CINXE.COM
axiom of extensionality in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> axiom of extensionality in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> axiom of extensionality </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/13675/#Item_11" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>The axiom of extensionality</title></head> <body> <h1 id="the_axiom_of_extensionality">The axiom of extensionality</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#statements'>Statements</a></li> <ul> <li><a href='#weak_extensionality'>Weak extensionality</a></li> <ul> <li><a href='#in_unsorted_set_theories'>In unsorted set theories</a></li> <li><a href='#in_twosorted_set_theories'>In two-sorted set theories</a></li> </ul> <li><a href='#material_strong_extensionality'>Material strong extensionality</a></li> <li><a href='#structural_strong_extensionality'>Structural strong extensionality</a></li> </ul> <li><a href='#in_dependent_type_theory'>In dependent type theory</a></li> <ul> <li><a href='#power_sets'>Power sets</a></li> </ul> <li><a href='#see_also'>See also</a></li> <li><a href='#references'> References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>In material <a class="existingWikiWord" href="/nlab/show/set+theory">set theory</a>, the <em>axiom of extensionality</em> says that the global membership relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∈</mo></mrow><annotation encoding="application/x-tex">\in</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/extensional+relation">extensional relation</a> on the class of all <a class="existingWikiWord" href="/nlab/show/pure+sets">pure sets</a>.</p> <p>Since any relation becomes extensional on its <a class="existingWikiWord" href="/nlab/show/extensional+quotient">extensional quotient</a>, one can interpret this axiom as a definition of <a class="existingWikiWord" href="/nlab/show/equality">equality</a>. However, because the extensional quotient map need not reflect the relation, there is still content to the axiom: if two sets would be identified in the extensional quotient, then they must be members of the same sets and have the same sets as members.</p> <p>If one models <a class="existingWikiWord" href="/nlab/show/pure+sets">pure sets</a> in structural <a class="existingWikiWord" href="/nlab/show/set+theory">set theory</a>, then this property may be made to hold by construction.</p> <h2 id="statements">Statements</h2> <h3 id="weak_extensionality">Weak extensionality</h3> <h4 id="in_unsorted_set_theories">In unsorted set theories</h4> <p>In any <a class="existingWikiWord" href="/nlab/show/unsorted+set+theory">unsorted set theory</a>, the <strong>axiom of <a class="existingWikiWord" href="/nlab/show/weak+extensionality">weak extensionality</a></strong> states that given a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A = B</annotation></semantics></math> if and only if for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">C \in A</annotation></semantics></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">C \in B</annotation></semantics></math>.</p> <p>If the set theory does not have <a class="existingWikiWord" href="/nlab/show/equality">equality</a> as a primitive, we could define equality as the predicate</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi><mo>≔</mo><mo>∀</mo><mi>C</mi><mo>.</mo><mo stretchy="false">(</mo><mi>C</mi><mo>∈</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⇔</mo><mo stretchy="false">(</mo><mi>C</mi><mo>∈</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A = B \coloneqq \forall C.(C \in A) \iff (C \in B)</annotation></semantics></math></div> <p>The axiom of weak extensionality is a foundational axiom in most <a class="existingWikiWord" href="/nlab/show/material+set+theories">material set theories</a>, such as Zermelo set theory and Mac Lane set theory, both which do not have the <a class="existingWikiWord" href="/nlab/show/axiom+of+foundation">axiom of foundation</a>, as well as <a class="existingWikiWord" href="/nlab/show/ZFC">ZFC</a> which does have the <a class="existingWikiWord" href="/nlab/show/axiom+of+foundation">axiom of foundation</a>.</p> <p>In <a class="existingWikiWord" href="/nlab/show/fully+formal+ETCS">fully formal ETCS</a>, where the basic objects of the theory are functions, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math> represents both the <a class="existingWikiWord" href="/nlab/show/empty+set">empty set</a> and the <a class="existingWikiWord" href="/nlab/show/identity+function">identity function</a> on the empty set, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math> represents the <a class="existingWikiWord" href="/nlab/show/singleton">singleton</a>, the <a class="existingWikiWord" href="/nlab/show/identity+function">identity function</a> of the singleton, and the sole <a class="existingWikiWord" href="/nlab/show/element">element</a> of the singleton all at the same time, there are three possible notions of sets:</p> <ul> <li> <p>as <a class="existingWikiWord" href="/nlab/show/identity+functions">identity functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">set</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>≔</mo><mi mathvariant="normal">dom</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">\mathrm{set}(a) \coloneqq \mathrm{dom}(a) = a</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">set</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>≔</mo><mi mathvariant="normal">codom</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">\mathrm{set}(a) \coloneqq \mathrm{codom}(a) = a</annotation></semantics></math></p> </li> <li> <p>as <a class="existingWikiWord" href="/nlab/show/functions">functions</a> into the <a class="existingWikiWord" href="/nlab/show/singleton">singleton</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">set</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>≔</mo><mo stretchy="false">(</mo><mi mathvariant="normal">codom</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{set}(a) \coloneqq (\mathrm{codom}(a) = 1)</annotation></semantics></math></p> </li> <li> <p>as functions from the <a class="existingWikiWord" href="/nlab/show/empty+set">empty set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">set</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>≔</mo><mo stretchy="false">(</mo><mi mathvariant="normal">dom</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{set}(a) \coloneqq (\mathrm{dom}(a) = 0)</annotation></semantics></math></p> </li> </ul> <p>The elements are functions with domain <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">element</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>≔</mo><mo stretchy="false">(</mo><mi mathvariant="normal">dom</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{element}(a) \coloneqq (\mathrm{dom}(a) = 1)</annotation></semantics></math></p> <p>When sets are defined as functions into the singleton, the membership relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a \in b</annotation></semantics></math> is defined by the function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> being an element, the function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math> being a set, and the codomain of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> being <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>b</mi><mo>≔</mo><mi mathvariant="normal">set</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>∧</mo><mi mathvariant="normal">element</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∧</mo><mi mathvariant="normal">codom</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a \in b \coloneqq \mathrm{set}(a) \wedge \mathrm{element}(b) \wedge \mathrm{codom}(a) = b</annotation></semantics></math></div> <p>Weak extensionality is a theorem in this case. By the universal property of the singleton, any two sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> with the same domain are equal to each other, which means that any proposition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> implies that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A = B</annotation></semantics></math>, and thus that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∀</mo><mi>C</mi><mo>.</mo><mo stretchy="false">(</mo><mi>C</mi><mo>∈</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⇔</mo><mo stretchy="false">(</mo><mi>C</mi><mo>∈</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall C.(C \in A) \iff (C \in B)</annotation></semantics></math> implies that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A = B</annotation></semantics></math>. The converse follows from <a class="existingWikiWord" href="/nlab/show/indiscernibility+of+identicals">indiscernibility of identicals</a>.</p> <h4 id="in_twosorted_set_theories">In two-sorted set theories</h4> <p>In any <a class="existingWikiWord" href="/nlab/show/two-sorted+set+theory">two-sorted set theory</a>, the <strong>axiom of <a class="existingWikiWord" href="/nlab/show/weak+extensionality">weak extensionality</a></strong> states that given a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>:</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">A:Set</annotation></semantics></math> and a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>:</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">B:Set</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><msub><mo>=</mo> <mi>Set</mi></msub><mi>B</mi></mrow><annotation encoding="application/x-tex">A =_{Set} B</annotation></semantics></math> if and only if for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>:</mo><mi>Element</mi></mrow><annotation encoding="application/x-tex">a:Element</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a \in A</annotation></semantics></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a \in B</annotation></semantics></math>.</p> <p>If the set theory does not have <a class="existingWikiWord" href="/nlab/show/equality">equality</a> of sets as a primitive, we could define equality of sets as the predicate</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>A</mi><msub><mo>=</mo> <mi>Set</mi></msub><mi>B</mi><mo>≔</mo><mo>∀</mo><mi>a</mi><mo>:</mo><mi>Element</mi><mo>.</mo><mo stretchy="false">(</mo><mi>a</mi><mo>∈</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⇔</mo><mo stretchy="false">(</mo><mi>a</mi><mo>∈</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A =_{Set} B \coloneqq \forall a:Element.(a \in A) \iff (a \in B)</annotation></semantics></math></div> <h3 id="material_strong_extensionality">Material strong extensionality</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∼</mo></mrow><annotation encoding="application/x-tex">\sim</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/bisimulation">bisimulation</a>, a binary relation such that for all sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∼</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A \sim B</annotation></semantics></math>, the following conditions hold:</p> <ul> <li>for all sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">C \in A</annotation></semantics></math>, there exists a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">D \in B</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∼</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">C \sim D</annotation></semantics></math></li> <li>for all sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">D \in B</annotation></semantics></math>, there exists a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">C \in A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∼</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">C \sim D</annotation></semantics></math></li> </ul> <p>The <strong>axiom of strong extensionality</strong> states that for every bisimulation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∼</mo></mrow><annotation encoding="application/x-tex">\sim</annotation></semantics></math> and for every set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∼</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A \sim B</annotation></semantics></math> implies that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A = B</annotation></semantics></math>.</p> <p>If the set theory does not have <a class="existingWikiWord" href="/nlab/show/equality">equality</a> as a primitive, we could define equality as the <a class="existingWikiWord" href="/nlab/show/terminal">terminal</a> <a class="existingWikiWord" href="/nlab/show/bisimulation">bisimulation</a>, as the bisimulation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>=</mo></mrow><annotation encoding="application/x-tex">=</annotation></semantics></math> such that for every bisimulation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∼</mo></mrow><annotation encoding="application/x-tex">\sim</annotation></semantics></math> and for every set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∼</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A \sim B</annotation></semantics></math> implies that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A = B</annotation></semantics></math>.</p> <p>In any set theory with the <a class="existingWikiWord" href="/nlab/show/axiom+of+foundation">axiom of foundation</a>, the axiom of weak extensionality implies the axiom of strong extensionality.</p> <h3 id="structural_strong_extensionality">Structural strong extensionality</h3> <p>In any <a class="existingWikiWord" href="/nlab/show/structural+set+theory">structural set theory</a>, the axiom of strong extensionality states that for all sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> with an <a class="existingWikiWord" href="/nlab/show/injection">injection</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo>:</mo><mi>A</mi><mo>↪</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">i:A \hookrightarrow B</annotation></semantics></math>, the two definitions of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math> being a <a class="existingWikiWord" href="/nlab/show/bijection">bijection</a> are logically equivalent to each other:</p> <ul> <li>there exists a function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>i</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>:</mo><mi>B</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">i^{-1}:B \to A</annotation></semantics></math> such that for all elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a \in A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">b \in B</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>i</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">i^{-1}(i(a)) = a</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo stretchy="false">(</mo><msup><mi>i</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">i(i^{-1}(b)) = b</annotation></semantics></math></li> <li>for every element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">x \in B</annotation></semantics></math> there exists an element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">y \in A</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">i(y) = x</annotation></semantics></math>.</li> </ul> <p>Similar to how in material set theory one can use the axiom of extensionality to define <a class="existingWikiWord" href="/nlab/show/equality">equality</a> of sets, in structural set theory one can use the axiom of strong extensionality to define <a class="existingWikiWord" href="/nlab/show/bijection">bijection</a> of sets.</p> <h2 id="in_dependent_type_theory">In dependent type theory</h2> <p>In <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a>, it is possible to define a <a class="existingWikiWord" href="/nlab/show/Tarski+universe">Tarski universe</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mo>∈</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(V, \in)</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/pure+sets">pure sets</a> which behaves as a <a class="existingWikiWord" href="/nlab/show/material+set+theory">material set theory</a>. The universal type family of the Tarski universe is given by the type family <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><mi>V</mi><mo>⊢</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>y</mi><mo>:</mo><mi>V</mi></mrow></msub><mi>y</mi><mo>∈</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">x:V \vdash \sum_{y:V} y \in x</annotation></semantics></math>. The <strong>axiom of extensionality</strong> is given by the following <a class="existingWikiWord" href="/nlab/show/inference+rule">inference rule</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mfrac><mrow><mi>Γ</mi><mspace width="thickmathspace"></mspace><mi mathvariant="normal">ctx</mi></mrow><mrow><mi>Γ</mi><mo>⊢</mo><msub><mi mathvariant="normal">extensionality</mi> <mi>V</mi></msub><mo>:</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mrow><mi>x</mi><mo>:</mo><mi>V</mi></mrow></munder><munder><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mrow><mi>y</mi><mo>:</mo><mi>V</mi></mrow></munder><mo stretchy="false">(</mo><mi>x</mi><msub><mo>=</mo> <mi>V</mi></msub><mi>y</mi><mo stretchy="false">)</mo><mo>≃</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mrow><mi>z</mi><mo>:</mo><mi>V</mi></mrow></munder><mo stretchy="false">(</mo><mi>z</mi><mo>∈</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">(</mo><mi>z</mi><mo>∈</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathrm{extensionality}_V:\prod_{x:V} \prod_{y:V} (x =_V y) \simeq \prod_{z:V} (z \in x) \simeq (z \in y)}</annotation></semantics></math></div> <h3 id="power_sets">Power sets</h3> <p>For <a class="existingWikiWord" href="/nlab/show/power+sets">power sets</a>, the <em><a class="existingWikiWord" href="/nlab/show/axiom+of+extensionality">axiom of extensionality</a></em> is a property of <a class="existingWikiWord" href="/nlab/show/power+sets">power sets</a>, and states that given a <a class="existingWikiWord" href="/nlab/show/type">type</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/subtypes">subtypes</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>:</mo><mi>𝒫</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B:\mathcal{P}(A)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>:</mo><mi>𝒫</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C:\mathcal{P}(A)</annotation></semantics></math>, there is an <a class="existingWikiWord" href="/nlab/show/equivalence+of+types">equivalence of types</a> between the <a class="existingWikiWord" href="/nlab/show/identity+type">identity type</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>=</mo> <mrow><mi>𝒫</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></msub><mi>C</mi></mrow><annotation encoding="application/x-tex">B =_{\mathcal{P}(A)} C</annotation></semantics></math> and the <a class="existingWikiWord" href="/nlab/show/dependent+function+type">dependent function type</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mrow><mi>x</mi><mo>:</mo><mi>A</mi></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><msub><mo>∈</mo> <mi>A</mi></msub><mi>B</mi><mo stretchy="false">)</mo><mo>≃</mo><mo stretchy="false">(</mo><mi>x</mi><msub><mo>∈</mo> <mi>A</mi></msub><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\prod_{x:A} (x \in_A B) \simeq (x \in_A C)</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>Ω</mi><mo>,</mo><msub><mi mathvariant="normal">El</mi> <mi>Ω</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\Omega, \mathrm{El}_\Omega)</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/type+of+all+propositions">type of all propositions</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><msub><mo>∈</mo> <mi>A</mi></msub><mi>B</mi><mo>≔</mo><msub><mi mathvariant="normal">El</mi> <mi>Ω</mi></msub><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x \in_A B \coloneqq \mathrm{El}_\Omega(B(x))</annotation></semantics></math> is the local membership relation between elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x:A</annotation></semantics></math> and subtypes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>:</mo><mi>𝒫</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B:\mathcal{P}(A)</annotation></semantics></math>. The axiom of extensionality holds in the <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a> if and only if <a class="existingWikiWord" href="/nlab/show/function+extensionality">function extensionality</a> holds.</p> <h2 id="see_also">See also</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/extensionality">extensionality</a></li> <li><a class="existingWikiWord" href="/nlab/show/identity+of+indiscernibles">identity of indiscernibles</a></li> </ul> <h2 id="references"> References</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael+Shulman">Michael Shulman</a>, <em>Comparing material and structural set theories</em> (<a href="https://arxiv.org/abs/1808.05204">arXiv:1808.05204</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/H%C3%A5kon+Robbestad+Gylterud">Håkon Robbestad Gylterud</a>, <a class="existingWikiWord" href="/nlab/show/Elisabeth+Bonnevier">Elisabeth Bonnevier</a>, <em>Non-wellfounded sets in HoTT</em> (<a href="https://arxiv.org/abs/2001.06696">arXiv:2001.06696</a>)</p> </li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/foundational+axiom">foundational axiom</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on February 28, 2024 at 02:57:04. See the <a href="/nlab/history/axiom+of+extensionality" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/axiom+of+extensionality" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/13675/#Item_11">Discuss</a><span class="backintime"><a href="/nlab/revision/axiom+of+extensionality/21" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/axiom+of+extensionality" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/axiom+of+extensionality" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a> <a href="/nlab/show/axiom+of+extensionality/cite" style="color: black">Cite</a> <a href="/nlab/print/axiom+of+extensionality" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/axiom+of+extensionality" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>