CINXE.COM
Search results for: automatic sequential extraction device
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: automatic sequential extraction device</title> <meta name="description" content="Search results for: automatic sequential extraction device"> <meta name="keywords" content="automatic sequential extraction device"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="automatic sequential extraction device" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="automatic sequential extraction device"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5007</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: automatic sequential extraction device</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5007</span> Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung%20Ho%20Lee">Myung Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Seung%20Lim"> Hee Seung Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Jae%20Maeng"> Young Jae Maeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hoon%20Lee"> Chang Hoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device" title="automatic sequential extraction device">automatic sequential extraction device</a>, <a href="https://publications.waset.org/abstracts/search?q=Pu%20isotopes" title=" Pu isotopes"> Pu isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Am%20isotopes" title=" Am isotopes"> Am isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20spectrometer" title=" alpha spectrometer"> alpha spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20waste%20samples" title=" radioactive waste samples"> radioactive waste samples</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-MS%20system" title=" ICP-MS system"> ICP-MS system</a> </p> <a href="https://publications.waset.org/abstracts/180385/development-of-an-automatic-sequential-extraction-device-for-pu-and-am-isotopes-in-radioactive-waste-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5006</span> Automatic Extraction of Water Bodies Using Whole-R Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhat%20Nawaz">Nikhat Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srinivasulu"> S. Srinivasulu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kesava%20Rao"> P. Kesava Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title="feature extraction">feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=chromaticity" title=" chromaticity"> chromaticity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20index" title=" water index"> water index</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20library" title=" spectral library"> spectral library</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20method" title=" integrated method "> integrated method </a> </p> <a href="https://publications.waset.org/abstracts/2097/automatic-extraction-of-water-bodies-using-whole-r-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5005</span> Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeyeon%20Kim">Jeyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title="unmanned aerial vehicle">unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20battery%20charging" title=" automatic battery charging"> automatic battery charging</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning" title=" positioning"> positioning</a> </p> <a href="https://publications.waset.org/abstracts/71183/automatic-battery-charging-for-rotor-wings-type-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5004</span> Developement of a New Wearable Device for Automatic Guidance Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/21436/developement-of-a-new-wearable-device-for-automatic-guidance-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5003</span> Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/63077/earphone-style-wearable-device-for-automatic-guidance-service-with-position-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5002</span> Dynamic Model of Automatic Loom on SimulationX</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jomartov">A. Jomartov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tuleshov"> A. Tuleshov</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tultaev"> B. Tultaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20loom" title="automatic loom">automatic loom</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=multibody" title=" multibody"> multibody</a>, <a href="https://publications.waset.org/abstracts/search?q=SimulationX" title=" SimulationX"> SimulationX</a> </p> <a href="https://publications.waset.org/abstracts/59167/dynamic-model-of-automatic-loom-on-simulationx" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5001</span> Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingjun%20Xu">Mingjun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Pun%20Wan"> Man Pun Wan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title="performance-based design">performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20tenability" title=" perpetual tenability"> perpetual tenability</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20control" title=" smoke control"> smoke control</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20plume" title=" fire plume"> fire plume</a> </p> <a href="https://publications.waset.org/abstracts/172186/zonal-and-sequential-extraction-design-for-large-flat-space-to-achieve-perpetual-tenability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5000</span> An Automatic Feature Extraction Technique for 2D Punch Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awais%20Ahmad%20Khan">Awais Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Abouel%20Nasr"> Emad Abouel Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20A.%20Hussein"> H. M. A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Ahmari"> Abdulrahman Al-Ahmari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title="feature extraction">feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20features" title=" internal features"> internal features</a>, <a href="https://publications.waset.org/abstracts/search?q=punch%20shapes" title=" punch shapes"> punch shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal" title=" sheet metal"> sheet metal</a> </p> <a href="https://publications.waset.org/abstracts/45001/an-automatic-feature-extraction-technique-for-2d-punch-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4999</span> Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakkrit%20Poonpakdee">Chakkrit Poonpakdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Hua%20Tzen"> Jing-Hua Tzen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Zhen%20Huang"> Ya-Zhen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Tung%20Lin"> Yao-Tung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potassium" title="potassium">potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20extraction%20process" title=" sequential extraction process"> sequential extraction process</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20mineral" title=" clay mineral"> clay mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=TXM" title=" TXM"> TXM</a> </p> <a href="https://publications.waset.org/abstracts/43853/single-and-sequential-extraction-for-potassium-fractionation-and-nano-clay-flocculation-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4998</span> Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron">F. Pedron</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni"> M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli"> G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Barbafieri"> M. Barbafieri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead contamination of agricultural land mainly vegetated with perennial ryegrass (<em>Lolium perenne</em>) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H<sub>2</sub>O, KNO<sub>3</sub>, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of <em>Lolium perenne</em> showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=Freundlich-like%20equation" title=" Freundlich-like equation"> Freundlich-like equation</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20extraction" title=" sequential extraction"> sequential extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20lead%20contamination" title=" soil lead contamination"> soil lead contamination</a> </p> <a href="https://publications.waset.org/abstracts/90618/lead-in-the-soil-plant-system-following-aged-contamination-from-ceramic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4997</span> Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyhan%20Kara%C3%A7avu%C5%9F">Seyhan Karaçavuş</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%BClent%20Y%C4%B1lmaz"> Bülent Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Kayaalt%C4%B1"> Ömer Kayaaltı</a>, <a href="https://publications.waset.org/abstracts/search?q=Semra%20%C4%B0%C3%A7er"> Semra İçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Arzu%20Ta%C5%9Fdemir"> Arzu Taşdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuzhan%20Ayy%C4%B1ld%C4%B1z"> Oğuzhan Ayyıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%BCbra%20Eset"> Kübra Eset</a>, <a href="https://publications.waset.org/abstracts/search?q=Eser%20Kaya"> Eser Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by <em>k</em>-nearest neighbors (<em>k</em>-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with <em>k</em>-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stage" title="cancer stage">cancer stage</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cell%20type" title=" cancer cell type"> cancer cell type</a>, <a href="https://publications.waset.org/abstracts/search?q=non-small%20cell%20lung%20carcinoma" title=" non-small cell lung carcinoma"> non-small cell lung carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=PET" title=" PET"> PET</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a> </p> <a href="https://publications.waset.org/abstracts/43698/automatic-staging-and-subtype-determination-for-non-small-cell-lung-carcinoma-using-pet-image-texture-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4996</span> Chemical Partitioning of Trace Metals in Sub-Surface Sediments of Lake Acigol, Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kiran"> D. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Doner"> Z. Doner</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zeytuncu"> B. Zeytuncu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tan%C3%A7"> B. Tanç</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lake Acıgöl is one of the large saline lacustrine environment in Turkey. Eleven trace metals (Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Cd, Pb and As) in 9 surface and subsurface sediment samples from the Lake Acıgöl were analyzed with the bulk and sequential extraction analysis methods by ICP-MS to obtain the metal distribution patterns in this extreme environment. Five stepped sequential extraction technique (1- exchangeable, 2- bond to carbonates, 3- bond to iron and manganese oxides/hydroxides, 4- bond to organic matter and sulphides, and 5- residual fraction incorporated into clay and silicate mineral lattices) was used to characterize the various forms of metals in the <63μ size sediments. The metal contents (ppm) and their percentages for each extraction step were reported and compared with the results obtained from the total digestion. Results indicate that sum of the four fraction are in good agreement with the total digestion results of Ni, Cd, As, Zn, Cu and Fe with the satisfactory recoveries (94.04–109.0%) and the method used is reliable and repeatable for these elements. It was found that there were high correlations between Fe vs. Ni loads in the fraction of F2 and F4 with R2= 0,91 and 0,81, respectively. Comparison of totally 135 chemical analysis results in three sampling location and for 5 fraction between Fe-Co, Co-Ni and Fe-Ni element couples were presented elevated correlations with R2=0,98, 0,92 and 0,91, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lake%20Acigol" title="Lake Acigol">Lake Acigol</a>, <a href="https://publications.waset.org/abstracts/search?q=sequancial%20extraction" title=" sequancial extraction"> sequancial extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=recent%20lake%20sediment" title=" recent lake sediment"> recent lake sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20speciation%20of%20heavy%20metals" title=" geochemical speciation of heavy metals "> geochemical speciation of heavy metals </a> </p> <a href="https://publications.waset.org/abstracts/10637/chemical-partitioning-of-trace-metals-in-sub-surface-sediments-of-lake-acigol-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4995</span> Automatic Moment-Based Texture Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tudor%20Barbu">Tudor Barbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-based" title=" moment-based"> moment-based</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20classification" title=" automatic classification"> automatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=validation%20indexes" title=" validation indexes"> validation indexes</a> </p> <a href="https://publications.waset.org/abstracts/3065/automatic-moment-based-texture-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4994</span> An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Suneetha">J. Suneetha</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayalaxmi"> Vijayalaxmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20data" title="multiple data">multiple data</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20analysis" title=" performance analysis"> performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20pattern" title=" sequential pattern"> sequential pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20database%20scalability" title=" sequence database scalability"> sequence database scalability</a> </p> <a href="https://publications.waset.org/abstracts/46782/an-analysis-of-sequential-pattern-mining-on-databases-using-approximate-sequential-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4993</span> Conditions for Fault Recovery of Interconnected Asynchronous Sequential Machines with State Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%E2%80%93Min%20Yang">Jung–Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, fault recovery for parallel interconnected asynchronous sequential machines is studied. An adversarial input can infiltrate into one of two submachines comprising parallel composition of the considered asynchronous sequential machine, causing an unauthorized state transition. The control objective is to elucidate the condition for the existence of a corrective controller that makes the closed-loop system immune against any occurrence of adversarial inputs. In particular, an efficient existence condition is presented that does not need the complete modeling of the interconnected asynchronous sequential machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20sequential%20machines" title="asynchronous sequential machines">asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20composi-tion" title=" parallel composi-tion"> parallel composi-tion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title=" fault tolerance"> fault tolerance</a> </p> <a href="https://publications.waset.org/abstracts/81893/conditions-for-fault-recovery-of-interconnected-asynchronous-sequential-machines-with-state-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4992</span> Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Proschka">Anthony Proschka</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Mishra"> Deepak Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Merlyn%20Ramanan"> Merlyn Ramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zurab%20Baratashvili"> Zurab Baratashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=business" title=" business"> business</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=layout" title=" layout"> layout</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20data%20processing" title=" business data processing"> business data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20handling" title=" document handling"> document handling</a>, <a href="https://publications.waset.org/abstracts/search?q=end-user%20trained%20information%20extraction" title=" end-user trained information extraction"> end-user trained information extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20archiving" title=" document archiving"> document archiving</a>, <a href="https://publications.waset.org/abstracts/search?q=scanned%20business%20documents" title=" scanned business documents"> scanned business documents</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20document%20processing" title=" automated document processing"> automated document processing</a>, <a href="https://publications.waset.org/abstracts/search?q=F1-measure" title=" F1-measure"> F1-measure</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20accounting%20software" title=" commercial accounting software"> commercial accounting software</a> </p> <a href="https://publications.waset.org/abstracts/128370/visual-template-detection-and-compositional-automatic-regular-expression-generation-for-business-invoice-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4991</span> A Folk Theorem with Public Randomization Device in Repeated Prisoner’s Dilemma under Costly Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshifumi%20Hino">Yoshifumi Hino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An infinitely repeated prisoner’s dilemma is a typical model that represents teamwork situation. If both players choose costly actions and contribute to the team, then both players are better off. However, each player has an incentive to choose a selfish action. We analyze the game under costly observation. Each player can observe the action of the opponent only when he pays an observation cost in that period. In reality, teamwork situations are often costly observation. Members of some teams sometimes work in distinct rooms, areas, or countries. In those cases, they have to spend their time and money to see other team members if they want to observe it. The costly observation assumption makes the cooperation difficult substantially because the equilibrium must satisfy the incentives not only on the action but also on the observational decision. Especially, it is the most difficult to cooperate each other when the stage-game is prisoner's dilemma because players have to communicate through only two actions. We examine whether or not players can cooperate each other in prisoner’s dilemma under costly observation. Specifically, we check whether symmetric Pareto efficient payoff vectors in repeated prisoner’s dilemma can be approximated by sequential equilibria or not (efficiency result). We show the efficiency result without any randomization device under certain circumstances. It means that players can cooperate with each other without any randomization device even if the observation is costly. Next, we assume that public randomization device is available, and then we show that any feasible and individual rational payoffs in prisoner’s dilemma can be approximated by sequential equilibria under a specific situation (folk theorem). It implies that players can achieve asymmetric teamwork like leadership situation when public randomization device is available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20observation" title="cost observation">cost observation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=folk%20theorem" title=" folk theorem"> folk theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=prisoner%27s%20dilemma" title=" prisoner's dilemma"> prisoner's dilemma</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20monitoring" title=" private monitoring"> private monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20games." title=" repeated games."> repeated games.</a> </p> <a href="https://publications.waset.org/abstracts/88894/a-folk-theorem-with-public-randomization-device-in-repeated-prisoners-dilemma-under-costly-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4990</span> Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20S.%20Tikhonova">Margarita S. Tikhonova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Baniasad"> Alireza Baniasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20G.%20Kalmykov"> Anton G. Kalmykov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgy%20A.%20Kalmykov"> Georgy A. Kalmykov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Littke"> Ralf Littke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bazhenov%20formation" title="Bazhenov formation">Bazhenov formation</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20geochemistry" title=" molecular geochemistry"> molecular geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20extraction" title=" sequential extraction"> sequential extraction</a> </p> <a href="https://publications.waset.org/abstracts/101704/organic-matter-distribution-in-bazhenov-source-rock-insights-from-sequential-extraction-and-molecular-geochemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4989</span> A Semi-Automatic Mechanism Used in the Peritoneal Dialysis Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-En%20Lin">I-En Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Jung%20Yang"> Feng-Jung Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to kidney transplant, renal replacement therapy involves hemodialysis and peritoneal dialysis (PD). PD possesses advantages such as maintaining stable physiological blood status and blood pressure, alleviating anemia, and improving mobility, which make it an ideal method for at-home dialysis treatment. However, potential danger still exists despite the numerous advantages of PD, particularly when patients require dialysis exchange four to five times a day, during which improper operation can easily lead to peritonitis. The process of draining and filling is called an exchange and takes about 30 to 40 minutes. Connecting the transfer set requires sterile technique. Transfer set may require a new cap each time that it disconnects from the bag after an exchange. There are many chances to get infection due to unsafe behavior (ex: hand tremor, poor eyesight and weakness, cap fall-down). The proposed semi-automatic connection mechanism used in the PD can greatly reduce infection chances. This light-weight connection device is portable. The device also does not require using throughout the entire process. It is capable of significantly improving quality of life. Therefore, it is very promising to adopt in home care application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20connection" title="automatic connection">automatic connection</a>, <a href="https://publications.waset.org/abstracts/search?q=catheter" title=" catheter"> catheter</a>, <a href="https://publications.waset.org/abstracts/search?q=glomerulonephritis" title=" glomerulonephritis"> glomerulonephritis</a>, <a href="https://publications.waset.org/abstracts/search?q=peritoneal%20dialysis" title=" peritoneal dialysis"> peritoneal dialysis</a> </p> <a href="https://publications.waset.org/abstracts/86604/a-semi-automatic-mechanism-used-in-the-peritoneal-dialysis-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4988</span> Words Spotting in the Images Handwritten Historical Documents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Issam%20Ben%20Jami">Issam Ben Jami </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20matching" title="feature matching">feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20documents" title=" historical documents"> historical documents</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20spotting" title=" word spotting"> word spotting</a> </p> <a href="https://publications.waset.org/abstracts/52183/words-spotting-in-the-images-handwritten-historical-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4987</span> Product Features Extraction from Opinions According to Time </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Amarouche">Kamal Amarouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Houda%20Benbrahim"> Houda Benbrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Kassou"> Ismail Kassou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opinion%20mining" title="opinion mining">opinion mining</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20feature%20extraction" title=" product feature extraction"> product feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SentiWordNet" title=" SentiWordNet"> SentiWordNet</a> </p> <a href="https://publications.waset.org/abstracts/50321/product-features-extraction-from-opinions-according-to-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4986</span> Extraction of Text Subtitles in Multimedia Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjit%20Singh">Amarjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video" title="video">video</a>, <a href="https://publications.waset.org/abstracts/search?q=subtitles" title=" subtitles"> subtitles</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frames" title=" frames"> frames</a> </p> <a href="https://publications.waset.org/abstracts/24441/extraction-of-text-subtitles-in-multimedia-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4985</span> Brainbow Image Segmentation Using Bayesian Sequential Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yayun%20Hsu">Yayun Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Horng-Shing%20Lu"> Henry Horng-Shing Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brainbow" title="brainbow">brainbow</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20imaging" title=" 3D imaging"> 3D imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron%20morphology" title=" neuron morphology"> neuron morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20data%20mining" title=" biological data mining"> biological data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=non-parametric%20learning" title=" non-parametric learning"> non-parametric learning</a> </p> <a href="https://publications.waset.org/abstracts/2189/brainbow-image-segmentation-using-bayesian-sequential-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4984</span> Automatic Integrated Inverter Type Smart Device for Safe Kitchen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Jananni">K. M. Jananni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nandini"> R. Nandini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20sensors" title="nano sensors">nano sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20system%20for%20mobile%20communication" title=" global system for mobile communication"> global system for mobile communication</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM" title=" GSM"> GSM</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20controller" title=" micro controller"> micro controller</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter" title=" inverter"> inverter</a> </p> <a href="https://publications.waset.org/abstracts/33392/automatic-integrated-inverter-type-smart-device-for-safe-kitchen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4983</span> Statistical Feature Extraction Method for Wood Species Recognition System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Iz%27aan%20Paiz%20Bin%20Zamri">Mohd Iz'aan Paiz Bin Zamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Salwa%20Mohd%20Khairuddin"> Anis Salwa Mohd Khairuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norrima%20Mokhtar"> Norrima Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubiyah%20Yusof"> Rubiyah Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection%20system" title=" inspection system"> inspection system</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20images" title=" macroscopic images"> macroscopic images</a> </p> <a href="https://publications.waset.org/abstracts/36415/statistical-feature-extraction-method-for-wood-species-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4982</span> Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandabad%20Sara">Sandabad Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayd%20Tahri%20Yassine"> Sayd Tahri Yassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammouch%20Ahmed"> Hammouch Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRI" title="MRI">MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=Em%20algorithm" title=" Em algorithm"> Em algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nl-means" title=" Nl-means"> Nl-means</a> </p> <a href="https://publications.waset.org/abstracts/56745/fast-tumor-extraction-method-based-on-nl-means-filter-and-expectation-maximization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4981</span> Automatic Classification of Lung Diseases from CT Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abobaker%20Mohammed%20Qasem%20Farhan">Abobaker Mohammed Qasem Farhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shangming%20Yang"> Shangming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Nehari"> Mohammed Al-Nehari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title="CT scan">CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title=" Covid-19"> Covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20disease%20classification" title=" lung disease classification"> lung disease classification</a> </p> <a href="https://publications.waset.org/abstracts/159935/automatic-classification-of-lung-diseases-from-ct-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4980</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4979</span> Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Siddeq">Mohammed M. Siddeq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Rasheed"> Mohammed H. Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Salih"> Omar M. Salih</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20A.%20Rodrigues"> Marcos A. Rodrigues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20minimization%20algorithm" title="matrix minimization algorithm">matrix minimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=decoding%20sequential%20search%20algorithm" title=" decoding sequential search algorithm"> decoding sequential search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title=" image compression"> image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a> </p> <a href="https://publications.waset.org/abstracts/151394/quick-sequential-search-algorithm-used-to-decode-high-frequency-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4978</span> Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stella%20O.%20Olubodun">Stella O. Olubodun</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20E.%20Eriyamremu"> George E. Eriyamremu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (<em>Zea mays</em>) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20contamination" title=" crude oil contamination"> crude oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title=" EDTA"> EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/38382/prediction-of-metals-available-to-maize-seedlings-in-crude-oil-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automatic%20sequential%20extraction%20device&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>