CINXE.COM

Link Prediction | Papers With Code

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'WSYBKnHMkLSnyxKmV4vlysNfBD3hHOH9Qv4hYugLuN6cLlA82VM53gX1acf2OfnY'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/2.6da00df7.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/101.5f271f23.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/view_task.8e3945a3.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/view_task.e61ab167.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/view_task.8e3945a3.css"> <!-- Metadata --> <title>Link Prediction | Papers With Code</title> <meta name="description" content="**Link Prediction** is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network. Given a partially observed network, the goal of link prediction is to infer which links are most likely to be added or missing based on the observed connections and the structure of the network. &lt;span style=&quot;color:grey; opacity: 0.6&quot;&gt;( Image credit: [Inductive Representation Learning on Large Graphs](https://arxiv.org/pdf/1706.02216v4.pdf) )&lt;/span&gt;" /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - Link Prediction"> <meta property="og:description" content="**Link Prediction** is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network. Given a partially observed network, the goal of link prediction is to infer which links are most likely to be added or missing based on the observed connections and the structure of the network. &lt;span style=&quot;color:grey; opacity: 0.6&quot;&gt;( Image credit: [Inductive Representation Learning on Large Graphs](https://arxiv.org/pdf/1706.02216v4.pdf) )&lt;/span&gt;"> <meta property="og:image" content="https://production-media.paperswithcode.com/tasks/Screenshot_2019-11-29_at_15.05.48_dlqd1HY.png"> <meta property="og:url" content="https://paperswithcode.com/task/link-prediction"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - Link Prediction"> <meta name="twitter:description" content="**Link Prediction** is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network. Given a partially observed network, the goal of link prediction is to infer which links are most likely to be added or missing based on the observed connections and the structure of the network. &lt;span style=&quot;color:grey; opacity: 0.6&quot;&gt;( Image credit: [Inductive Representation Learning on Large Graphs](https://arxiv.org/pdf/1706.02216v4.pdf) )&lt;/span&gt;"> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/task/link-prediction"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "CreativeWork", "@id": "link-prediction", "name": "Link Prediction", "description": "**Link Prediction** is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network. Given a partially observed network, the goal of link prediction is to infer which links are most likely to be added or missing based on the observed connections and the structure of the network.\r\n\r\n\u003Cspan style=\"color:grey; opacity: 0.6\"\u003E( Image credit: [Inductive Representation Learning on Large Graphs](https://arxiv.org/pdf/1706.02216v4.pdf) )\u003C/span\u003E", "url": "https://paperswithcode.com/task/link-prediction", "image": "https://production-media.paperswithcode.com/tasks/Screenshot_2019-11-29_at_15.05.48_dlqd1HY.png", "subjectOf": [ { "@type": "CreativeWork", "@id": "graphs", "name": "Graphs", "description": "Browse 108 tasks \u2022 275 datasets \u2022 498 ", "image": "https://paperswithcode.com/static/sota.jpeg", "headline": "Browse state-of-the-art in ML leaderboards \u2022 9502 papers with code." } ], "headline": "Link Prediction" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/task/link-prediction">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="WSYBKnHMkLSnyxKmV4vlysNfBD3hHOH9Qv4hYugLuN6cLlA82VM53gX1acf2OfnY"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/task/link-prediction">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/task/link-prediction">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <!-- Modals go here --> <!-- Edit Task --> <div class="modal fade" id="editTask" role="dialog" aria-labelledby="editTaskLabel" aria-hidden="true"> <div class="modal-dialog modal-lg" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="editTaskLabel">Edit task</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <form action="" method="post" enctype="multipart/form-data"> <input type="hidden" name="csrfmiddlewaretoken" value="ERu5k8gYdK8bVFYpluEv8SGpsHM5flVSGw8BrjIqTArlz7vqrsM4SUIu2tx2GWUv"> <div id="div_id_task_name" class="form-group"> <label for="id_task_name" class="col-form-label requiredField"> Task name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="task_name" value="Link Prediction" maxlength="200" class="textinput textInput form-control" required="" id="id_task_name" readonly > </div> </div> <div id="div_id_task_area" class="form-group"> <label for="id_task_area" class=" requiredField"> Top-level area:<span class="asteriskField">*</span> </label> <div class=""> <select name="task_area" class="select form-control" required id="id_task_area"> <option value="">---------</option> <option value="17">Adversarial</option> <option value="18">Audio</option> <option value="11">Computer Code</option> <option value="3">Computer Vision</option> <option value="9" selected>Graphs</option> <option value="15">Knowledge Base</option> <option value="7">Medical</option> <option value="6">Methodology</option> <option value="5">Miscellaneous</option> <option value="12">Music</option> <option value="4">Natural Language Processing</option> <option value="13">Playing Games</option> <option value="14">Reasoning</option> <option value="16">Robots</option> <option value="10">Speech</option> <option value="8">Time Series</option> </select> </div> </div> <div id="div_id_task_parent" class="form-group"> <label for="id_task_parent" class=""> Parent task (if any): </label> <div class=""> <select name="task_parent" class="modelselect2 form-control" id="id_task_parent" data-autocomplete-light-language="en" data-autocomplete-light-url="/tag-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_description" class="form-group"> <label for="id_description" class=""> Description with markdown (optional): </label> <div class=""> <textarea name="description" cols="40" rows="3" class="textarea form-control" id="id_description"> **Link Prediction** is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network. Given a partially observed network, the goal of link prediction is to infer which links are most likely to be added or missing based on the observed connections and the structure of the network. &lt;span style=&quot;color:grey; opacity: 0.6&quot;&gt;( Image credit: [Inductive Representation Learning on Large Graphs](https://arxiv.org/pdf/1706.02216v4.pdf) )&lt;/span&gt;</textarea> </div> </div> <div id="div_id_image" class="form-group"> <label for="id_image" class=""> Image </label> <div class=""> Currently: <a href="https://production-media.paperswithcode.com/tasks/Screenshot_2019-11-29_at_15.05.48_dlqd1HY.png">tasks/Screenshot_2019-11-29_at_15.05.48_dlqd1HY.png</a> <input type="checkbox" name="image-clear" id="image-clear_id"> <label for="image-clear_id">Clear</label><br> Change: <input type="file" name="image" accept="image/*" class="clearablefileinput form-control-file" id="id_image"> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Add Row --> <div class="modal fade" id="addRow" role="dialog" aria-labelledby="addRowLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addRowLabel">Add a new evaluation result row</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <input type="hidden" name="csrfmiddlewaretoken" value="ERu5k8gYdK8bVFYpluEv8SGpsHM5flVSGw8BrjIqTArlz7vqrsM4SUIu2tx2GWUv"> <input id="id_task" disabled="disabled" type="hidden" value="31"/> <div id="div_id_paper" class="form-group"> <label for="id_paper" class=" requiredField"> Paper title:<span class="asteriskField">*</span> </label> <div class=""> <select name="paper" class="modelselect2 form-control" required id="id_paper" data-autocomplete-light-language="en" data-autocomplete-light-url="/paper-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_dataset" class="form-group"> <label for="id_dataset" class=" requiredField"> Dataset:<span class="asteriskField">*</span> </label> <div class=""> <select name="dataset" class="modelselect2 form-control" required id="id_dataset" data-autocomplete-light-language="en" data-autocomplete-light-url="/dataset-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_model_name" class="form-group"> <label for="id_model_name" class=" requiredField"> Model name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="model_name" class="textinput textInput form-control" required id="id_model_name"> </div> </div> <div id="div_id_metric" class="form-group"> <label for="id_metric" class=" requiredField"> Metric name:<span class="asteriskField">*</span> </label> <div class=""> <select name="metric" class="modelselect2 form-control" required id="id_metric" data-autocomplete-light-language="en" data-autocomplete-light-url="/metric-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="sota-metric-names"> </div> <div class="form-group"> <div id="div_id_metric_higher_is_better" class="form-check"> <input type="checkbox" name="metric_higher_is_better" class="checkboxinput form-check-input" id="id_metric_higher_is_better"> <label for="id_metric_higher_is_better" class="form-check-label"> Higher is better (for the metric) </label> </div> </div> <div id="div_id_metric_value" class="form-group"> <label for="id_metric_value" class=" requiredField"> Metric value:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="metric_value" class="textinput textInput form-control" required id="id_metric_value"> </div> </div> <div id="sota-metric-values"> </div> <div class="form-group"> <div id="div_id_uses_additional_data" class="form-check"> <input type="checkbox" name="uses_additional_data" class="checkboxinput form-check-input" id="id_uses_additional_data"> <label for="id_uses_additional_data" class="form-check-label"> Uses extra training data </label> </div> </div> <div id="div_id_evaluated_on" class="form-group"> <label for="id_evaluated_on" class=""> Data evaluated on </label> <div class=""> <input type="text" name="evaluated_on" autocomplete="off" class="dateinput form-control" id="id_evaluated_on"> </div> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Submit </button> </div> </form> </div> </div> </div> </div> <div class="container content content-buffer "> <main> <div class="row task-content" style="margin-top: 3rem;"> <!-- Task Header --> <div class="dataset-header"> <a href="/area/graphs"> <span class="badge badge-primary"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="images"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M480 417.998v16c0 26.51-21.49 48-48 48H48c-26.51 0-48-21.49-48-48v-256c0-26.51 21.49-48 48-48h16v208c0 44.113 35.888 80 80 80h336zm96-80c0 26.51-21.49 48-48 48H144c-26.51 0-48-21.49-48-48v-256c0-26.51 21.49-48 48-48h384c26.51 0 48 21.49 48 48v256zm-320-208c0-26.51-21.49-48-48-48s-48 21.49-48 48 21.49 48 48 48 48-21.49 48-48zm-96 144v48h352v-112l-87.514-87.514c-4.687-4.687-12.285-4.687-16.971 0L272 257.999l-39.514-39.515c-4.688-4.686-12.285-4.686-16.972 0z"/></svg></span> <span>Graphs</span> </span> </a> </div> <div class="artefact-header"> <div class="float-right task-edit">  <div class="dropdown edit-button"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-method-edit" style="padding-top:10px;"><span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit</span> </a> </div> </div> <h1 id="task-home">Link Prediction</h1> <div class="artefact-information"> <p> 899 papers with code • 80 benchmarks • 66 datasets </p> </div> </div> <div class="col-lg-9"> <!--Task Desc--> <div class="description"> <div class="description-content"> <p><strong>Link Prediction</strong> is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network. Given a partially observed network, the goal of link prediction is to infer which links are most likely to be added or missing based on the observed connections and the structure of the network.</p> <p><span style="color: grey;">( Image credit: <a href="https://arxiv.org/pdf/1706.02216v4.pdf">Inductive Representation Learning on Large Graphs</a> )</span></p> </div> </div> <!-- Mobile image --> <div class="image-container task-image-mobile"> <a href="https://production-media.paperswithcode.com/thumbnails/task/task-0000000031-326cd034.jpg" data-lightbox="imageresource"> <img id="imageresource" width=100% src="https://production-media.paperswithcode.com/thumbnails/task/task-0000000031-326cd034.jpg"> </a> </div> <!-- Task Benchmarks --> <div class="task-benchmarks"> <div id="benchmarks" class="collapsed"> <div class="title"> <h2 id="benchmarks">Benchmarks <div class="float-right"> <div class="dropdown edit-button task-add-a-result"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-primary" style="font-size:12px;"> Add a Result</span> </a> </div> </div> </h2> These leaderboards are used to track progress in Link Prediction <hr> </div> <div class="sota-table-preview table-responsive"> <table id="benchmarksTable" class="table-striped table-responsive"> <thead> <tr> <th>Trend</th> <th style="padding-left:12px;">Dataset</th> <th style="min-width:200px">Best Model</th> <!-- <th style="width:38%">Paper Title</th> --> <th class="text-center">Paper</th> <th class="text-center">Code</th> <th class="text-center">Compare</th> </tr> </thead> <tbody> <tr onclick="window.location='/sota/link-prediction-on-wn18rr';"> <td> <a href="/sota/link-prediction-on-wn18rr"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wn18rr-small_b6c5fdc6.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wn18rr"> WN18RR </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wn18rr"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> KERMIT </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wn18rr">KERMIT: Knowledge Graph Completion of Enhanced Relation Modeling with Inverse Transformation</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/kermit-knowledge-graph-completion-of-enhanced"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/kermit-knowledge-graph-completion-of-enhanced#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wn18rr" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb15k-237';"> <td> <a href="/sota/link-prediction-on-fb15k-237"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb15k-237-small_2dc9f672.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb15k-237"> FB15k-237 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb15k-237"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> NBFNet </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb15k-237">Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/neural-bellman-ford-networks-a-general-graph"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/neural-bellman-ford-networks-a-general-graph#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb15k-237" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wn18';"> <td> <a href="/sota/link-prediction-on-wn18"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wn18-small_b01056b2.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wn18"> WN18 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wn18"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Inverse Model </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wn18">Convolutional 2D Knowledge Graph Embeddings</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/convolutional-2d-knowledge-graph-embeddings"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/convolutional-2d-knowledge-graph-embeddings#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wn18" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb15k';"> <td> <a href="/sota/link-prediction-on-fb15k"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb15k-small_8e28a4ad.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb15k"> FB15k </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb15k"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> AutoKGE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb15k">AutoSF: Searching Scoring Functions for Knowledge Graph Embedding</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/autokge-searching-scoring-functions-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/autokge-searching-scoring-functions-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb15k" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-pcqm-contact';"> <td> <a href="/sota/link-prediction-on-pcqm-contact"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-pcqm-contact-small_e1744514.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-pcqm-contact"> PCQM-Contact </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-pcqm-contact"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ViT-PS </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-pcqm-contact">Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/learning-probabilistic-symmetrization-for-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/learning-probabilistic-symmetrization-for-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-pcqm-contact" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-yago3-10';"> <td> <a href="/sota/link-prediction-on-yago3-10"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-yago3-10-small_1ce0db62.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-yago3-10"> YAGO3-10 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-yago3-10"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> MEIM </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-yago3-10">MEIM: Multi-partition Embedding Interaction Beyond Block Term Format for Efficient and Expressive Link Prediction</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/meim-multi-partition-embedding-interaction"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/meim-multi-partition-embedding-interaction#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-yago3-10" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-icews05-15-1';"> <td> <a href="/sota/link-prediction-on-icews05-15-1"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-icews05-15-1-small_741cc3eb.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-icews05-15-1"> ICEWS05-15 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-icews05-15-1"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> SPA </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-icews05-15-1">Search to Pass Messages for Temporal Knowledge Graph Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/search-to-pass-messages-for-temporal"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/search-to-pass-messages-for-temporal#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-icews05-15-1" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-icews14-1';"> <td> <a href="/sota/link-prediction-on-icews14-1"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-icews14-1-small_b548898e.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-icews14-1"> ICEWS14 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-icews14-1"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> SPA </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-icews14-1">Search to Pass Messages for Temporal Knowledge Graph Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/search-to-pass-messages-for-temporal"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/search-to-pass-messages-for-temporal#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-icews14-1" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-cora';"> <td> <a href="/sota/link-prediction-on-cora"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-cora-small_1359fa79.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-cora"> Cora </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-cora"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> NESS </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-cora">NESS: Node Embeddings from Static SubGraphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/ness-learning-node-embeddings-from-static"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/ness-learning-node-embeddings-from-static#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-cora" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-citeseer';"> <td> <a href="/sota/link-prediction-on-citeseer"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-citeseer-small_c87a9a7e.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-citeseer"> Citeseer </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-citeseer"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> NESS </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-citeseer">NESS: Node Embeddings from Static SubGraphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/ness-learning-node-embeddings-from-static"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/ness-learning-node-embeddings-from-static#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-citeseer" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wikidata5m';"> <td> <a href="/sota/link-prediction-on-wikidata5m"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wikidata5m-small_95a2a7d7.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wikidata5m"> Wikidata5M </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wikidata5m"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> KGT5-context + Description </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wikidata5m">Friendly Neighbors: Contextualized Sequence-to-Sequence Link Prediction</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/friendly-neighbors-contextualized-sequence-to"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/friendly-neighbors-contextualized-sequence-to#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wikidata5m" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-pubmed';"> <td> <a href="/sota/link-prediction-on-pubmed"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-pubmed-small_2d32e10b.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-pubmed"> Pubmed </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-pubmed"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Walkpooling </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-pubmed">Neural Link Prediction with Walk Pooling</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/neural-link-prediction-with-walk-pooling-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/neural-link-prediction-with-walk-pooling-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-pubmed" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-gdelt';"> <td> <a href="/sota/link-prediction-on-gdelt"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-gdelt-small_ede715f9.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-gdelt"> GDELT </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-gdelt"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> SPA </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-gdelt">Search to Pass Messages for Temporal Knowledge Graph Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/search-to-pass-messages-for-temporal"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/search-to-pass-messages-for-temporal#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-gdelt" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-umls';"> <td> <a href="/sota/link-prediction-on-umls"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-umls-small_d90928e9.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-umls"> UMLS </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-umls"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> LP-BERT </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-umls">Multi-task Pre-training Language Model for Semantic Network Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/lp-bert-multi-task-pre-training-knowledge"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/lp-bert-multi-task-pre-training-knowledge#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-umls" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb15k-1';"> <td> <a href="/sota/link-prediction-on-fb15k-1"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb15k-1-small_024a55e4.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb15k-1"> FB15k </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb15k-1"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> LineaRE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb15k-1">LineaRE: Simple but Powerful Knowledge Graph Embedding for Link Prediction</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/knowledge-graph-embedding-with-linear"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/knowledge-graph-embedding-with-linear#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb15k-1" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-yelp';"> <td> <a href="/sota/link-prediction-on-yelp"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-yelp-small_5aeba099.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-yelp"> Yelp </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-yelp"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> PEAGAT </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-yelp">Metapath- and Entity-aware Graph Neural Network for Recommendation</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/metapath-and-entity-aware-graph-neural"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/metapath-and-entity-aware-graph-neural#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-yelp" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wordnet';"> <td> <a href="/sota/link-prediction-on-wordnet"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wordnet-small_558afdc0.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wordnet"> WordNet </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wordnet"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Hyperbolic Entailment Cones </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wordnet">Hyperbolic Entailment Cones for Learning Hierarchical Embeddings</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/hyperbolic-entailment-cones-for-learning"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/hyperbolic-entailment-cones-for-learning#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wordnet" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-movielens-25m';"> <td> <a href="/sota/link-prediction-on-movielens-25m"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-movielens-25m-small_b11063d0.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-movielens-25m"> MovieLens 25M </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-movielens-25m"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> PEAGAT </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-movielens-25m">Metapath- and Entity-aware Graph Neural Network for Recommendation</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/metapath-and-entity-aware-graph-neural"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/metapath-and-entity-aware-graph-neural#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-movielens-25m" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-codex';"> <td> <a href="/sota/link-prediction-on-codex"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-codex-small_b47fc86e.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-codex"> CoDEx Small </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-codex"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ComplEx-N3-RP </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-codex">Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/relation-prediction-as-an-auxiliary-training"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/relation-prediction-as-an-auxiliary-training#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-codex" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-codex-medium';"> <td> <a href="/sota/link-prediction-on-codex-medium"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-codex-medium-small_bbc8a216.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-codex-medium"> CoDEx Medium </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-codex-medium"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ComplEx-N3-RP </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-codex-medium">Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/relation-prediction-as-an-auxiliary-training"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/relation-prediction-as-an-auxiliary-training#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-codex-medium" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-codex-large';"> <td> <a href="/sota/link-prediction-on-codex-large"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-codex-large-small_685bee63.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-codex-large"> CoDEx Large </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-codex-large"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ComplEx-N3-RP </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-codex-large">Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/relation-prediction-as-an-auxiliary-training"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/relation-prediction-as-an-auxiliary-training#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-codex-large" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb122';"> <td> <a href="/sota/link-prediction-on-fb122"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb122-small_101a0b9f.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb122"> FB122 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb122"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Prob-CBR </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb122">Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/probabilistic-case-based-reasoning-for-open"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/probabilistic-case-based-reasoning-for-open#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb122" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-nell-995';"> <td> <a href="/sota/link-prediction-on-nell-995"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-nell-995-small_71cc13ea.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-nell-995"> NELL-995 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-nell-995"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Prob-CBR </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-nell-995">Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/probabilistic-case-based-reasoning-for-open"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/probabilistic-case-based-reasoning-for-open#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-nell-995" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-tsp-hcp-benchmark-set';"> <td> <a href="/sota/link-prediction-on-tsp-hcp-benchmark-set"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-tsp-hcp-benchmark-set-small_c6b03224.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-tsp-hcp-benchmark-set"> TSP/HCP Benchmark set </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-tsp-hcp-benchmark-set"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> TGT-Agx4 </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-tsp-hcp-benchmark-set">Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/triplet-interaction-improves-graph"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/triplet-interaction-improves-graph#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-tsp-hcp-benchmark-set" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-dblp';"> <td> <a href="/sota/link-prediction-on-dblp"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-dblp-small_dd29a10f.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-dblp"> DBLP </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-dblp"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GLACE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-dblp">Gaussian Embedding of Large-scale Attributed Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/gaussian-embedding-of-large-scale-attributed"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/gaussian-embedding-of-large-scale-attributed#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-dblp" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-jf17k';"> <td> <a href="/sota/link-prediction-on-jf17k"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-jf17k-small_949ff6b3.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-jf17k"> JF17K </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-jf17k"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HAHE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-jf17k">HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/hahe-hierarchical-attention-for-hyper"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/hahe-hierarchical-attention-for-hyper#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-jf17k" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-kg20c';"> <td> <a href="/sota/link-prediction-on-kg20c"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-kg20c-small_37595725.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-kg20c"> KG20C </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-kg20c"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> MEI (small) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-kg20c">Multi-Partition Embedding Interaction with Block Term Format for Knowledge Graph Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/multi-partition-embedding-interaction-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/multi-partition-embedding-interaction-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-kg20c" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-ppi';"> <td> <a href="/sota/link-prediction-on-ppi"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-ppi-small_f64c6cf2.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-ppi"> PPI </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-ppi"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> PPPNE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-ppi">PPPNE: Personalized proximity preserved network embedding</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/pppne-personalized-proximity-preserved"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-ppi" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-yago37';"> <td> <a href="/sota/link-prediction-on-yago37"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-yago37-small_dd467e34.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-yago37"> YAGO37 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-yago37"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> SEEK </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-yago37">SEEK: Segmented Embedding of Knowledge Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/seek-segmented-embedding-of-knowledge-graphs"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/seek-segmented-embedding-of-knowledge-graphs#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-yago37" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-youtube';"> <td> <a href="/sota/link-prediction-on-youtube"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-youtube-small_d5d59835.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-youtube"> YouTube </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-youtube"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GATNE-T </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-youtube">Representation Learning for Attributed Multiplex Heterogeneous Network</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/190501669"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/190501669#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-youtube" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-livejournal';"> <td> <a href="/sota/link-prediction-on-livejournal"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-livejournal-small_8ab9f679.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-livejournal"> LiveJournal </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-livejournal"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> PBG (1 partition) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-livejournal">PyTorch-BigGraph: A Large-scale Graph Embedding System</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/pytorch-biggraph-a-large-scale-graph"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/pytorch-biggraph-a-large-scale-graph#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-livejournal" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-douban';"> <td> <a href="/sota/link-prediction-on-douban"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-douban-small_8ce1fe9e.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-douban"> Douban </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-douban"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HSRL (DW) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-douban">Learning Topological Representation for Networks via Hierarchical Sampling</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/learning-topological-representation-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/learning-topological-representation-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-douban" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-yago15k-1';"> <td> <a href="/sota/link-prediction-on-yago15k-1"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-yago15k-1-small_eaa8e779.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-yago15k-1"> YAGO15k </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-yago15k-1"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> TNTComplEx (x10) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-yago15k-1">Tensor Decompositions for temporal knowledge base completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/tensor-decompositions-for-temporal-knowledge-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/tensor-decompositions-for-temporal-knowledge-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-yago15k-1" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-cora-biased-evaluation';"> <td> <a href="/sota/link-prediction-on-cora-biased-evaluation"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-cora-biased-evaluation-small_0f89a35d.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-cora-biased-evaluation"> Cora (biased evaluation) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-cora-biased-evaluation"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GraphStar (double weight on positive examples) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-cora-biased-evaluation">Graph Star Net for Generalized Multi-Task Learning</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/graph-star-net-for-generalized-multi-task-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/graph-star-net-for-generalized-multi-task-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-cora-biased-evaluation" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-citeseer-biased-evaluation';"> <td> <a href="/sota/link-prediction-on-citeseer-biased-evaluation"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-citeseer-biased-evaluation-small_ba2612c2.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-citeseer-biased-evaluation"> Citeseer (biased evaluation) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-citeseer-biased-evaluation"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GraphStar (double weight on positive examples) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-citeseer-biased-evaluation">Graph Star Net for Generalized Multi-Task Learning</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/graph-star-net-for-generalized-multi-task-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/graph-star-net-for-generalized-multi-task-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-citeseer-biased-evaluation" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-pubmed-biased-evaluation';"> <td> <a href="/sota/link-prediction-on-pubmed-biased-evaluation"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-pubmed-biased-evaluation-small_38571039.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-pubmed-biased-evaluation"> Pubmed (biased evaluation) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-pubmed-biased-evaluation"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GraphStar (double weight on positive examples) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-pubmed-biased-evaluation">Graph Star Net for Generalized Multi-Task Learning</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/graph-star-net-for-generalized-multi-task-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/graph-star-net-for-generalized-multi-task-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-pubmed-biased-evaluation" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wd50k';"> <td> <a href="/sota/link-prediction-on-wd50k"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wd50k-small_957128ac.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wd50k"> Temp8 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wd50k"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HAHE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wd50k">HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/hahe-hierarchical-attention-for-hyper"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/hahe-hierarchical-attention-for-hyper#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wd50k" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-decagon';"> <td> <a href="/sota/link-prediction-on-decagon"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-decagon-small_05697c7a.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-decagon"> Decagon </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-decagon"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Decagon </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-decagon">Modeling polypharmacy side effects with graph convolutional networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/modeling-polypharmacy-side-effects-with-graph"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/modeling-polypharmacy-side-effects-with-graph#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-decagon" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-usair';"> <td> <a href="/sota/link-prediction-on-usair"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-usair-small_2e5e63be.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-usair"> USAir </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-usair"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> SEAL </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-usair">Link Prediction Based on Graph Neural Networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/link-prediction-based-on-graph-neural"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/link-prediction-based-on-graph-neural#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-usair" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-movielens-1m';"> <td> <a href="/sota/link-prediction-on-movielens-1m"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-movielens-1m-small_cd774b16.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-movielens-1m"> MovieLens 1M </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-movielens-1m"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Hyper-SAGNN-W </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-movielens-1m">Hyper-SAGNN: a self-attention based graph neural network for hypergraphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/hyper-sagnn-a-self-attention-based-graph-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/hyper-sagnn-a-self-attention-based-graph-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-movielens-1m" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-gps';"> <td> <a href="/sota/link-prediction-on-gps"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-gps-small_840903b5.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-gps"> GPS </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-gps"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Hyper-SAGNN-E </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-gps">Hyper-SAGNN: a self-attention based graph neural network for hypergraphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/hyper-sagnn-a-self-attention-based-graph-1"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/hyper-sagnn-a-self-attention-based-graph-1#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-gps" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wiki';"> <td> <a href="/sota/link-prediction-on-wiki"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wiki-small_7a182a5b.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wiki"> Wiki </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wiki"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> BANE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wiki">Binarized Attributed Network Embedding</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/binarized-attributed-network-embedding"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/binarized-attributed-network-embedding#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wiki" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-yago39k';"> <td> <a href="/sota/link-prediction-on-yago39k"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-yago39k-small_be45c7ac.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-yago39k"> YAGO39K </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-yago39k"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> TransC (bern) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-yago39k">Differentiating Concepts and Instances for Knowledge Graph Embedding</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/differentiating-concepts-and-instances-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/differentiating-concepts-and-instances-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-yago39k" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-aksw-bib';"> <td> <a href="/sota/link-prediction-on-aksw-bib"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-aksw-bib-small_fa48eb60.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-aksw-bib"> AKSW-bib </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-aksw-bib"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> KG2Vec LSTM </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-aksw-bib">Expeditious Generation of Knowledge Graph Embeddings</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/expeditious-generation-of-knowledge-graph"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/expeditious-generation-of-knowledge-graph#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-aksw-bib" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-amazon';"> <td> <a href="/sota/link-prediction-on-amazon"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-amazon-small_92872570.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-amazon"> Amazon </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-amazon"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GATNE-T </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-amazon">Representation Learning for Attributed Multiplex Heterogeneous Network</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/190501669"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/190501669#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-amazon" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-twitter';"> <td> <a href="/sota/link-prediction-on-twitter"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-twitter-small_ec805498.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-twitter"> Twitter </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-twitter"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GATNE-T </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-twitter">Representation Learning for Attributed Multiplex Heterogeneous Network</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/190501669"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/190501669#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-twitter" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-alibaba-s';"> <td> <a href="/sota/link-prediction-on-alibaba-s"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-alibaba-s-small_0b60e263.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-alibaba-s"> Alibaba-S </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-alibaba-s"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GATNE-T </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-alibaba-s">Representation Learning for Attributed Multiplex Heterogeneous Network</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/190501669"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/190501669#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-alibaba-s" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-alibaba';"> <td> <a href="/sota/link-prediction-on-alibaba"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-alibaba-small_5332d583.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-alibaba"> Alibaba </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-alibaba"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GATNE-I </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-alibaba">Representation Learning for Attributed Multiplex Heterogeneous Network</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/190501669"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/190501669#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-alibaba" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-acm';"> <td> <a href="/sota/link-prediction-on-acm"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-acm-small_623e0253.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-acm"> ACM </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-acm"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GLACE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-acm">Gaussian Embedding of Large-scale Attributed Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/gaussian-embedding-of-large-scale-attributed"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/gaussian-embedding-of-large-scale-attributed#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-acm" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-lastfm';"> <td> <a href="/sota/link-prediction-on-lastfm"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-lastfm-small_dd4ce1db.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-lastfm"> Last.FM </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-lastfm"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> MAGNN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-lastfm">MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/magnn-metapath-aggregated-graph-neural"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/magnn-metapath-aggregated-graph-neural#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-lastfm" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wiki-vote';"> <td> <a href="/sota/link-prediction-on-wiki-vote"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wiki-vote-small_8d3b52bb.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wiki-vote"> Wiki-Vote </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wiki-vote"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Asymmetric Transitivity Preservation </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wiki-vote">ATP: Directed Graph Embedding with Asymmetric Transitivity Preservation</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/atp-directed-graph-embedding-with-asymmetric"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/atp-directed-graph-embedding-with-asymmetric#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wiki-vote" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-cit-hepph';"> <td> <a href="/sota/link-prediction-on-cit-hepph"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-cit-hepph-small_75fcab56.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-cit-hepph"> Cit-HepPH </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-cit-hepph"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Asymmetric Transitivity Preservation </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-cit-hepph">ATP: Directed Graph Embedding with Asymmetric Transitivity Preservation</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/atp-directed-graph-embedding-with-asymmetric"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/atp-directed-graph-embedding-with-asymmetric#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-cit-hepph" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-gnutella';"> <td> <a href="/sota/link-prediction-on-gnutella"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-gnutella-small_e0583837.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-gnutella"> Gnutella </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-gnutella"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Asymmetric Transitivity Preservation </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-gnutella">ATP: Directed Graph Embedding with Asymmetric Transitivity Preservation</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/atp-directed-graph-embedding-with-asymmetric"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/atp-directed-graph-embedding-with-asymmetric#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-gnutella" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wn18-filtered';"> <td> <a href="/sota/link-prediction-on-wn18-filtered"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wn18-filtered-small_4f29b08d.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wn18-filtered"> WN18 (filtered) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wn18-filtered"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ParTransH </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wn18-filtered">Efficient Parallel Translating Embedding For Knowledge Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/efficient-parallel-translating-embedding-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/efficient-parallel-translating-embedding-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wn18-filtered" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb15k-filtered';"> <td> <a href="/sota/link-prediction-on-fb15k-filtered"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb15k-filtered-small_53f69888.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb15k-filtered"> FB15k (filtered) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb15k-filtered"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ParTransH </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb15k-filtered">Efficient Parallel Translating Embedding For Knowledge Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/efficient-parallel-translating-embedding-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/efficient-parallel-translating-embedding-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb15k-filtered" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-imdb';"> <td> <a href="/sota/link-prediction-on-imdb"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-imdb-small_7fc6d970.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-imdb"> IMDb </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-imdb"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Event2vec </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-imdb">Representation Learning for Heterogeneous Information Networks via Embedding Events</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/representation-learning-for-heterogeneous"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/representation-learning-for-heterogeneous#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-imdb" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-mit';"> <td> <a href="/sota/link-prediction-on-mit"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-mit-small_eadc30ec.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-mit"> MIT </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-mit"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HSRL (DW) </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-mit">Learning Topological Representation for Networks via Hierarchical Sampling</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/learning-topological-representation-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/learning-topological-representation-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-mit" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-cora-nonstandard-variant';"> <td> <a href="/sota/link-prediction-on-cora-nonstandard-variant"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-cora-nonstandard-variant-small_7926fc68.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-cora-nonstandard-variant"> Cora (nonstandard variant) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-cora-nonstandard-variant"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GLACE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-cora-nonstandard-variant">Gaussian Embedding of Large-scale Attributed Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/gaussian-embedding-of-large-scale-attributed"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/gaussian-embedding-of-large-scale-attributed#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-cora-nonstandard-variant" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-citeseer-nonstandard';"> <td> <a href="/sota/link-prediction-on-citeseer-nonstandard"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-citeseer-nonstandard-small_fe53944a.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-citeseer-nonstandard"> Citeseer (nonstandard variant) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-citeseer-nonstandard"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GLACE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-citeseer-nonstandard">Gaussian Embedding of Large-scale Attributed Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/gaussian-embedding-of-large-scale-attributed"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/gaussian-embedding-of-large-scale-attributed#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-citeseer-nonstandard" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-pubmed-nonstandard-variant';"> <td> <a href="/sota/link-prediction-on-pubmed-nonstandard-variant"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-pubmed-nonstandard-variant-small_1f5c5845.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-pubmed-nonstandard-variant"> Pubmed (nonstandard variant) </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-pubmed-nonstandard-variant"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GLACE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-pubmed-nonstandard-variant">Gaussian Embedding of Large-scale Attributed Graphs</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/gaussian-embedding-of-large-scale-attributed"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/gaussian-embedding-of-large-scale-attributed#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-pubmed-nonstandard-variant" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wikidata12k';"> <td> <a href="/sota/link-prediction-on-wikidata12k"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wikidata12k-small_f2a87015.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wikidata12k"> Wikidata12k </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wikidata12k"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> TimePlex </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wikidata12k">Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/temporal-knowledge-base-completion-new"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/temporal-knowledge-base-completion-new#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wikidata12k" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-yago11k';"> <td> <a href="/sota/link-prediction-on-yago11k"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-yago11k-small_5aa2f74d.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-yago11k"> Yago11k </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-yago11k"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> TimePlex </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-yago11k">Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/temporal-knowledge-base-completion-new"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/temporal-knowledge-base-completion-new#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-yago11k" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-drug-target-interactions';"> <td> <a href="/sota/link-prediction-on-drug-target-interactions"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-drug-target-interactions-small_04e7a932.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-drug-target-interactions"> Drug-target interactions </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-drug-target-interactions"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HOGCN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-drug-target-interactions">Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/predicting-biomedical-interactions-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/predicting-biomedical-interactions-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-drug-target-interactions" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-drug-drug-interactions';"> <td> <a href="/sota/link-prediction-on-drug-drug-interactions"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-drug-drug-interactions-small_6c1b89ae.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-drug-drug-interactions"> Drug-Drug Interactions </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-drug-drug-interactions"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HOGCN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-drug-drug-interactions">Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/predicting-biomedical-interactions-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/predicting-biomedical-interactions-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-drug-drug-interactions" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-protein-protein';"> <td> <a href="/sota/link-prediction-on-protein-protein"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-protein-protein-small_8a5aeff7.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-protein-protein"> protein-protein interactions </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-protein-protein"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HOGCN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-protein-protein">Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/predicting-biomedical-interactions-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/predicting-biomedical-interactions-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-protein-protein" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-gene-disease-interactions';"> <td> <a href="/sota/link-prediction-on-gene-disease-interactions"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-gene-disease-interactions-small_dd1eff9f.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-gene-disease-interactions"> Gene-disease interactions </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-gene-disease-interactions"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HOGCN </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-gene-disease-interactions">Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/predicting-biomedical-interactions-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/predicting-biomedical-interactions-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-gene-disease-interactions" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb-auto';"> <td> <a href="/sota/link-prediction-on-fb-auto"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb-auto-small_d3777765.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb-auto"> FB-AUTO </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb-auto"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> BoxE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb-auto">BoxE: A Box Embedding Model for Knowledge Base Completion</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/boxe-a-box-embedding-model-for-knowledge-base"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/boxe-a-box-embedding-model-for-knowledge-base#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb-auto" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-abstrct-neoplasm';"> <td> <a href="/sota/link-prediction-on-abstrct-neoplasm"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-abstrct-neoplasm-small_1e7e0b07.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-abstrct-neoplasm"> AbstRCT - Neoplasm </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-abstrct-neoplasm"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ResAttArg </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-abstrct-neoplasm">Multi-Task Attentive Residual Networks for Argument Mining</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/multi-task-attentive-residual-networks-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/multi-task-attentive-residual-networks-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-abstrct-neoplasm" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-cdcp';"> <td> <a href="/sota/link-prediction-on-cdcp"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-cdcp-small_dd26b446.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-cdcp"> CDCP </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-cdcp"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ResAttArg </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-cdcp">Multi-Task Attentive Residual Networks for Argument Mining</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/multi-task-attentive-residual-networks-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/multi-task-attentive-residual-networks-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-cdcp" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-dr-inventor';"> <td> <a href="/sota/link-prediction-on-dr-inventor"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-dr-inventor-small_112ecf87.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-dr-inventor"> DRI Corpus </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-dr-inventor"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ResAttArg </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-dr-inventor">Multi-Task Attentive Residual Networks for Argument Mining</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/multi-task-attentive-residual-networks-for"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/multi-task-attentive-residual-networks-for#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-dr-inventor" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-collab';"> <td> <a href="/sota/link-prediction-on-collab"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-collab-small_7e6a9c19.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-collab"> COLLAB </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-collab"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> GatedGCN-PE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-collab">Benchmarking Graph Neural Networks</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/benchmarking-graph-neural-networks"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/benchmarking-graph-neural-networks#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-collab" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-aristo-v4';"> <td> <a href="/sota/link-prediction-on-aristo-v4"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-aristo-v4-small_7743576a.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-aristo-v4"> Aristo-v4 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-aristo-v4"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ComplEx-N3-RP </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-aristo-v4">Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/relation-prediction-as-an-auxiliary-training"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/relation-prediction-as-an-auxiliary-training#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-aristo-v4" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-fb15k-237-ind';"> <td> <a href="/sota/link-prediction-on-fb15k-237-ind"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-fb15k-237-ind-small_40893690.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-fb15k-237-ind"> FB15k-237-ind </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-fb15k-237-ind"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> kNN-KGE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-fb15k-237-ind">Reasoning Through Memorization: Nearest Neighbor Knowledge Graph Embeddings</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/reasoning-through-memorization-nearest"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/reasoning-through-memorization-nearest#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-fb15k-237-ind" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-ddb14';"> <td> <a href="/sota/link-prediction-on-ddb14"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-ddb14-small_3a053891.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-ddb14"> DDB14 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-ddb14"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ConE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-ddb14">Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic Cones</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/modeling-heterogeneous-hierarchies-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/modeling-heterogeneous-hierarchies-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-ddb14" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-go21';"> <td> <a href="/sota/link-prediction-on-go21"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-go21-small_d66cbc4a.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-go21"> GO21 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-go21"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> ConE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-go21">Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic Cones</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/modeling-heterogeneous-hierarchies-with"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/modeling-heterogeneous-hierarchies-with#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-go21" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-sins';"> <td> <a href="/sota/link-prediction-on-sins"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-sins-small_c84ffa82.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-sins"> SINS </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-sins"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> mlp </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-sins">Deep Learning in Mobile and Wireless Networking: A Survey</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/deep-learning-in-mobile-and-wireless"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-sins" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-openbg500';"> <td> <a href="/sota/link-prediction-on-openbg500"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-openbg500-small_963ba7d9.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-openbg500"> OpenBG500 </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-openbg500"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> MoCoSA </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-openbg500">MoCoSA: Momentum Contrast for Knowledge Graph Completion with Structure-Augmented Pre-trained Language Models</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/mocosa-momentum-contrast-for-knowledge-graph"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-openbg500" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-wikipeople';"> <td> <a href="/sota/link-prediction-on-wikipeople"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-wikipeople-small_2d435776.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-wikipeople"> Wikipeople </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-wikipeople"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> HAHE </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-wikipeople">HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/hahe-hierarchical-attention-for-hyper"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> <div class="text-center github"><a href="/paper/hahe-hierarchical-attention-for-hyper#code"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </a></div> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-wikipeople" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-ogbl-collab';"> <td> <a href="/sota/link-prediction-on-ogbl-collab"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-ogbl-collab-small_42c1d223.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-ogbl-collab"> ogbl-collab </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-ogbl-collab"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> Edge2Node </a> </div> </td> <!-- <td> <div class="paper blue-links"> <a href="/sota/link-prediction-on-ogbl-collab">Edge2Node: Reducing Edge Prediction to Node Classification</a> </div> </td> --> <td> <div class="text-center paper"> <a href="/paper/edge2node-reducing-edge-prediction-to-node"> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> </a> </div> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-ogbl-collab" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> <tr onclick="window.location='/sota/link-prediction-on-openbiolink';"> <td> <a href="/sota/link-prediction-on-openbiolink"> <img class="sota-thumb" src="https://production-media.paperswithcode.com/sota-thumbs/link-prediction-on-openbiolink-small_e9ed00a6.png"/> </a> </td> <td> <div class="dataset black-links"> <a href="/sota/link-prediction-on-openbiolink"> OpenBioLink </a> </div> </td> <td> <div class="black-links"> <a href="/sota/link-prediction-on-openbiolink"> <i class="em em-trophy" style="height:1em;position:relative;top:-2px"></i> DistMult </a> </div> </td> <!-- <td> </td> --> <td> </td> <td> </td> <td class="text-center"> <div class="sota-table-link"> <a href="/sota/link-prediction-on-openbiolink" class="btn btn-primary">See&nbsp;all</a> </div> </td> </tr> </tbody> </table> <div class="table-options expand"> <a href="javascript:void(0)" onclick="document.getElementById('benchmarks').classList.remove('collapsed')" >Show all 80 benchmarks</a> </div> <div class="table-options collapse"> <a href="javascript:void(0)" onclick="document.getElementById('benchmarks').classList.add('collapsed')" >Collapse benchmarks</a> </div> </div> </div> </div> <!-- Libraries --> <div class="task-started"> <div class="title task-libraries"> <h2 id="task-libraries">Libraries <span class="lib-info" data-bs-toggle="popover" data-bs-placement="top" data-bs-trigger="hover" data-bs-title="Libraries" data-bs-content="These libraries are updated daily, based on the papers assigned to this task. If you think a Library is missing, make sure this library is added as code to the papers it implements, and that the papers have been assigned to this task." ><span class=" icon-wrapper icon-ion" data-name="information-circle-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M248 64C146.39 64 64 146.39 64 248s82.39 184 184 184 184-82.39 184-184S349.61 64 248 64z" fill="none" stroke="#000" stroke-miterlimit="10" stroke-width="32"/><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M220 220h32v116"/><path fill="none" stroke="#000" stroke-linecap="round" stroke-miterlimit="10" stroke-width="32" d="M208 340h88"/><path d="M248 130a26 26 0 1 0 26 26 26 26 0 0 0-26-26z"/></svg></span></span> </h2> Use these libraries to find Link Prediction models and implementations <hr> <div id="libraries-short-list"> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/benedekrozemberczki/karateclub" onclick="captureOutboundLink('https://github.com/benedekrozemberczki/karateclub'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> benedekrozemberczki/karateclub </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 7 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 2,172 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/bi-graph/emgraph" onclick="captureOutboundLink('https://github.com/bi-graph/emgraph'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> bi-graph/emgraph </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 6 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 38 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/Accenture/AmpliGraph" onclick="captureOutboundLink('https://github.com/Accenture/AmpliGraph'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> Accenture/AmpliGraph </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 5 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 2,156 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/zxhhh97/ABot" onclick="captureOutboundLink('https://github.com/zxhhh97/ABot'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> zxhhh97/ABot </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 4 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 18 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="table-options"> <a href="#" id="libraries-see-more-trigger">See all 10</a> libraries. </div> </div> <div id="libraries-full-list" style="display:none"> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/benedekrozemberczki/karateclub" onclick="captureOutboundLink('https://github.com/benedekrozemberczki/karateclub'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> benedekrozemberczki/karateclub </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 7 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 2,172 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/bi-graph/emgraph" onclick="captureOutboundLink('https://github.com/bi-graph/emgraph'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> bi-graph/emgraph </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 6 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 38 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/Accenture/AmpliGraph" onclick="captureOutboundLink('https://github.com/Accenture/AmpliGraph'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> Accenture/AmpliGraph </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 5 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 2,156 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/zxhhh97/ABot" onclick="captureOutboundLink('https://github.com/zxhhh97/ABot'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> zxhhh97/ABot </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 4 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 18 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/Sujit-O/pykg2vec" onclick="captureOutboundLink('https://github.com/Sujit-O/pykg2vec'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> Sujit-O/pykg2vec </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 3 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 608 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/huggingface/transformers" onclick="captureOutboundLink('https://github.com/huggingface/transformers'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> huggingface/transformers </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 2 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 135,512 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/xue-pai/FuxiCTR" onclick="captureOutboundLink('https://github.com/xue-pai/FuxiCTR'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> xue-pai/FuxiCTR </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 2 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 948 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/UlionTse/mlgb" onclick="captureOutboundLink('https://github.com/UlionTse/mlgb'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> UlionTse/mlgb </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 2 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 582 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/massquantity/LibRecommender" onclick="captureOutboundLink('https://github.com/massquantity/LibRecommender'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> massquantity/LibRecommender </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 2 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 387 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="row task-library"> <div class="col-12 col-md-6"> <a href="https://github.com/iesl/geometric_graph_embedding" onclick="captureOutboundLink('https://github.com/iesl/geometric_graph_embedding'); return true;"> <div class="library-logo"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> </div> iesl/geometric_graph_embedding </a> </div> <div class="col-6 col-md-3"> <span class="task-library-pwc-count"> 2 papers </span> </div> <div class="col-6 col-md-3"> <div class="library-stars text-nowrap"> 13 <span class=" icon-wrapper icon-ion" data-name="star"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M394 480a16 16 0 0 1-9.39-3L256 383.76 127.39 477a16 16 0 0 1-24.55-18.08L153 310.35 23 221.2a16 16 0 0 1 9-29.2h160.38l48.4-148.95a16 16 0 0 1 30.44 0l48.4 149H480a16 16 0 0 1 9.05 29.2L359 310.35l50.13 148.53A16 16 0 0 1 394 480z"/></svg></span> </div> </div> </div> <div class="table-options"> <a href="#" id="libraries-see-less-trigger">Collapse 10</a> libraries. </div> </div> </div> </div> <!-- Task Datasets --> <div class="title"> <h2 id="datasets">Datasets</h2> <hr> <div class="task-datasets"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/dataset/imdb-movie-reviews"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000003538-b946fadb_b1MkwaA.jpg"> IMDb Movie Reviews </span> </a> </li> <li> <a href="/dataset/movielens"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000000331-256e4bc5_9wkAHjr.jpg"> MovieLens </span> </a> </li> <li> <a href="/dataset/pubmed"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> Pubmed </span> </a> </li> <li> <a href="/dataset/ogb"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000005078-5b5b1cd9_oLn0Sj5.jpg"> OGB </span> </a> </li> <li> <a href="/dataset/fb15k"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000001664-672abbcc_GT3TytA.jpg"> FB15k </span> </a> </li> <li> <a href="/dataset/cora"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/dataset/dataset-0000000700-fc96b306_r4h6Zl5.jpg"> Cora </span> </a> </li> <li> <a href="/dataset/wn18"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> WN18 </span> </a> </li> <li> <a href="/dataset/fb15k-237"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> FB15k-237 </span> </a> </li> <li> <a href="/dataset/wn18rr"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> WN18RR </span> </a> </li> <li> <a href="/dataset/citeseer"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> Citeseer </span> </a> </li> <a href="/datasets?task=link-prediction"> <button class="dropdown-toggle badge badge-edit w-100 collapsed" type="button" > See all 66 link prediction datasets </button> </a> </ul> </div> </div> </div> <!-- Subtasks --> <div class="title"> <h2 id="subtasks">Subtasks</h2> <hr> <div class="task-subtasks"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/task/inductive-link-prediction"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Inductive Link Prediction</span> </span> </a> </li> <li> <a href="/task/dynamic-link-prediction"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Dynamic Link Prediction</span> </span> </a> </li> <li> <a href="/task/hyperedge-prediction"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Hyperedge Prediction</span> </span> </a> </li> <li> <a href="/task/calibration-for-link-prediction"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Calibration for Link Prediction</span> </span> </a> </li> <div class="collapse" id="remaining-tasks"> <li> <a href="/task/calibration-for-link-prediction"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Calibration for Link Prediction</span></span> </a> </li> <li> <a href="/task/anchor-link-prediction"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Anchor link prediction</span></span> </a> </li> <li> <a href="/task/link-prediction-on-dh-kgs"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Link prediction on DH-KGs</span></span> </a> </li> </div> <button class="dropdown-toggle badge badge-edit w-100 collapsed" type="button" data-bs-target="#remaining-tasks" data-bs-toggle="collapse" aria-haspopup="true" aria-expanded="false" onclick="this.innerHTML=this.classList.contains('collapsed')? 'Show all 6 subtasks': 'Show less'" > Show all 6 subtasks </button> </ul> </div> </div> </div> <!-- Papers --> <div class="title paper-list" id="code"> <h2 id="papers-list" class="home-page-title">Most implemented papers</h2> <div class="paper-filter-btn"> <div class="btn-group" role="group"> <a data-title="Most implemented papers" data-call-url="/tasklist/link-prediction/greatest" data-target="/task/link-prediction" class="list-papers-button list-button-active" style="margin-right:0">Most implemented</a> <a data-title="Hot papers on social media" data-call-url="/tasklist/link-prediction/social" data-target="/task/link-prediction/social" class="list-papers-button list-button" style="margin-right:0">Social</a> <a data-title="Latest papers" data-call-url="/tasklist/link-prediction/latest" data-target="/task/link-prediction/latest" class="list-papers-button list-button" style="margin-right:0">Latest</a> <a data-title="Latest papers with no code" data-call-url="/tasklist/link-prediction/codeless" data-target="/task/link-prediction/codeless" class="list-papers-button list-button">No code</a> </div> </div> </div> <!-- <input id="paper-list-search" type="search" class="form-control form-control-sm" placeholder="Search for a paper, author or keyword"> --> <input id="paper-list-search" type="search" class="form-control form-control-sm" placeholder="Search for a paper, author or keyword"> <div class="loading-tab" style="display: none"> <div class="loader-ellips"> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> </div> </div> <div id="task-papers-list"> <div class="infinite-container text-center"> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/attention-is-all-you-need"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/social-images/oVEwwksZyfDziYzq.png');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/attention-is-all-you-need">Attention Is All You Need</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/tensorflow/tensor2tensor" onclick="captureOutboundLink('https://github.com/tensorflow/tensor2tensor'); return true;" style="font-size:13px"> tensorflow/tensor2tensor </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="item-conference-link"> <a href="/conference/neurips-2017-12"> NeurIPS 2017 </a> </span> </p> <p class="item-strip-abstract">The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 575</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/attention-is-all-you-need" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/attention-is-all-you-need#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/graph-attention-networks"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1710.10903.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/graph-attention-networks">Graph Attention Networks</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/PetarV-/GAT" onclick="captureOutboundLink('https://github.com/PetarV-/GAT'); return true;" style="font-size:13px"> PetarV-/GAT </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="item-conference-link"> <a href="/conference/iclr-2018-1"> ICLR 2018 </a> </span> </p> <p class="item-strip-abstract">We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 91</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/graph-attention-networks" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/graph-attention-networks#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/modeling-relational-data-with-graph"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1703.06103.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/modeling-relational-data-with-graph">Modeling Relational Data with Graph Convolutional Networks</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/tkipf/relational-gcn" onclick="captureOutboundLink('https://github.com/tkipf/relational-gcn'); return true;" style="font-size:13px"> tkipf/relational-gcn </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="author-name-text item-date-pub">17 Mar 2017</span> </p> <p class="item-strip-abstract">We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 27</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/modeling-relational-data-with-graph" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/modeling-relational-data-with-graph#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/variational-graph-auto-encoders"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1611.07308.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/variational-graph-auto-encoders">Variational Graph Auto-Encoders</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/tkipf/gae" onclick="captureOutboundLink('https://github.com/tkipf/gae'); return true;" style="font-size:13px"> tkipf/gae </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="author-name-text item-date-pub">21 Nov 2016</span> </p> <p class="item-strip-abstract">We introduce the variational graph auto-encoder (VGAE), a framework for unsupervised learning on graph-structured data based on the variational auto-encoder (VAE).</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 22</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/variational-graph-auto-encoders" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/variational-graph-auto-encoders#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/inductive-representation-learning-on-large"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1706.02216.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/inductive-representation-learning-on-large">Inductive Representation Learning on Large Graphs</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/williamleif/GraphSAGE" onclick="captureOutboundLink('https://github.com/williamleif/GraphSAGE'); return true;" style="font-size:13px"> williamleif/GraphSAGE </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="item-conference-link"> <a href="/conference/neurips-2017-12"> NeurIPS 2017 </a> </span> </p> <p class="item-strip-abstract">Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 20</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/inductive-representation-learning-on-large" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/inductive-representation-learning-on-large#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/neural-graph-collaborative-filtering"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1905.08108.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/neural-graph-collaborative-filtering">Neural Graph Collaborative Filtering</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/xiangwang1223/neural_graph_collaborative_filtering" onclick="captureOutboundLink('https://github.com/xiangwang1223/neural_graph_collaborative_filtering'); return true;" style="font-size:13px"> xiangwang1223/neural_graph_collaborative_filtering </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="author-name-text item-date-pub">20 May 2019</span> </p> <p class="item-strip-abstract">Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 20</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/neural-graph-collaborative-filtering" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/neural-graph-collaborative-filtering#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/node2vec-scalable-feature-learning-for"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1607.00653.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/node2vec-scalable-feature-learning-for">node2vec: Scalable Feature Learning for Networks</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/aditya-grover/node2vec" onclick="captureOutboundLink('https://github.com/aditya-grover/node2vec'); return true;" style="font-size:13px"> aditya-grover/node2vec </a> </span> • <span class="author-name-text item-date-pub">3 Jul 2016</span> </p> <p class="item-strip-abstract">Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 18</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/node2vec-scalable-feature-learning-for" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/node2vec-scalable-feature-learning-for#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/graph-convolutional-matrix-completion"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1706.02263.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/graph-convolutional-matrix-completion">Graph Convolutional Matrix Completion</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/riannevdberg/gc-mc" onclick="captureOutboundLink('https://github.com/riannevdberg/gc-mc'); return true;" style="font-size:13px"> riannevdberg/gc-mc </a> </span> • <span class="item-framework-link"> <img class="" src="" /> </span> • <span class="author-name-text item-date-pub">7 Jun 2017</span> </p> <p class="item-strip-abstract">We consider matrix completion for recommender systems from the point of view of link prediction on graphs.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 15</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/graph-convolutional-matrix-completion" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/graph-convolutional-matrix-completion#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/benchmarking-graph-neural-networks"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/2003.00982.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/benchmarking-graph-neural-networks">Benchmarking Graph Neural Networks</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/graphdeeplearning/benchmarking-gnns" onclick="captureOutboundLink('https://github.com/graphdeeplearning/benchmarking-gnns'); return true;" style="font-size:13px"> graphdeeplearning/benchmarking-gnns </a> </span> • <span class="item-framework-link"> <img class="" src="https://production-assets.paperswithcode.com/perf/images/frameworks/pytorch-2fbf2cb9.png" /> </span> • <span class="author-name-text item-date-pub">2 Mar 2020</span> </p> <p class="item-strip-abstract">In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 15</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/benchmarking-graph-neural-networks" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/benchmarking-graph-neural-networks#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> <div class="paper-card infinite-item"> <!-- None --> <div class="container-fluid"> <div class="row"> <div class="col-lg-3"> <a href="/paper/hierarchical-graph-representation-learning"> <div class="item-image" style="background-image: url('https://production-media.paperswithcode.com/thumbnails/paper/1806.08804.jpg');"> </div> </a> </div> <div class="col-lg-9"> <div class="row"> <div class="col-lg-9 item-content"> <h1><a href="/paper/hierarchical-graph-representation-learning">Hierarchical Graph Representation Learning with Differentiable Pooling</a></h1> <p class="author-section" style="padding-top:2px"> <span class="item-github-link"> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> <a href="https://github.com/dmlc/dgl/tree/master/examples/pytorch/diffpool" onclick="captureOutboundLink('https://github.com/dmlc/dgl/tree/master/examples/pytorch/diffpool'); return true;" style="font-size:13px"> dmlc/dgl </a> </span> • <span class="item-framework-link"> <img class="" src="https://production-assets.paperswithcode.com/perf/images/frameworks/pytorch-2fbf2cb9.png" /> </span> • <span class="item-conference-link"> <a href="/conference/neurips-2018-12"> NeurIPS 2018 </a> </span> </p> <p class="item-strip-abstract">Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction.</p> </div> <div class="col-lg-3 item-interact text-center"> <div class="entity-stars"> <span class="badge badge-secondary"><span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> 14</span> </div> <div class="entity" style="margin-bottom: 20px;"> <a href="/paper/hierarchical-graph-representation-learning" class="badge badge-light "> <span class=" icon-wrapper icon-ion" data-name="document"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M428 224H288a48 48 0 0 1-48-48V36a4 4 0 0 0-4-4h-92a64 64 0 0 0-64 64v320a64 64 0 0 0 64 64h224a64 64 0 0 0 64-64V228a4 4 0 0 0-4-4z"/><path d="M419.22 188.59L275.41 44.78a2 2 0 0 0-3.41 1.41V176a16 16 0 0 0 16 16h129.81a2 2 0 0 0 1.41-3.41z"/></svg></span> Paper </a> <br/> <a href="/paper/hierarchical-graph-representation-learning#code" class="badge badge-dark "> <span class=" icon-wrapper icon-ion" data-name="logo-github"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M256 32C132.3 32 32 134.9 32 261.7c0 101.5 64.2 187.5 153.2 217.9a17.56 17.56 0 0 0 3.8.4c8.3 0 11.5-6.1 11.5-11.4 0-5.5-.2-19.9-.3-39.1a102.4 102.4 0 0 1-22.6 2.7c-43.1 0-52.9-33.5-52.9-33.5-10.2-26.5-24.9-33.6-24.9-33.6-19.5-13.7-.1-14.1 1.4-14.1h.1c22.5 2 34.3 23.8 34.3 23.8 11.2 19.6 26.2 25.1 39.6 25.1a63 63 0 0 0 25.6-6c2-14.8 7.8-24.9 14.2-30.7-49.7-5.8-102-25.5-102-113.5 0-25.1 8.7-45.6 23-61.6-2.3-5.8-10-29.2 2.2-60.8a18.64 18.64 0 0 1 5-.5c8.1 0 26.4 3.1 56.6 24.1a208.21 208.21 0 0 1 112.2 0c30.2-21 48.5-24.1 56.6-24.1a18.64 18.64 0 0 1 5 .5c12.2 31.6 4.5 55 2.2 60.8 14.3 16.1 23 36.6 23 61.6 0 88.2-52.4 107.6-102.3 113.3 8 7.1 15.2 21.1 15.2 42.5 0 30.7-.3 55.5-.3 63 0 5.4 3.1 11.5 11.4 11.5a19.35 19.35 0 0 0 4-.4C415.9 449.2 480 363.1 480 261.7 480 134.9 379.7 32 256 32z"/></svg></span> Code </a> <br/> </div> </div> </div> </div> </div> </div> </div> </div> <div class="loading" style="display: none"> <div class="loader-ellips infinite-scroll-request"> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> <span class="loader-ellips__dot"></span> </div> </div> <a class="infinite-more-link" href="?page=2&q="></a> </div> <div class="loading-trigger"></div> </div> <div class="col-lg-3 wide-sidebar task-infobox" id="task-sidebar"> <div class="image-container"> <a href="https://production-media.paperswithcode.com/thumbnails/task/task-0000000031-326cd034.jpg" data-lightbox="imageresource"> <img id="imageresource" width=100% src="https://production-media.paperswithcode.com/thumbnails/task/task-0000000031-326cd034.jpg"> </a> </div> <div class="task-toc"> <h4>Content</h4> <hr> <nav> <a class="toc-link" href="#task-home"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="book"><svg viewBox="0 0 448 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M356 161H188c-6.6 0-12-5.4-12-12v-8c0-6.6 5.4-12 12-12h168c6.6 0 12 5.4 12 12v8c0 6.6-5.4 12-12 12zm12 52c0 6.6-5.4 12-12 12H188c-6.6 0-12-5.4-12-12v-8c0-6.6 5.4-12 12-12h168c6.6 0 12 5.4 12 12v8zm64.7 268h3.3c6.6 0 12 5.4 12 12v8c0 6.6-5.4 12-12 12H80c-44.2 0-80-35.8-80-80V81C0 36.8 35.8 1 80 1h344c13.3 0 24 10.7 24 24v368c0 10-6.2 18.6-14.9 22.2-3.6 16.1-4.4 45.6-.4 65.8zM128 385h288V33H128v352zm-96 16c13.4-10 30-16 48-16h16V33H80c-26.5 0-48 21.5-48 48v320zm372.3 80c-3.1-20.4-2.9-45.2 0-64H80c-64 0-64 64 0 64h324.3z"/></svg></span> Introduction</a> <a class="toc-link" href="#benchmarks"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="chart-line"><svg viewBox="0 0 512 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M504 417c4.42 0 8 3.58 8 8v16c0 4.42-3.58 8-8 8H16c-8.84 0-16-7.16-16-16V73c0-4.42 3.58-8 8-8h16c4.42 0 8 3.58 8 8v344h472zM98.34 264.03l84.12-83.32c6.25-6.2 16.34-6.18 22.57.05l84.63 84.63 82.22-82.22-44.71-44.71C311.87 123.16 322.7 97 344.34 97h119.47c8.94 0 16.19 7.25 16.19 16.19v119.47c0 14.64-11.98 24.34-24.46 24.34-5.97 0-12.05-2.21-17-7.16L394.5 205.8l-93.53 93.53c-6.25 6.25-16.38 6.25-22.63 0l-84.69-84.69-72.69 72.01c-3.12 3.12-8.19 3.12-11.31 0l-11.31-11.31c-3.12-3.12-3.12-8.19 0-11.31zM362.96 129L448 214.04V129h-85.04z"/></svg></span> Benchmarks</a> <a class="toc-link" href="#datasets"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="database"><svg viewBox="0 0 448 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M224 33C118 33 32 61.75 32 97v32c0 35.25 86 64 192 64s192-28.75 192-64V97c0-35.25-86-64-192-64zm192 149.5c-41.251 29-116.75 42.5-192 42.5S73.25 211.5 32 182.5V225c0 35.25 86 64 192 64s192-28.75 192-64v-42.5zm0 96c-41.251 29-116.75 42.5-192 42.5S73.25 307.5 32 278.5V321c0 35.25 86 64 192 64s192-28.75 192-64v-42.5zm0 96c-41.251 29-116.75 42.5-192 42.5S73.25 403.5 32 374.5V417c0 35.25 86 64 192 64s192-28.75 192-64v-42.5zM224 1c77.904 0 224 18.662 224 96v320c0 77.2-145.858 96-224 96-77.904 0-224-18.662-224-96V97C0 19.8 145.858 1 224 1z"/></svg></span> Datasets</a> <a class="toc-link" href="#subtasks"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="sitemap"><svg viewBox="0 0 640 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M608 353c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32h-96c-17.67 0-32-14.33-32-32v-96c0-17.67 14.33-32 32-32h32v-96H336v96h32c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32h-96c-17.67 0-32-14.33-32-32v-96c0-17.67 14.33-32 32-32h32v-96H96v96h32c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32H32c-17.67 0-32-14.33-32-32v-96c0-17.67 14.33-32 32-32h32v-97.59C64 238.64 77.62 225 94.41 225H304v-64h-48c-17.67 0-32-14.33-32-32V33c0-17.67 14.33-32 32-32h128c17.67 0 32 14.33 32 32v96c0 17.67-14.33 32-32 32h-48v64h209.59c16.79 0 30.41 13.64 30.41 30.41V353h32zm-480 32H32v96h96v-96zm240 0h-96v96h96v-96zM256 129h128V33H256v96zm352 352v-96h-96v96h96z"/></svg></span> Subtasks</a> <a class="toc-link" href="#task-libraries"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="file-code"><svg viewBox="0 0 384 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M369.941 98.941c7.76 7.76 14.059 22.966 14.059 33.94V465c0 26.51-21.49 48-48 48H48c-26.51 0-48-21.49-48-48V49C0 22.49 21.49 1 48 1h204.118c10.975 0 26.18 6.3 33.94 14.059zm-22.627 22.628l-83.883-83.884c-1.728-1.73-5.057-3.608-7.431-4.194V129h95.509c-.586-2.374-2.465-5.703-4.195-7.431zM336 481c8.837 0 16-7.163 16-16V161H248c-13.254 0-24-10.745-24-24V33H48c-8.836 0-16 7.163-16 16v416c0 8.837 7.164 16 16 16h288zm-161.47-67.404l-25.93-7.527c-2.03-.59-3.677-2.784-3.677-4.898 0-.4.09-1.037.202-1.422l58.027-199.869c.59-2.03 2.784-3.678 4.898-3.678.4 0 1.038.09 1.422.202l25.928 7.527c2.03.59 3.677 2.784 3.677 4.898 0 .4-.09 1.037-.202 1.422l-58.026 199.87c-.59 2.03-2.784 3.677-4.898 3.677-.4 0-1.037-.09-1.422-.202zm-48.447-47.674c-.834.89-2.5 1.612-3.72 1.612-1.115 0-2.677-.618-3.49-1.38L57.611 308.72c-.89-.834-1.613-2.501-1.613-3.721 0-1.219.723-2.886 1.613-3.72l61.262-57.434c.813-.761 2.375-1.38 3.489-1.38 1.22 0 2.886.723 3.72 1.613l18.493 19.724c.761.812 1.38 2.375 1.38 3.488 0 1.273-.776 2.988-1.732 3.83L105.725 305l38.5 33.88c.954.842 1.73 2.557 1.73 3.83 0 1.113-.619 2.676-1.38 3.488zm139.043.232c-.812.762-2.375 1.38-3.488 1.38-1.22 0-2.887-.722-3.72-1.612l-18.493-19.724c-.762-.812-1.38-2.375-1.38-3.488 0-1.273.776-2.988 1.732-3.83L278.276 305l-38.5-33.88c-.954-.842-1.73-2.557-1.73-3.83 0-1.113.619-2.676 1.38-3.488l18.491-19.724c.834-.89 2.501-1.612 3.721-1.612 1.113 0 2.676.618 3.488 1.379l61.262 57.434c.89.834 1.612 2.501 1.612 3.72 0 1.22-.722 2.887-1.612 3.72z"/></svg></span> Libraries</a> <a class="toc-link" href="#papers-list"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="file"><svg viewBox="0 0 384 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M369.9 98.9c9 9 14.1 21.3 14.1 34V465c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V49C0 22.5 21.5 1 48 .9h204.1C264.8.9 277 6 286 15zm-22.6 22.7l-83.899-83.9c-2.1-2.1-4.6-3.5-7.4-4.2V129h95.5c-.7-2.8-2.1-5.3-4.2-7.4zM336 481c8.8 0 16-7.2 16-16V161H248c-13.3 0-24-10.7-24-24V33H48c-8.8 0-16 7.2-16 16v416c0 8.8 7.2 16 16 16h288z"/></svg></span> Papers</a> <a data-call-url="/tasklist/link-prediction/greatest" data-target="/task/link-prediction" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- Most implemented</a> <a data-call-url="/tasklist/link-prediction/social" data-target="/task/link-prediction/social" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- Social</a> <a data-call-url="/tasklist/link-prediction/latest" data-target="/task/link-prediction/latest" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- Latest</a> <a data-call-url="/tasklist/link-prediction/codeless" data-target="/task/link-prediction/codeless" class="toc-papers-button" style="padding-left: 16px;" href="#papers-list">- No code</a> </nav> </div> </div> </main> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/2.6da00df7.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/101.5f271f23.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/view_task.e61ab167.js" defer></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10