Gleichgewicht bei der Temperatur des Wärmebads. Unter den im kanonischen Ensemble versammelten Kopien des Systems sind dann alle Mikrozustände vertreten, in denen die Teilchen denselben durch festgelegten Makrozustand realisieren. Seine innere Energie ist dabei keine feststehende Größe, sondern durch den Erwartungswert der Energie des Systems gegeben: . Ebenso lassen sich alle makroskopischen thermodynamischen Größen als Erwartungswerte über das Ensemble berechnen, zusätzlich aber auch die Größe ihrer statistischen Schwankungen. Als Gleichgewichtszustand hat der kanonische Zustand die höchste Entropie , die mit den vorgegebenen Parametern verträglich ist.</span><small> (de)</small></span></li> <li><span class="literal"><span property="dbo:abstract" lang="en" >In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is the absolute temperature (symbol: T). The ensemble typically also depends on mechanical variables such as the number of particles in the system (symbol: N) and the system's volume (symbol: V), each of which influence the nature of the system's internal states. An ensemble with these three parameters is sometimes called the NVT ensemble. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. The number F is the free energy (specifically, the Helmholtz free energy) and is a constant for the ensemble. However, the probabilities and F will vary if different N, V, T are selected. The free energy F serves two roles: first, it provides a normalization factor for the probability distribution (the probabilities, over the complete set of microstates, must add up to one); second, many important ensemble averages can be directly calculated from the function F(N, V, T). An alternative but equivalent formulation for the same concept writes the probability as using the canonical partition function rather than the free energy. The equations below (in terms of free energy) may be restated in terms of the canonical partition function by simple mathematical manipulations. Historically, the canonical ensemble was first described by Boltzmann (who called it a holode) in 1884 in a relatively unknown paper. It was later reformulated and extensively investigated by Gibbs in 1902.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="es" >La colectividad canónica (también llamada colectivo canónico o ensamble canónico) es el formalismo de la física estadística que permite describir los estados de un sistema macroscópico con un número de partículas, volumen y temperatura determinados. Fuera de la física propiamente dicha, el formalismo del colectivo canónico ha sido usado para predecir teóricamente la distribución de la renta, por ejemplo, la observación de Pareto de que las rentas altas se distribuyen de acuerdo con una ley potencial inversa, puede deducirse del formalismo canónico. La evidencia indica además, que las rentas altas de diversos lugares de Estados Unidos se hallan en equilibrio termodinámico.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="fr" >En physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée. Le couplage entre le système étudié et le réservoir est considéré comme faible, c'est-à-dire que l'état du réservoir n'est pas modifié quels que soient les échanges d'énergie entre lui et le système. Un exemple d'une telle situation peut être donné par une bouteille d'eau fermée et plongée dans une piscine : cette dernière constitue le réservoir. Il est clair que même si la bouteille est initialement à une température beaucoup plus basse, ou plus élevée, que celle de la piscine, elle n'influencera pas de façon mesurable la température de la piscine. La notion de réservoir est relative, ainsi une tasse de thé chaud pourra être approximativement considérée comme un réservoir pour une tranche de citron plongée dedans mais certainement pas pour toute la pièce dans laquelle elle se trouve, qui pourra à l'inverse être considérée comme le réservoir vis-à-vis du système constitué par la tasse de thé (et la tranche de citron). La condition d'équilibre thermique entre le système étudié et le réservoir est réalisée lorsqu'ils sont à la même température. Plus précisément, le réservoir, beaucoup plus gros que le système considéré, impose sa température à ce dernier : c'est pourquoi il est souvent appelé thermostat. L'ensemble canonique est l'ensemble des « copies virtuelles » du même système dans le même état d'équilibre avec le thermostat, donc à la même température. Contrairement au cas de l'ensemble microcanonique, l'énergie du système étudié est alors amenée à fluctuer d’une « copie » du système à une autre de l'ensemble. Toutefois, et contrairement à la situation microcanonique, les différents micro-états d'énergie du système étudié ne possèdent pas tous la même probabilité, du fait de l'interaction avec le réservoir. Il est possible de déterminer la forme générale de la distribution de probabilité des micro-états d'énergie accessibles du système, appelée distribution canonique.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ko" >통계 물리학에서 바른틀 앙상블(canonical ensemble) 또는 정준 앙상블(正準-)은 온도와 계의 부피, 계 내부에 있는 입자의 수가 고정된 고립계로 이루어진 앙상블, 즉 확률 분포를 일컫는다. 입자 수 N, 부피 V, 온도 T의 약자를 따서 NVT 앙상블이라고도 한다. 온도를 고정시키기 위해서 각각의 계는 커다란 열원(heat reservoir)안에 들어있는 것으로 생각한다. 어떤 미시계 가 에너지 를 가지고 있을 확률 은 볼츠만 분포를 따른다.. 여기에서 k는 볼츠만 상수이다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="it" >In meccanica statistica, l'insieme canonico è un insieme statistico che rappresenta una misura di probabilità degli stati microscopici del sistema. Si tratta di un sistema chiuso in equilibrio termico con una grande sorgente di calore, detta anche bagno di calore o termostato. Talvolta lo si indica come insieme : il numero di particelle , il volume , e la temperatura sono costanti del sistema.La funzione di distribuzione per gli stati di un sistema è data dalla distribuzione di Boltzmann. Una generalizzazione di questo è l'insieme gran canonico, in cui i sistemi si dividono le particelle come pure l'energia; al contrario, nell'insieme microcanonico l'energia di ciascun sistema individuale è fissata. In alcune derivazioni, il bagno di calore si considera comprendente un gran numero di copie del sistema originale, vagamente accoppiate all'originale e tra di loro, così da dividere la stessa energia totale - questo rende il loro combinarsi descrivibile dalle statistiche di un insieme microcanonico.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >正準集団(せいじゅんしゅうだん、英語: canonical ensemble)とは、統計力学において、との間でエネルギーを自由にやり取り出来る閉鎖系を無数に集めた統計集団である。英語のカタカナ転写でカノニカルアンサンブルと呼ばれることも多い。 正準集団は等温条件にある熱力学系を表現する統計集団であり、外界の温度をパラメータとして特徴付けられる。 正準分布は、小正準分布、大正準分布とは体積が十分に大きい極限(すなわちエネルギーや粒子の出入りが無視できる極限)において熱力学的に等価である。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pt" >O conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física. Para um sistema em equilíbrio assumindo valores discretos de energia, com temperatura, número de partículas e volume fixos por reservatórios, a probabilidade de encontrá-lo num micro-estado particular é dada por: sendo a energia do microestado e a função de partição do sistema, definida por Fora da física, o formalismo canónico é amplamente utilizado, sendo aplicado, por exemplo, para prever teoricamente a distribuição da rendas da observação de Pareto de que as rendas altas se distribuem de acordo com uma lei potencial inversa. A evidência indica que as rendas altas de diversos lugares dos Estados Unidos se encontram em equilíbrio termodinâmico.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pl" >Zespół kanoniczny – zespół stanów pewnego układu kontaktującego się termicznie ze zbiornikiem o ustalonej temperaturze. Prawdopodobieństwo, że układ ten znajdzie się w określonym stanie o energii Ei jest dane rozkładem kanonicznym gdzie k – stała Boltzmanna,T – temperatura zbiornika,Z – suma statystyczna. Wzór na sumę statystyczną wynika z warunku unormowania rozkładu po całym zespole kanonicznym do jedności gdzie: N – liczba możliwych stanów układu. Średnią wartość pewnego parametru θ tego układu można wyznaczyć ze wzoru czyli</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="sv" >En kanonisk ensemble är inom statistisk mekanik en , alltså en uppsättning identiskt preparerade system (till exempel atomer eller molekyler), som alla är i energijämvikt med ett externt . Den totala energin är fördelad mellan de olika tillstånden enligt tillståndssumman. Den kanoniska ensemblen är en generalisering av den , där varje enskilt system har fix energi, och ett specialfall av storkanonisk ensemble, där systemen även kan utbyta partiklar. I vissa härledningar anser man värmebadet bestå av ett stort antal kopior av själva systemet, som är löst kopplade inbördes och till systemet så att de på så sätt har samma totala energi. Detta gör att systemet och värmebadet tillsammans kan beskrivas som en mikrokanonisk ensemble. Den fundamentala storheten för en kanonisk ensemble är tillståndssumman. Med denna kan man lätt ta sig från den kanoniska ensemblen till en termodynamisk beskrivning av samma system.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ru" >Канони́ческий анса́мбль — статистический ансамбль, отвечающий физической системе, которая обменивается энергией с окружающей средой (термостатом), находясь с ней в тепловом равновесии, но не обменивается веществом, поскольку отделена от термостата непроницаемой для частиц перегородкой. Параметрами сокращенного описания такой системы являются число частиц и средняя энергия .</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="uk" >Канонічний ансамбль - статистичний ансамбль, який описує закриту термодинамічну систему, яка може обмінюватися енергією, але не частинками із середовищем. На відміну від мікроканонічного ансамблю до канонічного ансамблю входять не лише різні мікроскопічні стани, але й різні макроскопічні стани (різна енергія).</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="zh" >正则系综 (canonical ensemble)是统计力学中系综的一种。它代表了与恒温热库接触而处于热平衡的系统所有可能状态的集合。由于系统可以与热库交换能量,系统可能的微观状态可以具有不同的能量。 正则系综的宏观性质由系统的三个参量决定:热力学温度,粒子数和体积。给定这三个宏观量的系综也被称为系综。 正则系综中,系统每个微观状态出现的概率为: 其中是该微观状态的总能量,是玻尔兹曼常数。 表示体系的自由能,并且在正则系综中为常量。然而对于给定的参数,,,自由能及其对应的概率是可以改变的。因此,自由能有两个作用:第一,它为概率分布提供了归一化因子;第二,系综中许多重要的宏观量可以直接从函数F(N, V, T)中推导出来。 明确了上述概念后,我们可以等价地把概率表述为: 其中为正则配分函数: 。 在下文中,我们可以看到正则配分函数可以重新表述为对各微观状态权重的求和。 从历史上看,玻尔兹曼于1884年首次在论文中描述了正则系综。后来,吉布斯在1902年对它进行了重新阐述和广泛的研究。</span><small> (zh)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/thumbnail"><small>dbo:</small>thumbnail</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:thumbnail" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_all_states.png?width=300" href="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_all_states.png?width=300"><small>wiki-commons</small>:Special:FilePath/Ensemble_quantum_1DOF_all_states.png?width=300</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >1137672</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >23584</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1119082880</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_coordinates" href="http://dbpedia.org/resource/Canonical_coordinates"><small>dbr</small>:Canonical_coordinates</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schrödinger_equation" href="http://dbpedia.org/resource/Schrödinger_equation"><small>dbr</small>:Schrödinger_equation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Boltzmann_constant" href="http://dbpedia.org/resource/Boltzmann_constant"><small>dbr</small>:Boltzmann_constant</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bra–ket_notation" href="http://dbpedia.org/resource/Bra–ket_notation"><small>dbr</small>:Bra–ket_notation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Josiah_Willard_Gibbs" href="http://dbpedia.org/resource/Josiah_Willard_Gibbs"><small>dbr</small>:Josiah_Willard_Gibbs</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Variance" href="http://dbpedia.org/resource/Variance"><small>dbr</small>:Variance</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_diagonalization" href="http://dbpedia.org/resource/Matrix_diagonalization"><small>dbr</small>:Matrix_diagonalization</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_exponential" href="http://dbpedia.org/resource/Matrix_exponential"><small>dbr</small>:Matrix_exponential</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chemical_potential" href="http://dbpedia.org/resource/Chemical_potential"><small>dbr</small>:Chemical_potential</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Entropy" href="http://dbpedia.org/resource/Entropy"><small>dbr</small>:Entropy</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grand_canonical_ensemble" href="http://dbpedia.org/resource/Grand_canonical_ensemble"><small>dbr</small>:Grand_canonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ludwig_Boltzmann" href="http://dbpedia.org/resource/Ludwig_Boltzmann"><small>dbr</small>:Ludwig_Boltzmann</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Statistical_ensemble_(mathematical_physics)" href="http://dbpedia.org/resource/Statistical_ensemble_(mathematical_physics)"><small>dbr</small>:Statistical_ensemble_(mathematical_physics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Density_matrix" href="http://dbpedia.org/resource/Density_matrix"><small>dbr</small>:Density_matrix</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fundamental_thermodynamic_relation" href="http://dbpedia.org/resource/Fundamental_thermodynamic_relation"><small>dbr</small>:Fundamental_thermodynamic_relation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hamiltonian_(quantum_mechanics)" href="http://dbpedia.org/resource/Hamiltonian_(quantum_mechanics)"><small>dbr</small>:Hamiltonian_(quantum_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Helmholtz_free_energy" href="http://dbpedia.org/resource/Helmholtz_free_energy"><small>dbr</small>:Helmholtz_free_energy</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gibbs_entropy" href="http://dbpedia.org/resource/Gibbs_entropy"><small>dbr</small>:Gibbs_entropy</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Phase_space" href="http://dbpedia.org/resource/Phase_space"><small>dbr</small>:Phase_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stationary_state" href="http://dbpedia.org/resource/Stationary_state"><small>dbr</small>:Stationary_state</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Microstate_(statistical_mechanics)" href="http://dbpedia.org/resource/Microstate_(statistical_mechanics)"><small>dbr</small>:Microstate_(statistical_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Trace_(linear_algebra)" href="http://dbpedia.org/resource/Trace_(linear_algebra)"><small>dbr</small>:Trace_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Heat_bath" href="http://dbpedia.org/resource/Heat_bath"><small>dbr</small>:Heat_bath</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exact_differential" href="http://dbpedia.org/resource/Exact_differential"><small>dbr</small>:Exact_differential</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/First_law_of_thermodynamics" href="http://dbpedia.org/resource/First_law_of_thermodynamics"><small>dbr</small>:First_law_of_thermodynamics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partition_function_(statistical_mechanics)" href="http://dbpedia.org/resource/Partition_function_(statistical_mechanics)"><small>dbr</small>:Partition_function_(statistical_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ising_model" href="http://dbpedia.org/resource/Ising_model"><small>dbr</small>:Ising_model</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermal_fluctuations" href="http://dbpedia.org/resource/Thermal_fluctuations"><small>dbr</small>:Thermal_fluctuations</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Statistical_mechanics" href="http://dbpedia.org/resource/Statistical_mechanics"><small>dbr</small>:Statistical_mechanics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lars_Onsager" href="http://dbpedia.org/resource/Lars_Onsager"><small>dbr</small>:Lars_Onsager</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Phase_transition" href="http://dbpedia.org/resource/Phase_transition"><small>dbr</small>:Phase_transition</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Boltzmann_distribution" href="http://dbpedia.org/resource/Boltzmann_distribution"><small>dbr</small>:Boltzmann_distribution</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Planck's_law" href="http://dbpedia.org/resource/Planck's_law"><small>dbr</small>:Planck's_law</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Square-lattice_Ising_model" href="http://dbpedia.org/resource/Square-lattice_Ising_model"><small>dbr</small>:Square-lattice_Ising_model</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ferromagnetism" href="http://dbpedia.org/resource/Ferromagnetism"><small>dbr</small>:Ferromagnetism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maxwell_speed_distribution" href="http://dbpedia.org/resource/Maxwell_speed_distribution"><small>dbr</small>:Maxwell_speed_distribution</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Microcanonical_ensemble" href="http://dbpedia.org/resource/Microcanonical_ensemble"><small>dbr</small>:Microcanonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Statistical_ensembles" href="http://dbpedia.org/resource/Category:Statistical_ensembles"><small>dbc</small>:Statistical_ensembles</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maxwell–Boltzmann_statistics" href="http://dbpedia.org/resource/Maxwell–Boltzmann_statistics"><small>dbr</small>:Maxwell–Boltzmann_statistics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Self-assembled_monolayer" href="http://dbpedia.org/resource/Self-assembled_monolayer"><small>dbr</small>:Self-assembled_monolayer</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermal_equilibrium" href="http://dbpedia.org/resource/Thermal_equilibrium"><small>dbr</small>:Thermal_equilibrium</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polymer_physics" href="http://dbpedia.org/resource/Polymer_physics"><small>dbr</small>:Polymer_physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Statistical_physics" href="http://dbpedia.org/resource/Statistical_physics"><small>dbr</small>:Statistical_physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermodynamic_limit" href="http://dbpedia.org/resource/Thermodynamic_limit"><small>dbr</small>:Thermodynamic_limit</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Macroscopic_limit" href="http://dbpedia.org/resource/Macroscopic_limit"><small>dbr</small>:Macroscopic_limit</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Joint_probability_density_function" href="http://dbpedia.org/resource/Joint_probability_density_function"><small>dbr</small>:Joint_probability_density_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Absolute_temperature" href="http://dbpedia.org/resource/Absolute_temperature"><small>dbr</small>:Absolute_temperature</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/align"><small>dbp:</small>align</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:align" lang="en" >right</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/caption"><small>dbp:</small>caption</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:caption" lang="en" >Plot of all possible states of this system. The available stationary states displayed as horizontal bars of varying darkness according to .</span><small> (en)</small></span></li> <li><span class="literal"><span property="dbp:caption" lang="en" >Plot of all possible states of this system. The available physical states are evenly distributed in phase space, but with an uneven distribution in energy; the side-plot displays .</span><small> (en)</small></span></li> <li><span class="literal"><span property="dbp:caption" lang="en" >A canonical ensemble for this system, for the temperature shown. The states are weighted exponentially in energy.</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/direction"><small>dbp:</small>direction</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:direction" lang="en" >horizontal</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/footer"><small>dbp:</small>footer</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:footer" lang="en" >Each panel shows phase space and energy-position space . The particle's Hamiltonian is , with the potential shown as a red curve. The side plot shows the distribution of states in energy.</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/header"><small>dbp:</small>header</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:header" lang="en" >Example of canonical ensemble for a quantum system consisting of one particle in a potential well.</span><small> (en)</small></span></li> <li><span class="literal"><span property="dbp:header" lang="en" >Example of canonical ensemble for a classical system consisting of one particle in a potential well.</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/image"><small>dbp:</small>image</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:image" lang="en" >Ensemble classical 1DOF all states.png</span><small> (en)</small></span></li> <li><span class="literal"><span property="dbp:image" lang="en" >Ensemble classical 1DOF canonical.png</span><small> (en)</small></span></li> <li><span class="literal"><span property="dbp:image" lang="en" >Ensemble quantum 1DOF all states.png</span><small> (en)</small></span></li> <li><span class="literal"><span property="dbp:image" lang="en" >Ensemble quantum 1DOF canonical.png</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/width"><small>dbp:</small>width</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:width" datatype="xsd:integer" >220</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Statistical_mechanics_topics" href="http://dbpedia.org/resource/Template:Statistical_mechanics_topics"><small>dbt</small>:Statistical_mechanics_topics</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:!" href="http://dbpedia.org/resource/Template:!"><small>dbt</small>:!</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:=" href="http://dbpedia.org/resource/Template:="><small>dbt</small>:=</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Citation_needed" href="http://dbpedia.org/resource/Template:Citation_needed"><small>dbt</small>:Citation_needed</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Details" href="http://dbpedia.org/resource/Template:Details"><small>dbt</small>:Details</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Main" href="http://dbpedia.org/resource/Template:Main"><small>dbt</small>:Main</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Math" href="http://dbpedia.org/resource/Template:Math"><small>dbt</small>:Math</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Multiple_image" href="http://dbpedia.org/resource/Template:Multiple_image"><small>dbt</small>:Multiple_image</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Mvar" href="http://dbpedia.org/resource/Template:Mvar"><small>dbt</small>:Mvar</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Small" href="http://dbpedia.org/resource/Template:Small"><small>dbt</small>:Small</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Unreferenced_section" href="http://dbpedia.org/resource/Template:Unreferenced_section"><small>dbt</small>:Unreferenced_section</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Use_American_English" href="http://dbpedia.org/resource/Template:Use_American_English"><small>dbt</small>:Use_American_English</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Use_mdy_dates" href="http://dbpedia.org/resource/Template:Use_mdy_dates"><small>dbt</small>:Use_mdy_dates</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Unordered_list" href="http://dbpedia.org/resource/Template:Unordered_list"><small>dbt</small>:Unordered_list</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Statistical_mechanics" href="http://dbpedia.org/resource/Template:Statistical_mechanics"><small>dbt</small>:Statistical_mechanics</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dcterms:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Statistical_ensembles" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Statistical_ensembles"><small>dbc</small>:Statistical_ensembles</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatStatisticalEnsembles" href="http://dbpedia.org/class/yago/WikicatStatisticalEnsembles"><small>yago</small>:WikicatStatisticalEnsembles</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Abstraction100002137" href="http://dbpedia.org/class/yago/Abstraction100002137"><small>yago</small>:Abstraction100002137</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Ensemble108188235" href="http://dbpedia.org/class/yago/Ensemble108188235"><small>yago</small>:Ensemble108188235</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Group100031264" href="http://dbpedia.org/class/yago/Group100031264"><small>yago</small>:Group100031264</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/MusicalOrganization108246613" href="http://dbpedia.org/class/yago/MusicalOrganization108246613"><small>yago</small>:MusicalOrganization108246613</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Organization108008335" href="http://dbpedia.org/class/yago/Organization108008335"><small>yago</small>:Organization108008335</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/YagoLegalActor" href="http://dbpedia.org/class/yago/YagoLegalActor"><small>yago</small>:YagoLegalActor</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/YagoLegalActorGeo" href="http://dbpedia.org/class/yago/YagoLegalActorGeo"><small>yago</small>:YagoLegalActorGeo</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/YagoPermanentlyLocatedEntity" href="http://dbpedia.org/class/yago/YagoPermanentlyLocatedEntity"><small>yago</small>:YagoPermanentlyLocatedEntity</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/SocialGroup107950920" href="http://dbpedia.org/class/yago/SocialGroup107950920"><small>yago</small>:SocialGroup107950920</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ko" >통계 물리학에서 바른틀 앙상블(canonical ensemble) 또는 정준 앙상블(正準-)은 온도와 계의 부피, 계 내부에 있는 입자의 수가 고정된 고립계로 이루어진 앙상블, 즉 확률 분포를 일컫는다. 입자 수 N, 부피 V, 온도 T의 약자를 따서 NVT 앙상블이라고도 한다. 온도를 고정시키기 위해서 각각의 계는 커다란 열원(heat reservoir)안에 들어있는 것으로 생각한다. 어떤 미시계 가 에너지 를 가지고 있을 확률 은 볼츠만 분포를 따른다.. 여기에서 k는 볼츠만 상수이다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >正準集団(せいじゅんしゅうだん、英語: canonical ensemble)とは、統計力学において、との間でエネルギーを自由にやり取り出来る閉鎖系を無数に集めた統計集団である。英語のカタカナ転写でカノニカルアンサンブルと呼ばれることも多い。 正準集団は等温条件にある熱力学系を表現する統計集団であり、外界の温度をパラメータとして特徴付けられる。 正準分布は、小正準分布、大正準分布とは体積が十分に大きい極限(すなわちエネルギーや粒子の出入りが無視できる極限)において熱力学的に等価である。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pl" >Zespół kanoniczny – zespół stanów pewnego układu kontaktującego się termicznie ze zbiornikiem o ustalonej temperaturze. Prawdopodobieństwo, że układ ten znajdzie się w określonym stanie o energii Ei jest dane rozkładem kanonicznym gdzie k – stała Boltzmanna,T – temperatura zbiornika,Z – suma statystyczna. Wzór na sumę statystyczną wynika z warunku unormowania rozkładu po całym zespole kanonicznym do jedności gdzie: N – liczba możliwych stanów układu. Średnią wartość pewnego parametru θ tego układu można wyznaczyć ze wzoru czyli</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ru" >Канони́ческий анса́мбль — статистический ансамбль, отвечающий физической системе, которая обменивается энергией с окружающей средой (термостатом), находясь с ней в тепловом равновесии, но не обменивается веществом, поскольку отделена от термостата непроницаемой для частиц перегородкой. Параметрами сокращенного описания такой системы являются число частиц и средняя энергия .</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="uk" >Канонічний ансамбль - статистичний ансамбль, який описує закриту термодинамічну систему, яка може обмінюватися енергією, але не частинками із середовищем. На відміну від мікроканонічного ансамблю до канонічного ансамблю входять не лише різні мікроскопічні стани, але й різні макроскопічні стани (різна енергія).</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="zh" >正则系综 (canonical ensemble)是统计力学中系综的一种。它代表了与恒温热库接触而处于热平衡的系统所有可能状态的集合。由于系统可以与热库交换能量,系统可能的微观状态可以具有不同的能量。 正则系综的宏观性质由系统的三个参量决定:热力学温度,粒子数和体积。给定这三个宏观量的系综也被称为系综。 正则系综中,系统每个微观状态出现的概率为: 其中是该微观状态的总能量,是玻尔兹曼常数。 表示体系的自由能,并且在正则系综中为常量。然而对于给定的参数,,,自由能及其对应的概率是可以改变的。因此,自由能有两个作用:第一,它为概率分布提供了归一化因子;第二,系综中许多重要的宏观量可以直接从函数F(N, V, T)中推导出来。 明确了上述概念后,我们可以等价地把概率表述为: 其中为正则配分函数: 。 在下文中,我们可以看到正则配分函数可以重新表述为对各微观状态权重的求和。 从历史上看,玻尔兹曼于1884年首次在论文中描述了正则系综。后来,吉布斯在1902年对它进行了重新阐述和广泛的研究。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="de" >Das kanonische Ensemble (auch kanonische Gesamtheit oder NVT-Ensemble) ist in der statistischen Physik definiert als die Menge aller gleichartigen Systeme mit gleicher Teilchenzahl in einem gleich großen Volumen , die mit einem Reservoir Energie austauschen können und mit diesem zusammen ein Gesamtsystem im Zustand des thermischen Gleichgewichts mit einer Temperatur bilden. Das betrachtete System kann aus einem oder mehreren Teilchen bestehen oder auch ein thermodynamisches Vielteilchensystem sein. Durch Wechselwirkungen mit dem Wärmebad kann sich die Energie des Systems im Rahmen von statistischen Fluktuationen verändern. Das Reservoir ist ein Wärmebad, d. h. es hat eine vorgegebene Temperatur und ist so viel größer als das betrachtete System, dass es durch die Wechselwirkungen mit die</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="el" >Στη στατιστική μηχανική, η κανονική κατανομή (αγγλικά: canonical ensemble) είναι μια ιδεατή περίπτωση στατιστικής κατανομής που περιγράφει τις θερμοδυναμικές ιδιότητες ενός συστήματος που βρίσκεται σε θερμική ισορροπία και αλληλεπιδρά με λουτρό θερμότητας (ή θερμικό ρεζερβουάρ). Η διαφορά της μικροκανονικής από την κανονική κατανομή βρίσκεται στο γεγονός ότι η δεύτερη επιτρέπει την ανταλλαγή ενέργειας με το περιβάλλον, με αποτέλεσμα η ενέργεια του συστήματος (σε θερμική ισορροπία) να μην είναι απόλυτα καθορισμένη (να υπόκειται, δηλαδή, σε στατιστικές διακυμάνσεις).</span><small> (el)</small></span></li> <li><span class="literal"><span property="rdfs:comment" lang="en" >In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. An alternative but equivalent formulation for the same concept writes the probability as</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="es" >La colectividad canónica (también llamada colectivo canónico o ensamble canónico) es el formalismo de la física estadística que permite describir los estados de un sistema macroscópico con un número de partículas, volumen y temperatura determinados.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="fr" >En physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée. Le couplage entre le système étudié et le réservoir est considéré comme faible, c'est-à-dire que l'état du réservoir n'est pas modifié quels que soient les échanges d'énergie entre lui et le système.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="it" >In meccanica statistica, l'insieme canonico è un insieme statistico che rappresenta una misura di probabilità degli stati microscopici del sistema. Si tratta di un sistema chiuso in equilibrio termico con una grande sorgente di calore, detta anche bagno di calore o termostato. Talvolta lo si indica come insieme : il numero di particelle , il volume , e la temperatura sono costanti del sistema.La funzione di distribuzione per gli stati di un sistema è data dalla distribuzione di Boltzmann. Una generalizzazione di questo è l'insieme gran canonico, in cui i sistemi si dividono le particelle come pure l'energia; al contrario, nell'insieme microcanonico l'energia di ciascun sistema individuale è fissata.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pt" >O conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="sv" >En kanonisk ensemble är inom statistisk mekanik en , alltså en uppsättning identiskt preparerade system (till exempel atomer eller molekyler), som alla är i energijämvikt med ett externt . Den totala energin är fördelad mellan de olika tillstånden enligt tillståndssumman. Den kanoniska ensemblen är en generalisering av den , där varje enskilt system har fix energi, och ett specialfall av storkanonisk ensemble, där systemen även kan utbyta partiklar.</span><small> (sv)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="de" >Kanonisches Ensemble</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="el" >Κανονική κατανομή (στατιστική μηχανική)</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="es" >Colectividad canónica</span><small> (es)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Canonical ensemble</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="it" >Insieme canonico</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="fr" >Ensemble canonique</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >正準集団</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ko" >바른틀 앙상블</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pl" >Zespół kanoniczny</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pt" >Conjunto canónico</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ru" >Канонический ансамбль</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="sv" >Kanonisk ensemble</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="uk" >Канонічний ансамбль (фізика)</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="zh" >正则系综</span><small> (zh)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.049hsj" href="http://rdf.freebase.com/ns/m.049hsj"><small>freebase</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://yago-knowledge.org/resource/Canonical_ensemble" href="http://yago-knowledge.org/resource/Canonical_ensemble"><small>yago-res</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q1077753" href="http://www.wikidata.org/entity/Q1077753"><small>wikidata</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://de.dbpedia.org/resource/Kanonisches_Ensemble" href="http://de.dbpedia.org/resource/Kanonisches_Ensemble"><small>dbpedia-de</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://el.dbpedia.org/resource/Κανονική_κατανομή_(στατιστική_μηχανική)" href="http://el.dbpedia.org/resource/Κανονική_κατανομή_(στατιστική_μηχανική)"><small>dbpedia-el</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://es.dbpedia.org/resource/Colectividad_canónica" href="http://es.dbpedia.org/resource/Colectividad_canónica"><small>dbpedia-es</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fr.dbpedia.org/resource/Ensemble_canonique" href="http://fr.dbpedia.org/resource/Ensemble_canonique"><small>dbpedia-fr</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://it.dbpedia.org/resource/Insieme_canonico" href="http://it.dbpedia.org/resource/Insieme_canonico"><small>dbpedia-it</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/正準集団" href="http://ja.dbpedia.org/resource/正準集団"><small>dbpedia-ja</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ko.dbpedia.org/resource/바른틀_앙상블" href="http://ko.dbpedia.org/resource/바른틀_앙상블"><small>dbpedia-ko</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://no.dbpedia.org/resource/Kanonisk_ensemble" href="http://no.dbpedia.org/resource/Kanonisk_ensemble"><small>dbpedia-no</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pl.dbpedia.org/resource/Zespół_kanoniczny" href="http://pl.dbpedia.org/resource/Zespół_kanoniczny"><small>dbpedia-pl</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pt.dbpedia.org/resource/Conjunto_canónico" href="http://pt.dbpedia.org/resource/Conjunto_canónico"><small>dbpedia-pt</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ru.dbpedia.org/resource/Канонический_ансамбль" href="http://ru.dbpedia.org/resource/Канонический_ансамбль"><small>dbpedia-ru</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sr.dbpedia.org/resource/Канонски_ансамбл" href="http://sr.dbpedia.org/resource/Канонски_ансамбл"><small>dbpedia-sr</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sv.dbpedia.org/resource/Kanonisk_ensemble" href="http://sv.dbpedia.org/resource/Kanonisk_ensemble"><small>dbpedia-sv</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uk.dbpedia.org/resource/Канонічний_ансамбль_(фізика)" href="http://uk.dbpedia.org/resource/Канонічний_ансамбль_(фізика)"><small>dbpedia-uk</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://vi.dbpedia.org/resource/Tập_hợp_chính_tắc" href="http://vi.dbpedia.org/resource/Tập_hợp_chính_tắc"><small>dbpedia-vi</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://zh.dbpedia.org/resource/正则系综" href="http://zh.dbpedia.org/resource/正则系综"><small>dbpedia-zh</small>:Canonical ensemble</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/9bMW" href="https://global.dbpedia.org/id/9bMW">https://global.dbpedia.org/id/9bMW</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Canonical_ensemble?oldid=1119082880&ns=0" href="http://en.wikipedia.org/wiki/Canonical_ensemble?oldid=1119082880&ns=0"><small>wikipedia-en</small>:Canonical_ensemble?oldid=1119082880&ns=0</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/depiction"><small>foaf:</small>depiction</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_classical_1DOF_all_states.png" href="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_classical_1DOF_all_states.png"><small>wiki-commons</small>:Special:FilePath/Ensemble_classical_1DOF_all_states.png</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_classical_1DOF_canonical.png" href="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_classical_1DOF_canonical.png"><small>wiki-commons</small>:Special:FilePath/Ensemble_classical_1DOF_canonical.png</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_all_states.png" href="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_all_states.png"><small>wiki-commons</small>:Special:FilePath/Ensemble_quantum_1DOF_all_states.png</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_canonical.png" href="http://commons.wikimedia.org/wiki/Special:FilePath/Ensemble_quantum_1DOF_canonical.png"><small>wiki-commons</small>:Special:FilePath/Ensemble_quantum_1DOF_canonical.png</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Canonical_ensemble" href="http://en.wikipedia.org/wiki/Canonical_ensemble"><small>wikipedia-en</small>:Canonical_ensemble</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/knownFor"><small>dbo:</small>knownFor</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:knownFor" resource="http://dbpedia.org/resource/Ludwig_Boltzmann" href="http://dbpedia.org/resource/Ludwig_Boltzmann"><small>dbr</small>:Ludwig_Boltzmann</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Canonical_Ensemble" href="http://dbpedia.org/resource/Canonical_Ensemble"><small>dbr</small>:Canonical_Ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Canonical_Distributions" href="http://dbpedia.org/resource/Canonical_Distributions"><small>dbr</small>:Canonical_Distributions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Canonical_distribution" href="http://dbpedia.org/resource/Canonical_distribution"><small>dbr</small>:Canonical_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Canonical_distributions" href="http://dbpedia.org/resource/Canonical_distributions"><small>dbr</small>:Canonical_distributions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Canonical_probability_distribution" href="http://dbpedia.org/resource/Canonical_probability_distribution"><small>dbr</small>:Canonical_probability_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Gibbs_Ensemble" href="http://dbpedia.org/resource/Gibbs_Ensemble"><small>dbr</small>:Gibbs_Ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Gibbs_canonical_ensemble" href="http://dbpedia.org/resource/Gibbs_canonical_ensemble"><small>dbr</small>:Gibbs_canonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Gibbs_ensemble" href="http://dbpedia.org/resource/Gibbs_ensemble"><small>dbr</small>:Gibbs_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/NVT_ensemble" href="http://dbpedia.org/resource/NVT_ensemble"><small>dbr</small>:NVT_ensemble</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Qbox" href="http://dbpedia.org/resource/Qbox"><small>dbr</small>:Qbox</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Energy_drift" href="http://dbpedia.org/resource/Energy_drift"><small>dbr</small>:Energy_drift</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Entropic_force" href="http://dbpedia.org/resource/Entropic_force"><small>dbr</small>:Entropic_force</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Entropy_(statistical_thermodynamics)" href="http://dbpedia.org/resource/Entropy_(statistical_thermodynamics)"><small>dbr</small>:Entropy_(statistical_thermodynamics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Entropy_in_thermodynamics_and_information_theory" href="http://dbpedia.org/resource/Entropy_in_thermodynamics_and_information_theory"><small>dbr</small>:Entropy_in_thermodynamics_and_information_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/NVT" href="http://dbpedia.org/resource/NVT"><small>dbr</small>:NVT</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Metastate" href="http://dbpedia.org/resource/Metastate"><small>dbr</small>:Metastate</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bose–Einstein_statistics" href="http://dbpedia.org/resource/Bose–Einstein_statistics"><small>dbr</small>:Bose–Einstein_statistics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Josiah_Willard_Gibbs" href="http://dbpedia.org/resource/Josiah_Willard_Gibbs"><small>dbr</small>:Josiah_Willard_Gibbs</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Path_integral_formulation" href="http://dbpedia.org/resource/Path_integral_formulation"><small>dbr</small>:Path_integral_formulation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Characteristic_state_function" href="http://dbpedia.org/resource/Characteristic_state_function"><small>dbr</small>:Characteristic_state_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_Ensemble" href="http://dbpedia.org/resource/Canonical_Ensemble"><small>dbr</small>:Canonical_Ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_model_(disambiguation)" href="http://dbpedia.org/resource/Canonical_model_(disambiguation)"><small>dbr</small>:Canonical_model_(disambiguation)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Depletion_force" href="http://dbpedia.org/resource/Depletion_force"><small>dbr</small>:Depletion_force</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dynamical_billiards" href="http://dbpedia.org/resource/Dynamical_billiards"><small>dbr</small>:Dynamical_billiards</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Index_of_physics_articles_(C)" href="http://dbpedia.org/resource/Index_of_physics_articles_(C)"><small>dbr</small>:Index_of_physics_articles_(C)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Intermolecular_force" href="http://dbpedia.org/resource/Intermolecular_force"><small>dbr</small>:Intermolecular_force</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nosé–Hoover_thermostat" href="http://dbpedia.org/resource/Nosé–Hoover_thermostat"><small>dbr</small>:Nosé–Hoover_thermostat</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maxwell–Boltzmann_distribution" href="http://dbpedia.org/resource/Maxwell–Boltzmann_distribution"><small>dbr</small>:Maxwell–Boltzmann_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Measure_(mathematics)" href="http://dbpedia.org/resource/Measure_(mathematics)"><small>dbr</small>:Measure_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gas" href="http://dbpedia.org/resource/Gas"><small>dbr</small>:Gas</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Statistical_manifold" href="http://dbpedia.org/resource/Statistical_manifold"><small>dbr</small>:Statistical_manifold</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ensemble_(mathematical_physics)" href="http://dbpedia.org/resource/Ensemble_(mathematical_physics)"><small>dbr</small>:Ensemble_(mathematical_physics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Entropy" href="http://dbpedia.org/resource/Entropy"><small>dbr</small>:Entropy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Entropy_of_network_ensembles" href="http://dbpedia.org/resource/Entropy_of_network_ensembles"><small>dbr</small>:Entropy_of_network_ensembles</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Equipartition_theorem" href="http://dbpedia.org/resource/Equipartition_theorem"><small>dbr</small>:Equipartition_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gibbs_measure" href="http://dbpedia.org/resource/Gibbs_measure"><small>dbr</small>:Gibbs_measure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grand_canonical_ensemble" href="http://dbpedia.org/resource/Grand_canonical_ensemble"><small>dbr</small>:Grand_canonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Concentration_of_measure" href="http://dbpedia.org/resource/Concentration_of_measure"><small>dbr</small>:Concentration_of_measure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Correlation_function_(statistical_mechanics)" href="http://dbpedia.org/resource/Correlation_function_(statistical_mechanics)"><small>dbr</small>:Correlation_function_(statistical_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Crooks_fluctuation_theorem" href="http://dbpedia.org/resource/Crooks_fluctuation_theorem"><small>dbr</small>:Crooks_fluctuation_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermodynamic_free_energy" href="http://dbpedia.org/resource/Thermodynamic_free_energy"><small>dbr</small>:Thermodynamic_free_energy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ergodicity" href="http://dbpedia.org/resource/Ergodicity"><small>dbr</small>:Ergodicity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bennett_acceptance_ratio" href="http://dbpedia.org/resource/Bennett_acceptance_ratio"><small>dbr</small>:Bennett_acceptance_ratio</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Berendsen_thermostat" href="http://dbpedia.org/resource/Berendsen_thermostat"><small>dbr</small>:Berendsen_thermostat</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ludwig_Boltzmann" href="http://dbpedia.org/resource/Ludwig_Boltzmann"><small>dbr</small>:Ludwig_Boltzmann</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Density_matrix" href="http://dbpedia.org/resource/Density_matrix"><small>dbr</small>:Density_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Helmholtz_free_energy" href="http://dbpedia.org/resource/Helmholtz_free_energy"><small>dbr</small>:Helmholtz_free_energy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partition_function_(mathematics)" href="http://dbpedia.org/resource/Partition_function_(mathematics)"><small>dbr</small>:Partition_function_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermodynamic_integration" href="http://dbpedia.org/resource/Thermodynamic_integration"><small>dbr</small>:Thermodynamic_integration</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maximum-entropy_random_graph_model" href="http://dbpedia.org/resource/Maximum-entropy_random_graph_model"><small>dbr</small>:Maximum-entropy_random_graph_model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Microstate_(statistical_mechanics)" href="http://dbpedia.org/resource/Microstate_(statistical_mechanics)"><small>dbr</small>:Microstate_(statistical_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tomaž_Prosen" href="http://dbpedia.org/resource/Tomaž_Prosen"><small>dbr</small>:Tomaž_Prosen</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Langevin_dynamics" href="http://dbpedia.org/resource/Langevin_dynamics"><small>dbr</small>:Langevin_dynamics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Langmuir_adsorption_model" href="http://dbpedia.org/resource/Langmuir_adsorption_model"><small>dbr</small>:Langmuir_adsorption_model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Translational_partition_function" href="http://dbpedia.org/resource/Translational_partition_function"><small>dbr</small>:Translational_partition_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fermi_level" href="http://dbpedia.org/resource/Fermi_level"><small>dbr</small>:Fermi_level</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fluctuation-dissipation_theorem" href="http://dbpedia.org/resource/Fluctuation-dissipation_theorem"><small>dbr</small>:Fluctuation-dissipation_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partition_function_(statistical_mechanics)" href="http://dbpedia.org/resource/Partition_function_(statistical_mechanics)"><small>dbr</small>:Partition_function_(statistical_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fluctuation_theorem" href="http://dbpedia.org/resource/Fluctuation_theorem"><small>dbr</small>:Fluctuation_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isothermal–isobaric_ensemble" href="http://dbpedia.org/resource/Isothermal–isobaric_ensemble"><small>dbr</small>:Isothermal–isobaric_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/KT_(energy)" href="http://dbpedia.org/resource/KT_(energy)"><small>dbr</small>:KT_(energy)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lee–Yang_theory" href="http://dbpedia.org/resource/Lee–Yang_theory"><small>dbr</small>:Lee–Yang_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Molecular_dynamics" href="http://dbpedia.org/resource/Molecular_dynamics"><small>dbr</small>:Molecular_dynamics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Potts_model" href="http://dbpedia.org/resource/Potts_model"><small>dbr</small>:Potts_model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Temperature" href="http://dbpedia.org/resource/Temperature"><small>dbr</small>:Temperature</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Soft_configuration_model" href="http://dbpedia.org/resource/Soft_configuration_model"><small>dbr</small>:Soft_configuration_model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Statistical_mechanics" href="http://dbpedia.org/resource/Statistical_mechanics"><small>dbr</small>:Statistical_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Boltzmann_distribution" href="http://dbpedia.org/resource/Boltzmann_distribution"><small>dbr</small>:Boltzmann_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bose_gas" href="http://dbpedia.org/resource/Bose_gas"><small>dbr</small>:Bose_gas</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fermi_gas" href="http://dbpedia.org/resource/Fermi_gas"><small>dbr</small>:Fermi_gas</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fermi–Dirac_statistics" href="http://dbpedia.org/resource/Fermi–Dirac_statistics"><small>dbr</small>:Fermi–Dirac_statistics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Microcanonical_ensemble" href="http://dbpedia.org/resource/Microcanonical_ensemble"><small>dbr</small>:Microcanonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Negative_temperature" href="http://dbpedia.org/resource/Negative_temperature"><small>dbr</small>:Negative_temperature</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical" href="http://dbpedia.org/resource/Canonical"><small>dbr</small>:Canonical</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Radial_distribution_function" href="http://dbpedia.org/resource/Radial_distribution_function"><small>dbr</small>:Radial_distribution_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Second_law_of_thermodynamics" href="http://dbpedia.org/resource/Second_law_of_thermodynamics"><small>dbr</small>:Second_law_of_thermodynamics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermodynamic_beta" href="http://dbpedia.org/resource/Thermodynamic_beta"><small>dbr</small>:Thermodynamic_beta</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maxwell–Boltzmann_statistics" href="http://dbpedia.org/resource/Maxwell–Boltzmann_statistics"><small>dbr</small>:Maxwell–Boltzmann_statistics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schottky_anomaly" href="http://dbpedia.org/resource/Schottky_anomaly"><small>dbr</small>:Schottky_anomaly</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Universality_(dynamical_systems)" href="http://dbpedia.org/resource/Universality_(dynamical_systems)"><small>dbr</small>:Universality_(dynamical_systems)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Network_entropy" href="http://dbpedia.org/resource/Network_entropy"><small>dbr</small>:Network_entropy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multicanonical_ensemble" href="http://dbpedia.org/resource/Multicanonical_ensemble"><small>dbr</small>:Multicanonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermodynamic_limit" href="http://dbpedia.org/resource/Thermodynamic_limit"><small>dbr</small>:Thermodynamic_limit</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thermal_quantum_field_theory" href="http://dbpedia.org/resource/Thermal_quantum_field_theory"><small>dbr</small>:Thermal_quantum_field_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_Distributions" href="http://dbpedia.org/resource/Canonical_Distributions"><small>dbr</small>:Canonical_Distributions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_distribution" href="http://dbpedia.org/resource/Canonical_distribution"><small>dbr</small>:Canonical_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_distributions" href="http://dbpedia.org/resource/Canonical_distributions"><small>dbr</small>:Canonical_distributions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_probability_distribution" href="http://dbpedia.org/resource/Canonical_probability_distribution"><small>dbr</small>:Canonical_probability_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gibbs_Ensemble" href="http://dbpedia.org/resource/Gibbs_Ensemble"><small>dbr</small>:Gibbs_Ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gibbs_canonical_ensemble" href="http://dbpedia.org/resource/Gibbs_canonical_ensemble"><small>dbr</small>:Gibbs_canonical_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gibbs_ensemble" href="http://dbpedia.org/resource/Gibbs_ensemble"><small>dbr</small>:Gibbs_ensemble</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/NVT_ensemble" href="http://dbpedia.org/resource/NVT_ensemble"><small>dbr</small>:NVT_ensemble</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Canonical_ensemble" href="http://en.wikipedia.org/wiki/Canonical_ensemble"><small>wikipedia-en</small>:Canonical_ensemble</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>    <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a>     <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a>     <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>    <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Canonical_ensemble">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>